Journal of Machine Learning Research 10 (2009) 2133-2136 Submitted 3/09; Published 9/09

RL-Glue: Language-| ndependent Software for
Reinforcement-L earning Experiments

Brian Tanner BTANNER@CS.UALBERTA.CA
Adam White AWHITE @CS.UALBERTA.CA
Department of Computing Science

University of Alberta

Edmonton, Alberta, Canada T6G 2E8

Editor: Mikio L. Braun

Abstract

RL-Glue is a standard, language-independent softwareagador reinforcement-learning experi-
ments. The standardization provided by RL-Glue facilgatede sharing and collaboration. Code
sharing reduces the need to re-engineer tasks and expésimapparatus, both common barriers
to comparatively evaluating new ideas in the context of ttegdture. Our software features a
minimalist interface and works with several languages amdputing platforms. RL-Glue compat-
ibility can be extended to any programming language thgbasrp network socket communication.
RL-Glue has been used to teach classes, to run internatiomgietitions, and is currently used by
several other open-source software and hardware projects.

Keywords: reinforcement learning, empirical evaluation, standaatidon, open source

1. Introduction and Motivation

Reinforcement learning is an embodied, trial-and-error problem formualétioartificial intelli-
gence (Sutton and Barto, 1998; Kaelbling et al., 1996; Bertsekas arsiklis, 1996). At a series
of time steps, thagentemits actions in response to observations and rewards generateddoyithe
ronment The agent’s objective is to select actions that maximize the future rewRedsforcement-
learning methods have been successfully applied to many problems incladikggmmon (Tesauro,
1994), elevator control (Crites and Barto, 1998), and helicopteralqiNg et al., 2004). Reinforcement-
learning models and formalisms have influenced a number of fields, includergtams research,
cognitive science, optimal control, psychology, neuroscience, amioth

Reinforcement-learning practitioners create their agents and environasémgss/arious incom-
patible software frameworks, making collaboration inconvenient and tbusng progress in our
community. It can be time consuming, difficult, and sometimes even impossible ttyesegaro-
duce the work of others. A conference or journal article is not theaujate medium to share a
sufficiently detailed specification of the environment, agent and overadirérental apparatus. We
need a convenient way to share source code.

We believe that a standard programming interface for reinforcementisigagrperiments will
remove some barriers to collaboration and accelerate the pace of reseauc field. To encourage
widespread adoption, this interface should be easy to adhere to, armlit stot force users to
abandon their favorite tools or languages. With these goals in mind, we kaetgded RL-Glue:
language independent software for reinforcement-learning expesmen

(©2009 Brian Tanner and Adam White.



TANNER AND WHITE

2. RL-Glue

Reinforcement-learning environments cannot be stored as fixed dataasds common in con-
ventional supervised machine learning. The environment generatesvatisns and rewards in
response to actions selected by the agent, making it more natural to think eiihenenent and
agent as interactiverograms Sutton and Barto describe one prevalent view of agent-environment
interactions in their introductory text (1998). Their view, shown in Figurel@arly separates the
agent and environment into different components which interact in a piartiozay, following a
particular sequence.

observation
Oy !
reward Agent
T action
Qy
Tf+1< EnV|ronment><—
Ot+1

Figure 1: Sutton and Barto’s agent-environment interface, with statesae®d to observations.

White’'s RL-Glue Protocol (2006) formalizes Sutton and Barto’s interfaceonline, single-
agent reinforcement learning. The RL-Glue Protocol describes hewdifferent aspects of a
reinforcement-learning experiment should be arranged into programhshea etiquette they should
follow when communicating with each other. These programs (Figure 2) aragént, the envi-
ronment, the experiment, and RL-Glue. The agent program implements thatealgorithm and
action-selection mechanism. The environment program implements the dyndrttiestask and
generates the observations and rewards. The experiment progeuts dive experiment’s execu-
tion, including the sequence of agent-environment interactions and pggatmance evaluation.
The RL-Glue program mediates the communication between the agent anohemsirt programs
in response to commands from the experiment program. Our RL-Glue seftRa-Glue) imple-

ments White's protocol.
Experiment
Program
Agent RL-Glue Environment
Program Program Program

Figure 2: The four programs specified by the RL-Glue Protocol. Arromdidate the direction of the flow
of control.

RL-Glue can be used either in internal or external modenternal mode, the agent, environ-
ment and experiment are linked into a single program, and their communicatiooug/thfunction
calls. Internal mode is currently an option if the agent, environment, aneriexgnt are written
exclusively in Java or C/C++. laxternalmode, the agent, environment and experiment are linked

1. This can be found dit t p: // gl ue. rl - communi ty. or g/ prot ocol .

2134



RL-GLUE

into separate programs. Each program connects to the RL-Glue sevgeam, and all communi-
cation is over TCP/IP socket connections. External mode allows thegeapne to be written in any
programming language that supports socket communication. External magteestty supported
for C/C++, Java, Python, Lisp, and Matlab.

