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Abstract

Java-ML is a collection of machine learning and data mining algorithms, which aims to be a readily
usable and easily extensible API for both software developers and research scientists. The inter-
faces for each type of algorithm are kept simple and algorithms strictly follow their respective
interface. Comparing different classifiers or clustering algorithms is therefore straightforward, and
implementing new algorithms is also easy. The implementations of the algorithms are clearly writ-
ten, properly documented and can thus be used as a reference.The library is written in Java and is
available from http://java-ml.sourceforge.net/ under the GNU GPL license.
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1. Introduction

Machine learning techniques are increasingly popular in research fieldslike bio- and chemo-
informatics, text and web mining, as well as many other areas of research and industry. In this
paper we present Java-ML: a cross-platform, open source machine learning library written in Java.

Several well-known data mining libraries already exist, including for example, Weka (Witten
and Frank, 2005) and Yale/RapidMiner (Mierswa et al., 2006). These programs provide a user-
friendly interface and are geared towards interactive use with the user.In contrast to these programs,
Java-ML is oriented towards developers that want to use machine learningin their own programs.
To this end, Java-ML interfaces are restricted to the essentials, and are very easy to understand. As
a result, Java-ML facilitates a broad exploration of different models, is straightforward to integrate
into your own source code, and can be easily extended.

Regarding the content of the library, Java-ML also has a different focus than the other libraries.
Java-ML contains an extensive set of similarity based techniques, and offers state-of-the-art feature
selection techniques. The large number of similarity functions allow for a broad set of clustering
and instance based learning techniques, while the feature selection techniques are well suited to
deal with high-dimensional domains, such as the ones often encountered inbioinformatics and
biomedical applications.
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Clustering Classification
K-means-like (7) SVM (2)
Self organizing maps Instance based learning (4)
Density based clustering (3) Tree based methods (2)
Markov chain clustering Random Forests
Cobweb Bagging
Cluster evaluation measures (15)

Feature selection Data filters
Entropy based methods (4) Discretization
Stepwise addition/removal (2) Normalization (2)
SVM RFE Missing values (3)
Random forests Instance manipulation (11)
Ensemble feature selection

Distance measures Utilities
Similarity measures (6) Cross-validation/evaluation
Distance metrics (11) Data loading (ARFF and CSV)
Correlation measures (2) Weka bridges (2)

Table 1: Overview of the main algorithms included in Java-ML. The number of algorithms for each
category is shown in parentheses.

2. Description of the Library

In this section we first describe the software design of Java-ML, we thendiscuss how to integrate it
in your program and finally we cover the documentation.

2.1 Structure of the Library

The library is built around two core interfaces:Dataset andInstance. These two interfaces have
several implementations for different types of samples. The machine learning algorithms implement
one of the following interfaces:Clusterer, Classifier, FeatureScoring, FeatureRanking or
FeatureSubsetSelection. Distance, correlation and similarity measures implement the interface
DistanceMeasure. These distance measures can be used in many algorithms to modify their behav-
ior. Cluster evaluation measures are defined by theClusterEvaluation interface. Manipulation
filters either implementInstanceFilter or DatasetFilter, depending on the level they work on.
All implementing classes for each of the interfaces are available from the APIdocumentation that
is available on the Java-ML website. Each of these interfaces provides one or two methods that are
required to execute the algorithm on a particular data set. Several utility classes make it easy to load
data from tab or comma separated files and from ARFF formatted files. An overview of the main
algorithms included in Java-ML can be found in Table 1.

The library provides several algorithms that have not been made availablebefore in a bundled
form. In particular, clustering algorithms and the accompanying cluster evaluation measures are ex-
tensively represented. This includes the adaptive quality-based clustering algorithm, density based
methods, self-organizing maps (both as clustering and classification algorithm) and numerous other
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well-known clustering algorithms. A large number of distance, similarity and correlation measures
are included. Feature selection algorithms include traditional algorithms like symmetrical uncer-
tainty, gain ratio, RELIEF, stepwise addition/removal, as well as a number of more recent methods
(SVMRFE and random forest attribute evaluation). Also the recently introduced concept of ensem-
ble feature selection techniques (Saeys et al., 2008) is incorporated in thelibrary. We have also
implemented a fast and simple random tree algorithm to cope with high dimensional, sparse and
ambiguous data. Finally, we provide bridges for classification and clustering in Weka and libsvm
(Fan et al., 2005).

2.2 Easy Integration in Your Own Source Code

Including Java-ML algorithms in your own source code is very simple. To illustrate this, we present
here two short code fragments that demonstrate the ease to integrate the library. The following lines
of code integrate a K-Means clustering algorithm in your own program.

Dataset data = FileHandler.loadDataset(new File("iris.data"), 4, ",");
Clusterer km = new KMeans();
Dataset[]clusters=km.cluster(data);

The first line uses the FileHandler utility to load data from the iris.data file. In this file, the class
label is on the fourth position and the fields are separated by a comma. The second line constructs a
new instance of the KMeans clustering algorithm with default values, in this case k=4. The third line
uses the KMeans instance to cluster the data that we loaded in the first line. The resulting clusters
will be returned as an array of data sets.

The following example illustrates how to perform a cross-validation experiment for a specific
dataset and classifier.

Dataset data = FileHandler.loadDataset(new File("iris.data"), 4, ",");
Classifier knn = new KNearestNeighbors(5);
CrossValidation cv = new CrossValidation(knn);
Map<Object, PerformanceMeasure> p = cv.crossValidation(data);

First we load the iris data set, and construct a K-nearest neighbors classifier, which uses 5 neigh-
bors to classify instances. In the next line, we initialize the cross-validation with our classifier. The
last line runs the cross-validation on the loaded data. By default, a 10-foldcross validation will
be performed. The result is returned in a map, which maps each class labelto its corresponding
PerformanceMeasure (Map<Object,PerformanceMeasure>). For classification problems, a per-
formance measure is a wrapper around four values: (i) true positives,(ii) true negatives, (iii) false
positives and (iv) false negatives. This class also provides a number of derivative measures such as
accurracy, error rate, precision, recall and others. More advanced samples are available from the
documentation pages on the Java-ML website.

2.3 Documentation

There are a number of resources for documentation about Java-ML. The source code itself is docu-
mented thoroughly, always up-to-date, and accessible from the web site through the API documen-
tation. The web site additionally provides a number of tutorials with illustrated codesamples for
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the most common tasks in Java-ML, covering the following topics: installing the library, introduc-
ing basic concepts, creating and loading data, creating algorithms and applying them to your data,
and more advanced topics for people who would like to contribute to the library. Finally, all code
samples as well as the PDF versions of the tutorials are also included in the Java-ML distribution
itself.

3. Case Studies

The library described in this manuscript has been used in several studies. Here we highlight two
applications which have been recently published.

Initially, the project focused on clustering algorithms and measures to evaluate the quality of
a clustering. Our goal was to separate DNA sequences that are likely to contain a promoter (the
controlling element of a gene) from other sequences, a well-known task inbioinformatics. The
best results were obtained using a clustering algorithm based on self-organizing maps (Abeel et al.,
2008).

More recently, the focus has shifted toward feature selection. More specifically, we are looking
whether ensemble feature selection (combining different feature selectors) can improve the stability
of feature selection in case of high-dimensional data sets with few samples. The improvements in
stability were shown not to affect the prediction accuracy. This is ongoing research, but the first
results are promising (Saeys et al., 2008).
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