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Abstract

Bayesian inference is intractable for many interesting models, making deterministic algorithms
for approximate inference highly desirable. Unlike stochastic methods, which are exact in the
limit, the accuracy of these approaches cannot be reasonably judged. In this paper we show how
low order perturbation corrections to an expectation-consistent (EC) approximation can provide
the necessary tools to ameliorate inference accuracy, and to give an indication of the quality of
approximation without having to resort to Monte Carlo methods. Further comparisons are given
with variational Bayes and parallel tempering (PT) combined with thermodynamic integration on
a Gaussian mixture model. To obtain practical results we further generalize PT to temper from
arbitrary distributions rather than a prior in Bayesian inference.

Keywords: Bayesian inference, mixture models, expectation propagation, expectation consistent,
perturbation correction, variational Bayes, parallel tempering, thermodynamic integration

1. Introduction

Approximate methods for Bayesian inference have recently enjoyed a limelight of attention. These
methods can be either deterministic or stochastic. Deterministic methods, which typically turn
integration and summation problems of Bayesian marginalization into optimization problems, in-
clude the Laplace approximation, mean field (or variational) methods like variational Bayes (VB),
expectation propagation (EP), and expectation consistent (EC) and Bethe/Kikuchi approximations
(also known as loopy belief propagation or generalized belief propagation). Their attraction lies in
the precise but tractable inferences that they typically provide, but their drawback is the lack of a
built-in sanity check, as we cannot assess the approximation error. Stochastic methods like Markov
chain Monte Carlo (MCMC) algorithms, which give exact estimates in a large enough sample limit,
lie orthogonal to deterministic methods. They are normally much slower than their deterministic
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counterparts, but given a skilled user and enough computational resources stochastic methods are
capable of giving more precise answers. Whether inference errors (of unknown size) are acceptable
of course depends on the application in question. In statistical applications one might prefer simple
models which allow for exact inferences, whereas in communication systems intractability is an
inherent property of communication channels and to counter this, one instead designs fault tolerant
error-correcting protocols.

The problem under consideration can be stated in general terms: We are presented with a data
set ofN independent and identically distributed (i.i.d.) examplesD = {xn}Nn=1, which we model by
a generative model specified by the distributionp(x|θ), such thatp(D|θ) = ∏n p(xn|θ). In Bayesian
inference we introduce a prior distributionp(θ) over model parametersθ, and to infer unobserved
random variables we compute different averages over the posterior distribution

p(θ|D) =
1
Z

p(D|θ)p(θ) with Z =
Z

dθ p(D|θ)p(θ) . (1)

In model selection or model averaging the normalizer (marginal likelihood)Z = p(D) needs to be
computed for different models under consideration, that is,p(D|Mm), m = 1, . . . , |M |. Another
central inference is about the density at a new (test) example, the so-called predictive density (or
distribution):

p(x|D) =
Z

dθ p(x|θ)p(θ|D) . (2)

This paper mostly specializes to modelling the density with a mixture model

p(x|θ) =
K

∑
k=1

p(k)p(x|θk)

such that mixing proportionsp(k) sum to one, andθ = {p(k),θk}Kk=1. A mixture of Gaussians
(MoG) corresponds top(x|θk) being Gaussian. The prior distribution and the likelihood term for
each component termp(k)p(x|θk) are chosen to be conjugate, such that their product is in the same
distribution family as the prior and thus tractable. Intractability for the mixture model arises not
because integration is intractable, but because the number of terms in the marginal likelihood isKN.

This paper starts from the vantage point of an expectation consistent (EC) approximation (Opper
and Winther, 2005) (and its algorithmic realisation by expectation propagation(EP) Minka 2001a)
and substantiates these main contributions and findings:

1. We express the exact posterior distribution by an approximating distribution which is given
by EC plus a series of error terms with increasing complexity. When low ordercorrections
are small, one might hope that the remaining contributions will also decrease withthe order,
suggesting that the approximation can be improved by retaining only the lowestorders in
the series. One can thus expect corrections to improve an already good approximation, but
not a poor one. On the other hand, large lower order terms may indicate a poor approxima-
tion, providing an error check on the approximation without having to resort to Monte Carlo
methods.

2. We derive corrections both for the marginal likelihood and the predictive distribution in the
form of an expansion in terms of “clusters” of likelihood terms of the posterior. This ex-
pansion resembles the loop series expansions which were derived for correcting loopy be-
lief propagation (LBP) (Chertkov and Chernyak, 2006, Gómez et al., 2007, Sudderth et al.,
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2008).1 All these methods hold in common that the correction terms are expressed as aver-
ages over the approximating solution and can thus be calculatedafter the convergence of the
EP or LBP iterative scheme.

3. We show that our first order correction to the posterior can be simply expressed by quantities
already computed by the EP algorithm. No further averages are needed. In contrast, the
lowest non-trivial correction to the marginal likelihood is of second order, with the number of
terms growing asO(N2). Corrections to the marginal likelihood can be tractably computed,
for example, for models where the likelihood is a mixture distribution. Each of error terms
contains the originalK-component mixture, such that a correction up to orderj requires the
computation ofO((NK) j) terms.

4. When the true distribution is multi-modal, EP will in most cases provide a local (single)
mode approximation, with lower-order corrections also being local. One such example is the
K!-fold labelling symmetry of the latent space of mixture models, which may causeO(K!)
separated modes in the posterior distribution. While the predictive distribution isinvariant to
this symmetry, the log marginal likelihood usually has to be further corrected bya factor of
O(logK!), a correction that is typically much larger than a low-order perturbation correction.

5. Thorough empirical tests of EP validate its precision, and show errors that do not scale with
N. The perturbation corrected predictions are almost uniformly more precisethan EP. As a
tool for improving inference accuracy, we show in a practical example that the first nontriv-
ial correction term to the marginal likelihood approximation can make a clear difference in
predicting whichK maximizes the marginal likelihood, compared to when the correction was
not used.

In this paper EC or EP and its resulting corrections are compared with variational Bayes (VB),
Minka’s α-divergence message passing scheme, and a gold standard benchmarkof parallel temper-
ing (PT) and thermodynamic integration (TI). PT is a Markov chain Monte Carlo (MCMC) method
whose Markov chain operates on a “tempered posterior” and has very good convergence proper-
ties. Contrary to more standard Monte Carlo methods (for example Metropolis-Hastings or Gibbs
sampling) it can also provide estimates of the marginal likelihood by TI, which interpolates the ex-
pected value of the log likelihood between the prior and the posterior. To increase the stability of
estimates obtained by TI, we give a novel generalization of PT, which allowsinterpolation of the
value of the log likelihood betweenanychoice of distribution and the posterior. A good choice may
also improve sampling when the tempered posterior exhibits phase transition-likeproperties. This
choice might be obtained by some deterministic approximation, and although not investigated in
this paper, provides a springboard for combining deterministic and stochastic inference algorithms.

As a further example it is also shown how the “cluster” perturbation expansion can be applied
to Gaussian Process classification models, where the evaluation of integralsfor Bayesian marginal-
ization are not analytically tractable.

The rest of the paper follows with a description of EC and EP in Section 2. Section 3 shows
an example of corrections for a marginal distribution in a Gaussian Processclassification model.

1. An information geometrical expansion for LBP is given by Ikeda et al. (2004), and for EP by Matsui and Tanaka
(2008). LBP can also be improved with a message passing algorithm that corrects for the influence of loops (Mooij
et al., 2007).
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In Section 4 an inference algorithm is presented for mixture weights, that is,a mixture model with
fixed component densities, while Appendix D treats the fully multivariate MoG. Section 5 contains
short descriptions of PT with TI and a generalization suitable for statistical inference. Results are
presented for real world examples in Section 6, and we conclude in Section 7.

2. Expectation Consistent Inference

Theexpectation consistentapproximation provides a framework for finding a surrogate distribution
q(θ) for p(θ|D) in Bayesian inference (Opper and Winther, 2005).2 The message passing scheme
of expectation propagationgives rise to an identical marginal likelihood approximation, and the
following interpretation sheds light on both methods by looking at them as a setof self-consistent
approximations to marginal or predictive distributions. The outline presentedhere allows for further
perturbation correctionsto be derived.

For the purpose of this paper the EC approximation rests on the observationthat the predictive
densityp(x|D) in (2) can be fairly precisely approximated without averaging over the actual poste-
rior. The entire posterior can be replaced with a simpler distributionq(θ) if it produces the correct
statistics for this average, that is,

p(x|D) =
Z

dθ p(x|θ)p(θ|D)≈
Z

dθ p(x|θ)q(θ) .

It is sufficient forq(θ) to share some key properties, namely low order statistics, withp(θ|D). This
is an ambitious demand that is generally not realizable, but we can transfer the principle of moment
matching to the “cavity” posteriorsp(θ|D\n), which correspond to reduced training setsD\n where
thenth example has been left out. By introducing a similar approximation to the “cavity” predictive
distributions

p(xn|D\n) =
Z

dθ p(xn|θ)p(θ|D\n)≈
Z

dθ p(xn|θ)q\n(θ)

for eachxn in the training set, a computationally efficient approximation can be derived. We shall
now rather requireq(θ) to share key properties, namely lower order statistics, witheachof the
distributionsqn(θ) ∝ p(xn|θ)q\n(θ); this is explored in the next section.

2.1 EC and EP with Exponential Families

EC defines a tractable approximationq(θ) through expectation consistency with eachqn(θ). Our
view of EC shall be narrowed to models factorizing in likelihood termsp(xn|θ), and an exponential
family prior

p(θ) =
1
Z0

exp
(

ΛT
0 φ(θ)

)

h(θ) ,

whereZ0 is the normalizing constant,φ(θ) is a fixed vector of the corresponding sufficient statistics—
for example for a univariate Gaussian we can chooseφ(θ) =

(

θ,−θ2/2
)

, Λ0 is the associated pa-
rameter vector and the fixed functionh(θ) encodes additional constraints (positivity, normalizations,
etc.). The desired quality of approximation, and the possible convenience of obtaining tractable mo-
ments, typically guide the choice ofφ(θ).

2. A more general interpretation is possible, but for clarity we show the approximation for the generative model in (1).
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The posterior will be approximated with a tractable density of the same exponential family as
the prior,

q(θ) =
1

Z(Λ,0)
exp
(

ΛTφ(θ)
)

p(θ) . (3)

By adding the conditionΛ = ∑n Λn, we allow each likelihood factorp(xn|θ) of the posterior in (1)
to correspond to simpler factor proportional toΛ\n = Λ−Λn in (3): theΛn’s therefore parameter-
ize the likelihood term contributions to the approximation.3 We here introduced a definition for
normalization as

Z(Λ,a) =
Z

dθ∏
n

[

p(xn|θ)
]an

exp
(

ΛTφ(θ)
)

p(θ) ,

with a being a vector with elementsan. The cavity posteriorp(θ|D\n) should then be approximated
by a member of the same exponential family

q\n(θ) ∝ exp
(

ΛT
\nφ(θ)

)

p(θ) ,

whereΛ\n = Λ−Λn. This is obtained from (3) by removing a single likelihood approximation and
renormalizing.

