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Abstract
We continue our recent study on constructing a refinement kernel for a given kernel so that the re-
producing kernel Hilbert space associated with the refinement kernel contains that with the original
kernel as a subspace. To motivate this study, we first develop a refinement kernel method for learn-
ing, which gives an efficient algorithm for updating a learning predictor. Several characterizations
of refinement kernels are then presented. It is shown that a nontrivial refinement kernel for a given
kernel always exists if the input space has an infinite cardinal number. Refinement kernels for trans-
lation invariant kernels and Hilbert-Schmidt kernels are investigated. Various concrete examples
are provided.

Keywords: reproducing kernels, reproducing kernel Hilbert spaces, learning with kernels, refine-
ment kernels, translation invariant kernels, Hilbert-Schmidt kernels

1. Introduction

In our recent work (Xu and Zhang, 2007), we studied characterizations of a refinable kernel which
offers a convenient way of enlarging its reproducing kernel Hilbert space (RKHS). Appropriately
expanding a given RKHS is needed in learning theory when the given space is not adequate for a
specific purpose. We will discuss this point in depth later. With a refinable kernel, a wavelet-like
kernel or a kernellet was introduced in Xu and Zhang (2007). As pointed out there, the refinable
kernel leaves out two important classes of kernels. Neither the Gaussian kernels nor kernels having
finite dimensional feature spaces are refinable. Due to important applications of these classes of
kernels, there is a need to develop a general method of enlarging a RKHS besides the particular one
given by a refinable kernel. It is this need that leads to the study presented in this paper of refinement
kernels for a given kernel.

We first review necessary notions related to kernels. Let X be a nonempty prescribed set called
an input space. For n ∈ N, we let Nn := {1,2, . . . ,n}. A kernel K on X is a function from X ×X
to the field C of complex numbers such that for any finite set of inputs x := {x j : j ∈ Nn} ⊆ X the
matrix

K[x] := [K(x j,xk) : j,k ∈ Nn] (1)

is hermitian and positive semi-definite. Kernels are important in learning theory as they are used
to measure the similarity between inputs in X (Evgeniou et al., 2000; Schölkopf and Smola, 2002;
Shawe-Taylor and Cristianini, 2004; Vapnik, 1998). A reproducing kernel Hilbert space (RKHS) on
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X is a Hilbert space of functions on X for which point evaluations are continuous linear functionals
(Aronszajn, 1950).

There is a bijective correspondence between the set of kernels on X and that of reproducing
kernel Hilbert spaces (RKHS) on X . In particular, for each kernel K on X there is a unique RKHS
HK such that

K(·,x) ∈ HK , for all x ∈ X (2)

and for all f ∈ HK there holds

f (x) = ( f ,K(·,x))HK
, x ∈ X , (3)

where (·, ·)HK
denotes the inner product on HK . Moreover, the linear span of {K(·,x) : x ∈ X} is

dense in HK , namely,
HK = span{K(·,x) : x ∈ X}, (4)

and the inner product on HK is determined by

(K(·,y),K(·,x))HK
= K(x,y), x,y ∈ X . (5)

Conversely, for each RKHS H on X there exists exactly one kernel K on X such that (2) and (3) hold
true with HK replaced by H . Equation (3) is interpreted as that a function in HK can be reproduced
through its inner product with the kernel K. For this reason, K is often called the reproducing kernel
of HK .

The main purpose of this study is to investigate kernels K and G on X so that

HK � HG (6)

in the sense that HK ⊆ HG and for all f ,g ∈ HK , ( f ,g)HK
= ( f ,g)HG

. For an existing kernel K, we
call a kernel G satisfying (6) a refinement kernel for K. If in addition, HG contains HK as a proper
subspace, then we call G a nontrivial refinement kernel for K. The inclusion (6) was first considered
by Aronszajn (1950). It was proved there that (6) holds true if and only if L := G−K remains a
kernel on X and HK ∩HL = {0}.

Our interest in refinement kernels is motivated by the widely used regularized learning algo-
rithm, which and its variations have attracted much attention in the literature (see, for example,
Bousquet and Elisseeff, 2002; Cucker and Smale, 2002; Micchelli and Pontil, 2005a,b; Mukherjee
et al., 2006; Schölkopf and Smola, 2002; Smale and Zhou, 2003; Steinwart and Scovel, 2005; Vap-
nik, 1998; Wahba, 1999; Walder et al., 2006; Ying and Zhou, 2007; Zhang, 2004, and the references
cited therein). The algorithm aims at inferring from a finite set of training data z := {(x j,y j) : j ∈
Nm} ⊆ X ×C a function f0 on X so that f0(x) would yield a meaningful output of an input x ∈ X .
For a positive regularization parameter µ and the norm ‖ · ‖HK

on HK , we set for each f ∈ HK

EK,µ( f ) := ∑
j∈Nm

| f (x j)− y j|2 +µ‖ f‖2
HK

.

The learning algorithm then outputs a predictor f0 as the minimizer of an error functional:

f0 = min
f∈HK

EK,µ( f ). (7)
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The behavior of the predictor f0 depends on the choice of the regularization parameter µ and as well
as the RKHS. We will not consider the choice of µ in this paper. Rather, we will focus on the issue
of expanding the RKHS associated with the original kernel K.

There are two possible situations where one may desire to find a nontrivial refinement kernel G
for K in (7). The first happens when the predictor f0 obtained from (7) does not work in a satis-
factory way. One may hence be forced to replace K with a kernel G hoping that the corresponding
learning algorithm would yield a better predictor. This is possible only if HG is larger than HK . In
other words, if the current RKHS underfits, then a refinement kernel may lead to a better predictor.
The second situation occurs when the old training data z is expanded to be a new training data by
adding to z more new samples from X ×C. Since more information is available as the training data
is increased, it is reasonable for people to expect a better predictor, which could be achieved by
searching in a larger RKHS. This accounts for another reason one might want to find a refinement
kernel for K.

