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Abstract
We are interested in supervised ranking algorithms that perform especially well near the top of the
ranked list, and are only required to perform sufficiently well on the rest of the list. In this work,
we provide a general form of convex objective that gives high-scoring examples more importance.
This “push” near the top of the list can be chosen arbitrarilylarge or small, based on the preference
of the user. We chooseℓp-norms to provide a specific type of push; if the user setsp larger, the
objective concentrates harder on the top of the list. We derive a generalization bound based on
the p-norm objective, working around the natural asymmetry of the problem. We then derive a
boosting-style algorithm for the problem of ranking with a push at the top. The usefulness of the
algorithm is illustrated through experiments on repository data. We prove that the minimizer of the
algorithm’s objective is unique in a specific sense. Furthermore, we illustrate how our objective is
related to quality measurements for information retrieval.

Keywords: ranking, RankBoost, generalization bounds, ROC, information retrieval

1. Introduction

The problem of supervised ranking is useful in many application domains, for instance, maintenance
operations to be performed in a specific order, natural language processing, information retrieval,
and drug discovery. Many of these domains require the construction of aranked list, yet often, only
the top portion of the list is used in practice. For instance, in the setting of supervised movie ranking,
the learning algorithm provides the user (an avid movie-goer) with a rankedlist of movies based on
preference data. We expect the user to examine the top portion of the list asa recommendation. It
is possible that she never looks at the rest of the list, or examines it only briefly. Thus, we wish to
make sure that the top portion of the list is correctly constructed. This is the problem on which we
concentrate.

We present a fairly general and flexible technique for solving these types of problems. Specif-
ically, we derive a convex objective function that places more emphasis atthe top of the list. The
algorithm we develop using this technique (“The P-Norm Push”) is based on minimization of a
specific version of this objective. The user chooses a parameter “p” in the objective, corresponding
to thep of anℓp norm. By varyingp, one changes the degree of concentration (“push”) at the top
of the list. One can concentrate at the very top of the list (a big push, largep), or one can have a
moderate emphasis at the top (a little push, lowp), or somewhere in between. The case with no
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emphasis at the top (no push,p = 1) corresponds to a standard objective for supervised bipartite
ranking, namely the exponentiated pairwise misranking error.

The P-Norm Push is motivated in the setting of supervised bipartite ranking. In the supervised
bipartite ranking problem, each training instance has a label of +1 or -1; each movie is either a good
movie or a bad movie. In this case, we want to push the bad movies away from the top of the list
where the good movies are desired. The quality of a ranking can be determined by examining the
Receiver Operator Characteristic (ROC) curve. The AUC (Area Under the ROC Curve) is precisely
a constant times one minus the total standard pairwise misranking error. The accuracy measure for
our problem is different; we care mostly about the leftmost portion of the ROCcurve, corresponding
to the top of the ranked list. We wish to make the leftmost portion of the curve higher. Thus, we
choose to make a tradeoff: in order make the leftmost portion of the curve higher, we sacrifice on
the total area underneath the curve. The parameterp in the P-Norm Push allows the user to directly
control this tradeoff.

This problem is highly asymmetric with respect to the positive and negative classes, and is not
represented by a sum of independent random variables. It is interesting to consider generalization
bounds for such a problem; it is not clear how to use standard techniquesthat require natural sym-
metry with respect to the positive and negative examples, for instance, manyVC bounds rely on this
kind of symmetry. In this work, we present a generalization bound that uses covering numbers as a
measure of complexity. This bound is designed specifically to handle these asymmetric conditions.
The bound underscores an important property of algorithms that concentrate on a small portion of
the domain, such as algorithms that concentrate on the top of a ranked list: these algorithms require
more examples for generalization.

Recently, there has been a large amount of interest in the supervised ranking problem, and espe-
cially in the bipartite problem. Freund et al. (2003) have developed the RankBoost algorithm for the
general setting. We inherit the setup of RankBoost, and our algorithm will also be a boosting-style
algorithm. Oddly, Freund and Schapire’s classification algorithm AdaBoost (Freund and Schapire,
1997) performs just as well for bipartite ranking as RankBoost; both algorithms achieve equally
good values of the AUC (Rudin and Schapire, 2009). This is in contrast with support vector ma-
chine classifiers (Cortes and Vapnik, 1995), which do not tend to perform well for the bipartite
ranking problem (Rakotomamonjy, 2004; Brefeld and Scheffer, 2005). Mozer et al. (2002) aim to
manipulate specific points of the ROC curve in order to study “churn” in the telecommunications
industry. Perhaps the closest algorithm to ours is the one proposed by Dekel et al. (2004), who have
used a similar form of objective with different specifics to achieve a different goal, namely to rank
labels in a multilabel setting. Other related works on label ranking include those of Crammer and
Singer (2001) and Shalev-Shwartz and Singer (2006). The work of Yan et al. (2003) contains a brief
mention of a method to optimize the lower left corner of the ROC curve, though their multi-layer
perception approach is highly non-convex. There is a lot of recent work on generalization bounds
(and large deviation bounds) for supervised ranking, namely, the bounds of Freund et al. (2003),
Clemençon et al. (2008), Agarwal et al. (2005), Usunier et al. (2005), Hill et al. (2002), Rudin et al.
(2005) and Rudin and Schapire (2009), though we were only able to adapt techniques from the lat-
ter two bounds to our particular setting, since the covering number approach can handle the natural
asymmetry of our problem. There is also a body of work on ROC curves in general, for example,
the estimation of confidence bands for ROC curves (Macskassy et al., 2005), and more recent works
by Clemençon and Vayatis addressing statistical aspects of ranking problems (e.g., Clemençon and
Vayatis, 2007, 2008).
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There is a large body of literature on information retrieval (IR) that considers other quality
measurements for a ranked list, including “discounted cumulative gain,” “average precision” and
“winner take all.” In essence, the P-Norm Push algorithm can be considered as a way to interpolate
between AUC maximization (no push,p = 1) and a quantity similar to “winner take all” (largest
possible push,p = ∞). A simple variation of the P-Norm Push derivation can be used to derive
convex objectives that are somewhat similar to the “discounted cumulative gain” as we illustrate in
Section 7. Our approach yields simple smooth convex objectives that can beminimized using simple
coordinate techniques. In that sense, our work complements those of Tsochantaridis et al. (2005)
and Le and Smola (2007) who also minimize a convex upper bound of IR ranking measurements, but
with a structured learning approach that requires optimization with exponentiallymany constraints;
those works have suggested useful ways to combat this problem. Additionally, there are recent
works (Cossock and Zhang, 2006; Zheng et al., 2007) that suggestregression approaches to optimize
ranking criteria for information retrieval.

Here is the outline of the work: in Section 2, we present a general form ofobjective function,
allowing us to incorporate a push near the top of the ranked list. In order to construct a specific
case of this objective, one chooses both a loss functionℓ and a convex “price” functiong. We will
chooseg to be a power law,g(r) = r p, so that a higher powerp corresponds to a larger push near
the top. In Section 3 we give some examples to illustrate how the objective works. In Section 4,
we provide a generalization bound for our objective withℓ as the 0-1 loss, based onL∞ covering
numbers. The generalization bound has been improved from the conference version of this work
(Rudin, 2006). In Section 5 we derive the “P-Norm Push” coordinate descent algorithm based on
the objective withℓ chosen as the exponential loss used for AdaBoost and RankBoost. Section 6
discusses uniqueness of the minimizer of the P-Norm Push algorithm’s objective. We prove that the
minimizer is unique in a specific sense. This result is based on conjugate dualityand the theory of
Bregman distances (Della Pietra et al., 2002), and is analogous to the resultof Collins et al. (2002)
for AdaBoost. The “primal” problem for AdaBoost can be written as relative entropy minimization.
For the objective of the P-Norm Push algorithm, the problem is more difficult and the primal is
not a common function. Section 7 illustrates the similarity between quality measurements used for
information retrieval and our objective, and gives other variations of theobjective. In Section 8,
we demonstrate the P-Norm Push on repository data. Section 9 discusses open problems and future
work. Sections 10 and 11 contain the major proofs from Sections 4 and 6. The P-Norm Push was
recently applied to the problem of prioritizing manholes in New York City for maintenance and
repair (Rudin et al., 2009).

The main contributions of this work are: a generalization bound for a learning problem that is
asymmetric by design, a simple user-adjustable, easy-to-implement algorithm for supervised rank-
ing with a “push,” and a proof that the minimizer of the algorithm’s objective is unique in a specific
sense.

2. An Objective for Ranking with a Push

The set of instances with positive labels is{xi}i=1,...,I , wherexi ∈ X . The negative instances are
{x̃k}k=1,...,K, wherex̃k ∈ X . We always usei for the index over positive instances andk for the index
over negative instances. In the case of the movie ranking problem, thexi ’s are the good movies used
for training, thex̃k’s are the bad movies, andX is a database of movies. Our goal is to construct a
ranking functionf that gives a real valued score to each instance inX , that is, f : X → R . We do
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not care about the actual values of each instance, only the relative values; for positive-negative pair
xi , x̃k, we care thatf (xi) > f (x̃k) but it is not important to know, for example, thatf (xi) = 0.4 and
f (x̃k) = 0.1.

Let us now derive the general form of our objective. For a particularnegative example, we wish
to reduce itsHeight, which is the number of positive examples ranked beneath it. That is, for each
k, we wish to make Height(k) small, where:

Height(k) :=
I

∑
i=1

1[ f (xi)≤ f (x̃k)].

Let us now add the push. We want to concentrate harder on negative examples that have high
scores; we want to push these examples down from the top. Since the highest scoring negative
examples also achieve the largest Heights, these are the examples for whichwe impose a larger
price. Namely, for convex, non-negative, monotonically increasing functiong : R+ → R+, we place
the priceg(Height(k)) on negative examplek:

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

.

If g is very steep, we pay an extremely large price for a high scoring negativeexample. Examples
of steep functions includeg(r) = er andg(r) = r p for p large. Thus we have derived an objective to
minimize, namely the sum of the prices for the negative examples:

Rg,1( f ) :=
K

∑
k=1

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

.

The effect ofg is to force the value ofRg,1 to come mostly from the highest scoring negative
examples. These high scoring negative examples are precisely the examples represented by the
leftmost portion of the ROC Curve. MinimizingRg,1 should thus boost performance around high
scoring negative examples and increase the leftmost portion of the ROC Curve.

It is hard to minimizeRg,1 directly due to the 0-1 loss in the inner sum. Instead, we will mini-
mize an upper bound,Rg,ℓ, which incorporatesℓ : R → R+, a convex, non-negative, monotonically
decreasing upper bound on the 0-1 loss. Popular loss functions includethe exponential, logistic,
and hinge losses. We can now define the general form of our objective:

Rg,ℓ( f ) :=
K

∑
k=1

g

(

I

∑
i=1

ℓ
(

f (xi)− f (x̃k)
)

)

.

To construct a specific version of this objective, one chooses the lossℓ, the price functiong, and
an appropriate hypothesis spaceF over which to minimizeRg,ℓ. In order to derive RankBoost’s
specific objective fromRg,ℓ, we would chooseℓ as the exponential loss andg to be the identity.

For the moment, let us assume we care only about the very top of the list, that is,we wish to
push the most offending negative example as far down the list as possible.Equivalently, we wish to
minimizeRmax, the number of positives below the highest scoring negative example:

Rmax( f ) := max
k

I

∑
i=1

1[ f (xi)≤ f (x̃k)].
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Minimizing this misranking error at the very top is similar to optimizing a “winner take all”loss
such as1[maxi f (xi)≤maxk f (x̃k)] in that both would choose a ranked list where a negative example is not
at the top of the list.

Although it is hard to minimizeRmax( f ) directly, Rg,ℓ can give us some control overRmax.
Namely, the following relationships exist betweenRg,ℓ, Rg,1 andRmax.