Let 1n be a unit-vector in thenth direction. We can now formalize our concluding remark:q(θ)
is required to share lower order statistics with thetilted distributions

qn(θ) =
1

Z(Λ−Λn,1n)
p(xn|θ)exp

(

(Λ−Λn)
Tφ(θ)

)

p(θ) , (4)

each of which are obtained from the posteriorp(θ|D) by replacing the cavity posterior by its ap-
proximation. We therefore require consistency of the generalized moments,that is,

〈

φ(θ)
〉

q =
〈

φ(θ)
〉

qn
, n = 1, . . . ,N .

One can also show that the corresponding marginal likelihood approximationis given by

ZEC = Z(Λ,0)∏
n

Z(Λ−Λn,1n)

Z(Λ,0)
(5)

(Minka, 2005, Opper and Winther, 2005). In Appendix A we relate this approximation to variational
bounds on the marginal likelihood.

2.1.1 EXPECTATION PROPAGATION

The final expression for the EC partition function in (5) depends upon thepartition functions for two
distributionsq andqn in (3) and (4), and consistency on the statisticsφ(θ) determines theΛn param-
eters. This moment consistency can be achieved via a message passing framework called EP, which
appear, together with VB,4 as special cases of a more generic message passing framework recently

3. In this context the likelihood terms (factors) are sometimes referred toassites, and hence theΛn’s assite parameters
of site functionsthat are proportional to exp(ΛT

n φ(θ)) (Seeger, 2003).
4. VB finds its approximationq(θ) by lower-bounding the log marginal likelihood with Jensen’s inequality (Jordan

et al., 1999), giving logZVB ≤ logp(D). By writing

logZVB =−KL(q(θ)‖p(θ|D))+ logp(D)

the bound can be made as tight as possible by adjustingq(θ); this is achieved by minimizing the KL-divergence
betweenq(θ) andp(θ|D).
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Algorithm 1 EP message passing (Minka, 2001a)
1: initialize: Set allΛn to zero,Λn← 0, n = 1, . . . ,N. This choice corresponds to initializing in

the prior, setting the sufficient statistics toµ← 〈φ(θ)〉p(θ).
2: repeat
3: Randomly choose examplen, and make the following update steps:
4: Update sufficient statistics

µ←
〈

φ(θ)
〉

qn(θ;Λn)
.

5: Determineq(θ;Λ) from µ, that is, solve

〈

φ(θ)
〉

q(θ;Λ′) = µ

with respect toΛ′ and update

∆Λ← Λ′−Λ followed by Λ← Λ+∆Λ .

The EP updates can also be damped byγ ∈ [0,1] through∆Λ← γ(Λ′−Λ).
6: Updateqn(θ;Λn):

Λn← Λn +∆Λ .

This update ensures thatΛ = ∑n Λn; q andqn are therefore in the forms of (3) and (4). We
have no guarantee in this step thatqn stays a proper distribution. A robust heuristic is to skip
any update that makesqn improper.

7: until expectation consistency〈φ(θ)〉qn(θ;Λn)
= 〈φ(θ)〉q(θ;Λ) = µ holds forn = 1, . . . ,N.

proposed by Minka (2005). EP defines a specific message algorithm which iteratively refines each
Λn by minimising local Kullback-Leibler divergences KL(qn(θ)‖q(θ)); in other words it iteratively
performs the required moment matching〈φ(θ)〉q = 〈φ(θ)〉qn

. EP is presented in Algorithm 1 for our
choice ofq andqn, and we shall henceforth use the terms EP and EC interchangeably.

If EP converges we will have expectation consistency〈φ(θ)〉qn(θ) = 〈φ(θ)〉q(θ) = µ because of
the moment matching in lines 4 and 5 of Algorithm 1. Line 6 ensures thatq andqn follow the forms
in (3) and (4). Solving forq in line 5 is analytical for most of the parameters as long asq is in
the exponential family. (In the mixture of Gaussian examples in this paper, onehas to solve two
independent scalar non-linear equations for Dirichlet and Wishart densities. All other vector and
matrix parameters can be found analytically.)

EP is not guaranteed to converge, in which case double-loop algorithms maybe used. It has been
observed by Heskes and Zoeter (2002) that when EP does not converge to a stable fixed point, even
when considerable damping (choosingγ small in Algorithm 1) is used, the corresponding double-
loop algorithm has a Hessian with a significantly negative eigenvalue(s). Ithas been suggested that
the failure of convergence of canonical EP usually implies an inaccurate solution, with the choice
of approximating family not being rich enough (Minka, 2001a).

2.2 Perturbation Corrections

The goal of this section is to derive formal expressions for the errors of the EC approximation to
the marginal likelihood and the predictive distribution and to discuss ways of how this error can be
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computed using a formal perturbation expansion. In order to expand the EC approximation we use
(4) to express each likelihood term by the approximating densities as

p(xn|θ) =
Z(Λ−Λn,1n)

Z(Λ,0)

qn(θ)

q(θ)
exp
(

ΛT
n φ(θ)

)

,

to find that

p(θ)∏
n

p(xn|θ) = ZEC q(θ)∏
n

(

qn(θ)

q(θ)

)

. (6)

If we define

εn(θ) =
qn(θ)−q(θ)

q(θ)

such thatqn(θ)
q(θ) = 1+ εn(θ), we should expectεn(θ) to be on average small over a suitable measure

when the EC approximation works well. Bearing this definition in mind, the exact posterior and the
exact marginal likelihood can be written as

p(θ|D) =
1
R

q(θ)∏
n

(1+ εn(θ)) and Z = ZEC R , (7)

with
R=

Z

dθq(θ)∏
n

(1+ εn(θ)) .

We expect that an expansion of posterior andZ in terms ofεn(θ) truncated at low orders might give
the dominant corrections to EC. Hence, we get the (2N term finite) expansion

R= 1+ ∑
n1<n2

〈

εn1(θ)εn2(θ)
〉

q
+ ∑

n1<n2<n3

〈

εn1(θ)εn2(θ)εn3(θ)
〉

q
+ . . . , (8)

showing that EC is correct to the first order as the term∑n〈εn(θ)〉q = 0 vanishes. The posterior in
(7) can be similarly expanded with

p(θ|D) =
q(θ)

(

1+∑n εn(θ)+∑n1<n2
εn1(θ)εn2(θ)+ . . .

)

1+∑n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

, (9)

where we should keep as many terms in the numerator as in the denominator in order to keep the
resulting density normalized to one.

The corresponding predictive distribution is

p(x|D) =
Z

dθ p(x|θ) p(θ|D)

=

R

dθq(θ) p(x|θ)
(

1+∑n εn(θ)+∑n1<n2
εn1(θ)εn2(θ)+ . . .

)

1+∑n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

, (10)

where again as many terms in the numerator as in the denominator should be keptto ensure proper
normalization.

If the expansions in (9) and (10) are truncated, the approximations are not guaranteed to be valid
probability distributions, since as functional approximations they may be negative. Nevertheless, the
quality of EC approximation is still improved, as is illustrated in Figures 1, 8, 12, and Table 1.
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2.3 Tractability of Corrections

For the case whereqn is just a finitemixtureof K simpler densities from the exponential family to
which q belongs, then the number of mixture components in thej-th term of the expansion ofR is
just of the orderO(K j) and an evaluation of low order terms is tractable and can be computed in
O((KN) j) afterq has been found.

In other cases, an exact computation of even the low order terms may be analytically intractable.
If the dimensionality of necessary integrations is proportional to the order of the correction one may
still resort to numerical quadratures. A different approach would be tore-expand each termεn in
a different “measure of closeness” of densities which takes into account the momentsφ(θ) of the
densities. This can be for example achieved in the case whereq(θ) is Gaussian and the statisticsφ(θ)
denote just the set of all first and a subset of second moments (or cumulants) of the random variable
θ. Then we could resort to the use of characteristic functionsχ(κ) andχn(κ) defined through

q(θ) =
Z

dκ eiκT θχ(κ), qn(θ) =
Z

dκ eiκT θχn(κ)

for all n. The coefficients in a formal multivariate Taylor expansion of logχn(κ) in powers of the
vectorκ define (up to a factor) thecumulantsof qn. Hence, the multivariate Taylor expansion of
rn(κ)≡ logχn(κ)− logχ(κ) in powers ofκ contains only those cumulants in whichqn andq differ.
Thus, we may write

qn(θ)−q(θ) =
Z

dκ eiκT θχ(κ)

(

1−e
log
(

χn(κ)
χ(κ)

))

=
Z

dκ eiκT θχ(κ)
(

1−ern(κ)
)

(11)

=−
Z

dκ eiκT θχ(κ)

(

rn(κ)+
1
2

r2
n(κ)+ . . .

)

.

Hence, when the statisticsφ(θ) containall first andall second moments ofθ, the integral is ex-
pressed through cumulants of order 3 and higher. In this way the error of the EC approximation can
be expressed in terms of higher order cumulants.

If we expandrn in powers ofκ, it is possible to express the integral (11) explicitly in a series
containing derivatives of increasing order of the Gaussianq(θ) =

R

dκ eiκT θχ(κ) with respect toθ.
This is because each such derivative creates a factorκ in the Fourier integral via differentiations
of the exponentialeiκT θ. Finally, each termεn(θ) = qn(θ)−q(θ)

q(θ) can then be expressed by a series of
Hermite polynomials in a standard way. This alternative expansion is introduced by Opper et al.
(2008); its details and applications will be presented in a future paper.

2.4 First Order Correction

We have seen that in general, higher order correction terms require the computation of extra expecta-
tions. Remarkably, in contrast, the first order correction to the EC posterior (9) is obtained as simple
sum of terms which where already computed in the EC approximation. Hence, itprovides a simple
and efficiently computable quantity to improve on EC/EP or judge its validity. A straightforward
calculation gives

p(θ|D)≈∑
n

qn(θ)− (N−1)q(θ) . (12)

The first order correction doesnot change the moments which are consistent in EC, but provides an
approximation to nontrivial higher cumulants, which, for example, in the caseof a Gaussianq(θ)
would bezeroin EC.
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3. Gaussian Process Classification

The cluster expansion can be applied in a limited setting to non-parametric models with a Gaussian
process prior. This section provides as an introductory case a correction to the marginal distribution,
illustrating that a lower-order correction can be very accurate. For this family of models corrections
to other quantities of interest, for example the log marginal likelihood and predictive distribution,
have to rely on cumulant expansions (Opper et al., 2008), and will be treated in detail a companion
paper.

A Gaussian process prior forms the cornerstone of many popular non-parametric Bayesian meth-
ods. It has been used to great effect on various regression and classification problems. A Gaussian
prior is placed on anN-dimensional unobserved variablef , for example

p( f ) =N ( f ; 0, K) ,

where eachfn is associated with an input vectorxn, andK is a kernel matrix with entriesk(xn,xn′)
(Rasmussen and Williams, 2005). A binary classification task attaches a classlabelyn ∈ {−1,+1}
to each inputxn, and a typical prediction would be the class of a new inputx∗ given the dataD =
{xn,yn}Nn=1. It is common to use the cumulative Normal distribution functionΦ(·) as a likelihood
for correctly classifying a data point (Opper and Winther, 2000). The likelihood is dependent on the
unobservedfn associated withxn, and hence

p(yn| fn) = Φ(yn fn) .