In a recent paper (Xu and Zhang, 2007), we introduced a method of updating kernels via a
composition of the kernel with a bijective mapping γ of the input space. Specifically, with a selected
positive constant λ, we define for a kernel K on X a new kernel

G(x,y) := λK(γ(x),γ(y)), x,y ∈ X (8)

and call K a γ-refinable kernel if (8) gives a nontrivial refinement kernel G for K. Various character-
izations and many examples of refinable kernels were provided in Xu and Zhang (2007). The work
was motivated by refinable functions in the context of wavelet analysis (Daubechies, 1992). As men-
tioned earlier, a purpose of the current study is to resolve two remaining questions in Xu and Zhang
(2007). One is that a kernel is never refinable if it has a finite dimensional feature space. The other
is that the commonly used Gaussian kernels are not refinable either. On the other hand, we know
that kernels with a finite dimensional feature space, such as finite dot-product kernels (FitzGerald et
al., 1995), and Gaussian kernels are important in learning (Micchelli and Pontil, 2005a; Schölkopf
and Smola, 2002; Steinwart and Scovel, 2005; Walder et al., 2006). We would like to find non-
trivial refinement kernels for them by considering general methods of updating kernels besides the
particular one (8).

We organize this paper in six sections. Before delving into technical analysis of refinement
kernels, we further motivate our study by proposing a refinement kernel method for learning in the
next section. In Section 3, we present three basic characterizations of a refinement kernel. The
first characterization is due to Aronszajn (1950), the second comes from a modification of a result
in Xu and Zhang (2007) and the third result which is completely new serves as a base for further
study in the remaining sections. We discuss in Section 4 the existence of a refinement kernel, and
desired properties of kernels preserved by a refinement process. In particular, it will be shown that a
nontrivial refinement kernel always exists if the input space contains infinite elements. In Sections
5 and 6, we study refinement kernels for translation invariant kernels and Hilbert-Schmidt kernels,
respectively.

2. A Refinement Kernel Method for Learning

This section is devoted to development of learning algorithms based on refinement kernels. Suppose
that a learning algorithm with kernel K has been given, that is, we have had a minimizer in the RKHS
HK . But somehow we find that the minimizer is not good enough for a specific purpose. We then
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want to make a new search for a new minimizer in a larger RKHS HG, where G is a refinement
kernel for K. We will demonstrate how a new search is done by making use of the previously
computed results for the kernel K and the corresponding minimizer. We will refer to the methods
described in this section as refinement kernel methods for learning.

For simplicity of presentation, we work only with real numbers in this section. Let K be a kernel
on the input space X and z := {(x j,y j) : j ∈ Nm} ⊆ X ×R a finite set of sample data. We return to
the learning algorithm described in the introduction which has the form

min
f∈HK

{

∑
j∈Nm

| f (x j)− y j|2 +µ‖ f‖2
HK

}

. (9)

The representer theorem (Kimeldorf and Wahba, 1971; Schölkopf et al., 2001; Schölkopf and
Smola, 2002) in learning theory ensures that the minimizer f0 ∈ HK of (9) has the form

f0 = ∑
j∈Nm

c jK(·,x j).

In the above equation the vector c := [c j : j ∈ Nm]T satisfies the linear system

(µIm +K[x])c = y, (10)

where Im denotes the m×m identity matrix, x := [x j : j ∈ Nm]T and y := [y j : j ∈ Nm]T .
Suppose that the minimizer f0 is not satisfactory and we need to have a new search in a larger

RKHS. We assume that a refinement kernel G for K has been chosen and the training data z has
been expanded to z∪ z′, where z′ := {(x′k,y′k) : k ∈ Nq} ⊆ X ×R. A new predictor can be obtained
as the minimizer of

min
g∈HG

{

∑
j∈Nm

|g(x j)− y j|2 + ∑
k∈Nq

|g(x′k)− y′k|2 +µ‖g‖2
HG

}

. (11)

The purpose of this section is to develop an algorithm for efficiently solving (11) by using the
existing information of the original minimization (9).

We proceed it in two steps.

2.1 Fixed Training Data

In this subsection, we assume that the training data set remains unchanged. Suppose that f0 has
been obtained, that is, linear system (10) has been solved, and one wishes to refine the kernel K in
(9) to improve the predictor f0. We consider a refinement kernel G for K for which the orthogonal
complement of HK in HG is finite dimensional. We see from Aronszajn (1950) that there exist
linearly independent functions ψ j, j ∈ Np, on X , none of which lies in HK such that the kernel
L := G−K has the form

L(x,y) := ∑
j∈Np

ψ j(x)ψ j(y), x,y ∈ X .

For instance, if K is the Gaussian kernel on R
d then L can be chosen as a finite dot-product kernel

∑
n∈Z+

an(x,y)
n, x,y ∈ R

d
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or a finite complex sinusoid kernel

∑
n∈Zd

bnei(n,x−y), x,y ∈ R
d ,

where a and b are a nonnegative function on Z+ := N∪{0} and Z
d , respectively, with finite supports.

Using the refinement kernel G, we shall obtain a new predictor g0 in a larger RKHS HG that is
the minimizer of

min
g∈HG

{

∑
j∈Nm

|g(x j)− y j|2 +µ‖g‖2
HG

}

.

By the representer theorem, the predictor g0 is of the form

g0 = ∑
j∈Nm

d jG(·,x j),

where d := [d j : j ∈ Nm]T satisfies

(µIm +K[x]+L[x])d = y. (12)

Suppose that the computational results in solving (10) have been stored. Since in general K[x]
is a dense positive semi-definite matrix, linear system (10) is usually solved by the Cholesky factor-
ization method (Golub and van Loan, 1996). The method works at a cost of O(m3) multiplications
of real numbers. We hence assume that we have obtained the Cholesky factorization of µIm +K[x].
The decomposition (12) enables us to solve a linear system whose coefficient matrix is µIm + K[x]
using only O(m2) multiplications.