Theorem 1 For all convex, non-negative, monotonic g and for allℓ that are upper bounds for the
0-1 loss, we have that:

Kg

(

1
K

Rmax( f )

)

≤ Rg,1( f ) ≤ Kg
(

Rmax( f )
)

and Rg,1( f ) ≤ Rg,ℓ( f ).

Proof The proof of the first inequality follows from the monotonicity ofg and Jensen’s inequality
for convex functiong.

Kg

(

1
K

Rmax( f )

)

= Kg

(

1
K

max
k

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

≤Kg

(

1
K

K

∑
k=1

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

≤
K

∑
k=1

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

= Rg,1( f ).

For the second inequality, we use the fact thatg is monotonic:

Rg,1( f ) =
K

∑
k=1

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

≤ K max
k

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

= Kg

(

max
k

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

= Kg
(

Rmax( f )
)

.

Using thatℓ is an upper bound on the 0-1 loss, we have the last inequality:

Rg,1( f ) =
K

∑
k=1

g

(

I

∑
i=1

1[ f (xi)≤ f (x̃k)]

)

≤
K

∑
k=1

g

(

I

∑
i=1

ℓ
(

f (xi)− f (x̃k)
)

)

= Rg,ℓ( f ).

The fact that the functionKg( 1
K r) is monotonic inr adds credibility to our choice of objectiveRg,ℓ;

if Rg,ℓ( f ) is minimized, causing a reduction inKg( 1
K Rmax( f )), thenRmax( f ) will also be reduced.

Thus, Theorem 1 suggests thatRg,ℓ is a reasonable quantity to minimize in order to incorporate a
push at the top, for instance, in order to diminishRmax. Also recall that ifg is especially steep, for
instanceg(r) = er or g(r) = r p for p large, theng−1(∑K

k=1g(rk)) ≈ maxk rk. That is, the quantity
g−1(Rg,1), for steep functionsg, will approximateRmax.

For most of the paper, we are considering the power law (or “p-norm”) price functionsg(r) =
r p. By allowing the user to choosep, we allow the amount of push to be specified to match the
application. At the heart of this derivation, we are usingℓp-norms to interpolate between theℓ1-
norm (the AUC), and theℓ∞-norm (the values ofRmax). In what follows, we overload notation by
definingRp,ℓ to denoteRg,ℓ whereg(r) = r p:

Rp,ℓ( f ) :=
K

∑
k=1

(

I

∑
i=1

ℓ
(

f (xi)− f (x̃k)
)

)p

.
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Thus,R1/p
p,ℓ ( f ) → Rmax,ℓ( f ) asp→ ∞, whereRmax,ℓ( f ) := maxk ∑I

i=1ℓ
(

f (xi)− f (x̃k)
)

.
As we will discuss, the choice ofp should depend on the number of examples. More examples

are needed for generalization if a larger value ofp is chosen.

3. Illustrating That It Works

In this section, we will give some examples to illustrate how the objective concentrates on the top
of the list whenp is large, or more generally, wheng is steep.

3.1 First Illustration: Swap on the Bottom vs. Swap on the Top

For our first illustration, we aim simply to show that the objective function we have derived really
does care more about the top of the list than the rest. Consider the set of examplesx1,x2,x3, . . . ,x8

with vector of labels:

(−1,+1,−1,+1,−1,−1,+1,+1).

Consider scoring functionforig which gives the scores:forig(xi) = i for all i. Placing the labels in
rank order offorig yields:

labels in original rank order:(−1 +1 −1 +1 −1 −1 +1 +1) .

Using the power lawg(r) = r4 for the price function, we can compute the value ofR4,1( forig) for
this ranked list: 04 +14 +24 +24 = 33.

Now considerfswapOnBotwhich swaps the scores of a pair of examples at the bottom of the
ranked list, fswapOnBot(x1) = 2, fswapOnBot(x2) = 1, and fswapOnBot(xi) = i for all other i. The new
rank ordering of labels is:

swap on the bottom:(+1 −1 −1 +1 −1 −1 +1 +1) .

Here a negative example is ranked above one more positive example than before. Computing the
value ofR4,1( fswapOnBot) yields 14+14+24+24 = 34> 33; the value ofR4,1 changes slightly when
a swap is made at the bottom of the list, only from 33 to 34. Let us now instead consider a swap
near the top of the list, so that the new set of labels is again only one swap away from the original,
fswapOnTop(x6) = 7, fswapOnTop(x7) = 6, and fswapOnTop(xi) = i for all other i. The new ordering of
labels is:

swap on the top:(−1 +1 −1 +1 −1 +1 −1 +1) .

Here, the value ofR4,1( fswapOnTop) is 04 + 14 + 24 + 34 = 98≫ 33. So, in both cases only one
swap was made between neighboring examples; however, the swap at the top of the list changed the
objective dramatically (from 33 to 98) while the swap at the bottom hardly changed the objective at
all (from 33 to 34). So, we have now illustrated that the objective functionRp,1( f ) concentrates at
the top of the list.

The same behavior occurs using different loss functionsℓ. This is summarized in Table 1 for
three loss functions: the 0-1 loss which we have just explained, the exponential lossℓ(r) = e−r , and
the logistic lossℓ(r) = log(1+e−r). (Note that using natural log for the logistic loss does not give
an upper bound on the 0-1 loss, it is off by a multiplicative factor that is irrelevant in experiments.)
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x1, x2, x3, x4, x5, x6, x7, x8 R4,1( f ) R4,exp( f ) R4,logistic( f )
y: (−1,+1,−1,+1,−1,−1,+1,+1)

labels ordered byforig :
(−1,+1,−1,+1,−1,−1,+1,+1) 33 17,160.17 430.79

labels ordered byfswapOnBot:
(+1,−1,−1,+1,−1,−1,+1,+1) 34 72,289.39 670.20

labels ordered byfswapOnTop:
(−1,+1,−1,+1,−1,+1,−1,+1) 98 130,515.09 1,212.23

Table 1: Values of the objective functionR4,ℓ for the three slightly different labelings, using the 0-1
loss (columnR4,1), exponential loss (columnR4,exp), and logistic loss (columnR4,logistic).
The objective functions change much more in reaction to the swap at the top ofthe list: the
values in the third row (swap on the top) are significantly higher than those in the second
row (swap on the bottom).

3.2 A Second Illustration: Reversal of Polarity

Let us assume we want to choose a scoring functionf by minimizing our objectiveRp,ℓ( f ) over
f ∈ F whereF has only two functions,F = { f1, f2}. This is an interesting experiment in which
there are only 2 choices available for the functionf : the first concentrates on the top of the ranked
list, but performs poorly on the rest, whereas the second performs badlyon the top of the ranked
list, but performs well over all. In fact, the second scoring functionf2 is exactly a negation of the
first scoring functionf1. Here are the labels and hypotheses:

labels +1 +1 −1 −1 −1 −1 −1 +1 +1 +1 +1 +1 −1 −1
f1 : ( 14 13 12 11 10 9 8 7 6 5 4 3 2 1)/14
f2 : (−14 −13 −12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 )/14

Here, f1 performs well at the top of the list (the two top-scoring examples are positive), but the whole
middle of the list is reversed; there are 5 negative examples in a row, and below that 5 positives.
On the other hand,f2 misses the top two examples which have scores -1/14 and -2/14, however,
the 10 middle examples are correctly ranked.f2 has a larger AUC thanf1, but f1 is better at the
top of the list. Now, which off1 and f2 would the misranking objectives from Section 2 prefer?
Let us answer this for variousRp,ℓ, for different p andℓ. Specifically, we will demonstrate that as
p becomes larger,Rp,ℓ prefers the first hypothesis which performs better at the top. Table 2 shows
values ofRp,ℓ for three different loss functions and for various values ofp. This table shows that for
smallerp, f2 is preferred. At some value ofp, the “polarity” reverses and thenf1 is preferred. So,
using steeper price functions means that we are more likely to prefer scoring functions that perform
well at the top of the list.
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p Rp,1( f1) Rp,1( f2) argmin
f∈{ f1, f2}

Rp,1( f ) Rp,exp( f1) Rp,exp( f2) argmin
f∈{ f1, f2}

Rp,exp( f )

1 25 24 f2 50.25 49.80 f2
2 125 118 f2 367.39 362.35 f2
3 625 726 f1 2.73∗103 2.70∗103 f2
4 3.13∗103 4.88∗103 f1 2.056∗104 2.057∗104 f1
5 1.56∗104 3.38∗104 f1 1.56∗105 1.60∗105 f1
6 7.81∗104 23.56∗104 f1 1.20∗106 1.28∗106 f1
7 3.91∗105 16.48∗105 f1 9.34∗106 10.36∗106 f1
8 1.95∗106 11.53∗106 f1 7.29∗107 8.53∗107 f1
9 9.77∗106 80.71∗106 f1 5.72∗108 7.13∗108 f1
10 4.88∗107 56.50∗107 f1 4.50∗109 6.02∗109 f1

p Rp,logistic ( f1) Rp,logistic ( f2) argmin
f∈{ f1, f2}

Rp,logistic( f )

1 34.34 34.09 f2
2 170.18 167.90 f2
3 851.09 836.46 f2
4 4.29∗103 4.22∗103 f2
5 2.18∗104 2.15∗104 f2
6 1.114∗105 1.110∗105 f2
7 5.72∗105 5.79∗105 f1
8 2.96∗106 3.05∗106 f1
9 1.53∗107 1.63∗107 f1
10 7.98∗107 8.74∗107 f1

Table 2: This table shows that as the price function gets steeper (asp increases), the scoring func-
tion f1 that performs better on the top of the list is preferred. We show the values for each
of the objectivesRp,1, Rp,exp andRp,logistic for p= 1, . . . ,10 applied tof1 (first column) and
f2 (second column). The third column shows which of the two scoring functionsf1 or f2
achieve a lower value of the objective.

3.3 Third Illustration: Contribution of Each Positive-Negative Pair

Consider the following list of labels and function values :

y : (1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 1 1 −1 −1 −1)
f : (20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1)/20

Figure 1 illustrates the amount that each positive-negative pair contributesto Rp,exp for var-
ious values ofp. We aim to show thatRp,exp becomes more influenced by the highest scoring
negative examples asp is increased. On the vertical axis are the positive examplesi = 1, . . . ,12
ordered by score, with the highest scoring examples at the bottom. On the horizontal axis are
the negative examplesk = 1, . . . ,8 ordered by score, with the highest scoring examples on the
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left. The value of the(i,k)th entry is the contribution of thekth highest scoring negative exam-
ple,

(

∑ī e
−( f (xī)− f (x̃k))

)p
, multiplied by the proportion attributed to theith highest scoring positive

example,e−( f (xi)− f (x̃k))/∑ī e
−( f (xī)− f (x̃k)). As we adjust the value ofp, one can see that most of the

contribution shifts towards the left, or equivalently, towards the highest scoring negative examples.

p=1 p=2 p=4 p=6 p=8

Figure 1: Contribution of each positive-negative pair to the objectiveRp,exp. Each square represents
an i,k pair, wherei is an index along the vertical axis, andk is along the horizontal axis.
Lighter colors indicate larger contributions toRp,exp. The upper left corner represents the
highest (worst) ranked negative and the lowest (worst) ranked positive.

4. A Generalization Bound for Rp,1

We present two bounds, where the second has better dependence onp than the first. A preliminary
version of the first bound appears in the conference version of this paper (Rudin, 2006). This work
is inspired by the works of Koltchinskii and Panchenko (2002), Cuckerand Smale (2002), and
Bousquet (2003).

Assume that the positive instancesxi ∈ X , i = 1, ..., I are chosen independently and at random
(iid) from a fixed but unknown probability distributionD+ on X . Assume the negative instances
x̃k ∈ X , k = 1, ...,K are chosen iid fromD−. The notationx ∼ D meansx is chosen randomly
according to distributionD. The notationS+ ∼D I

+ means each of theI elements of the training set
S+ are chosen independently at random according toD+. Similarly for S− ∼DK

−.
We now define the “true” objective function for the underlying distribution:

Rtrue
p,1 ( f ) :=

(

Ex−∼D−

(

Ex+∼D+
1[ f (x+)− f (x−)≤0]

)p
)1/p

=
∥

∥

∥Px+∼D+

(

f (x+)− f (x−) ≤ 0|x−
)

∥

∥

∥

Lp(X−,D−)
.