The posterior distribution off is therefore

p( f |D) =
1
Z

N

∏
n=1

p(yn| fn)N ( f ; 0, K) .

With this factorization the site functions are chosen to depend on onlyfn such that the posterior is
approximated by the same exponential family distribution (Gaussian) as the prior,

q( f ) ∝
N

∏
n=1

exp

(

ν̃n fn−
1
2

s̃n f 2
n

)

N ( f ; 0, K) .

The notation in this section is deliberately chosen to be consistent with that of Rasmussen and
Williams (2005, chapter 3), and we refer the reader to the reference foran example EP algorithm.
We assume that a fixed point of EP has been reached. LetS̃ be a diagonal matrix containing ˜sn,
andν̃ be a vector containing̃νn. The posterior approximation is thereforeq( f ) = N ( f ;µ,Σ), with
Σ = (K−1 + S̃)−1 andµ= Σν̃.

The cavity posterior approximationsq\n( f ) = N ( f ;µ\n,Σ\n) arise from setting̃νn = s̃n = 0
(giving diagonal matrix̃S\n and vector̃ν\n), whereΣ\n can be determined with a rank one update of
Σ. The tilted distributions are thereforeqn( f ) ∝ q\n( f )Φ(yn fn).

The first order correction (12) can be applied to compute a correction to the marginal distribution
of f∗, the latent function associated with a novel inputx∗. Integratingp( f∗| f ) with (12) yields

p( f∗|D)≈
N

∑
n=1

qn( f∗)− (N−1)q( f∗) . (13)
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Figure 1: The first-order correction (13) is shown in black, withq( f∗) in blue. Full details about the
data set in question, as well as the individual terms in (13), are illustrated in Figure 13 in
Appendix B. An MCMC estimate for the true marginal is overlayed in orange, and comes
from averagingp( f∗| f ) over 20,000 MCMC samples from the posterior ofp( f |D). The
“spikiness” is a result of the variance ofp( f∗| f ) being very narrow: if the “noise-free”
latent f is given, thenf∗ is highly correlated withf and well determined for this example.
The first-order correction gives an excellent approximation.

Notice that corrections for the predictive distribution and log marginal likelihood cannot be ex-
pressed analytically in this way. Hence numerical quadrature or an expansion in terms of cumulants
(Opper et al., 2008) is required. Higher-order terms of the above correction are also analytically
intractable.

The detailed derivation of the correction is presented in Appendix B. Figure 1 provides a sum-
mary comparison of a first-order correction,q( f∗), and a MCMC estimate ofp( f∗|D). The cor-
rection is very accurate and provides a much better fit than EC or EP at a negligible additional
computational cost. Figure 13 in Appendix B gives further illustrations to accompany Figure 1. In
Section 2.4 it was noted that the first order correction provides an approximation to nontrivial higher
cumulants which would otherwise bezeroin EC, even though the moments which are consistent in
EC are not changed. Figure 2 illustrates this observation, showing an accurate approximation of the
third cumulant for various distributionsp( f∗|D).

4. Mixture of Gaussians

We shall empirically examine the corrections to EP approximations through a multivariate mixture
of Gaussians (MoG). Mixture models provide a more challenging testbed forEP than the Gaussian
Process model illustrated in Section 3, as the posterior is multi-modal with many symmetries, and
the site distributions are not log-concave. For clarity we relegate the MoG derivations to Appendix
D, favouring a simpler but similar model here. As an outline to deriving an algorithm for a MoG we
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Figure 2: For different inputsx∗—and hence latent functionf∗—the third cumulant of the first-
order correction (13) is shown in red. It closely matches the true third cumulant of
p( f∗| f ), which is plotted in black. The EC approximationq( f∗)’s higher cumulants are
all zero. Figure 1 shows the particular approximations atx∗ = −2, with further details
appearing in Figure 13 and Appendix B.

consider the task of inferring the mixing proportionsπk = p(k) in a model of the form

p(x|θ) = ∑
k

πkp(x|k) ,

with p(x|k) being fixed (Minka, 2001b). Since the mixing proportions should sum to onea Dirichlet
prior for π is is a natural choice, and Appendix C gives a detailed description of all its properties
needed in this context. We give the explicit EP message passing updates forthe mixing proportions
with fixed component densities in Algorithm 2 (this scheme is generalized to adaptive components
in a straightforward way in Appendix D). Details for the required computations in Algorithm 2 are
given below.

4.1 Variational and Predictive Distributions

The prior—and thus also theq-distribution in (3)—are Dirichlet,

q(π) =D(π;λ) ,

with D(π;λ) given in Appendix C by (23). The parameters ofq areλk = λk,0 +∑n λk,n (hereλ0 are
the parameters of the prior, which we include intoλ for simplicity).

We can also get the EC approximation to the predictive distribution both for new datum x,
p(x|D) and the cavity predictive distribution:p(xn|D\n). For the new datumx the approximation is
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straightforward usingq(π) as an approximate posterior:

p(x|D)≈
Z

dπ p(x|π)q(π) = ∑
k

〈

πk
〉

q p(x|k) , (14)

with the mean value being
〈

πk
〉

q =
λk

∑k′ λk′
.

For the “within data set” version we introduce the cavity distributionq\n(π) = D(π;λ\n), using
λk\n = λk−λk,n, and derive a result that is very similar to the one above:

p(xn|D\n)≈∑
k

〈

πk
〉

q\n
p(xn|k) . (15)

For message passing we also need expectations ofqn(π) from (4):

qn(π) =
1

Zn(λ\n,1n)
e∑k′ (λk′\n−1) logπk′ δ

(

∑
k′

πk′−1

)

∑
k

πkp(xn|k) .

The above normalizer can easily be found by noting that

qn(π) =
Z(λ\n,0)

Zn(λ\n,1n)
q\n(π) ∑

k

πkp(xn|k) ,

such that

Zn(λ\n,1n) = Z(λ\n,0) ∑
k

〈

πk
〉

q\n
p(xn|k) .

In this simple case we haveZ(λ\n,0) = Z
D
(λ\n), with the normalizationZ

D
of the Dirichlet being

given by (24) in Appendix C.

4.2 Expectations

When updatingµ← 〈φ(θ)〉qn(θ;Λn)
in Algorithm 2 the sufficient statistics can be computed using

logZn(λ\n) as a generating function:

〈

logπk
〉

qn
=

d logZn(λ\n)
dλk\n

=
〈

logπk
〉

q\n
+

rnk

λk\n
− 1

∑k′ λk′\n
, (16)

where the expression for〈logπk〉q\n is given by (25) in Appendix C withλ→ λ\n, and the “respon-
sibility” rnk was introduced as

rnk =
λk\np(xn|k)

∑k′ λk′\np(xn|k′)
.
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Algorithm 2 Message Passing for Mixing Proportions
1: initialize: Setλk,n← 0, forn= 1, . . . ,N andk= 1, . . . ,K, initializing q(π) to the prior. Setµk←
〈logπk〉p(π) = ψ(πk,0)−ψ(∑k πk,0), where the digamma functionψ(x) is defined as logΓ(x)/dx.

2: repeat
3: Randomly choose examplen, and make the following update steps:
4: Update the sufficient statistics

µk←
〈

logπk
〉

qn(π;λn)
= ψ(λk−λk,n)−ψ

(

∑
k

(λk−λk,n)

)

.

5: Determineq(π;λ′) from µ, that is, by solving〈logπk〉q(π;λ′) = µk with respect toλ′. As

shown in Appendix C, this involves solving forα ≡ ψ(∑k ψ−1(µk + α)), followed by with
λ′k = ψ−1(µk +α). Update

∆λk← λ′k−λk and λk← λ′k .

6: Updateqn(π;λn) with
λk,n← λk,n +∆λk ,

ensuring thatλk = λk,0 +∑n λk,n.
7: until expectation consistency〈logπk〉qn(π;λn)

= 〈logπk〉q(π;λ) = µ holds∀n,k.
8: Compute logZEC from (5) with

logZEC = ∑
n

logZ(λ−λ0−λn,1n)− (N−1) logZ(λ−λ0,0)

= ∑
n

log

[

Z
D
(λ\n)

Z
D
(λ)

p(xn|D\n)
]

+ logZ
D
(λ0)+ logZ

D
(λ) ,

wherep(xn|D\n) signifies the “cavity” predictive distribution from (15).

5. Parallel Tempering and Thermodynamic Integration

Having considered deterministic inference algorithms, the last bit of machinery that we shall need
is a stochastic method to provide exact estimates in a large enough sample limit. Parallel tempering
(PT) and thermodynamic integration (TI) are ideal for our purposes: PTis an efficient method of
combining separate Monte Carlo simulations to sample across different modes of a target distri-
bution and, as a by-product, TI can be used to estimate the normalizing constant or log marginal
likelihood.

We conclude this section with a new practical generalization of PT and TI, which can in prin-
ciple be used to combine stochastic and approximate methods. A further novelextension to the
generalization is given in Appendix E.2.

5.1 Parallel Tempering (Replica Exchange)

A single MCMC simulation may run into difficulties if the target distribution is multimodal. The
chain may get stuck in a local mode, and fail to fully explore other areas of the parameter space
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that have significant probability. A conceptual solution to this problem is to create a series of
progressively flatter distributions through an inverse temperature parameter β, which ranges from
zero to one. This gives a “tempered” posterior

p(θ|D,β) =
1

Z(β)
p(D|θ)β p(θ) , (17)

where the normalizing constant (partition function) isZ(β) =
R

dθ p(D|θ)β p(θ). The prior is recap-
tured withβ = 0, and the posterior withβ = 1. We now simulateNβ replicas of (17) in parallel, each

using aβ ∈ {βi}
Nβ
i=1. Let the set{βi} be ordered as a ladder withβi < βi+1. The parameter space is

replicatedNβ times to{θi}
Nβ
i=1, and the full target distribution that is being sampled from is

p({θi}) =
Nβ

∏
i=1

1
Z(βi)

exp
(

βi logp(D|θi)
)

p(θi) .

We run theNβ chains independently to sample from distributionsp(θ|D,βi), and add an additional
replica-exchangeMetropolis-Hastings move to swap twoβ’s, or equivalently two parameters, be-
tween chains. Let{θi}new be a parameter set withθi andθ j swapped. The acceptance probability
of the move isp(accept) = min(1, p({θi}new)/p({θi})), and the acceptance ratio simplifies to

p({θi}new)

p({θi})
= exp

(

(βi−β j)
(

logp(D|θ j)− logp(D|θi)
)

)

. (18)

The temperatures of the two replicai and j have to be close to ensure non-negligible acceptance
rates; neighboring pairs are typically taken as candidates. To fully satisfydetailed balance, pairs
{i, i +1} can be uniformly chosen, for example. With this formulation the states of the replicas are
effectively propagated between chains, and the mixing of the Markov chain is facilitated by the fast
relaxation at smallβ’s.