Each mode has its strengths and weaknesses. Internal mode has theadyso it can execute
more steps per second. External mode is more flexible and portable. ftbenmnce difference
between the two modes vanishes as the agent or environment becomesxoanapigh that com-
putation dominates the socket overhead in terms of time per step. The adestaronment are
indifferent and unaware of their execution mode; the difference in miaekesnly in how the agent
and environment are linked or loaded.

3. RL-Gluein Practice

RL-Glue’s provides a common interface for a number of software andweae projects in the
reinforcement-learning community. For example, there is the annual RL-E&diop, where teams
from around the world compare their agents on a variety of challenginigoenvents. The com-
petition software uses the API, called RL-Viz, that is layered on top of Rie@o dynamically
load agent and environment programs, modify parameters at runtime aradizésinteraction and
performance. All of the environments and sample agents created by theetionporganizers
are added to the RL-Library, a public, community-supported repositofgleGlue compatible
code. The RL-Library is also available as an archive of top competitiomtagehallenge problems,
project code from academic publications, or any other RL-Glue compatiftileaze that members
of our community would like to share.

The socket architecture of RL-Glue allows diverse software anditzsdplatforms to be con-
nected as RL-Glue environment programs. There are ongoing projectotinect a mobile robot
platform, a keepaway soccer server, a real-time strategy game, andragritgator to RL-Glue.
Our socket architecture helps lower the barriers for researchehéngiso work on larger scale
environments by providing a simple and familiar interface.

RL-Glue has been used for teaching reinforcement learning in saweikarsity courses and
to create experiments for scientific articles published in leading confeserBme ouRL-Glue in
practiceweb page for an updated list of projects and papers that have us&iURE-

4. Other Reinforcement-L earning Softwar e Projects

RL-Glue is not the first software project that aims to standardize empiga#rcement learning
or to make agent and environment programs more accessible within our céyriawever, RL-
Glue is the only project that offers a standardized language-indepeinderface, rich actions and
observations, and fine-grained control of the experiment.

Other projects, most notably: CLSqu&r®IQLE RL Toolbox? JRLF® and LibPG/ offer
significant value to the reinforcement-learning community by offering agemtisenvironments,

. This can be found dit t p: // gl ue. rl - communi ty.org/rl - gl ue-in-practice
. This can be found @it t p: / / wwv. ni . uos. de/ i ndex. php?i d=70.

. This can be found dit t p: / / pi gl e. sour cef orge. net/.

. This can be found dit t p: // www. i gi . tugraz.at/ril-tool box/.

. This can be found @it t p: / / mykel . kochenderfer.com jrlf/.

. This can be found dit t p: / / code. googl e. conf p/ | i bpgrl /.

~NOoO b~ WN

2135



TANNER AND WHITE

intuitive visualizations, programming tools, etc. Users should not be faethoose between
RL-Glue and these alternative projects. Our design makes it relativeyyteasterface existing
frameworks with RL-Glue. We are currently offering our assistanceidgbrg other frameworks to
RL-Glue, with the hope of improving access to all of these tools for all mendfensr community.

5. RL-Glue Open Source Proj ect

Website: http://glue.rl-community.org License: Apache 2.0
RL-Glue is more than an interface; it connects a family of community projectsmathy levels
of possible participation. Members of the community are invited to submit agevitpement
and experiment programs to the RL-Library. Developers can also extenceach of RL-Glue
compatibility by writing external-mode or internal-mode interfaces for theirrdta@rogramming
language. The RL-Glue software project also welcomes submissions aravengents for all parts
of the software and documentation.

Acknowledgments

We would like to thank the users, testers, and developers for their cdidrisito RL-Glue 3.0.
Special thanks to &or Bahzs, Jog Antonio Martin H., Scott Livingston, Marc Bellemare, latv
Szita, Marc Lanctot, Anna Koop, Dan Lizotte, Richard Sutton, Monica Desau, Jordan Frank,
and Andrew Butcher. Of course, we also owe a great debt to all of wet¢al people responsible
for the historic and ongoing development of RL-Gfue.

References

Dimitri P. Bertsekas and John N. Tsitsikliseuro-Dynamic Programming (Optimization and Neu-
ral Computation Series, 3)Athena Scientific, May 1996. ISBN 1886529108.

Robert H. Crites and Andrew G. Barto. Elevator group control using metg@nforcement learning
agents.Machine Learning33(2-3):235-262, 1998.

Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinéonent learning: a
survey.Journal of Artificial Intelligence Research:237-285, 1996.

Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schu#a, Be, Eric Berger,
and Eric Liang. Autonomous inverted helicopter flight via reinforcememtlag. InProceedings
of the International Symposium on Experimental Robppages 363—-372, 2004.

Richard S. Sutton and Andrew G. Bareinforcement Learning: An Introductiohe MIT Press,
Cambridge, Massachusetts, 1998.

Gerald Tesauro. TD-gammon, a self-teaching backgammon progranvesmeaster-level play.
Neural Computation6:215-219, 1994.

Adam White. A Standard System for Benchmarking in Reinforcement irgarmMaster’s thesis,
University of Alberta, Alberta, Canada, 2006.

8. This can be found dt t p: // gl ue. rl - communi ty. org/ contri butors- history.

2136