The empirical loss associated withRtrue
p,1 ( f ) is the following:

Rempirical
p,1 ( f ) :=

(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

1[ f (xi)− f (x̃k)≤0]

)p)1/p

.

Here, for a particular̃xk, Rempirical
p,1 ( f ) takes into account the average number of positive examples

that have scores below̃xk. It is a monotonic function ofRp,1. To make this notion more general, let
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us consider the average number of positive examples that have scores that areclose toor belowx̃k.
A more general version ofRempirical

p,1 ( f ) is thus defined as:

Rempirical
p,1,θ ( f ) :=

(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

1[ f (xi)− f (x̃k)≤θ]

)p)1/p

.

This terminology incorporates the “margin” valueθ. As before, we suffer some loss whenever
positive examplexi is ranked below negative examplex̃k, but now we also suffer loss wheneverxi

andx̃k have scores withinθ of each other. Note thatRempirical
p,1,θ is an empirical quantity, so it can be

measured for anyθ. We will state two bounds, proved in Section 10, where the second is tighter
than the first. The first bound is easier to understand and is a direct corollary of the second bound.

Theorem 2 (First Generalization Bound) For allε > 0, p≥ 1, θ > 0, the probability over random
choice of training set, S+ ∼D I

+,S− ∼DK
− that there exists an f∈ F such that

Rtrue
p,1 ( f ) ≥ Rempirical

p,1,θ ( f )+ ε

is at most:

2N

(

F ,
εθ
8

)(

exp

[

−2
( ε

4

)2p
K

]

+exp

[

−ε2

8
I + lnK

])

.

Here the covering numberN (F ,ε) is defined as the number ofε-sized balls needed to coverF in
L∞, and it is used here as a complexity measure forF . This expression states that, providedI andK
are large, then with high probability, the true errorRtrue

p,1 ( f ) is not too much more than the empirical

errorRempirical
p,1,θ ( f ).

It is important to note the implications of this bound for scalability. More examples are required
for largerp. This is because we are concentrating on a small portion of input space corresponding
to the top of the ranked list. If most of the value ofRtrue

p,1 comes from a small portion of input space,
it is necessary to have more examples in that part of the space in order to estimate its value with
high confidence. The fact that more examples are required for largep can affect performance in
practice. A 1-dimensional demonstration of this fact is given at the end of Section 10.

Theorem 2 shows that the dependence onp is important for generalization. The following theo-
rem shows that in most circumstances, we have much better dependence onp. Specifically, the de-

pendence can be shifted from−ε2p in the exponential to a factor related to−ε2
(

inf f Rtrue
p,1 ( f )

)2(p−1)
.

The bound becomes much tighter than Theorem 2 when all hypotheses havea large enough true risk,
that is, when inff Rtrue

p,1 ( f ) is large compared toε.

Theorem 3 (Second Generalization Bound) For allε > 0, p≥ 1, θ > 0, the probability over random
choice of training set, S+ ∼D I

+,S− ∼DK
− that there exists an f∈ F such that

Rtrue
p,1 ( f ) ≥ Rempirical

p,1,θ ( f )+ ε

is at most:

2N

(

F ,
εθ
8

)(

exp

[

−2K max

{

ε2

16
(Rp,min)

2(p−1) ,
( ε

4

)2p
}]

+exp

[

−ε2

8
I + lnK

])

.

where Rp,min := inf f∈F Rtrue
p,1 ( f ).
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The proof is in Section 10. The dependence onp is now much better than in Theorem 2. It is
possible that the bound can be tightened in other ways, for instance, to usea different type of
covering number. For instance, one might use the “sloppy covering number” in Rudin and Schapire
(2009)’s ranking bound, which is adapted from the classification boundof Schapire et al. (1998).

The purpose of Theorems 2 and 3 is to provide the theoretical justification required for our
choice of objective, provided a sufficient number of training examples. Having completed this, let
us now write an algorithm for minimizing that objective.

5. A Boosting-Style Algorithm

We now choose a specific form for our objectiveRg,ℓ by choosingℓ. We have already choseng to
be a power law,g(r) = r p. From now on,ℓ will be the exponential lossℓ(r) = e−r . One could just
as easily choose another loss; we choose the exponential loss in order tocompare with RankBoost.
The objective whenp= 1 is exactly that of RankBoost, whose global objective isR1,exp. Here is the
objective function,Rp,exp for p≥ 1 :

Rp,exp( f ) :=
K

∑
k=1

(

I

∑
i=1

e−( f (xi)− f (x̃k))

)p

.

The function f is constructed as a linear combination of “weak rankers” or “ranking features,”
{h j} j=1,...,n, with h j : X → [0,1] so thatf = ∑ j λ jh j , whereλ ∈ R n. Thus, the hypothesis spaceF
is the class of convex combinations of weak rankers. Our objective is nowRp,exp(λ):

Rp,exp(λ) :=
K

∑
k=1

(

I

∑
i=1

e−(∑ j λ j h j (xi)−∑ j λ j h j (x̃k))

)p

=
K

∑
k=1

(

I

∑
i=1

e−(Mλ)ik

)p

,

where we have rewritten in terms of a matrixM, which describes how each individual weak rankerj
ranks each positive-negative pairxi , x̃k; this will make notation significantly easier. Define an index
set that enumerates all positive-negative pairsCp = {ik : i ∈ 1, . . . , I ,k ∈ 1, . . . ,K} where indexik
corresponds to theith positive example and thekth negative example. Formally,

Mik, j := h j(xi)−h j(x̃k).

The size ofM is |Cp|×n. The notation(·)a means theath index of the vector, that is,

(Mλ)ik :=
n

∑
j=1

Mik, jλ j =
n

∑
j=1

λ jh j(xi)−λ jh j(x̃k).

The functionRp,exp(λ) is convex inλ. This is becausee−(Mλ)ik is a convex function ofλ,
any sum of convex functions is convex, and a composition of an increasing convex function with a
convex function is convex. (Note thatRp,exp(λ) is convex but not necessarily strictly convex.)

We now derive a boosting-style coordinate descent algorithm for minimizingRp,exp as a function
of λ. At each iteration of the algorithm, the coefficient vectorλ is updated. At iterationt, we denote
the coefficient vector byλt . There is much background material available on the convergence of
similar coordinate descent algorithms (for instance, see Zhang and Yu, 2005). We start with the
objective at iterationt:

Rp,exp(λt) :=
K

∑
k=1

(

I

∑
i=1

e(−Mλt)ik

)p

.
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We then compute the variational derivative along each “direction” and choose weak rankerjt to
have largest absolute variational derivative. The notatione j means a vector of 0’s with a 1 in thej th

entry.

jt ∈ argmax
j

[

−dRp,exp(λt +αe j)

dα

∣

∣

∣

α=0

]

, where

dRp,exp(λt +αe j)

dα

∣

∣

∣

α=0
= p

K

∑
k=1





(

I

∑
i=1

e(−Mλt)ik

)p−1( I

∑
i=1

−Mik, je
−(Mλt)ik

)



 .

Define the vectorqt on pairsi,k asqt,ik := e(−Mλt)ik , and the weight vectordt asdt,ik := qt,ik/∑ik qt,ik.
Our choice ofjt becomes (ignoring constant factors that do not affect the argmax):

jt ∈ argmax
j

K

∑
k=1





(

I

∑
i=1

dt,ik

)p−1 I

∑
i=1

dt,ikMik, j





= argmax
j

∑
ik

d̃t,ikMik, j , whered̃t,ik = dt,ik

(

∑
i′

dt,i′k

)p−1

.

To update the coefficient of weak rankerjt , we now perform a linesearch for the minimum
of Rp,exp along the j tht direction. The distance to travel in thej tht direction, denotedαt , solves

0 =
dRp,exp(λt+αe jt )

dα

∣

∣

∣

αt

. Ignoring division by constants, this equation becomes:

0 =
K

∑
k=1





(

I

∑
i=1

dt,ike−αtMik, jt

)p−1( I

∑
i=1

Mik, jt dt,ike−αtMik, jt

)



 . (1)

The value ofαt can be computed analytically in some cases, for instance, when the weak rankers
are binary-valued andp= 1 (this is RankBoost). Otherwise, we simply use a linesearch to solve this
equation forαt . To complete the algorithm, we setλt+1 = λt + αte jt . To avoid having to compute
dt+1 directly fromλt , we can perform the update by:

dt+1,ik =
dt,ike−αtMik, jt

zt
where zt := ∑

ik

dt,ike−αtMik, jt .

The full algorithm is shown in Figure 2. This implementation is not optimized for very large
data sets since the size ofM is |Cp|×n. Note that the weak learning part of this algorithm in Step
3(a), when written in this form, is the same as for AdaBoost and RankBoost.Thus, any current
implementation of a weak learning algorithm for AdaBoost or RankBoost canbe directly used for
the P-Norm Push.

6. Uniqueness of the Minimizer

We now show that a functionf = ∑ j λ jh j (or limit of functions) minimizing our objective is unique
in some sense. SinceM is not required to be invertible (and often is not), we cannot expect to find
a unique vectorλ; one may achieve the identical values of(Mλ)ik with different choices ofλ. It is
also true that elements ofλt may approach±∞, and furthermore, elements ofMλt often approach
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1. Input: {xi}i=1,...,I positive examples,{x̃k}k=1,...,K negative examples,{h j} j=1,...,n weak clas-
sifiers,tmax number of iterations,p power.

2. Initialize: λ1, j = 0 for j = 1, ...,n, d1,ik = 1/IK for i = 1, ..., I , k = 1, ...,K Mik, j = h j(xi)−
h j(x̃k) for all i,k, j

3. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj ∑ik d̃t,ikMik, j whered̃t,ik = dt,ik (∑i′ dt,i′k)
p−1

(b) Perform a linesearch forαt . That is, find a valueαt that solves (1).

(c) λt+1 = λt +αte jt , wheree jt is 1 in positionjt and 0 elsewhere.

(d) zt = ∑ik dt,ike−αtMik, jt

(e) dt+1,ik = dt,ike−αtMik, jt /zt for i = 1, ..., I , k = 1, ...,K

4. Output: λtmax

Figure 2: Pseudocode for the “P-Norm Push” algorithm.

+∞, so it would seem difficult to prove (or even define) uniqueness. A trickthat comes in handy
for such situations is to use the closure of the spaceQ′ := {q′ ∈ R IK

+ |q′ik = e−(Mλ)ik for someλ ∈
R n}. The closure ofQ ′ includes the limits whereMλt becomes infinite, and considers the linear
combination of hypothesesMλ rather thanλ itself, so it does not matter whetherM is invertible.
With the help of convex analysis, we will be able to show that our objective function yields a unique
minimizer in the closure ofQ ′. Here is our uniqueness theorem:

Theorem 4 Define Q′ := {q′ ∈ R IK
+ |q′ik = e−(Mλ)ik for someλ ∈ R n} and defineQ̄ ′ as the closure

ofQ ′ in R IK . Then for p≥ 1, there is a uniqueq′∗ ∈ Q̄ ′ where:

q′∗ = argminq′∈Q̄ ′ ∑
k

(

∑
i

q′ik

)p

.

Our uniqueness proof depends mainly on the theory of convex duality fora class of Bregman
distances, as defined by Della Pietra et al. (2002). This proof is inspiredby Collins et al. (2002) who
have proved uniqueness of this type for AdaBoost. In the case of AdaBoost, the primal optimization
problem corresponds to a minimization over relative entropy. Our case is more unusual and the
primal is not a common function. The proof of Theorem 4 is located in Section 11.