From (18), the acceptance probability depends on the difference between logp(D|θi) and
logp(D|θi+1), and for some swaps to be accepted this difference should not be “too big”; there
should be anoverlapof some of the log likelihood evaluations of adjacent chains, as illustrated in
Figure 3. For a simulation at inverse temperatureβ, define the mean evaluation of the log likelihood
as

〈

logp(D|θ)
〉

β =
Z

dθ logp(D|θ) p(θ|D,β) .

If we knew the variance in chainβ, σ2
β = 〈[logp(D|θ)]2〉β−〈logp(D|θ)〉2β, then it can be shown that

temperatures should be chosen according to the densityQ(β) ∝ σβ (Iba, 2001). This is obviously
difficult, as σ2

β is not known in advance, and has to be estimated. Good results can be achieved

under the assumptionσ2
β ∝ 1/β2 (the equivalent of assuming aconstantheat capacity in a physical

system), giving ageometricprogression, hence choosingβi/βi+1 constant (Kofke, 2002).

5.2 Thermodynamic Integration

The samples from parallel tempering can be used for model comparison (Gregory, 2005, Skilling,
1998), as the marginal likelihood can be obtained from tempering. Firstly, notice that the integral

Z 1

0
d logZ(β) =

Z 1

0
dβ

d logZ(β)

dβ
= logZ(1)− logZ(0) = logZ(1) = logp(D)
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Figure 3: The density of log{p(D|θ)p(θ)/q(θ)} under replicas at different temperatures,
p(θ|D,β), defined in (20). These densities correspond to “energy histograms,”and fol-
lowing (18) there should be an overlap between adjacent replicas at different tempera-
tures, so that acceptance of configuration or parameter swaps is allowedfor. For interest,
the log marginal likelihood logp(D) is indicated with a×. The color bar indicates the
inverse temperatureβ. This illustration comes from thegalaxy data set withK = 3 com-
ponents.

is equal to the log marginal likelihood, asβ = 0 gives the prior, which integrates to one. We therefore
have to determine the derivativeddβ logZ(β). By taking the derivative of the log normalizer (log
partition function), we see that it evaluates as an average over the posterior

d logZ(β)

dβ
=

1
Z(β)

Z

dθ logp(D|θ)× p(D|θ)βp(θ) =
〈

logp(D|θ)
〉

β .

The log marginal likelihood equals

logp(D) =
Z 1

0
dβ
〈

logp(D|θ)
〉

β (19)

and can be numerically estimated from the Markov chain samples. If{θ(t)
i } represents the samples

for tempering parameterβi , then the expectation is approximated with

〈

logp(D|θ)
〉

βi
≈ 1

T

T

∑
t=1

logp(D|θ(t)
i ) .

We assume that a burn-in sample is discarded in the sum overt. As a set of chains are run in
parallel at different inverse temperatures 0= β1 < · · · < βNβ = 1, the integral can be evaluated
numerically by interpolating theNβ expectations between zero and one (say with a piecewise cubic
Hermite interpolation, available as part ofMatlab and other standard software packages), and using
for example the trapesium rule to obtain the desired result. Figure 4 illustrates how logp(D) is
estimated.
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Figure 4: The log likelihood averages〈logp(D|θ)〉β are estimated from each of the MCMC sim-
ulations at temperatures{βi}, and interpolated, so that Equation (19)’s integral can be
evaluated numerically. This illustration comes from thegalaxydata set withK = 3 com-
ponents.

Parallel tempering can be donecomplementaryto any Monte Carlo method at a single tem-
perature. Appendix E presents Gibbs sampling to sample fromp(θ|D,β) for the MoG problem.

5.3 A Practical Generalization of Parallel Tempering

The success of the interpolation obtaining〈logp(D|θ)〉β, illustrated in Figure 4, is dependent on the
slope

d〈logp(D|θ)〉β
dβ

=
d2 logZ(β)

dβ2 = σ2
β

atβ≈ 0. Consider the following thought exercise: Imagine a non-informative (infinitely wide) prior
at β = 0. Samples from this prior will strictly speaking have an infinite varianceσ2

0. With β ≈ 0
we introduce the likelihood, practically infinitely decreasing the variance of our samples, causing
〈logp(D|θ)〉β to asymptotically diverge at zero. As we narrow our prior the change in thismean
should be less rapid, and this motivates a generalization of PT and TI such that we get a more stable
interpolation.

We introduce a new distributionq(θ), which might be a narrower version of the prior, and
modify (17) to

p(θ|D,β) =
1

Z(β)

[

p(D|θ)
p(θ)

q(θ)

]β

q(θ) . (20)

The log marginal likelihood can, as before, be determined with

logp(D) =
Z 1

0
dβ
〈

logp(D|θ)+ log
p(θ)

q(θ)

〉

β
.
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It is evident that settingq(θ) = p(θ|D) gives an integral over a constant function, logp(D) =
R 1

0 dβ〈logp(D)〉β. This suggests a wealth of possibilities of approximatingp(θ|D) with q(θ) to
effectively combine deterministic methods of inference with Markov chains. This comes with a
cautionary note as VB, for example, may give aq(θ) that captures (lower-bounds) a mode of a
possibly multimodal posterior, causing PT to lose its pleasing property of fastrelaxation at high
temperatures. In our results presented in Section 6, we have found it completely adequate to use a
narrower version of the prior where necessary. Appendix E concludes with a short generalization to
sample from (20) for the MoG problem.

6. Results

Low order corrections provide the tools to both improve inference accuracy, and to give an indi-
cation of the quality of approximate solutions. We illustrate and elaborate on these claims, with
comparisons between various deterministic and stochastic methods, through this practical discus-
sion. Data is viewed as being observed from a mixture modelp(x|θ) = ∑K

k=1 πkN (x;µk,Γ−1
k ), as is

discussed in Appendices D, E, and F. A Dirichlet prior is placed onπ, and Normal-Wishart priors
onµk andΓk; the approximating distributionq(θ) = q(π)∏k q(µk,Γk) follows the same distribution
as the prior.

6.1 Modes and Symmetries

Mixture models are invariant under component relabelling, with aK! growth in the number of
permutations also manifesting itself in symmetries in the posterior density. In aid of interpreting
later results, we present some basic understanding of VB, EP, and low order corrections under
this property. Our aim in this section is to use simple toy posteriors to facilitate discussion on
the behavior ofq under various scenarios and discuss how that might affect the estimation of the
marginal likelihood and predictive distribution.

The labelling of hidden units of a two-layer neural network gives rise to symmetries similar to
those observed in mixture models. For neural networks a statistical mechanics analysis shows that
for smallN the posterior is uni-modal and “star-like,” as convex combinations of parameters with
high posterior value which are equivalent under permutations will also have high density (Engel
et al., 1992). The symmetry is broken into equivalent disconnected modes for largeN.

For mixture models we can analyze the situation whereq is restricted to approximate the pos-
terior in one of the symmetric modes, as what will typically be the solution for both VB and EP/C
whenN is large. Minimizing the KL-divergence KL(q‖p) leads to a solution whereq is propor-
tional top within the mode (and by construction zero otherwise). If there areK! modes contributing
equally to the normalizer andq is restricted to one of them, thenq’s normalizer is a factor ofK!
smaller thanp’s and consequently KL(q‖p) = logK! at the minimum (Bishop, 2006, page 484).
However,groupsof equivalent modes are often present. A simple example is a 3-component mix-
ture with three “clusters” of data. If each component is associated with a cluster, there are 3! la-
belling symmetries. Another VB or EP fixed point may prune one mixture component (see MacKay
2001 for VB and Figure 11 for EP), leaving one component to cover two clusters of data, and one
component the other; this solution hasyet another3! labelling symmetries, albeit possibly with a
lesser contribution to the normalizer. In effect the correction is ratherO(logK!), as illustrated in
Figure 9. A useful approximation would be to correct the marginal likelihoodestimate by a factor
of K! when N is large. The predictive distribution is invariant under the symmetry and will thus
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Figure 5: Symmetries and averages: The likelihoodp(x|{µ1,µ2}) = 0.4N (x;µ1,1)+0.6N (x;µ2,1)
is plotted as red contours for the novel observationx = 1

2 at the arrow in the top figure.
Observingx centres the likelihood function at(x,x) along theµ1–µ2 axis in the bottom fig-
ure. Thepredictive density p(x|D) is average of the likelihood over thebi-modalposterior
(black contours), while theapproximatepredictive density is the average of the likelihood
function over theuni-modalEC approximation (overlaid in blue). The near-symmetry of
the posterior implies that each mode contributes approximatelyhalf its mass. When the
EC approximation putsall its mass on one mode, and the modes are well separated, the
two predictive densities are therefore similar. The top figure shows the ratiobetween the
true and approximatep(x|D); the discrepancy at negativex is due to the fact that the pos-
terior is not perfectly symmetrical (e.g., whenx = −2 its likelihood is centred at (-2,-2)
and overlaps less with the EC mode).

not be greatly affected byq approximating only one mode, as is shown in Figure 5. For small to
intermediate values ofN the situation is less clear, as the following example illustrates.

In Table 1 we illustrate a number of posterior distributions, with the VB and EC approximations
overlaid. We also overlay the first order correction toq(θ), given from (12) byp(θ|D)≈∑nqn(θ)−
(N−1)q(θ). For Table 1 all parameters but the means were kept fixed, such that withK = 2 the
approximationq(θ) = q(µ1)q(µ2) is a factorised Gaussian. Both component variances were equal,
and we used(π1,π2) = (0.4,0.6). The modes are thus not completely symmetric but this set-up still
illustrates the points made above well. We chose the component variances (set to one) such that the
posterior modes overlap whenN is small, with bimodality arising asN increases. We will see in the
following sections that even thoughq is a rather crude approximation to the posterior the predictions
for the predictive distribution are fairly precise.

The correction given by (12) integrates to one but is not guaranteed to be nonnegative, as it
follows from discarding the higher order terms in (7). The first order correction to the predictive
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(a) With overlapping mixture components, damped EP does not necessarily con-
verge for smallN (e.g., EP failed, in the sense that the 2nd order correction cannot
be computed, on all 30 random data sets of size 8). The corrections areon av-
erage (blue line) large for broadly overlapping posterior modes, as EPdoes not
necessarily lock onto one of them.
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(b) With well separated clusters the 2nd order corrections indicate for whichN,
on average, EP prefers a modal solution. Note the better convergenceof EP for
largerN, with on average stabler fixed points than Figure 6(a). This is reflected
in the corrections being close to zero.

Figure 6: The second order term of (8) on 3600 random data sets.

density, however, usually remains nonnegative because it is anaverageof p(x|θ) over (12). This
underlines the fact that average properties will not be strongly affected by imprecision in approxi-
mating distributions.

Other local minima that we did not show in Table 1 was forN small, whereq(µ1) remains as
broad as the prior and the component is effectively pruned, whileq(µ2), on the other hand, caters
for both mixture components (MacKay, 2001).

