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Abstract
We introduce a new technique for the analysis of kernel-based regression problems. The basic tools
are sampling inequalities which apply to all machine learning problems involving penalty terms
induced by kernels related to Sobolev spaces. They lead to explicit deterministic results concerning
the worst case behaviour ofε- andν-SVRs. Using these, we show how to adjust regularization
parameters to get best possible approximation orders for regression. The results are illustrated by
some numerical examples.
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1. Introduction

Support Vector (SV) machines and related kernel-based algorithms are modern learning systems
motivated by results of statistical learning theory as introduced by Vapnik (1995). The concept of
SV machines is to provide a prediction function which is accurate on the giventraining data and
which is sparse in the sense that it can be written in terms of a typically small subset of all sam-
ples, called the support vectors, as stated by Schölkopf et al. (1995).Therefore, SV regression and
classification algorithms are closely related to regularized problems from classical approximation
theory as pointed out by Girosi (1998) and Evgeniou et al. (2000) whohad applied techniques from
functional analysis to derive probabilistic error bounds for SV regression.
This paper provides a theoretical framework to derive deterministic errorbounds for some popular
SV machines. We show how a sampling inequality by Wendland and Rieger (2005) can be used
to bound the worst-case generalization error for theν- and theε-regression without making any
statistical assumptions on the inaccuracy of the training data. In contrast to the literature, our error
bounds explicitly depend on the pointwise noise in the data. Thus they can be used for any subse-
quent probabilistic analysis modelling certain assumptions on the noise distribution.
The paper is organized as follows. In the next section we recall some basic facts about reproduc-
ing kernels in Hilbert spaces. Section 3 deals with regularized approximationproblems in Hilbert
spaces with reproducing kernels and outlines the connection to classical SV regression (SVR) al-
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gorithms. We provide a deterministic error analysis for theν- and theε-SVR for both exact and
inexact training data. Our analytical results showing optimal convergenceorders in Sobolev spaces
are illustrated by numerical experiments.

2. Reproducing Kernels in Hilbert Spaces

We suppose thatK is a positive definite kernel on some domainΩ ⊂ R
d which should contain at

least one point. To start with, we briefly recall the well known definition of areproducing kernel in
a Hilbert space. In the following we shall use the notation that bold letters denote vectors, that is
v = (v1, . . . ,vd)

T ∈ R
d.

Definition 1 LetH (Ω) be a Hilbert space of functions f: Ω → R. A function K: Ω×Ω → R is
called reproducing kernel ofH (Ω), if

• K(y, ·) ∈H (Ω) for all y ∈ Ω and

• f (y) = ( f ,K(y, ·))H (Ω) for all f ∈H (Ω) and ally ∈ Ω.

For each positive definite kernelK : Ω×Ω → R there exists a unique Hilbert spaceNK(Ω) of func-
tions f : Ω → R, such thatK is the reproducing kernel ofNK(Ω) (see Wendland, 2005, Theorems
10.1 and 10.11). This Hilbert spaceNK(Ω) is called thenative space of K. Though this definition
of a native space is rather abstract, it can be shown that in some cases thenative spaces coincide
with classical function spaces.
From now on we shall only considerradial kernelsK, that is,

K(x,y) = K(‖x−y‖) for all x,y ∈ R
d ,

where we use the same notation for the kernelK : R
d ×R

d → R and for the functionK : R
d → R.

We hope that this does not cause any confusion. We shall mainly focus oncontinuous kernels
K ∈ L1(Ω), that is,

‖K‖L1(Ω) :=
Z

Ω
|K (x)|dx < ∞ .

ForK ∈ L1
(

R
d
)

, we define the Fourier transform̂K by

K̂ (ω) := (2π)−
d
2

Z

Rd
K (x)e−ix·ωdx , ω ∈ R

d .

For the caseΩ = R
d there is the following characterization of native spaces of certain radial kernels

K : Ω → R
d (Wendland, 2005, Theorem 10.12).

Theorem 2 Suppose that K∈C(Rd)∩L1(R
d) is a real-valued and positive definite radial kernel.

Then the native space of K is given by

NK(Rd) =

{

f ∈ L2(R
d)∩C(Rd) :

f̂√
K̂

∈ L2(R
d)

}

,

( f ,g)NK(Rd) = (2π)−d/2
(

f̂√
K̂

,
ĝ√
K̂

)

L2(Rd)

,

where f̂ denotes the Fourier transform of f .
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We recall that the Sobolev spacesWs
2(Rd) onR

d with s≥ 0 are given by

Ws
2(Rd) :=

{

f ∈ L2(R
d) : f̂ (·)(1+‖·‖2

2)
s/2 ∈ L2(R

d)
}

. (1)

Therefore for a radial kernel functionK whose Fourier transform decays like

c1(1+‖·‖2
2)

s ≤ K̂ ≤ c2(1+‖·‖2
2)

s ,s> d/2 (2)

for some constantsc1,c2 > 0, the associated native spaceNK(Rd) is Ws
2(Rd) with an equivalent

norm. There are several examples of kernels satisfying the condition (2). One famous example for
fixeds∈ (d/2,∞) is theMatern kernel(Wendland, 2005)

Ks(x) :=
21−s

Γ(s)
‖x‖s−d/2

2 Kd/2−s(‖x‖2) ,

whereK denotes the Bessel function of the third kind. In our examples, however,we focus on
Wendland’s functions(Wendland, 2005). They are very convenient to implement since they are
compactly supported and piecewise polynomials. Such nice reproducing kernels are so far only
available for certain choices of the space dimensiond and the decay parameters (see Wendland,
2005), but a recent result by Schaback (2009) covers almost all cases of practical interest. We shall
explain some more properties of these kernels in the experimental part, see Section 10, and refer to
the recent monograph by Wendland (2005) for details.
In order to establish the equivalence of native spaces and Sobolev spaces on bounded domains one
needs certain extension theorems for Sobolev functions on bounded domains (see Wendland, 2005).