7. Variations of the Objective and Relationship to Information Retrieval Measures

It is possible to use variations of our basic derivation in Section 2 to deriveother specialized ob-
jectives. Some of these objectives are similar to current popular quality measurements from infor-
mation retrieval (IR), such as the “discounted cumulative gain” (DCG) (Järvelin and Kek̈aläinen,
2000). A basic property of this quality measurement, and additionally the average precision (the
mean of precision values), is that it is proportional to a sum over relevantdocuments (which are the
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positive examples in this setting), and uses a discounting factor that decreases according to the rank
of a relevant document. The discounting factor here is analogous to the price function. Let us use
the framework we have developed to derive new quality measurements with these properties.

Our derivation in Section 2 is designed to push the highly ranked negative examples down.
Rearranging this argument, we can also pull the positive examples up, usingthe “reverse height.”
The reverse height of positive examplei is the number of negative examples ranked above it.

Reverse Height(i) := ∑
k

1[ f (xi)≤ f (x̃k)].

The reverse height is very similar to the rank used in the IR quality measurements. The reverse
height only considers the relationship of the positives to the negatives, and disregards the relation-
ship of positives to each other. Precisely, define:

Rank(i) := ∑
k

1[ f (xi)≤ f (x̃k)] +∑̄
i

1[ f (xi)≤ f (xī)]
= Reverse Height(i)+∑̄

i

1[ f (xi)≤ f (xī)]
.

The rank can often be substituted for the reverse height. For discountingfactor g : R+ → R+,
consider the variations of our objective:

RReverse Height
g,1 ( f ) = ∑

i

g(Reverse Height(i)) = ∑
i

g

(

∑
k

1[ f (xi)≤ f (x̃k)]

)

.

RRank
g,1 ( f ) = ∑

i

g(Rank(i)) = ∑
i

g

(

∑
k

1[ f (xi)≤ f (x̃k)] +∑̄
i

1[ f (xi)≤ f (xī)]

)

.

Then, one might maximizeRRank
g,1 for variousg. The functiong should achieve the largest values for

the positive examplesi that possess the smallest reverse heights or ranks, since those are at the top of
the list. It should thus be a decreasing function with steep negative slope near the y-axis. Choosing
g(z) = 1/z gives the average value of 1/rank. Choosingg(z) = 1/ ln(1+ z) gives the discounted
cumulative gain:

AveR( f ) = ∑
i

1
Rank(i)

= ∑
i

1

∑k 1[ f (xi)≤ f (x̃k)] +∑ī 1[ f (xi)≤ f (xī)]
,

DCG( f ) = ∑
i

1
ln(1+Rank(i))

= ∑
i

1

ln
(

1+∑k 1[ f (xi)≤ f (x̃k)] +∑ī 1[ f (xi)≤ f (xī)]

) .

Let us consider the practical implications of minimizing the negation of the DCG. The discounting
function 1/ ln(1+z) is decreasing, but its negation is not convex so there is no optimization guaran-
tee. This is true even if we incorporate the exponential loss since−1/ ln(1+ez) is not convex. The
same observation holds for the AveR.

It is possible, however, to choose a different discounting factor that allows us to create a convex
objective to minimize. Let us choose a discounting factor of− ln(1+ z), which is similar to the
discounting factors for the AveR and DCG in that it is decreasing and convex. Figure 3 illustrates
these discounting factors. Using this new discounting factor, and using thereverse height rather
than the rank (which is an arbitrary choice), we arrive at the following objective:

RgIR,1( f ) := ∑
i

ln

(

1+∑
k

1[ f (xi)≤ f (x̃k)]

)

,
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Figure 3: Discounting factor for discounted cumulative gain 1/ ln(1+z) (upper curve), discounting
factor for the average of the reciprocal of the ranks 1/z (middle curve), and new discount-
ing factor− ln(1+z) (lower curve) versus z.

and bounding the 0-1 loss from above,

RgIR,exp( f ) := ∑
i

ln

(

1+∑
k

e−( f (xi)− f (x̃k))

)

. “IR Push” (2)

Equation (2) is our version of IR-ranking measures, which we refer to by “IR Push” in Section 8. It is
also very similar in essence to the objective for the multilabel problem defined byDekel et al. (2004).
The objective (2) is globally convex. In general, one must be careful when defining discounting
factors in order to avoid non-convexity. Figure 4 illustrates the contributionof each positive-negative
pair toRgIR,exp( f ) for the set of labels and examples defined in Section 3.3. The slant towardsthe
lower left indicates that this objective is biased towards the top of the list.

Concentrating on the Bottom: Since our objective concentrates at the top of the ranked list, it can
just as easily be made to concentrate on the bottom of the ranked list by reversing the positive and
negative examples, or equivalently, by using the reverse height with a discounting factor of−zp. In
this case, ourp-norm objective becomes:

RBottom
p,exp ( f ) :=

I

∑
i=1

(

K

∑
k=1

e−( f (xi)− f (x̃k))

)p

.

Here, positive examples that score very badly are heavily penalized.RBottom
p,exp ( f ) is also convex, so

it can be easily minimized. Also, one can now write an objective that concentrates on the top and
bottom simultaneously such asRp,exp( f )+constRBottom

p,exp ( f ).

Crucial Pairs Formulation: The bipartite ranking problem is a specific case of the pairwise ranking
problem. For the more general problem, the labels are replaced by a “truth function” π : X ×X →

2247



RUDIN

Figure 4: Contribution of each positive-negative pair to the objectiveRgIR,exp. Each square rep-
resents ani,k pair, wherei is an index along the vertical axis, andk is along the
horizontal axis, as described in Section 3.3. Lighter colors indicate largercontri-
bution. The value of thei,kth entry is the contribution of theith positive example,
ln
(

1+∑k e−( f (xi)− f (x̃k))
)

, multiplied by the proportion of the loss attributed to thekth

negative example,e−( f (xi)− f (x̃k))/∑k̄ e−( f (xi)− f (x̃k̄)).

{0,1}, indicating whether the first element of the pair should be ranked above thesecond. In this
case, one can replace the objective by:

RCrucial Pairs
g,ℓ ( f ) :=

m

∑
k=1

g

(

m

∑
i=1

ℓ
(

f (xi)− f (xk)
)

π(xi ,xk)

)

,

where the indicesi andk now run over all training examples. A slightly more general version of
the above formula forg(z) = zp and the exponential loss was used by Ji et al. (2006) for the natural
language processing problem of named entity recognition in Chinese. This algorithm performed
quite well, in fact, within the margin of error of the best algorithm, but with a much faster training
time. Its performance was substantially better than the support vector machinealgorithm tested for
this experiment. In Ji et al. (2006)’s setup, the P-Norm Push was used twice; the first time, a low
value ofp was chosen and a cutoff was made. The algorithm was used again for re-ranking (after
some additional processing) with a higher value ofp.

8. Experiments

The experiments of Ji et al. (2006) indicate the usefulness of our approach for larger, real-world
problems. In this section, we will discuss the performance of the P-Norm Push on some smaller
problems, since smaller problems are challenging when it comes to generalization. The choices
we have made in Section 5 allow us to compare with RankBoost, which also uses the exponential
loss. Furthermore, the choice ofg as an adjustable power law allows us to illustrate the effect of the
priceg on the quality of the solution. Experiments have been performed using the P-Norm Push for
p = 1 (RankBoost), 2,4,8,16 and 64, and using the IR Push information retrieval objective (2). For
the P-Norm Push, the linesearch forαt was performed using matlab’s “fminunc” subroutine. The
total number of iterations,tmax, was fixed at 100 for all experiments. For the information retrieval
objective, “fminunc” was used for the full optimization, which can be done for small experiments.
Data were obtained from the UCI machine learning repository (Asuncion and Newman, 2007) and
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all features were normalized to[0,1]. The three data sets chosen were MAGIC, ionosphere, and
housing.

The first experiment uses the UCI MAGIC data set, which contains data from the Major Atmo-
spheric Gamma Imaging Cherenkov Telescope project. The goal is to discriminate the statistical
signatures of Monte Carlo simulated “gamma” particles from simulated “hadron”particles. In this
problem, there are several relevant points on the ROC curve that determine the quality of the result.
These points correspond to different acceptable false positive rates for different experiments, and
all are close to the top of the list. There are 19020 examples (12332 gamma and6688 hadron) and
11 features. Positive examples represent gamma particles and negative examples represent hadron
particles. As a sample run, we chose 1000 examples randomly for training and tested on the rest.

Table 3 shows how different algorithms (the columns) performed with respect to different qual-
ity measures (the rows) on the MAGIC data. Each column of Table 3 represents a P-Norm Push
or IR Push trial. The quality of the results is measured using the AUC (top row,larger values are
better),Rp,1 for variousp (middle rows, smaller values are better), and the DCG and AveR (bottom
rows, larger values are better). The best algorithms for each measure are summarized in bold and
in the rightmost column. ROC curves and zoomed-in versions of the ROC curves for this sample
run are shown in Figure 5. We expect the P-Norm Push for smallp to yield the best results for

MAGIC data set
measure p=1 p=2 p=4 p=8 p=16 p=64 IR best

AUC 0.8370 0.8402 0.8397 0.8363 0.8329 0.8288 0.8284 small p
R2,1 6.5515 5.9731 5.5896 5.4806 5.4990 5.5819 5.5886 mediump
R4,1 4.2134 3.4875 2.8875 2.5638 2.4291 2.3651 2.3582 IR / largep
R8,1 3.8830 2.9138 2.1091 1.6266 1.3923 1.2396 1.2257 IR / largep
R16,1 6.8153 4.7208 3.0545 1.9698 1.4494 1.1096 1.0823 IR / largep
DCG 1.4022 1.4048 1.4066 1.4084 1.4087 1.4087 1.4087 IR / largep
AveR 8.1039 8.5172 8.6860 9.6701 9.7520 9.7679 9.7688 IR / largep

Table 3: Test performance of minimizers ofRp,exp andRgIR,exp on a sample run with the MAGIC
data set. Only significant digits are kept (factors of 10 have been removed). The best
scores in each row are in bold and the right column summarizes the result by listing which
algorithms performed the best with respect to each quality measure.

optimizing AUC, and we expect the largep and IR columns to yield the best results forRp,1 when
p is large, and for the DCG and AveR. In other words, the rightmost column ought to say “smallp”
towards the top, followed by “mediump,” and then “IR / largep.” This general trend is observed.
In this particular trial run, the IR Push and P-Norm Push forp= 64 yielded almost identical results,
and their ROC curves are almost on top of each other in Figure 5.

The next experiment uses a much smaller data set, namely the UCI ionospheredata set, which
has 351 examples (225 positive and 126 negative). These are data collected from a phased array of
antennas. The goal is to distinguish “good” radar returns from “bad” radar returns. The good returns
represent signals that reflect back towards the antenna, indicating structure in the ionosphere. The
features are based on characteristics of the received signal. Out of the 34 features, we choose 5
of them (the last 5 features), which helps to alleviate overfitting, though there is still significant
variation in results due to the small size of the data set. We used 3-fold cross-validation, where all
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Figure 5: ROC Curves for the P-Norm Push and IR Push on the MAGIC data set. All plots are
number of true positives vs. number of false positives.Upper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curves.Lower Left:Full
ROC Curves for testing.Lower Right:Zoomed-in version of testing ROC Curves.

algorithms were run once on each split, and the mean performance is reported in Table 4. ROC
curves from one of the trials is presented in Figure 6. The trend from smallto largep is able to be
observed, despite variation due to train/test splits.

ionosphere data set

measure p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.6797 0.6732 0.6700 0.6612 0.6479 0.6341 0.6409 small p
R2,1 2.1945 2.1931 2.1515 2.1213 2.1575 2.1974 2.1811 med/lgp
R4,1 2.0841 1.9891 1.8041 1.5911 1.4327 1.3104 1.4046 IR / largep
R8,1 3.7099 3.3459 2.6271 1.8950 1.3861 1.0823 1.2979 IR / largep
R16,1 1.7294 1.4558 0.8786 0.4236 0.2437 0.1884 0.2272 IR / largep
DCG 13.9197 14.1308 14.3261 14.5902 14.6916 14.7903 14.7169 IR / largep
AveR 2.9712 3.1610 3.3041 3.5084 3.5849 3.6571 3.6076 IR/ largep

Table 4: Mean test performance of minimizers ofRp,exp andRgIR,exp over 3-fold cross-validation on
the ionosphere data set.