6.2 Corrections

The illustrations in Table 1 suggest that the lowest nontrivial corrections can provide insight into
the quality of approximation, as we expect corrections to be small for good approximations. To
illustrate this claim, 30 random data setsDN were drawn for each sizeN = 1, . . . ,60 according to
DN ∼ p(x), with p(x) being a three-component mixture withπ = (0.2,0.3,0.5) andµ= (−2,0,2).
Two cases were used for the variance: firstly,Γ−1

k = 0.5 provides a model with overlapping mixture
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Figure 7: The growth of logZEC for the random data setsDN used to obtain Figure 6(b).

components; secondly,Γ−1
k = 0.1 gives a model with components that are further separated. EP

was run with dampingγ = 0.5, and the second order corrections to the log marginal likelihood
approximations were computed where possible (i.e., EP converged, etc.); see Appendices D and F.

Figures 6(a) and 6(b) illustrate the “overlapping” and “separate” examples, showing that when
N is small compared to logK!, and the posterior is “starlike” and comparatively unimodal, EP often
fails, and the nature of the problem is reflected in the large corrections. WhenN becomes large EP
often converges (to one ofK! equivalent modes); small corrections immediately tell us that solution
is close to exact, apart from here a logK! correction to the marginal likelihood.

We also observe that the corrections do not scale withN, whereas the free energy logZEC does,
as shown in Figure 7. This is an important property, as it means that the qualityof approximation
does not deteriorate with increasingN.

When the observationsDN∼ p(x) are i.i.d. we expect that logZEC/N, by its form as an empirical
average overN terms, should converge to a non-randomcZ as N→ ∞. In fact a linear scaling
logZEC→ cZN is observed in Figure 7. When and whether the expected correction〈logR〉DN

=
cR(N)→ 0 asN→ ∞ (and hence EP becomes exact) is an open question. This does not seem true
for Figure 6(a): If the the posterior modes were well-separated then forlargeN, a change in one
mean parameter in a factorized approximation will not greatly affect the other. If, in this case, the
means are close compared to the standard deviations of the normal densities,the mean parameters
will stay correlated also for large data sets, and the corrections will persistently stay bigger for large
N.

6.3 Toy Example

To illustrate the difference between EC and VB, and show additional gains from perturbation correc-
tions, we generated a small data set (N = 7) from a mixture of two Gaussians. The hyperparameters
followed that of Section 6.4.

Under two model assumptions we show in Figure 8 that EC or EP (labeled “EC/P”) gives a
predictive density that is generally closer to the truth than that given by VB.Each example in the
toy data set was duplicated (see Figure 8(b)) to show that this gain decreases under larger data sets;
this decrease is due to the predictive density being an average ofp(x|θ) over now more concentrated
VB and EC posterior approximations. Secondly, meaningful improvements can be achieved through
perturbation corrections. Figure 8(d) shows a second order correction to the log marginal likelihoods
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Figure 8: Predictive densitiesp(x|D,MK) given by VB, EC, and a perturbation correction (EC+R),
with accompanying log marginal likelihood estimates and MCMC “truth” baselines.Note
that if we “correct” with a factor logK! we get very close to the “truth” for VB and to a
even higher degree for EC. EC+R overshoots in two cases but that mightbe because the
perturbation corrected posterior is actually multi-modal. The lower figures in 8(a) to 8(c)
show theratio between each of the approximate predictive densities and the “truth.”

of the examples in question, labeled “EC+R” (see Appendix F). A lower bound to the log marginal
likelihood is provided by VB. The improvement is also visible when we are concerned with the
predictive density, for which we show a first order correction.
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6.4 A Practical Comparison

In this section we draw a comparison between the approximate log marginal likelihoods and predic-
tive distributions given by VB, EP, and various corrections, and use estimations given by PT and TI
as a benchmark. For interest we also include results from an implementation ofα = 1

2 in Minka’s
generalα-divergence message passing scheme for this problem, but refer the interested reader to
Minka (2005) for further details. Finding a VB approximation follows directlyfrom the expectation
maximisation algorithm given by Attias (2000), with a slightly different parameterization of the
Wishart distribution.

From the results that follow, we observe that the growth of logZ, as a function of model size,
gives a characteristic “Ockham hill” (defined in more detail later in this section), where the “peak”
of the hill indicates the model with highest approximate logp(D). This graph can be used for model
comparison or selection, as its form closely matches the MCMC evaluation of logp(D). We will
also see that, following Section 6.1’s discussion, the discrepancy betweena logZ estimate and the
true logp(D) grows as the model size is increased. Furthermore, the EC approximation gives a
predictive distribution that is closer to the truth than VB, with the gain decreasing with increasing
N. We will show that a principled algorithm initialization can circumvent many spurious local
minima in the log marginal likelihood estimate. If completely arbitrary initialization schemesare
implemented, one may note that the number of local solutions is influenced by the width of the prior
distribution, withmorelocal minima arising under broader prior distributions.

The data sets under investigation have been well studied, for example, by Richardson and
Green (1997) for a reversible jump MCMC, and by Corduneanu and Bishop (2001) for variational
Bayesian model selection: thegalaxydata set contains the velocities (in 1000s of km/second) of 82
galaxies, diverging from our own, in the Corona Borealis region; theacidity data set contains the log
measured acid neutralizing capacity indices for 155 lakes in North-centralWisconsin (USA); theen-
zymedata set contains enzymatic activity measurements, for an enzyme involved in the metabolism
of carcinogenic substances, taken from 245 unrelated individuals; theold faithful data set contains
222 observation pairs consisting of eruption time and waiting time to the next eruption, from the
Old Faithful Geyser in the Yellowstone National Park.

6.4.1 THE APPROXIMATE LOG MARGINAL L IKELIHOOD

Ockham hills are useful for visualizing log marginal likelihood estimates for a set of plausible
models with increasing explanatory power, for example, mixture models with increasingK. The
largest estimates of logZ for the various models typically form a hill, peaking at the “optimal”
model. As models becomelesscomplex, the hill falls steeply due to a poorer explanation of the
data. Formorecomplex models the plots show a slower downward trend, as an improvement in data
fit is counterbalanced by a penalty from a larger parameter space in Bayesian marginalization. For
mixture models this downward trend is even slower when the true log marginal is considered; this is
mainly due to the number of modes in the true posterior increasing with the number of components,
with an approximation possibly only capturing one of them.5

In the case of VB, the logZ approximation provides a lower bound to the marginal likelihood
p(D|M ), and this quantity is often used for model selection (Beal and Ghahramani, 2003, Bishop
and Svenśen, 2003, Corduneanu and Bishop, 2001). The model with the largest bound is typi-
cally kept, although the bound can also be used for model averaging. Regardless of our method of

5. Rasmussen and Ghahramani (2001) present an account which includes “Ockham plateaus.”
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(d) old faithful data set

Figure 9: Ockham hills for various data sets. VB is shown as red squares, α = 1
2 as magenta trian-

gles, EC/P as blue circles, and EC+R as green diamonds. An estimate of logp(D|MK)
found by PT and TI is shown as a line. The effect of anO(logK!) correction on any of
the approximate solutions can be seen by comparing them against the dashed-line plot
of logp(D|MK)− logK!. (For Figure 9(d)’sK = 6 the EP andα = 1

2 schemes did not
converge.)

approximation, poor local minima in the objective function have to be avoided in order to obtain
meaningful results.

Figure 9 shows such hills for the marginal likelihood approximations for different data sets for
VB, α = 1

2 message passing, EP, and a second-order perturbation correction. The prior hyperpa-
rameters wereλk,0 = 1, mk,0 = 0, νk,0 = 10−2, ak,0 = 1 andBk,0 = 0.11. For Figure 9(d) we took
Bk,0 = [0.11,0.01;0.01,0.11]. For each of the modelsMK , with K mixture components, the figures
show twenty approximations for each method, with the colour intensity of each plot corresponding
to the frequency of reaching different approximations for logZ. Each plot is complemented with
estimates of logp(D|MK). The estimates—shown as lines—were obtained form an average over
ten PT and TI simulations, with two standard deviation error bars also being shown.
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Finally, it is evident that the “true peak” in Figure 9(a) does not match the peak obtained by
approximate inference. Without having to resort to MCMC and TI, the second order correction for
K = 3 already confirms that the approximation might be inadequate.

6.4.2 THE EFFECT OF AGOOD INITIALIZATION

Finding the best VB/EP solution is strongly seed-dependent in the problem considered here. In this
council of despair an educated guess may take us a long way: many inferior local minima in the
VB/EP objective functions can be suppressed with a good algorithm initialization.

We base our factor initializations around a scaled version of the solution obtained by the VB
expectation maximisation algorithm,

exp(ΛT
n φ(θ)) ∝ exp

(

Z

dznq(zn) logp(xn,zn|θ)

)

,

which was seeded with a data clustering based on the k-means algorithm.6 This is illustrated in
Figure 9.

When using an “out of the box” EP scheme, starting with a slight asymmetric prior that is later
corrected for, many lower minima are also found. The same behavior ariseswhen the VB parameters
are randomly initialized. Figure 10 shows more local minima than Figure 9(c), and the results in
Bishop (2006, chapter 10), where the same principled initial guess for VBwas used.7

The canonical EP scheme (and indeedα = 1
2) sometimes did not converge to a fixed point.

This is evident in Figure 10 and has been observed in practice (Minka, 2001a): when EP does not
converge, the reason can be traced back to the approximating family being apoor match to the exact
posterior distribution.

6.4.3 THE PREDICTIVE DISTRIBUTION

Given a specific modelM , the predictive distribution can be approximated by usingp(x|D) ≈
R

dθ p(x|θ)q(θ), as is shown for example in Figure 11. The final predictive distribution strongly
depends on whether or not a global minimum in the objective function in (5) has been found, as
is clear from Figure 11. To illustrate how much the approximate predictive distribution differs
from the true predictive distribution, the figures showp(x|D) obtained from an average over ten
thousandβ = 1 samples from a parallel tempered Markov chain. Figure 12 shows the gainachieved
by EC/P over VB, and in turn the further improvement from a perturbation correction to the EC
approximation (see Appendix F).

7. Conclusion and Outlook

In this paper we presented a method for computing systematic corrections to ECapproximations in
Bayesian inference. These corrections are useful not only in improving estimates like log marginal
likelihood and predictive density approximations, but can also provide insight into the quality of an
approximation in polynomial time. When the corrections are large the EC approximation may be

6. Similar to Appendix E,z indicates latent variables, withp(θ,z|D) approximated byq(θ)q(z). We point the interested
reader to Attias (2000).

7. Markus Svenśen, personal communication.
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Figure 10: The effect of random algorithm initializations using thegalaxy data set: For theleft
figure a broader prior withνk,0 = 10−6, and for theright figure a much narrower prior
with νk,0 = 10−2, was used. Compared to Figure 9(c), note for example the additional
local maxima atK = 3, and the greater number of local minima under a broader prior.
(ForK = 6 the EP scheme failed to converge without a sensible initialization.)
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Figure 11: EP can have more than one stable fixed point: The predictive distribution p(x|D,M3),
from two differentapproximations for thegalaxy data set. ForK = 3 under narrower
prior in Figure 10, we see three local maxima of the EC objective function in (5): the
predictive distribution shown on theleft coincided with logZEC =−243.8, whereas the
approximation on theright coincided with a much higher logZEC = −232.4. The true
predictive distribution, obtained from an average over a PT MCMC sample,is shown
with a dotted line.

questioned or discarded, and we hope to address the question of how it isdone in practice in future
work.