Definition 3 Let Ω ⊂ R
d be a domain. We define the Sobolev spaces of integer orders k∈ N as

Wk
2 (Ω) = { f ∈ L2(Ω) : f has weak derivatives Dα f ∈ L2(Ω) of order|α| ≤ k}

with the norm

‖u‖Wk
2 (Ω) :=

(

∑
|α|≤k

‖Dαu‖2
L2(Ω)

)1/2

.

For fractional smoothness s= k+σ with 0 < σ < 1 and k∈ N we define the semi-norm

|u|Ws
2(Ω) :=

(

∑
|α|=k

Z

Ω

Z

Ω

|Dαu(x)−Dαu(y)|2

‖x−y‖d+2σ
2

dxdy

)1/2

,

and set

Ws
2(Ω) :=

{

u∈ L2(Ω) :
(

‖u‖2
Wk

2 (Ω) + |u|2Ws
2(Ω)

)1/2
< ∞

}

.

In the caseΩ = R
d this space is known to be equivalent to the space given by (1) in terms of Fourier

transforms (for more details on these spaces, see Wloka, 1982). Finally,Wendland (2005) proves the
following equivalence for domains having Lipschitz boundaries. Roughlyspeaking, a setΩ ⊂ R

d

has a Lipschitz boundary if its boundary is locally (in a suitable direction) the graph of a Lipschitz
function such thatΩ lies completely on one hand-side of this graph (see Brenner and Scott, 1994).
Then there is the following theorem (see Wendland, 2005, Cor. 10.48).
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Theorem 4 Suppose that K∈ L1(R
d) has a Fourier transform that decays as(1+‖·‖2

2)
−s for s>

d/2. Suppose thatΩ has a Lipschitz boundary. Then

NK(Ω) ∼= Ws
2(Ω)

with equivalent norms.

3. Regularized Problems in Native Hilbert Spaces

In the native Hilbert spaces we consider the following learning or recovery problem. We assume that
we are given (possibly only approximate) function valuesy1, . . . ,yN ∈ R of an unknown function
f ∈NK(Ω) on some scattered pointsX :=

{

x(1), . . . ,x(N)
}

⊂Ω, that is f
(

x( j)
)

≈ y j for j = 1, . . . ,N.
In the following we shall use the notation that bold letters denote vectors, thatis v = (v1, . . . ,vd)

T ∈
R

d.
To control accuracy and complexity of the reconstruction simultaneously, we use the optimization
problem

min
s∈NK(Ω)

ε∈R
+

1
N

N

∑
j=1

Vε

(∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

)

+
1

2C
‖s‖2

NK(Ω) , (3)

whereC > 0 is a positive parameter andVε denotes a positive function which may be parametrized
by a positive real numberε. We point out thatVε need not be a classical loss function. Therefore
we shall give some proofs of results which were formulated by Schölkopfand Smola (2002) in the
case ofVε being a loss function.

Theorem 5 (Representer theorem)If (sX,y,ε∗) is a solution of the optimization problem (3), then
there exists a vectorw ∈ R

N such that

sX,y (·) =
N

∑
j=1

w jK
(

x( j), ·
)

,

that is sX,y ∈ span
{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

Proof For the readers’ convenience, we repeat the proof from Schölkopfand Smola (2002) in our
specific situation. Everys∈ NK (Ω) can be decomposed into two partss = s|| + s⊥, wheres|| is
contained in the linear span of

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

, ands⊥ is contained in the orthogonal
complement, that is

〈

s||,s⊥
〉

NK(Ω)
= 0. By the reproducing property of the kernelK in the native

space, the problem (3) can be rewritten as

min
s=s||+s⊥

ε∈R
+

1
N

N

∑
j=1

Vε

(∣

∣

∣

〈

s||,K
(

x( j), ·
)〉

−y j

∣

∣

∣

)

+
1

2C

∥

∥s||
∥

∥

2
NK(Ω)

+
1

2C
‖s⊥‖2

NK(Ω) .

Therefore a solution(sX,y,ε∗) of the optimization problem (3) satisfies(sX,y)⊥ = 0, which implies
sX,y ∈ span

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

Since the proof of Theorem 5 does not depend on the minimality with respect toε this result holds
also true ifε is a fixed parameter instead of a primal variable. To be precise we state this result as a
corollary.
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Corollary 6 If sX,y is a solution of the optimization problem

min
s∈NK(Ω)

1
N

N

∑
j=1

Vε

(∣

∣

∣s
(

x( j)
)

−y j

∣

∣

∣

)

+
1

2C
‖s‖2

NK(Ω) , (4)

with ε ∈ R
+ being a fixed parameter, then sX,y ∈ span

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

.

The representer theorems can be used to reformulate infinite-dimensional optimization problems of
the forms (3) or (4) in a finite-dimensional setting (see Schölkopf and Smola,2002).

4. Support Vector Regression

As a first optimization problem of the form (3) we consider theν-SVR which was introduced by
Schölkopf et al. (2000). The functionVε (x) = |x|ε + εν is related to Vapnik’sε-intensive loss func-
tion (Vapnik, 1995)

|x|ε =

{

0 i f |x| ≤ ε
|x|− ε i f |x| > ε ,

but has an additional term with a positive parameterν. The associated optimization problem is
calledν-SVR and takes the form

min
s∈NK(Ω)

ε∈R
+

1
N

N

∑
j=1

∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

ε
+ εν+

1
2C

‖s‖2
NK(Ω) . (5)

Theorem 7 The optimization problem (5) possesses a solution
(

s(ν)
X,y,ε∗

)

.