We last consider the Boston Housing data set, which has 506 examples (35 positive, 471 neg-
ative), 13 features. This data set is skewed; there are significantly fewer positive examples than
negative examples. In order to use the housing data set for a bipartite ranking problem, we used
the fourth feature (which is binary) as the labely. The fourth feature describes whether a tract
bounds the Charles River. Since there is some correlation between this feature and the other features
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Figure 6: ROC Curves for the P-Norm Push and IR Push on ionospheredata set. All plots are
number of true positives vs. number of false positives.Upper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curves.Lower Left:Full
ROC Curves for testing.Lower Right:Zoomed-in version of testing ROC Curves.

(such as distance to employment centers and tax-rate), it is reasonable for our learning algorithm
to predict whether the tract bounds the Charles River based on the otherfeatures. We used 3-fold
cross-validation (≈ 12 positives in each test set), where all algorithms were run once on eachsplit,
and the mean performance is reported in Table 5. ROC curves from one ofthe trials is presented in
Figure 7. The trend from small to largep is again generally observed, despite variation due to data
set size.

For all of these experiments, in agreement with our algorithm’s derivation, alarger push (p
large) causes the algorithm to perform better near the top of the ranked liston the training set. As
discussed, this ability to correct the top of the list is not without sacrifice; wedo sacrifice the ranks
of items farther down on the list and we do reduce the value of the AUC, but we have made this
choice on purpose in order to perform better near the top of the list.

9. Discussion and Open Problems

Here we describe interesting directions for future work.

9.1 Producing Dramatic Changes in the ROC curve

An open question is to quantify what properties of a hypothesis space anddata set would allow an
increase inp to cause a dramatic change in the ROC curve. In Section 8, we have shown cases
where the benefits of increasingp are substantial, and in Section 3.2 we have shown that a dramatic
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housing data set

measure p=1 p=2 p=4 p=8 p=16 p=64 IR best
AUC 0.7739 0.7633 0.7532 0.7500 0.7420 0.7330 0.7373 small p
R2,1 3222 3406 3665 3799 3818 3759 3847 small p
R4,1 294078 292870 304457 307135 305498 298611 304915 small/medp
R8,1 3.9056 3.5246 3.3908 3.2953 3.2479 3.3173 3.2346 IR / largep
R16,1 1.1762 0.9694 0.8337 0.8028 0.7801 0.8816 0.7788 IR / largep
DCG 3.6095 3.6476 3.6757 3.6858 3.6977 3.6671 3.6931 IR / largep
AveR 0.5241 0.5644 0.6022 0.6124 0.6258 0.6012 0.6250 IR / largep

Table 5: Mean test performance of minimizers ofRp,exp andRgIR,exp over 3-fold cross validation
with the housing data set. Only significant digits are kept (factors of 10 have been re-
moved). The best scores in each row are in bold and the right column summarizes the
result by listing which algorithms performed the best with respect to each quality mea-
sure.

Figure 7: ROC Curves for the P-Norm Push and IR Push on the housing data set. All plots are
number of true positives vs. number of false positives.Upper Left: Full ROC Curves
for training. Upper Right:Zoomed-in version of training ROC Curves.Lower Left:Full
ROC Curves for testing.Lower Right:Zoomed-in version of testing ROC Curves.

change is possible, even using an extremely small hypothesis space. However, it is sometimes the
case that changes inp do not greatly affect the ROC curve.

A factor involved in this open question involves the flexibility of the hypothesis space with
respect to the training set. Given a low capacity hypothesis space in which there is not too much
flexibility in the set of solutions that yield good rankings, increasingp will not have much of an
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effect. On the other hand, if a learning machine is high capacity, it probablyhas the flexibility
to change the shape of the ROC curve dramatically. However, a high capacity learning machine
generally is able to produce a consistent (or nearly consistent) ranking,and again, the choice of
p probably does not have much effect. With respect to optimization on the training set, we have
found the effect of increasingp to be the most dramatic when the hypothesis space is: limited (so
as not to produce an almost consistent ranking), not too limited (features themselves are better than
random guesses) and flexible (for instance, allowing some hypotheses tonegate in order to produce
a better solution as in Section 3.2). If such hypotheses are not available, we believe it is unlikely that
any algorithm, whether the P-Norm Push, or any optimization algorithm for information retrieval
measures, would be able to achieve a dramatic change in the ROC curve.

9.2 Optimizing Rmax Directly

Given that there is no generalization guarantee for the∞-norm, that is,Rmax, is it useful to directly
minimizeRmax? This is still a convex optimization problem, and variations of this are done in other
contexts, for instance, in the context of label ranking by Shalev-Shwartz and Singer (2006) and
Crammer and Singer (2001). One might consider, for instance, optimizingRmax and measuring
success on the test set usingRp,1 for p < ∞.

One answer is provided by the equivalence of norms in finite dimensions. For instance, the value
of Rmax scales withRp,1, as demonstrated in Theorem 1. So optimizingRmax would still possibly
be useful with respect to measuring success on smallerp (though in this case, one could optimize
Rp,ℓ).

9.3 Choices for ℓ and g

An important direction for future research is the choice of loss functionℓ and price functiong. This
framework is flexible in that different choices forℓ andg can be chosen based on the particular
goal, whether it is to optimize the AUC,Rp,1 for somep, one of the IR measures suggested, or
something totally different. The objective for the IR measures needed a concave price function
ln(1+ z), in which case the objective convex was made convex by using the exponential loss, in
other words., ln(1+ ex) is convex. It may be possible to leverage the loss function in other cases,
allowing us to consider more varied price functions while still working with an objective that is
convex. One appealing possibility is to choose a non-monotonic function forg, which might allow
us to concentrate on a specific portion of the ROC Curve; however, it may be difficult to maintain
the convexity of the objective through the choice of the loss function.

Now we move on to the proofs.

10. Proof of Theorem 2 and Theorem 3

We define a Lipschitz functionφ : R → R (with Lipschitz constant Lip(φ)) which will act as our
loss function, and gives us the margin. We will eventually use the same piecewise linear definition
of φ as Koltchinskii and Panchenko (2002), but for now, we require only thatφ obey 0≤ φ(z)≤ 1∀z
andφ(z) = 1 for z< 0. Sinceφ(z) ≥ 1[z≤0], we can define an upper bound forRtrue

p,1 ( f ):

Rtrue
p,φ ( f ) :=

(

Ex−∼D−

(

Ex+∼D+
φ
(

f (x+)− f (x−)
)

)p
)1/p

.
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We haveRtrue
p,1 ( f ) ≤ Rtrue

p,φ ( f ). The empirical error associated withRtrue
p,φ is:

Rempirical
p,φ ( f ) :=

(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

)p)1/p

.

First, we bound from above the quantityRtrue
p,φ by two terms: the empirical error termRempirical

p,φ ,

and a term characterizing the deviation ofRempirical
p,φ from Rtrue

p,φ uniformly:

Rtrue
p,1 ( f ) ≤ Rtrue

p,φ ( f ) = Rtrue
p,φ ( f )−Rempirical

p,φ ( f )+Rempirical
p,φ ( f )

≤ sup
f̄∈F

(

Rtrue
p,φ ( f̄ )−Rempirical

p,φ ( f̄ )
)

+Rempirical
p,φ ( f ).

The proof of Theorem 3 mainly involves an upper bound on the first term. The second term will be
upper bounded byRempirical

p,1,θ ( f ) by our choice ofφ. DefineL( f ) as follows:

L( f ) := Rtrue
p,φ ( f )−Rempirical

p,φ ( f ).

Let us outline the proof that follows. The goal is to boundL( f ) uniformly over f ∈ F . To do
this, we use a covering number argument similar to that of Cucker and Smale (2002). First, we will
coverF by L∞ disks. We show in Lemma 5 (below) that the value ofL( f ) within each disk does not
change very much provided that the disks are small. We then derive a probabilistic bound onL( f )
for any f in Lemma 9, and use this bound on representativesfr from each disk. A union bound over
disks yields the result. The most effort of this proof is devoted to the boundon L( f ) in Lemma 9
below, which uses McDiarmid’s Inequality. Let us now proceed with the proof.

The following lemma is true for every training setS. It will be used later to show that the value
of L( f ) does not change much within eachL∞ ball.

Lemma 5 For any two functions f1, f2 ∈ L∞(X ),

L( f1)−L( f2) ≤ 4Lip(φ)|| f1− f2||∞.

Proof First, we rearrange the terms:

L( f1)−L( f2) = Rtrue
p,φ ( f1)−Rempirical

p,φ ( f1)−Rtrue
p,φ ( f2)+Rempirical

p,φ ( f2)

= [Rtrue
p,φ ( f1)−Rtrue

p,φ ( f2)]− [Rempirical
p,φ ( f1)−Rempirical

p,φ ( f2)]. (3)

2254



THE P-NORM PUSH

We bound from above the second bracketed term of (3),

Rempirical
p,φ ( f1)−Rempirical

p,φ ( f2)

=

[

1
K

K

∑
k=1

[

1
I

I

∑
i=1

φ
(

f1(xi)− f1(x̃k)
)

]p]1/p

−
[

1
K

K

∑
k=1

[

1
I

I

∑
i=1

φ
(

f2(xi)− f2(x̃k)
)

]p]1/p

≤
[

1
K

K

∑
k=1

∣

∣

∣

∣

∣

1
I

I

∑
i=1

φ
(

f1(xi)− f1(x̃k)
)

− 1
I

I

∑
i=1

φ
(

f2(xi)− f2(x̃k)
)

∣

∣

∣

∣

∣

p]1/p

≤
[

1
K

K

∑
k=1

[

1
I

I

∑
i=1

∣

∣

∣φ
(

f1(xi)− f1(x̃k)
)

−φ
(

f2(xi)− f2(x̃k)
)∣

∣

∣

]p]1/p

≤
[

1
K

K

∑
k=1

[

1
I

I

∑
i=1

Lip(φ)
∣

∣

∣
f1(xi)− f1(x̃k)− f2(xi)+ f2(x̃k)

∣

∣

∣

]p]1/p

≤
[

1
K

K

∑
k=1

[

1
I

I

∑
i=1

Lip(φ)2sup
x

∣

∣

∣
f1(x)− f2(x)

∣

∣

∣

]p]1/p

= 2Lip(φ)‖ f1− f2‖∞.

Here, we have used Minkowski’s inequality forℓp(R
K), which is the triangle inequality‖ f −g‖p ≥

‖ f‖p−‖g‖p, and the definition of the Lipschitz constant forφ. An identical calculation for the first
bracketed term of (3), again using Minkowski’s inequality yields:

Rtrue
p,φ ( f1)−Rtrue

p,φ ( f2) ≤ 2Lip(φ)|| f1− f2||∞.

Combining the two terms yields the statement of the lemma.

The following step appears in Cucker and Smale (2002). Letℓε :=N
(

F , ε
8Lip(φ)

)

, the covering

number ofF by L∞ disks of radius ε
8Lip(φ) . Define f1, f2, ..., fℓε to be the centers of such a cover. In

other words, the collection ofL∞ disksBr centered atfr and with radius ε
8Lip(φ) is a cover forF . In

the proof of the theorem, we will use the center of each disk to act as a representative for the whole
disk. So, we must show that we do not lose too much by usingfr as a representative for diskBr .

Lemma 6 For all ε > 0,

PS+∼D I
+,S−∼DK

−

{

sup
f∈Br

L( f ) ≥ ε

}

≤ PS+∼D I
+,S−∼DK

−

{

L( fr) ≥
ε
2

}

.