Now we have to solve the new linear system (12). Instead of spending another O(m3) multi-
plications, we wish to make use of the stored computational results from solving (10) to reduce the
computational complexity in solving (12). Specifically, for each j ∈ Np, we let ψ j(x) := [ψ j(xk) :
k ∈ Nm]T and let e j denote the vector satisfying

(µIm +K[x])e j = ψ j(x). (13)

We also need the vector
β := [−ψ j(x)T c : j ∈ Np] (14)

and the p× p matrix B defined by

B jk := ψ j(x)T ek, j,k ∈ Np. (15)

Since by (13) there holds for each j,k ∈Np that B jk = eT
j (µIm +K[x])ek and µIm +K[x] is symmetric

and strictly positive definite, B is symmetric and positive semi-definite. As a consequence, Ip + B
is invertible and we are allowed to introduce another vector α := [α j : j ∈ Np]

T ∈ R
p as the unique

solution of
(Ip +B)α = β. (16)

Proposition 1 If vectors e j ∈ R
m, j ∈ Np are defined by (13), c ∈ R

m by (10) and α ∈ R
p by (16),

then the solution d of linear system (12) is given by

d = c+ ∑
j∈Np

α je j. (17)
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If N (d) denotes the number of multiplications required for computing d, then

N (d) = O(pm2 + p2m+ p3).

Proof Let d′ := d− c. It is clear by (10) and (12) that d satisfies (12) if and only if

(µIm +K[x])d′ +L[x]d = 0. (18)

To prove the first statement of this proposition, it suffices to show that the vector d defined by
(17) satisfies Equation (18). We denote by δ the left-hand side of (18). Substituting (17) into the
left-hand side of (18) and noting that L[x] = ∑ j∈Np

ψ j(x)ψ j(x)T , we obtain that

δ = ∑
j∈Np

α jψ j(x)+ ∑
j∈Np

ψ j(x)[ψ j(x)T c+ ∑
k∈Np

αkψ j(x)T ek].

By using (14) and (15), we have that

δ = ∑
j∈Np

ψ j(x)

[

α j −β j + ∑
k∈Np

B jkαk

]

. (19)

Noting that α satisfies linear system (16) we observe for all j ∈ Np that

α j −β j + ∑
k∈Np

B jkαk = 0.

Combining this equation with (19) yields that δ = 0. That is, the vector d defined by (17) satisfies
Equation (18).

To prove the second statement, we make use of the assumption that the result of the Cholesky
factorization of µIm + K[x] has been computed and stored and we enumerate the additional num-
ber of multiplications required for computing the solution d. Solving p linear systems (13) needs
O(pm2) number of multiplications. Computing vector β and matrix B requires pm and p(p+1)

2 m
multiplications respectively. Solving (16) costs O(p3) multiplications and finally, computing d by
(17) requires pm multiplications. Summing these costs together yields the number of multiplica-
tions required to solve (12).

We remark that in applications, the number m of sample data is much larger than the number
p of the dimension of the difference space HL. Therefore, under the condition p � m, we know
from Proposition 1 that computing the solution d of the linear system (12) requires O(m2) additional
number of multiplications. This is a big saving in comparison to O(m3) number of multiplications if
the linear system (12) is solved directly by the Cholesky factorization without using the refinement
kernel method. In other words, the use of the refinement kernel method reduces the number of
multiplications from O(m3) to O(m2).

Moreover, we observe that most of the computational costs are used for solving (13), which is
clearly independent of the output y. Therefore, if x remains fixed for different applications, which
is the case in many practical scenarios such as image analysis and processing of signals of the same
size, then (13) can be calculated in advance and stored for repeated use. Taking this advantage, we
only need O(m) additional number of multiplications to solve (12) in order to obtain an updated
predictor.
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2.2 Expanded Training Data

We assume in this subsection that the training data z has been expanded to z∪ z′ while the kernel K
remains the same. A new predictor f1 ∈ HK is obtained by solving the minimization problem

min
f∈HK

∑
j∈Nm

| f (x j)− y j|2 + ∑
k∈Nq

| f (x′k)− y′k|2 +µ‖ f‖2
HK

. (20)

The predictor f1 can be written in terms of the kernel K. To this end, we introduce two vectors

x′ := [x′k : k ∈ Nq]
T , y′ := [y′k : k ∈ Nq]

T ,

and matrices
K[x,x′] := [K(x j,x

′
k) : j ∈ Nm,k ∈ Nq], K[x′,x] := K[x,x′]T .

For notational simplicity, we also set A := µIm + K[x], B := µIq + K[x′] and C := K[x,x′]. By the
representer theorem, the minimizer f1 of (20) is given by

f1 = ∑
j∈Nm

d jK(·,x j)+ ∑
k∈Nq

d′
kK(·,x′k),

where d := [d j : j ∈ Nm]T and d′ := [d′
k : k ∈ Nq]

T satisfy

[

A C
CT B

][

d
d′

]

=

[

y
y′

]

. (21)

The above linear system generally cost O((m+q)3) number of multiplications to solve by using the
Cholesky factorization. With the known Cholesky factorization of µIm +K[x], we propose a method
to solve system (21) with reduction in the computational costs.

To solve system (21), we first find the m×q matrix M that satisfies

AM = C. (22)

Note that
[

A 0
0 B−CT M

]

=

[

Im 0
−CT A−1 Iq

][

A C
CT B

][

Im −A−1C
0 Iq

]

.