Proof This follows from a general result by Micchelli and Pontil (2005). The problem (5) is
equivalent to the optimization problem

min
s∈NK(Ω)

δ∈R

1
N

N

∑
j=1

∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

δ2
+δ2ν+

1
2C

‖s‖2
NK(Ω) . (6)

If we setH :=NK(Ω)×R we can define an inner product onH by

〈h1,h2〉H := 〈 f1, f2〉NK(Ω) +2Cν〈r1, r2〉R

for h j = ( f j , r j), j = 1,2. To makeH a space of functions we use the canonical identification of
R with the space of constant functionsR → R. The Hilbert spaceH then has the reproducing
kernelK̃ :=

(

K, 1
2Cν1

)

where1 denotes the constant function which maps everything to 1, that is
K̃ ((x, r) ,(y,s)) = K (x,y) + 1/(2Cν) for all r,s∈ R. With this notation the problem (6) can be
rewritten as

min
(s,δ)∈H

Qy (IX(s,δ))+
1

2C
‖(s,δ)‖2

H , (7)

where

IX(s,δ) :=
(

s(x(1)), . . . ,s(x(N)),δ
)T

∈ R
N+1
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and

Qy : R
N+1 → R, Qy (p,δ) =

1
N

N

∑
j=1

∣

∣p j −y j
∣

∣

δ2 .

SinceQy is continuous onRN+1 for all y ∈ R
N, the problem (7) possesses a solution as shown by

Micchelli and Pontil (2005).

If we introduce the slack variablesξ, ξ∗ ∈ R
N, the representer theorem gives us an equivalent finite-

dimensional problem which was considered by Schölkopf et al. (2000).

min
w∈R

N

ξ∗,ξ∈R
N

ε∈R
+

1
2

wTKw +C

(

νε+
1
N

N

∑
j=1

(

ξ j +ξ∗j
)

)

subject to (Kw) j −y j ≤ ε+ξ j ,

(−Kw) j +y j ≤ ε+ξ∗j ,

ξ∗j ,ξ j ≥ 0, ε ≥ 0 for 1≤ j ≤ N , (8)

where
K =

(

K
(

x(i),x( j)
))

i, j=1...N

denotes the Gram matrix of the kernelK. We will use this equivalent problem for implementation
and our numerical tests.
A particularly interesting problem arises if we skip the parameterν and letε be fixed. Then the
optimization problem (8) takes the form

min
w∈R

N

ξ∗,ξ∈R
N

1
2

wTKw +C
1
N

N

∑
j=1

(

ξ j +ξ∗j
)

subject to (Kw) j −y j ≤ ε+ξ j ,

(−Kw) j +y j ≤ ε+ξ∗j ,

ξ∗j ,ξ j ≥ 0 for 1≤ j ≤ N . (9)

Schölkopf et al. (2000) called this problemε-SVR. Similarly to theν-SVR, the problem (9) can
be formulated as a regularized minimization problem in a Hilbert space (Evgeniou et al., 2000),
namely

min
s∈NK(Ω)

1
N

N

∑
j=1

∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

ε
+

1
2C

‖s‖2
NK(Ω) . (10)

Like the ν-SVR, this optimization problem possesses a solution (see Micchelli and Pontil,2005,
Lemma 1).

5. A Sampling Inequality

We shall employ a special case of asampling inequalityintroduced by Wendland and Rieger (2005).
It requires the following assumptions which we need from now on. LetΩ ⊂ R

d be a bounded
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domain with Lipschitz boundary that satisfies an interior cone condition. A domain Ω is said to
satisfy an interior cone condition with radiusr > 0 and angleθ ∈

(

0, π
2

)

if for every x ∈ Ω there is
a unit vectorξ(x) such that the cone

C(x,ξ(x) ,θ, r) :=
{

x+λy : y ∈ R
d,‖y‖2 = 1,yTξ(x) ≥ cos(θ),λ ∈ [0, r]

}

is contained inΩ. In particular, a domain which satisfies an interior cone condition cannot have any
outward cusps. We shall assume for the rest of this paper thatΩ satisfies an interior cone condition
with radiusRmax and angleθ. We shall derive estimates that are valid only if the training points are
sufficiently dense inΩ. To make this condition precise, we will need a slightly unhandy constant
which depends only on the geometry ofΩ, namely (see Wendland, 2005)

CΩ :=
sin
(

2arcsin
(

sinθ
4(1+sinθ)

))

sinθ

8
(

1+sin
(

2arcsin
(

sinθ
4(1+sinθ)

)))

(1+sinθ)
Rmax .

Suppose thatK is a radial kernel function such that the native Hilbert space ofK is norm-equivalent
to a Sobolev space, that isNK(Ω) = Wτ

2 (Ω). Here we assume that⌊τ− 1
2⌋> d/2, where we use the

notation⌊t⌋ := max{n∈ N0 : n≤ t} for t ≥ 0. Furthermore, letX =
{

x(1), . . . ,x(N)
}

⊂ Ω be a finite
set with sufficiently small fill distance

h := hX,Ω := sup
x∈Ω

min
x( j)∈X

∥

∥

∥
x−x( j)

∥

∥

∥

2
.

The fill distance can be interpreted geometrically as the radius of the largestball with center in
Ω̄ that does not contain any of the pointsx(1), . . . ,x(N). It is a useful quantity for the deterministic
error analysis in Sobolev spaces. The caseh= 0 implies thatX =

{

x(1), . . . ,x(N)
}

is dense inΩ, and
therefore convergence is studied for the limith→ 0 which means that the domainΩ is equally filled
with points fromX. Let us explain the relation to the usual error bounds in terms of the number
of pointsN. In the case of regularly distributed points we have thath = cN− 1

d with some constant
c > 0 (Wendland, 2005). Therefore the limith → 0 is equivalent to the limitN → ∞ which is the
more intuitive meaning of asymptotic convergence. But there is a drawback,since the error bounds
in terms ofN depend crucially on the space dimensiond, while error bounds in terms of the fill
distanceh are dominated by the smoothness of the function to be learned. We will comment on
this again later for the special error bounds we consider here. We shalluse the following result by
Wendland and Rieger (2005).