A juxtaposition of VB, EC and EP, PT with TI, and EC with corrections, was given in the
context of Gaussian mixture models. We argued that EC can give improvements over VB, and can
in turn be improved through a perturbation expansion. Throughout the paper our “gold standard”
was given by PT, and we presented possible ways of improving it. We wouldlike to include better
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Figure 12: The ratio between each of the approximate predictive densities and the MCMC “truth”
of p(x|D,M3) for thegalaxydata set. This figure corresponds to Figure 11 (right).

MCMC algorithms in this rich tapestry of methods: PT is not the best choice for near first-order
phase transitions. In Figure 3 the high probability regions are very different above and below the
transition atβ ≈ 0.5, suggesting multicanonical sampling as a viable alternative, since it aims at
sampling from a distribution that is flat in the log likelihood and will therefore nothave this “bottle-
neck.”

The choice of a unimodalq(θ) to capture the characteristics of a typically multimodalp(θ|D)
also leads to various questions. When there are symmetries in the parameter space, with overlapping
modes, we may ask whether or not we would achieve a better predictive density with EC, say, if
the approximation is restricted to one mode. In the case wherep(θ|D) is multimodal (largeN) then
fairly general arguments suggest that we should correct the marginal likelihood estimate by a factor
of K!—higher order corrections may clarify for whichN and under which conditions this transition
will typically take place.

One way be improve the approximation is to generalizeq(θ) for example by including a small
fraction of the data points (similar to the proposed generalization of PT). However, that poses an
additional problem an the matching of moments step in EP message passing gets much more com-
plicated.

Finally, we focused on a MoG where the lower order terms in the correctionR are tractable.
For models where this is not the case,R can be expanded in terms of the higher order cumulants of
qn(θ) andq(θ). This approach will be presented in a companion paper.
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Appendix A. Bounds on the Marginal Likelihood

It is interesting to compare the marginal likelihood approximation (5) with the one given by a
variational approximation. Here one would use the fact that the relative entropy

〈

log q(θ)
p(θ|D)

〉

q
≥ 0

to approximate the free energy− logZ by the upper bound

− logZ≤
〈

log

(

q(θ)

p(θ) ∏n p(xn|θ)

)

〉

q

.

To compare with (5) we use the definition (3) to get

Z(Λ−Λn,1n)

Z(Λ,0)
=
〈

p(xn|θ)exp
(

−ΛT
n φ(θ)

)〉

q
.

After inserting this expression into (5), taking logs and applying Jensen’sinequality we arrive at

− logZEC≤
〈

log





exp
(

∑n ΛT
n φ(θ)

)

∏n p(xn|θ)





〉

q

− logZ(Λ,0) =

〈

log

(

q(θ)

p(θ) ∏n p(xn|θ)

)

〉

q

,

where in the last step we have used∑n Λn = Λ. This shows that if one would use the distribution
q(θ) derived from EC within the variational approximation, the EC approximation achieves a lower
free energy. Since approximating densities in the variational approximation will usually differ from
the EC result (by the way they are optimised) this does not imply that variationalfree energies are
always higher than the EC counterpart. Also we cannot draw any conclusion about the relation to
the true free energy.

Appendix B. Gaussian Process Classification

This appendix provides the details of the derivation of first order correction to marginal distribution
p( f∗|D) for Gaussian process classification, as introduced in Section 3. Letk∗ be the kernel vector
with entriesk(x∗,xn) for all n, andκ∗ = k(x∗,x∗). It is well-established that

q( f∗) =N ( f∗ ; µ∗, σ2
∗), (21)

µ∗ = kT
∗K−1µ,

σ2
∗ = κ∗−kT

∗ (K + S̃−1)−1k∗

wherep( f∗| f ) =N ( f∗ ; k⊤∗ K−1 f , κ∗−k⊤∗ K−1k∗) was averaged overq( f ). To determineqn( f∗), we
have to averagep( f∗| f ) overqn( f ): a lengthy derivation shows that the required integralqn( f∗) =
R

d f p( f∗| f )qn( f ) simplifies to

qn( f∗) = Φ
(

ynmn( f∗)√
1+Vn

)

/

Φ

(

ynµ\n;n
√

1+Σ\n;n,n

)

×N ( f∗ ; µ∗\n, σ 2
∗\n), (22)

µ∗\n = kT
∗K−1µ\n,

σ 2
∗\n = κ∗−kT

∗ (K + S̃−1
\n )−1k∗ .
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These distributions are accumulated into the correc-
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Figure 13: An illustration of all the terms occurring in the first-order correction in (13) for an ex-
ample data set.

This “tilted” predictive marginal in (22) has exactly the same form asq( f∗) in (21), except8 for its
use ofµ\n andS̃\n, and the nonlinear “weight” that is still a function off∗, so thatqn( f∗) is ultimately
non-Gaussian.Σ\n;n,n andµ\n;n denote elements(n,n) andn in Σ\n andµ\n.

In the ratio of cumulative Normals in (22) we have

Vn = Σ\n;n,n−
η2

σ 2
∗\n

,

mn( f∗) = µ\n;n +
η( f∗−µ∗\n)

σ 2
∗\n

,

where we defineη = kT
∗K−1cn, with cn being columnn of Σ\n.

When comparingVn andΣ\n;n,n in the numerator and denominator in (22), we see thatVn is close
to Σ\n;n,n wheneverη is small compared toσ∗\n. Functionmn( f∗) adjustsµ\n;n with a termlinear
in how far f∗ differs from the Gaussian mean in (22), and is similarly close toµ\n;n whenη is small
compared toσ2

∗\n.
Figure 13 provides an illustration of how the correction in (13) works. A squared exponential

kernelk(xn,xn′) = aexp(−1
2‖xn− xn′‖2/ℓ2) was used, witha being the (positive) amplitude, andℓ

8. This representation is chosen for simplicity, althoughS̃\n contains a zero on its diagonal.
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the characteristic length-scale of the latent function. In Figure 13 the marginals q( f∗) andqn( f∗)
are shown, leading to the first-order correction originally shown in Figure1.

Appendix C. Useful Distributions in the Exponential Family

In this paper we use the Dirichlet, Normal-Gamma and Normal-Wishart distributions for the MoG
problem. For these distribution have to 1) compute their sufficient statistics, 2)for message passing
solve the inverse problem: given the sufficient statistics we must solve for the parameters of the
distribution and 3) for the predictions with the mixture models compute their predictive distribution.

C.1 Dirichlet

The Dirichlet distribution over the probability simplexπ, ∑k πk = 1, is commonly used in two
contexts: here as a prior over mixing proportions in the mixture model, and as aprior/posterior for
the parameters of multinomial distribution. We denote the Dirichlet with parametersλk by

D(π;λ) =
1

Z
D
(λ)

e∑k(λk−1) logπkδ

(

∑
k

πk−1

)

, (23)

Z
D
(λ) =

∏k Γ(λk)

Γ(∑k λk)
. (24)

C.1.1 SUFFICIENT STATISTICS

The sufficient statistic of the Dirichlet is

〈

logπk
〉

=
∂ logZ

D
(λ)

∂λk
= ψ(λk)−ψ

(

∑
k

λk

)

, (25)

whereψ is the digamma-functiond logΓ(x)/dx.

C.1.2 INVERSE

In line 5 of the Algorithms 1 and 2 we have to solve the inverse problem: given the statistics
mk = 〈logπk〉 find the parametersλ. This can be done effectively by first solving for

α≡ ψ

(

∑
k

λk

)

= ψ

(

∑
k

ψ−1(mk +α)

)

by Newton’s method, and then settingλk := ψ−1(mk +α).

C.1.3 PREDICTIVE DISTRIBUTION

The Dirichlet can also be used as a prior for the parameters of the multinomial distribution. This
distribution is used multi-category either counts or sequence data. For counts, x = (x1, . . . ,xd) is a
vector of counts for each of the possibled outcomes. For sequence datax is an indicator variable
being one for the outcome and zero in all other entries. The multinomial distribution is:

p(x|π) =
(∑k xk)!
x1! . . .xd!

d

∏
k=1

πxk
k ,
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where the combinatorial prefactor goes away in the sequence case. Thepredictive distribution for
multinomial data and Dirichlet distributed posterior is straightforward to calculateusing the result
for the normalizer of the Dirichlet:

p(x|λ) =
Z

dπp(x|π)D(π;λ) =
(∑l xl )!

x1! . . .xd!
Z
D
(x+λ)

Z
D
(λ)

.

C.2 Normal-Gamma

The Normal-Gamma (or Gauss-Gamma) model is use for a joint distribution of onedimensional
mean and precision (inverse variance) variables:

N G(µ,γ;m,ν,a,b) =
1

Z
N G

(m,ν,a,b)
exp



















mν
−1

2ν
−b− 1

2νm2

a− 1
2









T







µγ
µ2γ
γ

logγ



















,

Z
N G

(m,ν,a,b) =

√

2π
ν

Γ(a)

ba ,

where this distribution is obtained by multiplying the Normal and Gamma distributions:

N (µ;m,(νγ)−1) =

√

νγ
2π

exp

(

−1
2
(µ−m)2νγ

)

,

G(γ;a,b) =
ba

Γ(a)
exp((a−1) logγ−bγ) ,

wherea andb must be positive.

C.2.1 SUFFICIENT STATISTICS

The sufficient statistics are obtained by using logZ
N G

(m,ν,a,b) as a generating function for the
sufficient statistic. By taking derivatives of logZ

N G
with respect to the parameters{m,ν,a,b},

ν〈µγ〉−νm〈γ〉= 0,

m〈µγ〉− 1
2
〈µ2γ〉−m2〈γ〉=− 1

2ν
,

〈logγ〉= ψ(a)− logb,

−〈γ〉=−a/b ,

we can solve for〈µγ〉, 〈µ2γ〉, 〈γ〉 and〈logγ〉.

C.2.2 INVERSE

We can use these expressions to solve for the parameters in terms of the sufficient statistics in the
same fashion as above. We get closed form expressions for three of parameters

m=
〈µγ〉
〈γ〉 , ν =

1
〈µ2γ〉−m2〈γ〉 , b =

a
〈γ〉 ,
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anda should be found from
ψ(a)− loga = 〈logγ〉− log〈γ〉

by for example Newton’s method.

C.2.3 PREDICTIVE DISTRIBUTION

The predictive distribution can be calculated straightforwardly from the normalizer and is a univari-
ate Student-t distribution:

p(x|m,ν,a,b) =
1√
2π

Z
N G

(

x+νm
ν+1 ,ν+1,a+ 1

2,b+ ν
ν+1(x−m)2

)

Z
N G

(m,ν,a,b)

= T

(

x; m,
b
a

ν+1
ν

, 2a

)

,

whereT
(

x;µ,σ2,df
)

is a Student-t distribution with meanµ, varianceσ2 anddf degrees of freedom:

T
(

x;µ,σ2,df
)

=
1

Z
T
(µ,σ2,df)

exp

[

−df +1
2

log

(

1+
1
df

(

x−µ
σ

)2
)]

,

Z
T
(µ,σ2,df) =

√
2πσ2

√

df

2

Γ
(

df
2

)

Γ
(

df+1
2

) .