Thus B−CT M is symmetric and strictly positive definite. Consequently, we can solve the following
system for a unique vector η ∈ R

q

(B−CT M)η = CT c−y′ (23)

by using again the Cholesky factorization.

Proposition 2 The solution d, d′ for linear system (21) is given as

d := c+Mη, d′ := −η. (24)

Moreover, if N (d,d′) denotes the number of multiplications required for computing both d and d′,
then

N (d,d′) = O(qm2 +q2m+q3).
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Proof The first statement of this theorem follows by a direct computation using (10), (21), (22) and
(23).

We now count the number of multiplications used for computing both d and d′. Computing
matrix M by solving the matrix Equation (22) needs O(qm2) number of multiplications. Finding
η from the system (23) takes up O(q2m + q3) number of multiplications. Computing d and d′ by
using (24) costs O(qm) number of multiplications. Summing all these costs up proves the second
part of this proposition.

We remark that under the assumption that q � m, we only need additional O(m2) number of
multiplications to solve system (21) based on the known Cholesky factorization of matrix A from
solving (10). Since (22) is independent of outputs, making use of this feature, if the inputs x, x′

remain unchanged in different applications, the computational costs can be further reduced as we
have mentioned at the end of the last subsection.

2.3 The General Case

We now return to the general case where we have both a refinement kernel G for K such that HG−K

is p-dimensional, and an expanded training data z∪ z′. To make use of the computational result in
solving (10) to compute the minimizer of (11), we divide the updating process into two steps. In
step one, we fix the training data to be z and refine the kernel K to G. We then solve the system
using the method described in Section 2.1. In step two, we fix the kernel to be G and expand z
to z∪ z′ and solve the problem described in Section 2.2 with K replaced by G. Under reasonable
hypotheses, the number of multiplications is O(m2). We state this result in the next proposition.

Proposition 3 If p � m and q � m then the number of multiplications required for computing the
minimizer of (11) using the algorithm described above is given by O(m2).

The refinement kernel learning method allows us to reduce the number of multiplications from
O(m3) to O(m2) by using the known Cholesky factorization of the matrix corresponding to the old
kernel K.

Here we focus on the computational complexity of the refinement kernel method for the regu-
larized learning algorithm in order to motivate the study of the refinement kernel. Although con-
vergence and consistency of the refinement kernel method, and extensions of the method to other
learning algorithms such as support vector machines are important, they are not the focus of this
paper. They will be addressed in different occasions. The rest of this paper will be devoted to
theoretical analysis of refinement kernels such as characterizations, existence and constructions.

3. Characterizations of Refinement Kernels

We present in this section several characterizations of refinement kernels. We begin with a review
of a well-known characterization from Aronszajn (1950).

Lemma 4 Let K,G be kernels on X. Then G is a refinement kernel for K if and only if L := G−K
is a kernel on X and HK ∩HL = {0}. If G is a refinement kernel for K then HL is the orthogonal
complement of HK in HG, and G is a nontrivial refinement kernel for K if and only if L is not the
zero kernel.

114



REFINEMENT OF REPRODUCING KERNELS

Proof This is a direct consequence of Property 7 on page 345 and the theorem on page 353 of
Aronszajn (1950).

In general, the conditions in the characterization presented in Lemma 4 are not easy to verify.
Aiming at a characterization convenient for use, we next characterize refinement kernels in terms of
feature maps for kernels, since most kernels are identified with their feature maps. A feature map
for a kernel K on X is a mapping Φ from X to a Hilbert space W over C such that

K(x,y) = (Φ(x),Φ(y))W , x,y ∈ X . (25)

The Hilbert space W is called a feature space for K. It is well-known that K is a kernel on X if
and only if it can be represented as (25) for some mapping Φ : X → W (Schölkopf and Smola,
2002). We denote by Φ(X) the image of X under the mapping Φ, by spanΦ(X) the closure of the
linear span of Φ(X) in W , and by PΦ the orthogonal projection from W to spanΦ(X). There is
a well-known characterization (Micchelli and Pontil, 2005a; Opfer, 2006; Schölkopf and Smola,
2002; Shawe-Taylor and Cristianini, 2004; Xu and Zhang, 2007) of the RKHS HK of K in terms of
its feature maps.

Lemma 5 If K is a kernel on X represented as (25) by a feature map Φ from X to W , then HK =
{(Φ(·),u)W : u ∈ W } with the inner product

((Φ(·),u)W ,(Φ(·),v)W )HK
= (PΦv,PΦu)W , u,v ∈ W . (26)

We shall always assume in the application of Lemma 5 that

spanΦ(X) = W (27)

since (25) remains valid if we replace W there with spanΦ(X). Convenience which results from
this assumption is that PΦ in (26) would become the identity operator on W .

We next state a characterization of refinement kernels in terms of their feature maps. Recall that
we call a linear operator T from Hilbert space W1 to Hilbert space W2 isometric if for each u ∈ W1,
‖Tu‖W2

= ‖u‖W1
. A linear operator T from Hilbert space W1 to Hilbert space W2 is called an

isomorphism if it is a bijective isometric linear mapping from W1 to W2. If there is an isomorphism
from W1 to W2, we say that W1 is isomorphic to W2.

Theorem 6 Suppose that K is a kernel on X with a feature map Φ : X → W satisfying (27) and G
is a kernel on X with a feature map Φ′ : X → W ′ that satisfies

spanΦ′(X) = W ′.

Then G is a refinement kernel for K if and only if there exists a bounded linear operator T : W ′ →W
such that

T Φ′(x) = Φ(x), x ∈ X (28)

and the adjoint operator T ∗ : W → W ′ of T is isometric. Moreover, G is a nontrivial refinement
kernel for K if and only if T in (28) is not injective.
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Proof The proof for the case when W ′ = W and G is given by (8) can be found in Xu and Zhang
(2007) (see Theorems 6, 7 therein). Based on Lemma 5, the arguments used there can be extended
in a direct way to prove the general result described here.