Theorem 8 SupposeΩ⊂R
d is a bounded domain with Lipschitz boundary that satisfies an interior

cone condition. Letτ be a positive real number with⌊τ− 1
2⌋ > d

2 , and let1 ≤ q ≤ ∞. Then there
exists a positive constant C> 0 such that for all discrete sets X⊂ Ω with sufficiently small fill
distance h:= hX,Ω ≤CΩτ−2 the inequality

‖u‖Lq(Ω) ≤C
(

hτ−d( 1
2− 1

q)+ ‖u‖Wτ
2 (Ω) +‖u|X‖ℓ∞(X)

)

holds for all u∈Wτ
2 (Ω), where we use the notation(t)+ := max{0, t}.

We shall apply this theorem to the residual functionf − sX,y of the function f ∈ Wτ
2 (Ω) to be

recovered and a solutionsX,y ∈ Wτ
2 (Ω) of the regression problem. In our applications we shall

focus on the two main casesq = ∞ andq = 2. Other cases can be treated analogously. It will turn
out that we get optimal convergence rates in the noiseless case. In presence of noise the resulting
error will explicitly be bounded in terms of the noise in the data.
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6. ν-SVR with Exact Data

In order to derive error bounds for theν-SVR optimization problem (5) we shall apply Theo-

rem 8 to the residualf − s(ν)
X,y, where

(

s(ν)
X,y,ε∗

)

denotes a solution to the problem (5) forX :=
{

x(1), . . . ,x(N)
}

⊂ Ω andy ∈ R
N. In this section we consider exact data, that is

f
(

x( j)
)

= y j for j = 1, . . . ,N (11)

for a function f ∈Wτ
2 (Ω) ∼= NK(Ω). As pointed out by Wendland and Rieger (2005) we first need

a stability and a consistency estimate for the solutions(ν)
X,y.

Lemma 9 Under the assumption (11) concerning the data, we find that for every X asolution
(

s(ν)
X,y,ε∗

)

to problem (5) satisfies

∥

∥

∥
s(ν)
X,y

∥

∥

∥

NK(Ω)
≤ ‖ f‖NK(Ω) and

∥

∥

∥s(ν)
X,y|X −y

∥

∥

∥

ℓ∞(X)
≤ N

2C
‖ f‖2

NK(Ω) + ε∗ · (1−Nν) .

Proof We denote the objective function of the optimization problem (5) by

Hy
C,ν (s,ε) :=

1
N

N

∑
j=1

∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

ε
+νε+

1
2C

‖s‖2
NK(Ω) , (12)

and the interpolant tof with respect toX andK with I f , that isI f |X = y and
I f ∈ span

{

K
(

x(1), ·
)

, . . . ,K
(

x(N), ·
)}

. With this notation we have

1
2C

∥

∥

∥s(ν)
X,y

∥

∥

∥

2

NK(Ω)
≤ Hy

C,ν

(

s(ν)
X,y,ε

∗
)

≤ Hy
C,ν (I f ,0) =

1
2C

∥

∥I f
∥

∥

2
NK(Ω)

≤ 1
2C

‖ f‖2
NK(Ω)

since
∥

∥I f
∥

∥

NK(Ω)
≤ ‖ f‖NK(Ω) (Wendland, 2005), which implies the first claim.

Furthermore we have fori = 1, . . . ,N

∣

∣

∣s
(ν)
X,y

(

x(i)
)

−yi

∣

∣

∣ ≤
N

∑
j=1

∣

∣

∣s
(ν)
X,y

(

x( j)
)

−y j

∣

∣

∣

ε∗
+ ε∗ ≤ NHy

C,ν

(

s(ν)
X,y,ε

∗
)

+ ε∗ (1−Nν)

≤ NHy
C,ν (I f ,0)+ ε∗ (1−Nν) ≤ N

2C

∥

∥I f
∥

∥

2
NK(Ω)

+ ε∗ (1−Nν)

≤ N
2C

‖ f‖2
NK(Ω) + ε∗ (1−Nν) ,

which finishes the proof.

With Theorem 8 we find immediately the following result.

Theorem 10 SupposeΩ ⊂ R
d is a bounded domain with Lipschitz boundary that satisfies an inte-

rior cone condition. Letτ be a positive real number with⌊τ− 1
2⌋ > d

2 and1≤ q≤ ∞. We suppose
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f ∈ Wτ
2 (Ω) with f

(

x(i)
)

= yi . Let
(

s(ν)
X,y,ε∗

)

be a solution of theν-SVR. Then there is a constant

C̃ > 0, which depends onτ, d andΩ but not on f or X, such that the approximation error can be
bounded by

∥

∥

∥
f −s(ν)

X,y

∥

∥

∥

Lq(Ω)
≤ C̃

(

2hτ−d( 1
2− 1

q)+ ‖ f‖Wτ
2 (Ω) +

N
2C

‖ f‖2
Wτ

2 (Ω) +(1−Nν) · ε∗
)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2.

Proof Combining Lemma 9 and Theorem 8 leads to

∥

∥

∥
f −s(ν)

X,y

∥

∥

∥

Lq(Ω)
≤ C̃

(

hτ−d( 1
2− 1

q)+

∥

∥

∥
f −s(ν)

X,y

∥

∥

∥

Wτ
2 (Ω)

+
∥

∥

∥
y−s(ν)

X,y|X
∥

∥

∥

ℓ∞(X)

)

≤ C̃

(

hτ−( d
2− d

q)+

(

‖ f‖Wτ
2 (Ω)+

∥

∥

∥s(ν)
X,y

∥

∥

∥

Wτ
2 (Ω)

)

+
∥

∥

∥y−s(ν)
X,y|X

∥

∥

∥

ℓ∞(X)

)

≤ C̃

(

2hτ−( d
2− d

q)+ ‖ f‖Wτ
2 (Ω) +

N
2C

‖ f‖2
Wτ

2 (Ω) +(1−Nν)ε∗
)

.

At first glance the term containingε∗ seems to be odd because it could be uncontrollable. But
according to Chang and Lin (2002) we can at least assumeε∗ to be bounded by

ε∗ ≤ 1
2

(

max
i=1,...,N

yi − min
i=1,...,N

yi

)

.