C.3 Normal-Wishart

The Normal-Wishart is the multidimensional generalization of the Normal-Gamma. Wewill write
the Wishart distribution over positive definite symmetric matrices in the same form as the Gamma
distribution:

W (Γ;a,B) ∝ exp

((

a− d+1
2

)

logdetΓ− trBΓ
)

,

where the degrees of freedom 2a should be greater thand−1 for the distribution to be normalizable.
The Normal-Wishart is given by

NW (µ,Γ;m,ν,a,B) =
1

Z
NW

(m,ν,a,B)

exp











νm
−1

2ν
a− d

2





T



Γµ
µTΓµ

logdetΓ



− tr(B+
1
2

νmmT)Γ






,

Z
NW

(m,ν,a,B) = πd(d−1)/4
(

2π
ν

)d/2 d

∏
l=1

Γ
(

a+
1− l

2

)

e−alogdetB .

C.3.1 SUFFICIENT STATISTICS

The sufficient statistics follow from a straightforward generalization of theresults from the Normal-
Gamma model:

〈Γ〉= aB−1,
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〈Γµ〉= 〈Γ〉m,

〈µTΓµ〉= d
ν

+mT〈Γ〉m,

〈logdetΓ〉=
d

∑
l=1

ψ
(

a+
1− l

2

)

− logdetB .

C.3.2 INVERSE

From the sufficient statistics we can get closed form expressions for theparameters

m= 〈Γ〉−1〈Γµ〉 , ν =
d

〈µTΓµ〉−mT〈Γ〉m , B = a〈Γ〉−1 ,

whereasa should be found from

d

∑
l=1

ψ
(

a+
1− l

2

)

−d loga = 〈logdetΓ〉− logdet〈Γ〉 .

C.3.3 PREDICTIVE DISTRIBUTION

A generalization of the result for the predictive distribution in one dimension tothe multivariate
case gives:

p(x|m,ν,a,b) = T

(

x; m,
2B

2a−d+1
ν+1

ν
, 2a−d+1

)

,

whereT (x;µ,Σ,df) is thed-dimensional multivariate Student-t distribution with meanµ, covariance
Σ anddf degrees of freedom:

T (x;µ,Σ,df) =
1

Z
T
(µ,Σ,df)

exp

[

−df +d
2

log

(

1+
1
df

(x−µ)TΣ−1(x−µ)

)]

,

Z
T
(µ,σ2,df) =

√

det(2πΣ)

(

df

2

)d/2 Γ
(

df
2

)

Γ
(

df+d
2

) .

Appendix D. Inference for a Mixture of Gaussians

When we have unconstrainedd-dimensional data we can model this with a Normal (or Gaussian)
distribution,

p(x|µ,Γ) =N (x;µ,Γ−1) =

√

detΓ
(2π)d exp

(

−1
2
(x−µ)TΓ(x−µ)

)

,

whereµ andΓ are respectively the mean vector and precision (or inverse covariance) matrix. The
conjugate prior for the mean and precision is the Normal-Wishart distribution,which we describe
in appendix C. In the following we choose Gaussiansp(x|µk,Γk) as components densitiesp(x|k) in
the mixture.
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D.1 Variational and Predictive Distributions

The q distribution follows the prior and is conveniently chosen to factorise over mixture compo-
nents:

q(θ) = q(π)∏
k

q(µk,Γk)

with q(µk,Γk|mk,νk,ak,Bk) being a Normal-Wishart distribution; see Appendix C. We can use the
same machinery as Section 4 to derive the EC approximation to the predictive distribution and the
statistics needed for message passing.

The predictive distributionp(x|D) is again approximated by the form given in (14), withp(x|k)
replaced by

p(x|k)≡ p(x|mk,νk,ak,Bk) = T

(

x; mk,
2Bk

2ak−d+1
νk +1

νk
, 2ak−d+1

)

. (26)

HereT is a Student-t distribution, which we describe in greater detail in Appendix C.
Likewise, the within data set predictive distributionp(xn|D\n) follows (15); only nowp(xn|k)

is replaced withp(xn|k\n), which takes the same form as (26) above, withΛ replaced byΛ\n.
The Dirichlet cavity parameters are againλk\n = λk,0 +∑n′ 6=n λk,n′ . The other cavity parameters are
similarly defined in terms of the appropriate parameter vector components, forinstanceνk\nmk\n =
νk,0mk,0 +∑n′ 6=n νk,n′mk,n′ .

We can again use the cavity parameters to writeqn in terms ofq\n:

qn(θ) =
Z(Λ\n,0)

Zn(Λ\n,1n)
q\n(θ) ∑

k

πkp(xn|µk,Γk) .

The normalizer is given by

Zn(Λ\n,1n) = Z(Λ\n,0) ∑
k

〈πk〉q\n p(xn|k\n) , (27)

where the explicit form ofZ(Λ\n,0) is

Z(Λ\n,0) = Z
D
(λ\n)∏

k

Z
NW

(mk\n,νk\n,ak\n,Bk\n) .

D.2 Expectations

The statistics ofqn(θ) for the mixture of Gaussians are computed by using logZn(Λ\n) from (27) as a
generating function. To simplify the derivative with respect to the predictive distributionp(xn|k\n),
we introduce another component-specific Normal-Wishart distribution

qk,n(µk,Γk) ∝ p(xn|µk,Γk)q\n(µk,Γk) ,

and write the predictive distribution as a ratio between the normalizers ofqk,n andq\n:

p(xn|k\n) =

(2π)−d/2Z
NW

(νk\nmk\n+xn

νk\n+1 ,νk\n +1,ak\n + 1
2,Bk\n + 1

2
νk\n

νk\n+1(xn−mk\n)(xn−mk\n)
T
)

Z
NW

(mk\n,νk\n,ak\n,Bk\n)
.
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For example, for〈Γkµk〉 we get

〈

Γkµk
〉

qn
=

1
νk\n

d logZn(Λ\n)
dmk\n

= (1− rnk)
〈

Γkµk
〉

q\n
+ rnk

〈

Γkµk
〉

qk,n
, (28)

where the “responsibility” (the probability of examplen being generated by thekth mixture compo-
nent) is defined as

rnk =
λk\np(xn|k\n)

∑k′ λk′\np(xn|k′\n)
. (29)

The expectation in (28) is expressed as a weighed sum of a “prior” expectation over the cavity
distributionq\n(µk,Γk), and a “posterior” expectation overqk,n(µk,Γk). The other moments〈Γk〉,
〈µT

k Γkµk〉 and〈logdetΓk〉 can be expressed as weighed sums similar to (28):
〈

Γk
〉

qn
= (1− rnk)

〈

Γk
〉

q\n
+ rnk

〈

Γk
〉

qk,n
,

〈

µT
k Γkµk

〉

qn
= (1− rnk)

〈

µT
k Γkµk

〉

q\n
+ rnk

〈

µT
k Γkµk

〉

qk,n
,

〈

logdetΓk
〉

qn
= (1− rnk)

〈

logdetΓk
〉

q\n
+ rnk

〈

logdetΓk
〉

qk,n
.

The explicit expressions for theqk,n are given below, whereas those forq\n can be obtained from
Appendix C:

〈

Γk
〉

qk,n
=

(

ak\n +
1
2

)[

Bk\n +
1
2

νk\n
νk\n +1

(xn−mk\n)(xn−mk\n)
T
]−1

,

〈

Γkµk
〉

qk,n
=
〈

Γk
〉

qk,n

νk\nmk\n +xn

νk\n +1
,

〈

µT
k Γkµk

〉

qk,n
=

d
vk\n +1

+

(νk\nmk\n +xn

νk\n +1

)T
〈

Γk
〉

qk,n

(νk\nmk\n +xn

vk\n +1

)

,

〈

logdetΓk
〉

qk,n
=

d

∑
i=1

ψ
(

ak\n +
1
2

+
1− i

2

)

− logdet

(

Bk\n +
1
2

νk\n
νk\n +1

(xn−mk\n)(xn−mk\n)
T
)

.

We have already seen how to solve for〈logπk〉qn, the only difference beingrnk in (16), which we
now take from (29).

Appendix E. Gibbs Sampling for Parallel Tempering

Parallel tempering of a mixture of Gaussian distributionsp(xn|θ) = ∑K
k=1 πkN (xn;µk,Γ−1

k ) requires
a Monte Carlo simulation at inverse temperatureβ. We can either sample fromp(θ|D,β) us-
ing a Metropolis-Hastings (MH) method, or augment the parameter space with latent allocation
variablesz so that we can sample fromp(θ,z|D,β) with Gibbs sampling. We may also define
p(z|D,β) =

R

dθ p(θ,z|D,β), and devise a MH scheme on this distribution by making random as-
signment changes toz.

The road of Gibbs sampling is pathed with tractable conditional distributions ofp(θ,z|D,β), and
it is the one we choose. We extend the parameter space to include a binary latent allocation vectorzn
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for each data pointn to indicate which mixture component was responsible for generating it (Diebolt
and Robert, 1994); consequentlyznk ∈ {0,1}, and∑k znk = 1. The complete joint distribution is
therefore

p(D,z|θ)p(θ) = ∏
n

∏
k

[

πkN (xn;µk,Γ−1
k )
]znk

p(θ) .

We can write the complete data likelihood asp(D,z|θ) = p(D|z,θ)p(z|θ), and in this form the
likelihood, to the powerβ, multiplied by the prior overz andθ, is

p(D|z,θ)β× p(z,θ) = ∏
n

∏
k

N (xn;µj ,Γ−1
k )βznk×∏

n
∏

k

πznk
k p(θ) .

(Note that the introduction ofzmovesπ to the prior.) With inverse temperature parameterβ the tem-
pered posterior distribution isp(θ,z|D,β) ∝ p(D|z,θ)β p(z,θ), and can be treated as any missing-
value Gibbs sampling problem. The allocation variables are sampled with

znk|π,µ,Γ∼ πkN (xn;µk,Γ−1
k )β

∑k′ πk′N (xn;µk′ ,Γ−1
k′ )β

.

Given the allocation variables, we define

rnk = βznk, x̄k =
1
Nk

∑
n

rnkxn,

Nk = ∑
n

rnk Σk, =
1
Nk

∑
n

rnk(xn− x̄k)(xn− x̄k)
T ,

to give the conditional distributions needed for sampling the mixture parametersas

π|z∼D
(

π;λ1,0 + 1
βN1, . . . ,λK,0 + 1

βNK
)

,

µk,Γk|z∼NW
(

µk,Γk;m,ν,a,B
)

, (30)

with

m=
νk,0mk,0 +Nkx̄k

νk,0 +Nk
,

ν = νk,0 +Nk,

a = ak,0 +Nk/2,

B = Bk,0 +
1
2

NkΣk +
1
2

Nkvk,0(x̄k−mk,0)(x̄k−mk,0)
T

νk,0 +Nk
. (31)

As p(D) =
R

dθdz p(D,θ,z), we use the samples overθ andz to estimate the average log likelihood.