We now explain how the general context of Theorem 6 allows us to refine kernels with a finite
dimensional feature space while the refinement approach (8) does not. Suppose that K has the
feature map representation (25) and G is given by (8). Then it can be seen that G has the form

G(x,y) = (λ1/2Φ(γ(x)),λ1/2Φ(γ(y)))W , x,y ∈ X

with the feature space W . By Theorem 6, G is a nontrivial refinement kernel for K if and only if
there exists a bounded linear operator T : W → W such that

λ1/2T Φ(γ(x)) = Φ(x), x ∈ X ,

its adjoint T ∗ is isometric from W to W , and T is not injective. By the latter two conditions, W
must be isomorphic to a proper subspace of itself. This is impossible if W is finite dimensional.
Therefore, we can not get a nontrivial refinement kernel by (8) if W is of finite dimension. On the
other hand, by considering a general refinement process

G(x,y) = (Φ′(x),Φ′(y))W ′ , x,y ∈ X ,

we have the freedom to choose W ′ different from W . The fact that W is finite dimensional actually
makes it easier to find W ′ such that W is isomorphic to a proper subspace of W ′. Examples of
nontrivial refinement kernels for kernels with a finite dimensional feature space will be provided in
Section 6.

Our next task is to present a characterization of refinement kernels in terms of their feature
spaces defined by finite positive Borel measures. This result is crucial for our discussion later on
translation invariant kernels and Hilbert-Schmidt kernels. Suppose that Y is a topological space and
denote by B(Y ) the set of finite positive Borel measures on Y . For each ρ ∈ B(Y ) and p ∈ [1,+∞)
we let Lp(Y,ρ) denote the space of Borel measurable functions f on Y such that

Z

Y
| f (ξ)|pdρ(ξ) < +∞.

In particular, L2(Y,ρ) is a Hilbert space with the inner product

( f ,g)L2(Y,ρ) :=
Z

Y
f (ξ)g(ξ)dρ(ξ), f ,g ∈ L2(Y,ρ).

For two measures ρ1,ρ2 ∈B(Y ), ρ1 is said to be absolutely continuous with respect to ρ2, denoted as
ρ1 � ρ2, if for each Borel subset V ⊆Y with ρ2(V ) = 0, we have ρ1(V ) = 0. By the Radon-Nikodym
theorem (see, for example, Rudin, 1987, page 121), if ρ1 � ρ2 then there exists a nonnegative
h ∈ L1(Y,ρ2) such that there holds for each Borel subset V ⊆ Y

ρ1(V ) =
Z

Y
h(ξ)χV (ξ)dρ2(ξ),

where χV denotes the characteristic function of V . We sometimes write the function h satisfying the
above equation as dρ1/dρ2.
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For µ,ν ∈ B(Y ), we let

ω :=
µ+ν

2
+

|µ−ν|
2

,

where |µ− ν| denotes the total variation measure of µ− ν. For the definition and properties of
total variations of signed measures, see Rudin (1987, page 116). We remark that |µ− ν| ∈ B(Y )
and µ(V ),ν(V ) ≤ ω(V ) for all Borel subsets V of Y . It follows that µ,ν are absolutely continuous
with respect to ω. We assume that a function φ : X ×Y → C has the property that for each x ∈ X ,
φ(x, ·) ∈ L2(Y,ω) and

span{φ(x, ·) : x ∈ X} = L2(Y,ω). (29)

Lemma 7 If φ : X ×Y →C satisfies φ(x, ·)∈ L2(Y,ω) for each x ∈ X and condition (29), then φ(x, ·)
lies in L2(Y,µ) and L2(Y,ν) for all x ∈ X, and span{φ(x, ·) : x ∈ X} is dense in L2(Y,µ) and L2(Y,ν).

Proof We present only the case for µ since the case for ν can be similarly handled. Since µ � ω,
we may introduce a function hµ := dµ/dω. By the fact that µ(V ) ≤ ω(V ) for each Borel V ⊆ Y , hµ

is less than or equal to 1 almost everywhere on Y with respect to ω. For x ∈ X , the assumption that
φ(x, ·) ∈ L2(Y,ω) implies that it is Borel measurable. We also verify that

Z

Y
|φ(x,ξ)|2dµ(ξ) =

Z

Y
|φ(x,ξ)|2hu(ξ)dω(ξ) ≤

Z

Y
|φ(x,ξ)|2dω(ξ) < +∞.

This yields that φ(x, ·) ∈ L2(Y,µ) for all x ∈ X .
Now we assume that f ∈ L2(Y,µ) is orthogonal to φ(x, ·) for each x ∈ X , that is,

Z

Y
φ(x,ξ) f (ξ)dµ(ξ) = 0, x ∈ X .

In the above equation, we substitute dµ(ξ) = hµ(ξ)dω(ξ) to obtain that
Z

Y
φ(x,ξ) f (ξ)hµ(ξ)dω(ξ) = 0, x ∈ X . (30)

The function f hµ belongs to L2(Y,ω) since hµ is less than or equal to 1 almost everywhere on Y
with respect to ω. Thus, by condition (29), Equation (30) implies that f hµ = 0 with respect to ω.
We then observe for each Borel subset V ⊆ Y that

Z

V
| f (ξ)|dµ(ξ) =

Z

V
| f (ξ)|hµ(ξ)dω(ξ) = 0.

This ensures that f vanishes almost everywhere on Y with respect to µ. We conclude that span{φ(x, ·) :
x ∈ X} is dense in L2(Y,µ).