If this inequality is not satisfied, the problem (8) possesses only the trivialsolutions≡ 0 which is
not interesting. Furthermore, we see that theε∗-term occurs with a factor(1−Nν), which can be
used to control this term. If we chooseν ≥ 1

N , the term(1−Nν)ε∗ vanishes or is even negative.
The parameterν is a lower bound on the fraction of support vectors (see Schölkopf et al., 2000),
and henceν = 1/N means to get at least one support vector, that is a non-trivial solution. Since we
are not interested in the case of trivial solutions, the conditionν ≥ 1/N is a reasonable assumption.
On the other hand, we can use the results from Lemma 9 to derive a more explicit upper bound on
ε∗ = ε∗ (C,ν, f ) by

0≤
∥

∥

∥
s(ν)
X,y|X −y

∥

∥

∥

ℓ∞(X)
≤ N

2C
‖ f‖2

NK(Ω) + ε∗ (1−Nν) .

If we assumeν > 1/N, this leads to

ε∗ = ε∗ (C,ν, f ) ≤ N
2C(Nν−1)

‖ f‖2
NK(Ω) .

Note that these bounds cannot be used for a better parameter choice, since we would need to rear-
range this inequality and solve forC or ν. This would only be possible if there were lower bounds
on ε∗ as well. Moreover, the parameterC appears in our error bound as a factorN

2C which implies
that we expect convergence only in the caseC→ ∞. In this caseε∗ will be small, as can be deduced
from problem (8).
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We shall now make our bounds more explicit for the case of quasi-uniformlydistributed points. In
this case the number of pointsN and the fill distanceh are related to each other by

c1N−1/d ≤ h≤ c2N−1/d , (13)

wherec1 andc2 denote positive constants (see Wendland, 2005, Proposition 14.1).

Corollary 11 In case of quasi-uniform exact data we can choose the problem parameters as

C =
N‖ f‖Wτ

2 (Ω)

2hτ ≈ h−(τ+d) ‖ f‖Wτ
2 (Ω) andν ≥ 1

N

to get
∥

∥

∥ f −s(ν)
X,y

∥

∥

∥

L2(Ω)
≤ C̃hτ ‖ f‖Wτ

2 (Ω) ≤ C̃N− τ
d ‖ f‖Wτ

2 (Ω) ;

or as

C =
N‖ f‖Wτ

2 (Ω)

2hτ− d
2

≈ h−(τ+ d
2) ‖ f‖Wτ

2 (Ω) andν ≥ 1
N

to get
∥

∥

∥
f −s(ν)

X,y

∥

∥

∥

L∞(Ω)
≤ C̃hτ− d

2 ‖ f‖Wτ
2 (Ω) ≤ C̃N− τ

d + 1
2 ‖ f‖Wτ

2 (Ω)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2, with generic positive constants̃C
which depend onτ, d, Ω but not on f or X.

Note that these bounds yield arbitrarily high convergence orders, provided that the functions are
smooth enough, that isτ is large enough. Therefore they are in this setting better than the usual
minimax rateN− 2τ

2τ+d (see Stone, 1982). In the following we shall only give our error estimatesin
terms of the fill distanceh rather than in terms of the number of pointsN. This is due to the fact
that the approximation rateτ in h is independent of the space dimensiond. However it should be
clear how the approximation rates translate into error estimates in terms ofN in the case of quasi-
uniform data due to the inequality (13). Note that the parameter choice in the case of arbitrary,
non-uniformly distributed data can be treated analogously.
Corollary 11 shows, that the solution of theν-SVR leads to the same approximation orders with
respect to the fill distanceh as classical kernel-based interpolation (see Wendland, 2005). But the
ν-SVR allows for much more flexibility and less complicated solutions. Our numerical results will
confirm these convergence rates.

7. ν-SVR with Inexact Data

In this section we denote again by
(

s(ν)
X,y,ε∗

)

the solution to the problem (5) for a set of points

X :=
{

x(1), . . . ,x(N)
}

⊂ Ω andy ∈R
N, but we allow the given data to be corrupted by some additive

errorr = (r1, . . . , rN), that means

f
(

x( j)
)

= y j + r j for j = 1, . . . ,N, (14)

where isf ∈Wτ
2 (Ω)∼=NK(Ω). Note that there are no assumptions concerning the error distribution.

As in the previous section we have to show a stability and a consistency estimate of the following
form.
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Lemma 12 Under the assumption (14) concerning the datay, a solution
(

s(ν)
X,y,ε∗

)

to the optimiza-

tion problem (5) satisfies for every X and for allε ≥ 0

∥

∥

∥
s(ν)
X,y

∥

∥

∥

NK(Ω)
≤

√

√

√

√

2C
N

N

∑
j=1

∣

∣r j
∣

∣

ε +2Cνε+‖ f‖2
NK(Ω) and

∥

∥

∥s(ν)
X,y −y

∥

∥

∥

ℓ∞(X)
≤

N

∑
j=1

∣

∣r j
∣

∣

ε +νNε+(1−Nν)ε∗ +
N
2C

‖ f‖2
NK(Ω) .

Proof Again, we denote the interpolant tof with respect toX andK by I f and useHy
C,ν as defined

in Equation (12). Then we have for allε > 0

1
2C

∥

∥

∥s(ν)
X,y

∥

∥

∥

2

NK(Ω)
≤ Hy

C,ν

(

s(ν)
X,y,ε

∗
)

≤ Hy
C,ν (I f ,ε) ≤

1
N

N

∑
j=1

∣

∣r j
∣

∣

ε +νε+
1

2C
‖ f‖2

NK(Ω)

which implies

∥

∥

∥
s(ν)
X,y

∥

∥

∥

NK(Ω)
≤

√

√

√

√

2C
N

N

∑
j=1

∣

∣r j
∣

∣

ε +2Cνε+‖ f‖2
NK(Ω) .