Proof By Lemma 5, for every training setSand for all f ∈ Br ,

sup
f∈Br

L( f )−L( fr) ≤ 4Lip(φ) sup
f∈Br

|| f − fr ||∞ ≤ 4Lip(φ)
ε

8Lip(φ)
=

ε
2

Thus,

sup
f∈Br

L( f ) ≥ ε =⇒ L( fr) ≥
ε
2
.

The statement of the lemma follows directly.

Here is an inequality that will be useful in the next proof as the mechanism for incorporatingp into
the bound.
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Lemma 7 For 0≤ a,b≤ 1,

|a1/p−b1/p| ≤ min
{

|a−b|a(1/p)−1, |a−b|1/p
}

.

Proof For p = 1 there is nothing to prove, so takep > 1. We need to show both

|a1/p−b1/p| ≤ |a−b|a(1/p)−1 (4)

and

|a1/p−b1/p| ≤ |a−b|1/p. (5)

Let us show (5) first. Forz1,z2 ≥ 0, it is true thatzp
1 +zp

2 ≤ (z1 +z2)
p as an immediate consequence

of the binomial theorem. Whena≥ b, substitutez1 = (a−b)1/p, z2 = b1/p. The result follows after
simplification. The casea≤ b is completely symmetric so no additional work is needed. To show
(4), consider first the casea≥ b, so that

b1/p−1 ≥ a1/p−1.

Multiplying by b yieldsb1/p ≥ a1/p−1b, negating and addinga1/p yields

a1/p−b1/p ≤ a1/p−a1/p−1b, so a1/p−b1/p ≤ (a−b)a1/p−1.

Exactly the same steps (with reversed inequalities) can be used to show theb≥ a case.

The benefit of using the minimum in Lemma 7 is that the first term most often gives atighter bound.
In the case where it does not do so, the second term applies. An illustrationof this inequality is
provided in Figure 8.

We now incorporate the fact that the training set is chosen randomly. We willuse a generaliza-
tion of Hoeffding’s inequality due to McDiarmid, as follows:

Theorem 8 (McDiarmid, 1989) Let X1,X2, ...Xm be independent random variables under distribu-
tion D onX . Let f : Xm → R be any function such that:

sup
x1,x2,··· ,xm,x′i

∣

∣

∣ f (x1, . . . ,xi , . . . ,xm)− f (x1, . . . ,x′i , . . .xm)
∣

∣

∣≤ ci for 1≤ i ≤ m.

Then for anyε > 0,

PX1,X2,...,Xm∼D

{

f (X1,X2, ...,Xm)−E
[

f (X1,X2, ...,Xm)
]

≥ ε
}

≤ exp

(

− 2ε2

∑m
i=1c2

i

)

,

PX1,X2,...,Xm∼D

{

E
[

f (X1,X2, ...,Xm)
]

− f (X1,X2, ...,Xm) ≥ ε
}

≤ exp

(

− 2ε2

∑m
i=1c2

i

)

,

and thus by the union bound,

PX1,X2,...,Xm∼D

{∣

∣

∣
f (X1,X2, ...,Xm)−E

[

f (X1,X2, ...,Xm)
]

∣

∣

∣
≥ ε
}

≤ 2exp

(

− 2ε2

∑m
i=1c2

i

)

.
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Figure 8: Functions|a1/p − b1/p| (lower curve), |a − b|1/p (upper curve), and min(|a −
b|a(1/p)−1, |a−b|1/p) (middle curve) versusb. For this figurep = 4 anda = 0.4. One
can see that in most cases,|a−b|a(1/p)−1 is a better approximation to|a1/p−b1/p| than
|a−b|1/p).

Here is our main probabilistic bound onL( f ) for an individual f . It uses McDiarmid’s Inequality
(Theorem 8) and Lemma 7.

Lemma 9 For all ε1 > 0, for all f ∈ F :

PS+∼D I
+,S−∼DK

−

(

L( f ) ≥ ε1
)

≤ 2exp

[

−2K max

{

ε2
1

4

(

Rtrue
p,φ ( f )

)2(p−1)
,
(ε1

2

)2p
}]

+2exp

[

−ε2
1

2
I + lnK

]

. (6)

Proof Define

RDS
p,φ( f ) :=

(

1
K

K

∑
k=1

(

Ex+∼D+
φ
(

f (x+)− f (x̃k)
)

)p)1/p

.

Now,

PS+∼D I
+,S−∼DK

−

(

L( f ) ≥ ε1

)

= PS+∼D I
+,S−∼DK

−

(

Rtrue
p,φ ( f )−RDS

p,φ( f )+RDS
p,φ( f )−Rempirical

p,φ ( f ) ≥ ε1

)

≤ PS−∼DK
−

(

Rtrue
p,φ ( f )−RDS

p,φ( f ) ≥ ε1

2

)

+PS+∼D I
+,S−∼DK

−

(

RDS
p,φ( f )−Rempirical

p,φ ( f ) ≥ ε1

2

)

=: term1 + term2. (7)

We bound term1 and term2 of (7) separately.
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Bound on term1: The following uses Lemma 7 above (translating into notation of the lemma):

Rtrue
p,φ ( f )−RDS

p,φ( f )

=
(

Ex−∼D−

(

Ex+∼D+
φ
(

f (x+)− f (x−)
))p)1/p

−
(

1
K

K

∑
k=1

(

Ex+∼D+
φ
(

f (xi)− f (x̃k)
))p

)1/p

= a1/p−b1/p ≤ |a1/p−b1/p| ≤ min
{

|a−b|a(1/p)−1, |a−b|1/p
}

.

Thus for allε1 > 0,

PS−∼DK
−

(

Rtrue
p,φ ( f )−RDS

p,φ( f ) ≥ ε1

2

)

≤ PS−∼DK
−

(

min
{

|a−b|a(1/p)−1, |a−b|1/p
}

≥ ε1

2

)

= PS−∼DK
−

(

|a−b|a1/p−1 ≥ ε1

2

\

|a−b|
1
p ≥ ε1

2

)

= PS−∼DK
−

(

|a−b| ≥ ε1

2
a1−1/p

\

|a−b| ≥
(ε1

2

)p)

= PS−∼DK
−

(

|a−b| ≥ ε1

2

(

Rtrue
p,φ ( f )

)p−1 \

|a−b| ≥
(ε1

2

)p)

= PS−∼DK
−

(

|a−b| ≥ max
{ε1

2

(

Rtrue
p,φ ( f )

)p−1
,
(ε1

2

)p})

.

Let
ε2 := max

{ε1

2

(

Rtrue
p,φ ( f )

)p−1
,
(ε1

2

)p}

.

Then,

PS−∼DK
−

(

Rtrue
p,φ ( f )−RDS

p,φ( f ) ≥ ε1

2

)

≤ PS−∼DK
−

(∣

∣

∣

∣

∣

Ex−∼D−

(

Ex+∼D+
φ
(

f (x+)− f (x−)
))p

−

1
K

K

∑
k=1

(

Ex+∼D+
φ
(

f (x+)− f (x̃k)
))p

∣

∣

∣

∣

∣

≥ ε2

)

.

The largest possible change in1
K ∑K

k=1

(

Ex+∼D+
φ
(

f (x+)− f (x̃k)
))p

due to the replacement of one

negative example is 1/K. By McDiarmid’s inequality,

PS−∼DK
−

(

Rtrue
p,φ ( f )−RDS

p,φ( f ) ≥ ε1

2

)

≤ exp

(

− 2ε2
2

K 1
K2

)

= 2exp(−2Kε2
2)

= 2exp

(

−2K max

{

ε2
1

4

(

Rtrue
p,φ ( f )

)2(p−1)
,
(ε1

2

)2p
})

. (8)
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Bound on term2:

RDS
p,φ( f )−Rempirical

p,φ ( f )

=

(

1
K

K

∑
k=1

(

Ex+∼D+
φ
(

f (x+)− f (x−)
)

)p)1/p

−
(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

)p)1/p

.

Thus for allε1 > 0,

PS+∼D I
+,S−∼DK

−

(

RDS
p,φ( f )−Rempirical

p,φ ( f ) ≥ ε1

2

)

= PS+∼D I
+,S−∼DK

−

(

1

K1/p

∥

∥

∥
Ex+∼D+

φ
(

f (x+)− f (·)
)∥

∥

∥

ℓp(RK)

− 1

K1/p

∥

∥

∥

∥

∥

1
I

I

∑
i=1

φ
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

ℓp(RK)

≥ ε1

2





≤ PS+∼D I
+,S−∼DK

−





1

K1/p

∥

∥

∥

∥

∥

Ex+∼D+
φ
(

f (x+)− f (·)
)

−1
I

I

∑
i=1

φ
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

ℓp(RK)

≥ ε1

2





≤ PS+∼D I
+,S−∼DK

−





∥

∥

∥

∥

∥

Ex+∼D+
φ
(

f (x+)− f (·)
)

− 1
I

I

∑
i=1

φ
(

f (xi)− f (·)
)

∥

∥

∥

∥

∥

ℓ∞(RK)

≥ ε1

2





= PS+∼D I
+,S−∼DK

−

(

∃k :

∣

∣

∣

∣

∣

Ex+∼D+
φ
(

f (x+)− f (x̃k)
)

− 1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥ ε1

2

)

.

We now use McDiarmid’s Inequality. The largest possible change in1
I ∑I

i=1 φ
(

f (xi)− f (x̃k)
)

due

to the replacement of one positive example is 1/I . Thus, for allx̃k,

PS+∼D I
+,S−∼DK

−

(∣

∣

∣

∣

∣

Ex+∼D+
φ
(

f (x+)− f (x̃k)
)

− 1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥ ε1

2

)

≤ 2exp

[

−2
( ε1

2

)2

I 1
I2

]

= 2exp

[

−ε2
1

2
I

]

.

By the union bound over theK negative examples:

PS+∼D I
+,S−∼DK

−

(

∃k :

∣

∣

∣

∣

∣

Ex+∼D+
φ
(

f (x+)− f (x̃k)
)

− 1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

∣

∣

∣

∣

∣

≥ ε1

2

)

≤ 2K exp

[

−ε2
1

2
I

]

= 2exp

[

−ε2
1

2
I + ln(K)

]

,

and thus,

PS+∼D I
+,S−∼DK

−

(

Rtrue
p,φ ( f )−RDS

p,φ( f ) ≥ ε1

2

)

≤ 2exp

[

−ε2
1

2
I + lnK

]

.
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Combining this with (8) and (7) yields the statement of the lemma.

Proof (Of Theorem 2 and Theorem 3)Since theBr are a cover forF , it is true that

sup
f∈F

L( f ) ≥ ε ⇐⇒ ∃r ≤ ℓε such that sup
f∈Br

L( f ) ≥ ε.

First applying the union bound over balls, then applying Lemma 6 we find:

PS+∼D I ,S−∼DK

{

sup
f∈F

L( f ) ≥ ε

}

≤
ℓε

∑
r=1

PS+∼D I ,S−∼DK

{

sup
f∈Br

L( f ) ≥ ε

}

≤
ℓε

∑
r=1

PS+∼D I ,S−∼DK {L( fr) ≥ ε/2} .

We bound from above using (6) in order to prove Theorem 3 usingε1 = ε/2, alsoRtrue
p,φ ( fr) ≥

Rtrue
p,1 ( fr) and additionallyRtrue

p,1 ( fr) ≥ inf f∈F Rtrue
p,1 ( f ) for every fr :

PS+∼D I ,S−∼DK

{

sup
f∈F

L( f ) ≥ ε

}

≤
ℓε

∑
r=1

2exp

[

−2K max

{

ε2

16

(

Rtrue
p,φ ( fr)

)2(p−1)
,
( ε

4

)2p
}]

+2exp

[

−ε2

8
I + lnK

]

≤ N

(

F ,
ε

8Lip(φ)

)[

2exp

[

−2K max

{

ε2

16

(

min
r

Rtrue
p,φ ( fr)

)2(p−1)
,
( ε

4

)2p
}]

(9)

+2exp

[

−ε2

8
I + lnK

]]

≤ N

(

F ,
ε

8Lip(φ)

)

[

2exp

[

−2K max

{

ε2

16

(

inf
f̃∈F

Rtrue
p,1 ( f̃ )

)2(p−1)

,
( ε

4

)2p
}]

+2exp

[

−ε2

8
I + lnK

]]

.