By virtue of the above lemma, we introduce two kernels Kµ,Kν by setting for all x,y ∈ X

Kµ(x,y) := (φ(x, ·),φ(y, ·))L2(Y,µ), Kν(x,y) := (φ(x, ·),φ(y, ·))L2(Y,ν). (31)

By Lemmas 5 and 7, functions in Hµ := HKµ have the form

fφ,µ(x) := (φ(x, ·), f )L2(Y,µ), x ∈ X , f ∈ L2(Y,µ)
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and the inner product on Hµ is given by

( fφ,µ,gφ,µ)Hµ
= (g, f )L2(Y,µ), f ,g ∈ L2(Y,µ).

Similar results hold for Hν := HKν .
We shall characterize the relation Hµ � Hν in terms of a relation of the measures µ,ν. To this

end, we write µ � ν to indicate that µ � ν, and dµ/dν equals 0 or 1 almost everywhere with respect
to ν, that is,

ν
(

Y \
{

x ∈ Y :
dµ
dν

(x) = 0 or 1

})

= 0.

Note that µ � ν if and only if there exists a Borel subset E ⊆ Y such that µ(Y \E) = 0 and for each
Borel subset V ⊆ E, µ(V ) = ν(V ).

Theorem 8 Suppose that φ : X ×Y →C satisfies (29) and Kµ,Kν are defined by (31). Then Hµ �Hν
if and only if µ � ν. If µ � ν then Kν is a nontrivial refinement kernel for Kµ if and only if

ν(Y )−µ(Y ) > 0.

Proof Suppose that Hµ � Hν. Hence, by Lemma 5, for each f ∈ L2(Y,µ) there exists some g ∈
L2(Y,ν) such that

Z

Y
φ(x,ξ) f (ξ)dµ(ξ) =

Z

Y
φ(x,ξ)g(ξ)dν(ξ) (32)

and
Z

Y
| f (ξ)|2dµ(ξ) =

Z

Y
|g(ξ)|2dν(ξ). (33)

With the derivatives hu := dµ/dω and hν := dν/dω, Equation (32) is rewritten as
Z

Y
φ(x,ξ) f (ξ)hµ(ξ)dω(ξ) =

Z

Y
φ(x,ξ)g(ξ)hν(ξ)dω(ξ).

This together with the density condition (29) implies that f hµ = ghν almost everywhere on Y with
respect to ω. Thus for each f ∈ L2(Y,µ) there exists some g ∈ L2(Y,ν) satisfying for all Borel V ⊆Y
that

Z

V
f (ξ)dµ(ξ) =

Z

V
f (ξ)hµ(ξ)dω(ξ) =

Z

V
g(ξ)hν(ξ)dω(ξ) =

Z

V
g(ξ)dν(ξ). (34)

We claim that µ � ν. We assume to the contrary that there exists a Borel set V ⊆ Y for which
ν(V ) = 0 and µ(V ) > 0. Letting f = χV in (34) yields µ(V ) = 0, a contradiction. Set h := dµ/dν.
By (34), the function g satisfying (32) and (33) can be taken as g := f h. With this choice, we obtain
from (33) for each f ∈ L2(Y,µ) that

Z

Y
| f (ξ)|2h(ξ)dν(ξ) =

Z

Y
| f (ξ)|2h2(ξ)dν(ξ).

The above equation implies that h equals 1 or 0 almost everywhere on Y with respect to ν. Conse-
quently, µ � ν.

Conversely, we suppose that µ � ν and proceed the proof by using Theorem 6. To this end, we
set E := {x ∈ Y : dµ

dν(x) = 1} and introduce a linear operator T : L2(Y,ν) → L2(Y,µ) by

T f := f χE , f ∈ L2(Y,ν).
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By the hypothesis µ � ν, we have that µ(Y \E) = 0. This guarantees that for each x ∈ X , T φ(x, ·) =
φ(x, ·) in L2(Y,µ). Note that for g ∈ L2(Y,µ) and f ∈ L2(Y,ν),

Z

Y
g(ξ)(T f )(ξ)dµ(ξ) =

Z

Y
g(ξ) f (ξ)χE(ξ)dµ(ξ) =

Z

E
g(ξ) f (ξ)dµ(ξ)

=
Z

E
g(ξ) f (ξ)dν(ξ) =

Z

Y
g(ξ)χE(ξ) f (ξ)dν(ξ).

This ensures that the adjoint T ∗ : L2(Y,µ) → L2(Y,ν) of T is given by T ∗g = gχE , for g ∈ L2(Y,µ).
Moreover, it can be verified that

Z

Y
|(T ∗g)(ξ)|2dν(ξ) =

Z

Y
|g(ξ)χE(ξ)|2dν(ξ) =

Z

E
|g(ξ)|2dν(ξ).

Since dµ/dν = 1 on E and µ(Y \E) = 0, we get that

Z

E
|g(ξ)|2dν(ξ) =

Z

E
|g(ξ)|2 dµ

dν
(ξ)dν(ξ) =

Z

E
|g(ξ)|2dµ(ξ) =

Z

Y
|g(ξ)|2dµ(ξ).

Combining the above two equations yields that T ∗ is isometric. By Theorem 6, Kν is a refinement
kernel for Kµ.

If µ � ν then Kν is a nontrivial refinement kernel for Kµ if and only if the operator T is not
injective, that is, there exists f ∈ L2(Y,ν) such that

‖ f‖L2(Y,ν) > 0 but ‖T f‖L2(Y,µ) = 0.

This is equivalent to that
Z

Y
| f (ξ)|2dν(ξ) > 0 but

Z

E
| f (ξ)|2dν(ξ) = 0.

Clearly, such an f exists if and only if ν(Y \E) > 0. Because

ν(Y )−µ(Y ) = ν(Y )−µ(E) = ν(Y )−ν(E) = ν(Y \E),

we conclude the second statement of the theorem.

4. Existence of Refinement Kernels

With characterizations in Lemma 4 and Theorem 6, we shall consider existence of nontrivial refine-
ment kernels and properties of kernels preserved by the refinement process. We let C

X denote the
space of all the complex-valued functions on X .