Moreover we have for alli = 1, . . . ,N and allε > 0

∣

∣

∣s
(ν)
X,y

(

x(i)
)

−yi

∣

∣

∣ ≤
N

∑
j=1

∣

∣

∣s
(ν)
X,y

(

x( j)
)

−y j

∣

∣

∣

ε∗
+ ε∗

≤ NHy
C,ν

(

s(ν)
X,y,ε

∗
)

+(1−Nν)ε∗

≤
N

∑
j=1

∣

∣r j
∣

∣

ε +νNε+(1−Nν)ε∗ +
N
2C

‖ f‖2
NK(Ω) .

Again we can use the results from Lemma 12 to derive a more explicit upper bound onε∗ =
ε∗ (C,ν, f ,ε). Note thatε∗ depends now also on the free parameterε.

0≤
∥

∥

∥
s(ν)
X,y|X −y

∥

∥

∥

ℓ∞(X)
≤ N

2C
‖ f‖2

NK(Ω) + ε∗ (1−Nν)+
N

∑
j=1

∣

∣r j
∣

∣

ε +νNε .

If we assumeν > 1/N, this leads to

ε∗ (C,ν, f ,ε) ≤ 1
Nν−1

(

N
2C

‖ f‖2
NK(Ω) +

N

∑
j=1

∣

∣r j
∣

∣

ε +νNε

)

.

Using the sampling inequality as in the case of exact data leads to the following result onLq-norms.
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Theorem 13 We suppose f∈ Wτ
2 (Ω) with f

(

x(i)
)

= yi + r i . Let
(

s(ν)
X,y,ε∗

)

be a solution of the

ν-SVR, that is the optimization problem (5). Then there is a constantC̃ > 0, which depends onτ, d
andΩ but not on f or X, such that for allε > 0 the approximation error can be bounded by

∥

∥

∥ f −s(ν)
X,y

∥

∥

∥

Lq(Ω)
≤ C̃



hτ−( d
2− d

q)+



‖ f‖Wτ
2 (Ω)+

√

√

√

√

2C
N

N

∑
j=1

∣

∣r j
∣

∣

ε+2Cνε+‖ f‖2
Wτ

2 (Ω)





+
N

∑
j=1

∣

∣r j
∣

∣

ε +νNε+ ε∗ (1−Nν)+
N
2C

‖ f‖2
Wτ

2 (Ω) +‖r‖ℓ∞(X)

)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2.

Note that the choice of the “optimal”ε leading to the best bound, depends dramatically on the
problem. We now want to assume that the data errors do not exceed the dataitself. For this we
suppose

‖r‖ℓ∞(X) ≤ δ ≤ ‖ f‖Wτ
2 (Ω)

for a parameterδ > 0.

Corollary 14 If we choose the parameters as

C =
N‖ f‖2

Wτ
2 (Ω)

2δ
,

ε = δ, and ν =
1
N

,

we get
∥

∥

∥
f −s(ν)

X,y

∥

∥

∥

L2(Ω)
≤ C̃

(

hτ ‖ f‖Wτ
2 (Ω) +δ

)

and
∥

∥

∥ f −s(ν)
X,y

∥

∥

∥

L∞(Ω)
≤ C̃

(

hτ−d/2‖ f‖Wτ
2 (Ω) +δ

)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2, with a generic positive constantC̃
which depends onτ, d andΩ but not on f or X.

8. ε-SVR with Exact Data

Since our arguments for theν-SVR apply similarly to theε-SVR, we skip over details and just
state the results. Note that in this case the non-negative parameterε is fixed in contrast to the free
variable in theν-SVR. Analogously to the notation introduced in the previous sections, we denote
by s(ε)

X,y the solution to the problem (10) forX :=
{

x(1), . . . ,x(N)
}

⊂ Ω andy ∈ R
N. The stability and

consistency estimates take the following form.

Lemma 15 Under the assumption (11) concerning the data, we find that for every X and every

fixedε ∈ R
+ a solution s(ε)X,y to problem (10) satisfies

∥

∥

∥s(ε)
X,y

∥

∥

∥

NK(Ω)
≤ ‖ f‖NK(Ω) and

∥

∥

∥
s(ε)
X,y|X −y

∥

∥

∥

ℓ∞(X)
≤ N

2C
‖ f‖2

NK(Ω) + ε .
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Again this leads to the following result on continuousLq-norms.

Theorem 16 We suppose f∈Wτ
2 (Ω) with f

(

x(i)
)

= yi . Let s(ε)X,y be a solution of theε-SVR, that is

the optimization problem (10). Then there is a constantC̃ > 0, which depends onτ, d andΩ but not
on ε, f or X, such that the approximation error can be bounded by

∥

∥

∥
f −s(ε)

X,y

∥

∥

∥

Lq(Ω)
≤ C̃

(

2hτ−d( 1
2− 1

q)+ ‖ f‖Wτ
2 (Ω) +

N
2C

‖ f‖2
Wτ

2 (Ω) + ε
)

(15)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2.

Applying the same arguments as in theν-SVR case we obtain the following corollary.

Corollary 17 If we choose

C =
N‖ f‖Wτ

2 (Ω)

2hτ , respectively C=
N‖ f‖Wτ

2 (Ω)

2hτ−d/2

the inequality (15) turns into
∥

∥

∥ f −s(ε)
X,y

∥

∥

∥

L2(Ω)
≤ C̃

(

3hτ ‖ f‖Wτ
2 (Ω) + ε

)

,

respectively
∥

∥

∥
f −s(ε)

X,y

∥

∥

∥

L∞(Ω)
≤ C̃

(

3hτ− d
2 ‖ f‖Wτ

2 (Ω) + ε
)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2, with a generic positive constantC̃
which depends onτ, d andΩ but not on f∈Wτ

2 (Ω) or X.