Now we put everything together. The probability that there exists anf ∈ F where

Rtrue
p,φ ( f ) ≥ Rempirical

p,φ ( f )+ ε

is at most

N

(

F ,
ε

8Lip(φ)

)[

2exp

[

−2K max

{

ε2

16
(Rp,min)

2(p−1) ,
( ε

4

)2p
}]

+2exp

[

−ε2

8
I + lnK

]]

,
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whereRp,min = inf f Rtrue
p,1 ( f ). Let us chooseφ(z) = 1 for z≤ 0, φ(z) = 0 for z≥ θ, and linear in

between, with slope−1/θ. Thus, Lip(φ) = 1/θ. Sinceφ(z) ≤ 1 for z≤ θ, we have:

Rempirical
p,φ ( f ) =

(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

φ
(

f (xi)− f (x̃k)
)

)p)1/p

≤
(

1
K

K

∑
k=1

(

1
I

I

∑
i=1

1[ f (xi)− f (x̃k)≤θ]

)p)1/p

= Rempirical
p,1,θ ( f ).

Thus, the probability that there exists anf ∈ F where

Rtrue
p,1 ( f ) ≥ Rempirical

p,1,θ ( f )+ ε

is at most

N

(

F ,
εθ
8

)[

2exp

[

−2K max

{

ε2

16
(Rp,min)

2(p−1) ,
( ε

4

)2p
}]

+2exp

[

−ε2

8
I + lnK

]]

.

Thus, the theorem has been proved. A tighter bound is obtained if we bound differently at (9):
instead of usingRtrue

p,1 ( fr) ≥ inf f∈F Rtrue
p,1 ( f ), we could stop atRtrue

p,1 ( fr) ≥ minr Rtrue
p,1 ( fr) and then

choose the{ fr}r to maximize minr Rtrue
p,1 ( fr).

Theorem 2 follows directly from the statement of Theorem 3.

10.1 1-Dimensional Illustration

As discussed earlier, since most of the value ofRtrue
p,1 comes from a small portion of the domain,

more examples are needed to compensate. Let us give a 1-dimensional illustration where this is
the case. Almost half the distribution (proportion1

2 − ε
2) consists of negative examples uniformly

distributed on[−1,0]. Almost half the distribution (proportion12 − ε
2) are positive examples uni-

formly distributed on[0,1]. An ε/2 proportion of the distribution are positive examples distributed
on [−2,−1], and the remainingε/2 are negative examples on[1,2]. Drawing a training set of size
m from that distribution, with probability(1− ε)m, all examples will be drawn from[−1,1], miss-
ing the essential part of the distribution. Let the hypothesis spaceF consist of one monotonically
increasing function, and one monotonically decreasing function. Assumingthe test set is large and
represents the full distribution, the correct function to minimizeRmax on the test set is the decreasing
function. However, with high probability(1−ε)m, the increasing function will be (wrongly) chosen,
achieving on the training set,Rmax = 0, but on the test set, the worst possible valueRmax = I . Thus,
Rmax relies heavily on anε-sized portion of the input space. Contrast this with behavior of the AUC,
which is hardly affected by this portion of the input space, and is close to 1 with high probability
for both training and testing.

11. Proof of Theorem 4

We will use a theorem of Della Pietra et al. (2002), and we will follow their definitions leading
to this theorem. Consider a functionφ : S⊂ R IK → [−∞,∞] (unrelated to theφ of the proof of
Theorem 3). We will use this function to define a Bregman distance and consider an optimization
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problem related to this Bregman distance. The dual of this optimization problem will be almost
exactly the same as minimization ofRp,exp due to our choice ofφ. The theorem of Della Pietra
et al. (2002) will then provide a kind of uniqueness of the minimizer. The mostdifficult part of this
theorem is finding the functionφ and showing that the conditions of the framework are satisfied.

Let us first give the definition of a Bregman distance with respect to function φ, and then define
the primal and dual optimization problems. Theeffective domainof φ, denoted∆φ, is the set of
points whereφ is finite. The functionφ is proper if there is nop such thatφ(p) = −∞ and at least
somep with φ(p) 6= ∞. (Do not confuse the vectorp ∈ R IK with the scalar powerp. Entries of
p will always be indexed bypik to avoid confusion.) A proper functionφ is essentially smoothif
it is differentiable on the interior of the domain int(∆φ) and if limℓ |∇φ(pℓ)| = +∞ (element-wise)
wheneverpℓ is a sequence in int(∆φ), converging to a point on the boundary. Assume that the
functionφ is Legendre, meaning that it is closed (lower semi-continuous), convex and proper, and
additionally that int(∆φ) is convex, andφ is essentially smooth and strictly convex on int(∆φ). The
Bregman Distanceassociated withφ is Bφ : ∆φ × int(∆φ) → [0,∞] defined as:

Bφ(p,q) := φ(p)−φ(q)−〈∇φ(q),p−q〉.

Fix a vectorp0 ∈ ∆φ. The feasible setfor p0 with respect to matrixM ∈ R IK×n is: P = {p ∈
R IK |pTM = pT

0 M}. This will be the domain of the primal problem. The primal problem is to find,
for fixed q0 ∈ ∆φ:

argminp∈PBφ(p,q0). (primal problem)

Now we lead up to the definition of the dual problem. TheLegendre-Bregman Conjugateassociated
with φ is ℓφ : int(∆φ)×R IK → R ∪{∞} defined as:

ℓφ(q,v) := sup
p∈∆φ

(

〈v,p〉−Bφ(p,q)
)

.

Note that for fixedq, the Legendre-Bregman conjugate is exactly the convex conjugate ofBφ(·,q).
TheLegendre-Bregman Projectionis the argument of the sup whenever it is well-defined, namely,
Lφ : int(∆φ)×R IK → ∆φ is defined by:

Lφ(q,v) := argmaxp∈∆φ

(

〈v,p〉−Bφ(p,q)
)

,

whenever this is well-defined. Della Pietra et al. (2002) have shown that:

Lφ(q,v) = (∇φ)−1(∇φ(q)+v). (10)

The dual problem can also be viewed as a minimization of a Bregman distance. Namely, it can be
shown (cf. Proposition 2.7 of Della Pietra et al., 2002) that the dual objective can be written in terms
of Lφ(q0,v) :

〈v,p0〉− ℓφ(q0,v) = Bφ(p0,q0)−Bφ

(

p0,Lφ(q0,v)
)

.

Thus, since the first term on the right is not a function ofv, the dual problem can be written:

argmaxv∈R IK Bφ(p0,q0)−Bφ

(

p0,Lφ(q0,v)
)

= argminv∈R IK Bφ

(

p0,Lφ(q0,v)
)

, (dual problem)
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where we have assumed in the domain ofv that∆φ∗ = R IK and whereφ∗ is the convex conjugate
of φ. We will rewrite the domain of the dual problem as the classQ , defined as follows. For the
q0 ∈ ∆φ andM ∈ R IK×n fixed in the primal problem, theLegendre-Bregman projection family for
q0 andM is defined by:

Q (q0,M) = {q ∈ ∆φ|q = Lφ(q0,−Mλ) for someλ ∈ R n}.

So instead of considering the minimizer with respect tov, we will instead consider the minimizer
with respect toq ∈ Q . In order to proceed, a few more technical conditions are required, namely:

• A1. φ is Legendre.

• A2. ∆φ∗ = R IK whereφ∗ is the convex conjugate ofφ.

• A3. Bφ extends to a functionBφ : ∆φ ×∆φ → [0,∞] such thatBφ(p,q) is continuous inp and
q, and satisfiesBφ(p,q) = 0 iff p = q.

• A4. Lφ extends to a functionLφ : ∆φ×R IK → ∆φ satisfyingLφ : (q,0) = q, such thatLφ(q,v)
andBφ(Lφ(q,v),q) are jointly continuous inq andv.

• A5. Bφ(p, ·) is coercivefor everyp∈∆φ\int(∆φ), where a functionf : S→ [−∞,∞] is coercive
if the level sets{q ∈ S| f (q) ≤ c} are bounded for everyc∈ R .

We now state Proposition 3.2 of Della Pietra et al. (2002) which will give us uniqueness within
the closure of the setQ . DefineQ̄ as the closure ofQ in R IK .

Theorem 10 (Della Pietra et al., 2002) Letφ satisfy A1.-A5. and suppose thatp0,q0 ∈ ∆φ with
Bφ(p0,q0) < ∞. Then there exists a uniqueq∗ ∈ ∆φ satisfying the following four properties:

1. q∗ ∈ P
T

Q̄

2. Bφ(p,q) = Bφ(p,q∗)+Bφ(q∗,q) for anyp ∈ P andq ∈ Q̄

3. q∗ = argminp∈PBφ(p,q0) (primal problem)

4. q∗ = argminq∈Q̄ Bφ(p0,q) (dual problem)

Moreover, any one of these four properties determinesq∗ uniquely.

If we can prove that our objective function fits into this framework, we canuse part (4) of this
theorem to provide uniqueness in the closure of the setQ , which will be related to our setQ ′. Let
us now do exactly this.

Consider the following functionφ : R IK
>0 → [−∞,∞]:

φ(q) := ∑
ik

qikγ(qik,q), whereγ(qik,q) := ln

(

qik

p1/p(∑i′ qi′k)(p−1)/p

)

.

We extend the definition toR IK
+ by the conventions 0ln0= 0 andqikγ(qik,q) = 0 wheneverqik = 0

for all i. Thus,∆φ is nowR IK
+ . The boundary in our case is whereqik equals 0 for one or moreik

pairs. We must now show thatφ is Legendre.
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Lemma 11 φ is strictly convex inint(∆φ), where∆φ are vectors inR IK
+ with strictly positive entries.

The proof is in the Appendix.

Lemma 12 φ is Legendre.

Proof φ is proper since there is noq such thatφ(q) = −∞. In order to achieve this, the term
inside the logarithm must be exactly zero. When that happens,qik = 0, and by our convention,
qikγ(qik,q) = 0, thus the entireik term is zero rather than−∞. It can be verified thatφ is lower
semi-continuous. Also, int(∆φ) = R IK

>0 which is convex. We have already shown thatφ is strictly
convex on int(∆φ) in Lemma 11, and by our definition ofφ on the boundary, it is convex on∆φ.
We now show thatφ is essentially smooth with respect to the boundary. Consider the following
calculation for the gradient ofφ in int(∆φ):

(∇φ(q))ik =
∂φ(q)

∂qik
=

1
p

+ ln

(

qik

p1/p(∑i′ qi′k)
(p−1)/p

)

=
1
p

+ γ(qik,q), (11)

sinceγ(qik,q)→−∞ asqik → 0, φ is essentially smooth. All the conditions have now been checked.

Also, we require the following:

Lemma 13 Conditions A1.-A5. are obeyed.

The proof of this lemma is in the Appendix.
Proof (Of Theorem 4)Let us compute the quantities above for our functionφ, namely we would
like to find the spaceQ and the dual objectiveBφ(p0,q). Using (11) it can be shown that:

(

(∇φ)−1(z)
)

ik = pe(zik−1/p)

(

∑
i′

e(zi′k−1/p)

)p−1

.

We now wish to computeLφ. First, let us compute a term that appears often:

ezik−1/p wherezik = (∇φ(q)+v)ik =
1
p

+ γ(qik,q)+vik can be rewritten:

ezik−1/p = exp

[

1
p
− 1

p
+ γ(qik,q)+vik

]

= evikeγ(qik,q).