If {{π(t)
k,i ,µ

(t)
k,i ,Γ

(t)
k,i}Kk=1,{z

(t)
n,i}Nn=1}Tt=1 indicates the samples of chaini (after a burn-in period), then

〈logp(D|θ,z)〉βi
≈ 1

T ∑
t

∑
n

∑
k

z(t)
nk,i logN

(

xn;µ(t)
k,i ,Γ

(t)
k,i

−1)
. (32)

Notice that the samples of the mixing weightsπ(t)
k,i are not used in estimating the log likelihood

average over the posterior, but occur in the prior.
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E.1 A Practical Generalization (I)

The generalization of PT and TI from Section 5.3 can be made by writing the tempered posterior
distribution as

p(θ,z|D,β) ∝ ∏
n

∏
k

N (xn;µk,Γ−1
k )βznk πznk

k p(θ)β q(θ)1−β ,

where∏n,k πznk
k = p(z|θ)βq(z|θ)1−β follows from p(z|θ) = q(z|θ). To do Gibbs sampling as before,

we have to determine the parameters of the “effective” prior in the above scenario. Here we letq(θ)
be in the same family—for example a narrower version—of the prior. If superscriptsp andq now
differentiate between the parameters ofp(θ) andq(θ), we use

λ0 = βλp
0 +(1−β)λq

0,

mk,0 =
βνp

k,0mp
k,0 +(1−β)νq

k,0mq
k,0

βνp
k,0 +(1−β)νq

k,0

,

νk,0 = βνp
k,0 +(1−β)νq

k,0,

ak,0 = βap
k,0 +(1−β)aq

k,0,

Bk,0 = βBp
k,0 +(1−β)Bq

k,0 +
1
2

βνp
k,0(1−β)νq

k,0

βνp
k,0 +(1−β)νq

k,0

(mp
k,0−mq

k,0)(m
p
k,0−mq

k,0)
T

as substitute for the usual prior in (30) and (31). The empirical expectation given in (32) should be
generalized—simplifying the left hand side below withp(z,θ)/q(z,θ) = p(θ)/q(θ)—to

〈

logp(D|θ,z)+ log
p(θ)

q(θ)

〉

βi

≈ 1
T ∑

t

[

logp(π(t)
i )− logq(π(t)

i )+∑
k

[

logp(µ(t)
k,i ,Γ

(t)
k,i )

− logq(µ(t)
k,i ,Γ

(t)
k,i )+∑

n
z(t)
nk,i logN

(

xn;µ(t)
k,i ,Γ

(t)
k,i

−1)]
]

.

E.2 A Practical Generalization (II)

We implemented a further possible generalization, which arises from choosing q(θ) = p(θ|D ′),
whereD ′ contains a small subset of data points fromD. This sensibly restrictsq to parameter space
closer to the posterior, with the benefit that the normalizer ofq needs to be calculated only once.
With |D ′| being small,q can be evaluated analytically without feeling the effect of the exponentially
expanding number of terms. This brings an interesting tradeoff, as settingD ′ ← D solves our
original (difficult) problem. (Figure 3 used this choice of surrogate prior, with D ′ containing 3 out
of a possible 82 data points.)

We can constructq(θ) as follows: LetN′ = |D ′| be the number of data points inD ′, so thatq(θ)
expands as a sum over(N′)K terms. Allow 1, . . . ,K to be the digit set of a number system in baseK.
Make a listS of the first(N′)K numbers in baseK, such that each numbersconsists ofN′ digits, and
eachxn′ ∈D ′ can be associated with a corresponding digitposition. Eachs∈ S therefore defines a
unique allocation for allxn′ ∈D ′ to clusters 1, . . . ,K (xn′ ’s digit value). We shall use the shorthand
D ′s to indicate a data set with a data point to cluster allocation given bys.

The surrogate prior is a weighted sum of various posteriors

q(θ) = p(θ|D ′) = ∑
s∈S

wsp(π|D ′s)∏
k

p(µk,Γk|D ′s) .
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If Zs =
R

dθ p(θ,D ′s), the weights are determined withws = Zs/∑s′ Zs′ .
Instead of merely raisingq to the power 1− β, we first turnq into a product amenable to

Gibbs sampling by augmenting it with binary indicator variablesy = {ys}s∈S that pick a partic-
ular component ofq; ∑sys = 1. With q(y) = p(y) = ∏swys

s , the surrogate prior now takes the form
q(z|θ)q(θ|y)q(y); the prior becomesp(z|θ)p(θ)p(y). The empirical expectation in (32) generalizes
to

〈

logp(D|θ,z)+ log
p(θ)

q(θ|y)
〉

βi

≈ 1
T ∑

t

[

logp(π(t)
i )−∑

s
y(t)

s,i logp(π(t)
i |D ′s)

+∑
k

[

logp(µ(t)
k,i ,Γ

(t)
k,i )−∑

s
y(t)

s,i logp(µ(t)
k,i ,Γ

(t)
k,i |D ′s)

+∑
n

z(t)
nk,i logN

(

xn;µ(t)
k,i ,Γ

(t)
k,i

−1)]
]

.

Appendix F. Perturbation Corrections for Mixture of Gaussians

In this appendix we show how to compute the second-order terms of (8),

R= 1+ ∑
n1<n2

〈

εn1(θ)εn2(θ)
〉

q
+ ∑

n1<n2<n3

〈

εn1(θ)εn2(θ)εn3(θ)
〉

q
+ . . . , (33)

and the first-order term in the numerator of (10),

p(x|D) =

R

dθq(θ) p(x|θ)
(

1+∑n εn(θ)+∑n1<n2
εn1(θ)εn2(θ)+ . . .

)

1+∑n1<n2
〈εn1(θ)εn2(θ)〉q + . . .

. (34)

The sum in the second order term runs over all distinct pairs and the complexity thus grows as
O(N2). However, one would expect that the largest contribution comes from nearby points, or more
precisely points that belong to the same component, as indicated by a large responsibility for the
same component. Although not done here, it is plausible to restrict the summationto only include
these pairs without sacrificing much precision.

Let Λ = {λ,{mk,vk,ak,Bk}Kk=1} be the parameters that solve the EC equations. We also have
access to the parameters of each of the cavity distributionsΛ\n.

For eachn the parameters ofqn(θ) is given by the parameters ofp(xn|θ)q\n(θ), which expands
as a sum over theK mixture components. Each elementk in the sum contains a product of a
Dirichlet density andK Normal-Wishart densities. The Dirichlet parameter vector will have element
k incremented by one, and asxn is associated with componentk, it will affect only the parameters
of thekth Normal-Wishart. Therefore, apart from the cavity parametersΛ\n, we will also need for
eachk = 1, . . . ,K:

λ∗k\n = λk\n +1 and λ∗k′\n = λk′\n for k′ 6= k,

v∗k\n = vk\n +1,

m∗k\n =
vk\nmk\n +xn

vk\n +1
,

a∗k\n = ak\n + 1
2,
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B∗k\n = Bk\n +
1
2

vk\n
vk\n +1

(mk\n−xn)(mk\n−xn)
T . (35)

The normalizer ofqn(θ) follows from (27) to be
R

dθ′p(xn|θ′)q\n(θ′) = ∑k〈πk〉q\n p(xn|k\n) = Zn.

F.1 Corrections for the Marginal Likelihood

A single second-order term in (33) can be evaluated with

〈

εn1(θ)εn2(θ)
〉

q
=

Z

dθ
qn1(θ)qn2(θ)

q(θ)
−1

=−1+
1

Zn1

1
Zn2

(2π)−d
K

∑
k=1

K

∑
l=1

{

Z
D
(λ)Z

D
(λ(k,l))

Z
D
(λ\n1)Z

D
(λ\n2)

· · ·×
K

∏
j=1

Z
NW

(mj ,v j ,a j ,B j)Z
NW

(m(k,l)
j ,v(k,l)

j ,a(k,l)
j ,B(k,l)

j )

Z
NW

(mj\n1,v j\n1,a j\n1,B j\n1)Z
NW

(mj\n2,v j\n2,a j\n2,B j\n2)

}

.

The above sum overk relatesxn1 to coming from a particular mixture componentk, while the sum
over l does the same forxn2. For a particular element in the sum overk andl we need parameters
relating to each of thej = 1, . . . ,K mixture components. For the Dirichlet normalizer the parameters
λ(k,l)

j depend on whetherk = l , implying that bothxn1 andxn2 were generated from the same mixture
component, or whetherk 6= l , implying thatxn1 andxn2 came from different mixture components.
The elements ofλ(k,l) are:

λ(k,l)
j = λ j\n1 +λ j\n2−λ j for j 6= k, l .

Whenk 6= l two indices j remain to be defined; ifk = l we will have one remaining index to take
care of:

λ(k,l)
j = λ∗j\n1

+λ j\n2−λ j for j = k andk 6= l ,

λ(k,l)
j = λ j\n1 +λ∗j\n2

−λ j for j = l andk 6= l ,

λ(k,l)
j = λ∗j\n1

+λ∗j\n2
−λ j for j = k = l .

For each element in the sum overk and l the Normal-Wishart parameters are similarly defined.
When j 6= k, l we have:

v(k,l)
j = v j\n1 +v j\n2−v j ,

m(k,l)
j =

v j\n1mj\n1 +v j\n2mj\n2−v jmj

v j\n1 +v j\n2−v j
,

a(k,l)
j = a j\n1 +a j\n2−a j ,

B(k,l)
j = B j\n1 +

1
2

v j\n1mj\n1m
T
j\n1

+B j\n2 +
1
2

v j\n2mj\n2m
T
j\n2

· · ·−B j −
1
2

v jmjm
T
j −

1
2

v(k,l)
j m(k,l)

j m(k,l)T
j .
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As was seen for the mixture weights, we will need further definitions: whenj = k andk 6= l we
shall usev(k,l)

j = v∗j\n1
+v j\n2−v j ; a similar definition follows whenj = l . Finally, when j = k = l

we find thatv(k,l)
j = v∗j\n1

+v∗j\n2
−v j . The other Normal-Wishart parameters follow the same route.

The correction evaluates inO(N2K2) complexity.

F.2 Corrections for the Predictive Distribution

From (34) we can compute a first-order correction to the predictive distribution with p(x|D) ≈
R

dθq(θ)p(x|θ)(1+∑n εn(θ)), which we rewrite as

p(x|D)≈∑
n

Z

dθ p(x|θ)qn(θ)− (N−1)
Z

dθ p(x|θ)q(θ) .

Each predictive density in the above equation simplifies as

Z

dθ p(x|θ)qn(θ) =
1
Zn

∑
k

∑
l























λk\n λl\n
(∑k′ λk′\n +1)∑k′ λk′\n

p(xn|k\n) p(x|l\n) if k 6= l

(λk\n +1)λk\n
(∑k′ λk′\n +1)∑k′ λk′\n

p(xn|k\n) p(x|xn,k\n) if k = l .

We have seen how to computep(xn|k\n) in (26) and the discussion that followed it; we similarly de-
fine p(x|l\n). Densityp(x|xn,k\n) is again the Student-t distribution of (26), but nowΛ is replaced
with Λ∗\n from (35). The correction evaluates inO(NK2) complexity.
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