The rôle of the parameterC is similar to the one in case of theν-SVR. But unlike in the case of the
ν-SVR we are free to choose the parameterε. We see that exact data implies that we should choose
ε ≈ 0. The caseC→ ∞ andε → 0 leads to exact interpolation, and the well known error bounds for
kernel-based interpolation (see Wendland, 2005) are attained.
We point out that theε-SVR is closely related to the squaredε-loss,

min
s∈NK(Ω)

1
N

N

∑
j=1

∣

∣

∣
s
(

x( j)
)

−y j

∣

∣

∣

2

ε
+

1
2C

‖s‖2
NK(Ω) . (16)

This is important because forε = 0 we get the square loss. Proceeding along the lines of this section,
we find for a solutions(sℓε)

X,y of (16) for exact data the stability bound
∥

∥

∥
s(sℓε)
X,y

∥

∥

∥

NK(Ω)
≤ ‖ f‖NK(Ω)

and the consistency estimate

∥

∥

∥
s(sℓε)
X,y |X −y

∥

∥

∥

ℓ∞(X)
≤
√

2

(

N
2C

‖ f‖2
NK(Ω) + ε2

)1/2

≤
√

N√
C
‖ f‖NK(Ω) +

√
2ε .

Therefore, we obtain similar approximation results for theε-squared loss as for theε-SVR by insert-
ing the estimates into the sampling inequalities. Similarly, the results of Section 9 can beadapted to
theε-squared loss. For the special caseε = 0, we obtain the usual least squares, which was analyzed
by Wendland and Rieger (2005) in the case of exact data, and by Riplinger (2007) in the case of
inexact data.
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9. ε-SVR with Inexact Data

In this section we denote again bys(ε)
X,y the solution to the problem (10) for a set of pointsX :=

{

x(1), . . . ,x(N)
}

⊂ Ω andy ∈R
N, but we allow the given data to be corrupted by some additive error

according to assumption (14).

Lemma 18 Under the assumption (14) concerning the data, for every X and every fixedε ∈ R
+ a

solution s(ε)X,y to problem (10) satisfies

∥

∥

∥s(ε)
X,y

∥

∥

∥

NK(Ω)
≤

√

‖ f‖2
NK(Ω) +

2C
N

N

∑
i=1

|r i |ε and

∥

∥

∥s(ε)
X,y|X −y

∥

∥

∥

ℓ∞(X)
≤ N

2C
‖ f‖2

NK(Ω) +
N

∑
i=1

|r i |ε + ε .

These bounds shall now be plugged into the sampling inequality.

Theorem 19 We suppose f∈Wτ
2 (Ω) with f

(

x(i)
)

= yi . Let s(ε)X,y be a solution of theε-SVR, that is

the optimization problem (10). Then there is a constantC̃ > 0, which depends onτ, d andΩ but not
on ε, f or X, such that the approximation error can be bounded by

∥

∥

∥
f −s(ε)

X,y

∥

∥

∥

Lq(Ω)
≤ C̃

(

2hτ−d( 1
2− 1

q)+

(

‖ f‖Wτ
2 (Ω) +

√

‖ f‖2
Wτ

2 (Ω) +
2C
N

N

∑
i=1

|r i |ε

)

+
N
2C

‖ f‖2
Wτ

2 (Ω) +
N

∑
i=1

|r i |ε + ε+‖r‖ℓ∞(X)

)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2.

If we again assume that the error levelδ does not overrule the native space norm of the generating
function,

‖r‖ℓ∞(X) ≤ δ ≤ ‖ f‖Wτ
2 (Ω) ,

we get the following convergence orders, for our specific choices ofthe parameters.

Corollary 20 Again we assume that the error satisfies (14). If we chooseε = δ and C=
N‖ f‖Wτ

2
2hτ

respectively C=
N‖ f‖Wτ

2
2hτ−d/2 then we find

∥

∥

∥ f −s(ε)
X,y

∥

∥

∥

L2(Ω)
≤ C̃

(

hτ ‖ f‖Wτ
2 (Ω) +δ

)

and
∥

∥

∥
f −s(ε)

X,y

∥

∥

∥

L∞(Ω)
≤ C̃

(

hτ−d/2‖ f‖Wτ
2 (Ω) +δ

)

for all discrete sets X⊂ Ω with fill distance h:= hX,Ω ≤CΩτ−2, with a generic positive constantC̃
which depends onτ, d, andΩ but not on f or X.
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10. Numerical Results

In this section we present some numerical examples to support our analytical results, in particular
the rates of convergence in case of exact training data, and the detectionof the error levels in case
of noisy data.

10.1 Exact Training Data

Figure 1 illustrates the approximation orders in case of exact given data asconsidered in Sections 6
and 8. For that, we used regular data sets generated by the respective functions to be reconstructed
and employed theε- and theν-SVR with the parameter choices provided in Corollaries 17 and 11,
respectively. We implemented the finite dimensional formulations of the associated optimization
problems as described in Equations (9) and (8). As kernel functions weused Wendland’s func-
tions for two reasons: On the one hand side they yield rather sparse kernel matricesK due to their
compact support, on the other hand side they are easy to implement since theyare piecewise poly-
nomials. Furthermore Wendland’s functions may be scaled to improve their numerical behaviour.
An unscaled functionK has support supp(K) ⊂ B(0,1) ⊂ R

d. The scaling is done in such a way
that the decay of the Fourier transform is preserved, that is,

K(c) (x) = c−dK
(x

c

)

, x ∈ R
d . (17)

By construction we havesupp
(

K(c)
)

⊂ B(0,c), such that small choices of the scaling parameterc
imply rather sparse kernel matricesK (c) =