Thus from (10),

Lφ(q,v)ik = pevikeγ(qik,q)

(

∑
i′

evi′keγ(qi′k,q)

)p−1

= pevik
qik

p1/p(∑i′ qi′k)(p−1)/p

(

∑i′ e
vi′kqi′k

p1/p(∑i′ qi′k)(p−1)/p

)p−1

= evikqik

(

∑
i′

evi′kqi′k

)(p−1)
1

(∑i′ qi′k)(p−1)
. (12)
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In our case, we chooseq0 to be constant,q0ik = q0 for all i,k. We can now obtainQ :

Q (q0,M) =







q
∣

∣

∣q = e−(Mλ)ik

(

∑
i′

e−(Mλ)i′k

)(p−1)
q0

I (p−1)
for someλ ∈ R n







.

In order to make the last fraction become 1, we chooseq0 = I (p−1). We now need only to define
p0 in order to define the dual problem. In our case, we choosep0 = 0 so that the dual objective

function isBφ(0,q). Let us chooseq ∈ Q , that is,qik = e−(Mλ)ik
(

∑i′ e
−(Mλ)i′k

)(p−1)
and substitute

using (11) and the definitions ofφ andBφ:

Bφ(0,q) = φ(0)−φ(q)−〈∇φ(q),0−q〉
= −φ(q)+q ·∇φ(q)

= −φ(q)+
1
p ∑

ik

qik +φ(q)

=
1
p ∑

k

(

∑
i

e−(Mλ)ik

)(

∑
i′

e−(Mλ)i′k

)(p−1)

=
1
p ∑

k

(

∑
i

e−(Mλ)ik

)p

=
1
p

Rp,exp(λ).

Thus, we have arrived at exactly the objective function for our algorithm. In other words, the
functionφ was carefully chosen so that the dual objective would be exactly as we wished, modulo
the constant factor 1/p which does not affect minimization.

Part 4 of Theorem 10 tells us that the objective function of our algorithm has a unique minimizer
in Q̄ as long as A1.-A5. are obeyed, which holds from Lemma 13. It remains onlyto show that a
vector inQ̄ yields a unique vector in̄Q ′. Consider a sequence of vectors inQ defined element-wise

by qℓ,ik = e−(Mλ)ℓ,ik
(

∑i′ e
−(Mλ)ℓ,i′k

)p−1
such thatqℓ → q̄ as ℓ → ∞. Then consider the sequence

defined by:
qℓ,ik

(∑i′ qℓ,i′k)
(p−1)/p

= e−(Mλ)ℓ,ik .

By definition ofQ ′, each vector in this sequence is inQ′. This sequence converges pointwise to
q̄ik

(∑i′ q̄i′k)
(p−1)/p ∈ Q̄ ′, or if q̄ik = 0, then theikth component of the sequence converges to 0. Since we

are in a finite dimensional space, namelyR IK , pointwise convergence is sufficient.

It was unnecessary to state the primary objectiveBφ(p,q0) explicitly to prove the theorem, how-
ever, we state it in order to compare with the relative entropy case wherep= 1. Recall thatq0 is the
constant vector with entriesI p−1. Thus,(∇φ(q0))ik = 1

p +γ(q0,q0)= 1
p + ln(q0/[p1/p(Iq0)

(p−1)/p])=
1
p(1− ln p) for all ik.

Bφ(p,q0) = φ(p)−φ(q0)−〈∇φ(q0),p−q0〉

= φ(p)−〈∇φ(q0),p〉+
1
p

I pK = φ(p)− (∇φ(q0))ik ∑
ik

pik +
1
p

I pK

= ∑
ik

pik ln

[

pik

p1/p(∑i′ pi′k)(p−1)/p

]

− 1
p
(1− ln p)∑

ik

pik +
1
p

I pK.
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For p = 1 this reduces exactly to the relative entropy case.
One interesting note is how to find a functionφ to suit such a problem; when we introduced it, we

gave no indication of the techniques required to find such a function. In thiscase, we discovered the
functionφ again via convex duality. We knew the desired dual problem was preciselyour objective
Rp,exp, thus, we were able to recover the primal problem by convex conjugation.The double dual in
this case is the objective itself. From there, the functionφ was obtained by analogy with the relative
entropy case.

12. Conclusions

We have provided a method for constructing a ranked list where correctness at the top of the list is
most important. Our main contribution is a general set of convex objective functions determined
by a lossℓ and price functiong. A boosting-style algorithm based on a specific family of these
objectives is derived. We have demonstrated the effect of a number of different price functions, and
it is clear, both theoretically and empirically, that a steeper price function concentrates harder at the
top of the list.
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proofreading, and thanks to Sinan Güntürk, particularly regarding Lemma 7. Also thanks to Eero
Simoncelli and Dave Waltz. This work was supported by an NSF postdoctoral research fellowship
under grant DBI-0434636 at New York University.

Appendix A.

We provide proofs of Lemma 11 and Lemma 13.

Proof (Of Lemma 11) First, rewriteφ:

φ(q) = ∑
k

[(

∑
i

qik lnqik

)

− (ln p1/p)

(

∑
i

qik

)

− p−1
p

(

∑
i

qik

)

ln

(

∑
i

qik

)]

.

The middle term is linear so it does not affect convexity of the sum. It is sufficient to prove convexity
of the following function, sinceφ would then be a sum (overk) of convex functions. Definef :
R I

>0 → R as follows, forq ∈ R I
+:

f (q) :=

(

∑
i

qi lnqi

)

+
1− p

p

(

∑
i

qi

)

ln

(

∑
i

qi

)

.

Thus, the Hessian is:
∂ f (q)

∂qℓ∂qi
=

1
qi

δi=ℓ +
1− p

p
1

∑i′ qi′
.
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To show that the Hessian is positive definite, we show thatwTHw > 0 wheneverw 6= 0.

∑
iℓ

wiwℓ
∂ f

∂qℓ∂qi
= ∑

i

w2
i

1
qi

+
1− p

p

(

∑
i

wi

)2
1

∑i qi

=

(

1

∑i qi

)





(

∑
i

w2
i

1
qi

)(

∑
i

qi

)

+

(

1
p
−1

)

(

∑
i

wi

)2


 .

Now, consider the Cauchy-Schwarz inequality, used in the following way:

(

∑
i

wi

)2

=

〈

w√
q
,
√

q
〉2

≤
∥

∥

∥

∥

w√
q

∥

∥

∥

∥

2

2

‖√q‖2
2 =

(

∑
i

w2
i

qi

)(

∑
i

qi

)

.

Substituting back,

∑
iℓ

wiwℓ
∂ f

∂qℓ∂qi
≥
(

1

∑i qi

)





(

∑
i

w2
i

1
qi

)(

∑
i

qi

)

+
1
p

(

∑
i

wi

)2

−
(

∑
i

w2
i

1
qi

)(

∑
i

qi

)





=

(

1

∑i qi

)

1
p

(

∑
i

wi

)2

.

Recall that equality in Cauchy-Schwarz is only achieved when vectors are dependent, that is, for
someα ∈ R , wi = αqi for all i. Since the elements ofq are all strictly positive, ifwi = αqi , then
at the same time we cannot have∑i wi = 0. Thus, when equality holds in Cauchy-Schwarz, then
(∑i wi)

2 > 0 unlessw = 0. Thus, whether the Cauchy-Schwarz inequality is strict or not, we have:

∑
iℓ

wiwℓ
∂ f

∂qℓ∂qi
> 0 wheneverw 6= 0.

Thus,φ is strictly convex.

Proof (Of Lemma 13)Condition A1. was proven in Lemma 12. To show A2., note that:

(φ∗(v))ik = pe(vik−1/p)

(

∑
i′

e(vi′k−1/p)

)p−1

.

Thus,∆φ∗ = R IK .
For A3., let us simplify using (11), where this calculation is valid forp,q ∈ ∆φ × int(∆φ):

Bφ(p,q) = φ(p)−φ(q)−∇φ(q) · (p−q)

= ∑
ik

pikγ(pik,p)−φ(q)− 1
p ∑

ki

(pik −qik)−∑
ik

pikγ(qik,q)+φ(q)

= ∑
ik

pik

(

γ(pik,p)− γ(qik,q)
)

− 1
p ∑

ik

(pik −qik). (13)
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Now we consider the boundary. If for someik pair, pik = 0 then letpik(γ(pik,p)− γ(qik,q)) = 0 for
all q. If for someik pair, pik 6= 0 and additionallyqik = 0 we defineBφ(p,q) = ∞. This completes our
definition ofBφ on the boundary ofR IK

+ . Let us prove thatBφ(p,q) = 0 impliesp = q. Considering
the interior,Bφ can only be 0 at a minimum since it is non-negative. A necessary condition for Bφ
to be at a minimum is for∂Bφ(p,q)/∂pik = 0 for all ik:

∀ik 0 =
∂Bφ(p,q)

∂pik
= 1− p−1

p
+ γ(pik,p)− γ(qik,q)− 1

p
⇒∀ik γ(pik,p)− γ(qik,q) = 0.

It is true thatγ(pik,p)− γ(qik,q) = 0 for pair ik implies thatpik = qik. To see this, note that one can
determinepik directly from theγ(pik,p) values as follows. Setzik := p1/pexp(γ(pik,p)). Now,

zik

(

∑
i′

zi′k

)p−1

= pik.

Hence,∀ik,γ(pik,p)− γ(qik,q) = 0 implies thatp = q. Consider now the boundary. If for anyik,
pik 6= 0 andqik = 0 thenBφ(p,q) = ∞ 6= 0. So, ifBφ(p,q) = 0, then wheneverqik = 0 we must have
pik = 0. On the other hand, ifpik = 0, there will be a contribution toBφ(p,q) of 1

pqik, implying that
qik must be 0 in order forBφ(p,q) = 0. Thus, A3. holds.

We now show A4. Let us define the boundary values forLφ. If for somek we have∑i′ qi′k = 0,
then let(Lφ(q,v))ik = 0 for all i. Otherwise, (12) can be used as written. Thus, we always have
Lφ(q,0) = q, andLφ(q,v) is jointly continuous inq andv. Now considerBφ(Lφ(q,v),q). Let us
simplify this expression in the interior, starting from (12) and (13) and usingthe notation{L}ik for
the vector{Lφ(q,v)}ik.

Bφ(L ,q) = ∑
ik

Lik

(

γ(Lik,L)− γ(qik,q)
)

− 1
p ∑

ik

(Lik −qik)

= ∑
ik

Lik ln

(

Lik

p1/p(∑i′ Li′k)(p−1)/p

p1/p(∑i′ qi′k)
(p−1)/p

qik

)

− 1
p ∑

ik

(Lik −qik)

= ∑
ik

Lik ln











evikqik(∑i′ e
vi′kqi′k)

p−1
(

1
∑i′ qi′k

)p−1

[

(∑i′ evi′kqi′k)
p
(

1
∑i qi′k

)p−1
](p−1)/p

(∑i′ qi′k)
(p−1)/p

qik











−1
p ∑

ik

(Lik −qik)

= ∑
ik

Likvik −
1
p ∑

ik

(Lik −qik).

Thus, sinceLφ is jointly continuous inq andv, Bφ is jointly continuous inq andv.
For A5., we need to show thatBφ(p, ·) is coercive, meaning that the level set{q∈∆φ : Bφ(p,q)≤

c} is bounded, withp ∈ ∆φ\int(∆φ) which are vectors inR IK
+ with at least one entry that is 0.

Recall that we use the convention 0ln0= 0. Consider from (13), using the fact that for anyik pair,
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lnq(p−1)/p
ik ≤ ln(∑i qik)

(p−1)/p:

Bφ(p,q) = ∑
ik

pik

(

γ(pik,p)− γ(qik,q)
)

− 1
p ∑

ik

(pik −qik)

= ∑
ik

−pikγ(qik,q)+
1
p

qik + function(p)

≥ ∑
ik

−pik lnqik + pik ln
(

q(p−1)/p
ik

)

+
1
p

qik + function(p)

=
1
p ∑

ik

−pik lnqik +qik + function(p).

Since logarithms grow slowly, one can choose aqik large enough so that this sum exceeds any
fixed constantc, regardless of the values of the otherqik’s. Thus, the set{q ∈ ∆φ : Bφ(p,q) ≤ c} is
bounded. We are done checking the conditions.
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