Lemma 9 A kernel K on X does not have a nontrivial refinement kernel if and only if HK = C
X .

Proof If HK = C
X then since for all kernels G on X , HG ⊆ C

X , K does not have a nontrivial
refinement kernel. Conversely, if HK 6= C

X then we choose an arbitrary function ϕ ∈ C
X \HK and

define the kernel
G(x,y) := K(x,y)+ϕ(x)ϕ(y), x,y ∈ X .
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It is clear that L := G − K is a kernel on X since it has a feature map ϕ : X → C. Moreover,
HL = span{ϕ}, which does not have a nontrivial intersection with HK . By Lemma 4, G is a non-
trivial refinement kernel for K.

According to Lemma 9, one may expect that every kernel has a nontrivial refinement kernel
since in general it should be impossible to impose an inner product on C

X so that it becomes a
RKHS. Our next two results confirm this expectation.

Proposition 10 If the input space X has a finite cardinality, then a kernel K on X has a nontrivial
refinement kernel if and only if K[X ] is singular.

Proof By Lemma 9, it suffices to show that HK = C
X if and only if the matrix K[X ] is invertible.

Suppose that the cardinality of X is n and X = {x j : j ∈ Nn}. Assume that K[X ] is invertible. Then
for each function ϕ ∈ C

X there exists a unique vector [c j : j ∈ Nn] ∈ C
n such that

∑
k∈Nn

ckK(x j,xk) = ϕ(x j), j ∈ Nn,

which implies that ϕ = ∑k∈Nn
ckK(·,xk). By (4), we have ϕ ∈ HK , thereby proving that HK = C

X .
Conversely, suppose that HK = C

X . For each j ∈Nn, we introduce a function ϕ j ∈C
X by setting for

each l ∈Nn, ϕ j(xl) := δ j,l , where δ denotes the Kronecker delta function. By (4) and the assumption
that HK = C

X , there exists a vector [c j,k : k ∈ Nn] ∈ C
n such that

∑
k∈Nn

c j,kK(xl,xk) = ϕ j(xl) = δ j,l , j, l ∈ Nn.

That is, [c j,k : j,k ∈ Nn] is the inverse of the transpose of K[X ]. Therefore, the matrix K[X ] is invert-
ible. The proof is complete.

Theorem 11 If the input space X has an infinite cardinality, then every kernel on it has a nontrivial
refinement kernel.

Proof According to Lemma 9, it suffices to show that there does not exist a kernel K on X such that
HK contains every function on X . We prove this by contradiction. Assume that there were a kernel K
on X such that HK = C

X . Since X has a countable subset of distinct points xn, n ∈ N, we may define
a fixed function f ∈ C

X by setting f (x j) := j for each j ∈ N and f (x) := 0 for x ∈ X \{x j : j ∈ N}.
By (3), we would have for each n ∈ N that

n = | f (xn)| = |( f ,K(·,xn))HK
| ≤ ‖ f‖HK

‖K(·,xn)‖HK
. (35)

Note that
‖K(·,xn)‖HK

=
√

K(xn,xn), n ∈ N. (36)

Combining (35) and (36) yields that

lim
n→∞

K(xn,xn) = +∞. (37)
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However, again by (3) for the function g ∈ C
X defined by g(x) := K(x,x), x ∈ X , we observe for

each n ∈ N that

K(xn,xn) = |g(xn)| = |(g,K(·,xn))HK
|

≤ ‖g‖HK
‖K(·,xn)‖HK

= ‖g‖HK

√

K(xn,xn).

This implies that
K(xn,xn) ≤ ‖g‖2

HK
, n ∈ N,

which contradicts (37). The contradiction proves the desired result.

In the rest of this section, we show that the refinement process preserves the strictly positive
definiteness, the continuity and the universality of the original kernel. A kernel K on X is said to
be strictly positive definite if for any finite inputs x := {x j : j ∈ Nn} ⊆ X the matrix K[x] defined by
(1) is strictly positive definite. Strictly positive definite kernels are important to the minimum norm
interpolation in RKHS.

Proposition 12 If K is a strictly positive definite kernel on X and G is a refinement kernel for K,
then G is also strictly positive definite.

Proof By Lemma 4, if G is a refinement kernel for K then G−K remains a kernel on X . As a
consequence, we have for all x := {x j : j ∈ Nn} ⊆ X that

G[x] = K[x]+ (G−L)[x].

Since K[x] is strictly positive definite and (G−L)[x] is positive semi-definite, G[x] is strictly positive
definite.

The next kernel property that we consider is continuity. Suppose that the input space X is a
topological space. We call a kernel on X a continuous kernel if it is at the same time a continuous
function on X ×X . Given a continuous kernel K on X , can we find a nontrivial refinement kernel
G for K that is also continuous? Assuming that X is a metric space with an infinite cardinality,
the answer to this question is positive. Recall the Tietze extension theorem in topology (see, for
example, Munkres, 2000, page 219), which states that a continuous function defined on a closed
subspace of X can be extended to a continuous function on X .

Theorem 13 If X is a metric space with an infinite cardinality, then every continuous kernel on X
has a nontrivial continuous refinement kernel.

Proof If the topology on X is discrete then any function on X is continuous. In this case, the result
holds true by Theorem 11.