(

K(c)
(∥

∥x(i)−x( j)
∥

∥

2

))

i, j=1...N
. On the other hand side it

is known that the constant factor in our error estimates increases with decreasingc. This is a typical
trade-off situation between good approximation properties and good condition numbers of the ker-
nel matricesK (c) (Wendland, 2005). We chose a scalingc = 0.1 in all one-dimensional examples
and a scalingc = 2 in all two-dimensional examples. Since these standard choices already work
well, there was no need for a more careful choice. To our knowledge, there are so far no theoretical
results on the optimal scaling.
The double logarithmic plots in Figure 1 visualize the convergence orders in terms of the fill dis-
tance. For that, theL∞-approximation error‖ f −sX,y‖L∞

is plotted versus the fill distanceh. The
convergence rates can be found as the slopes of the lines.
In subfigure 1(a) the data was generated by

f (x) = (x−0.5)2.5+eps
+ ∈W3

2 ([0,1]) ,

whereepsdenotes the relative machine precision in the sense of MATLAB. We use the notation
(t)+ := max{0, t} for all t ∈ R. This function f is sampled on regular grids in the unit interval
I := [0,1] with 30 to 96 points. Note that in this case the fill distance is given byh≈ 1/N. We use
two different kernel functions, namely (see Wendland, 2005)

• K1(x) = (1−|x|)3
+ (3|x|+1) with native spaceW2

2 ([0,1]), and

• K2(x) = (1−|x|)5
+

(

8|x|2 +5|x|+1
)

with native spaceW3
2 ([0,1]) .

The scaling parameter according to Equation (17) is chosen asc = 0.1. We employed theε- and the
ν- SVR with the parameter choices provided in Corollaries 17 and 11. The respective corollaries
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predict convergence rates of 1.5 for K1, and 2.5 for K2. In subfigure 1(a) the plots for theε- and
ν-SVR (almost identical) both show orders 1.7 for K1 and 2.4 for K2.
Subfigure 1(b) shows a 2-dimensional example. The data is generated bythe smooth function

f (x) = sin(x1 +x2) .

This function f is sampled on regular grids in the unit intervalI := [0,1]2 with 16 to 144 points.
Note that in this case the fill distance is given byh≈ 1√

N
. We use three different kernel functions,

namely (see Wendland, 2005)

• K3(x) = (1−‖x‖)4
+ (4‖x‖+1) with native spaceW2.5

2

(

[0,1]2
)

,

• K4(x) = (1−‖x‖)6
+

(

35‖x‖2 +18‖x‖+3
)

with native spaceW3.5
2

(

[0,1]2
)

, and

• K5(x) = (1−‖x‖)8
+

(

32‖x‖3 +25‖x‖2 +8‖x‖+1
)

with native spaceW4.5
2

(

[0,1]2
)

.

The kernel functions were scaled byc = 2 according to Equation (17). For the sake of simplicity
we employed only theν-SVR with the parameter choices provided in Corollary 11. The predicted
convergence rates in the fill distanceh are 1.5 for K3, 2.5 for K4 and 3.5 for K5. The numerical
experiments show orders 1.8 for K3, 2.8 for K4 and 3.7 for K5. Therefore, the numerical examples
support our analytical results.

−5.5 −5 −4.5 −4
−7.5

−7

−6.5

−6

−5.5

−5

−4.5

−4

 

 

eps K1
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nu K1
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(a) Data generated byf ∈W3
2 (I) on regular grids inI . ν-

andε-SVR yield orders 1.7 for K1, and 2.4 for K2. Scaling
parameterc = 0.1.
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(b) Data generated by smooth function on regular grids in
I2. ν-SVR yields orders 1.8 for K3, 2.8 for K4, and 3.7 for
K5. Scaling parameterc = 2.

Figure 1: Logarithm of theL∞-approximation error plotted versus the logarithm of the fill distance
h for exact training data.

10.2 Inexact Data

Figure 2 shows examples for the case of noisy data. The plots show theL∞-approximation error
‖ f −sX,y‖L∞

versus the fill distanceh. For simplicity we concentrated on the case of theν-SVR in
the one dimensional setting. We used the noise model given by Equation (14), that isy = f + r.
In Subfigure 2(a) the functionf (x) = sin(10x) is sampled on regular grids of 2 to 56 points in
[0,1]. The data is disturbed by an errorr which is normally distributed with mean zero and standard
deviation 0.01. As kernel function we useK1, and the parameters of theν-SVR are chosen as in

2130



DETERMINISTIC ERRORANALYSIS OF SV REGRESSION

Corollary 14. The plot shows that forh→ 0 the error remains of the same order of magnitude as the
error level‖r‖ℓ∞

.
In Subfigure 2(b) the functionf (x) = sin(10x) is sampled on regular grids of 5 to 56 points in the
unit intervalI = [0,1]. Here, the data is corrupted by an error of±0.01, where the sign of the error
is chosen randomly with equal likelihood for plus and minus. As kernel function we useK1 with
c= 0.3, and the parameters of theν-SVR are chosen as in Corollary 14. The plot shows that theL∞-
approximation error converges to a constant of the order of magnitude ofthe error level forh→ 0.
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(a) Data disturbed by random error with mean zero and
standard deviation 0.01. Approximation error forh→ 0
reaches the error level and remains bounded of the same
order of magnitude as the error level.
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(b) Data disturbed by random sign deterministic error
±0.01. Approximation error converges to a constant of
the order of magnitude of the error level forh→ 0.

Figure 2:L∞-approximation error versus fill distance in case of inexact data.

11. Summary and Outlook

We proved deterministic worst-case error estimates for kernel-based regression algorithms. The
main ingredient are sampling inequalities. We provided a detailed analysis only for theν- and the
ε-SVR for both exact and inexact training data. However, the same techniques apply to all machine
learning problems involving penalty terms induced by kernels related to Sobolevspaces. If the func-
tion to be reconstructed lies in the reproducing kernel Hilbert space (RKHS) of an infinitely smooth
kernel such as the Gaussian or an infinite dot product kernel, a similar analysis based on sampling
inequalities can be done, leading to exponential convergence rates (seeRieger and Zwicknagl 2008
and Zwicknagl 2009 for first results in this direction).
So far, our error estimates depend explicitly on the pointwise noise in the data,and we do not make
any assumptions on the noise distribution. Future work should incorporate probabilistic models on
the noise distribution to yield estimates for the expected error.
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