Now we suppose that X has an accumulation point x0. In other words, there exists a sequence
of distinct points xn ∈ X , n ∈ N that converges to x0 and none of the points is the same as x0. By the
arguments used in the proof of Lemma 9, it suffices to prove that there is not a continuous kernel K
on X for which HK contains all the continuous functions on X . Suppose to the contrary that there is
such a kernel K. Then we introduce a sequence of nonnegative numbers by setting

cn := ‖K(·,xn)−K(·,xn+1)‖HK
, n ∈ N.
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For each n ∈ N, we define a function ϕn on the closed set {xn,xn+1} as ϕn(xn) := 1, ϕn(xn+1) := 0.
The function ϕn is continuous on {xn,xn+1}. Therefore, by the Tietze extension theorem, it can be
extended to a continuous function on X . As a consequence, for each n ∈ N, cn is positive since
otherwise we would get by (3) for each f ∈C(X) ⊆ HK that f (xn) = f (xn+1). By (5), we have that

cn =
√

K(xn,xn)+K(xn+1,xn+1)−K(xn,xn+1)−K(xn+1,xn), n ∈ N.

Since K is continuous and xn converges to x0, cn converges to zero as n tends to infinity.
Set Z := {xn : n∈N}∪{x0}. Then Z is a closed subspace of X . We define a continuous function

f on Z by

f (x) :=

{ √
c2n−1, x = x2n−1, n ∈ N,

0, otherwise.

By the Tietze extension theorem, f can be extended to a continuous function on X , which we still
denote by f . By the assumption that C(X) ⊆ HK , f ∈ HK . We now obtain by the reproducing
property (3) for each n ∈ N that

√
c2n−1 = | f (x2n−1)− f (x2n)| = |( f ,K(·,x2n−1)−K(·,x2n))HK

|
≤ ‖ f‖HK

‖K(·,x2n−1)−K(·,x2n)‖HK
= ‖ f‖HK

c2n−1.

Thus we get that

‖ f‖HK
≥ 1√

c2n−1
, n ∈ N,

which contradicts the fact that cn converges to zero. This contradiction implies that HK can not
contain the space C(X).

The result in Theorem 13 remains valid if we only assume that X is a normal topological space
(see, Munkres, 2000, page 195).

The last kernel property with which we are concerned is universality (Micchelli et al., 2003,
2006; Steinwart, 2001). Suppose that X is a locally compact Hausdorff space. We say that a function
K : X ×X → C is a universal kernel if it is a continuous kernel on X and for all compact subsets
Z ⊆ X , span{K(·,x) : x ∈ Z} is dense in the Banach space C(Z) of the continuous functions on Z.
Universal kernels were extensively studied in Micchelli et al. (2006). They are those kernels that
can be used to approximate any continuous target function uniformly on a compact input space.

Proposition 14 If K is a universal kernel on X, then any continuous refinement kernel for K is
universal.

Proof Suppose that K is a universal kernel on X and G is a continuous refinement kernel for K.
Assume that K and G have feature maps Φ : X → W and Φ′ : X → W ′, respectively. By Theorem 4
in Micchelli et al. (2006), G is universal if and only if for all compact Z ⊆ X , span{(Φ′(·),u′)W ′ :
u′ ∈ W ′} is dense in C(Z). Let Z be a compact subset of X . Since K is universal, Theorem 4 in
Micchelli et al. (2006) ensures that

span{(Φ(·),u)W : u ∈ W } = C(Z). (38)
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By Theorem 6, there exists a bounded linear operator T : W ′ → W that satisfies (28). We hence get
for each u ∈ W that

(Φ(·),u)W = (T Φ′(·),u)W = (Φ′(·),T ∗u)W ′ .

Therefore, there holds

{(Φ(·),u)W : u ∈ W } ⊆ {(Φ′(·),u′)W ′ : u′ ∈ W ′}.

The above inclusion together with (38) proves that G is also universal.

By Theorems 11 and 13, it is reasonable to conjecture that there exist nontrivial refinement
kernels for most kernels used in machine learning. To verify this conjecture and present concrete
examples, we shall discuss refinement kernels for translation invariant kernels and Hilbert-Schmidt
kernels in the next two sections.

5. Refinement of Translation Invariant Kernels

In this section, we specify our input space as R
d , d ∈ N and investigate refinement kernels for

translation invariant kernels on R
d . The presentation of this section is organized into six subsections.

We discuss in the first subsection the notion of translation invariant kernels. In Section 5.2 we
establish various characterizations of refinement for general translation invariant kernels. We then
consider several types of specific translation invariant kernels. Specifically, refinement of B-spline
kernels, radial kernels and periodic kernels is studied in Sections 5.3, 5.4 and 5.5, respectively.
Finally in Section 5.6, we deal with refinement through an expanding matrix.

5.1 Translation Invariant Kernels

A kernel K on R
d is said to be translation invariant if for all a ∈ R

d ,

K(x−a,y−a) = K(x,y), x,y ∈ R
d . (39)

For each a ∈ R
d we introduce the translation operator τa by setting for all functions f on R

d

τa f := f (·−a).

It can be seen by (3) and (39) that a translation invariant kernel K on R
d satisfies for all a,b,x,y∈R

d

that
τaK(·,x) = K(·−a,x) = K(·,x+a) (40)

and
(τaK(·,y),τbK(·,x))HK

= (K(·,y+a),K(·,x+b))HK
= K(x+b,y+a). (41)

Recall that B(Rd) denotes the set of all the finite positive Borel measures on R
d . It was estab-

lished by Bochner in Bochner (1959) that K is a continuous translation invariant kernel on R
d if and

only if there exists a µ ∈ B(Rd) such that

K(x,y) =
Z

Rd
ei(x−y,ξ)dµ(ξ), x,y ∈ R

d ,
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where (·, ·) denotes the standard inner product on R
d . This result is referred to as the Bochner

theorem. We present below a characterization of translation invariant kernels in terms of their
RKHS. To this end, we call a linear operator from a Hilbert space W to itself an isomorphism on
W if it is isomorphic from W to W .

Proposition 15 A kernel K on R
d is translation invariant if and only if for each a ∈ R

d , τa is an
isomorphism on HK .

Proof Suppose that K is a translation invariant kernel on R
d . Set a ∈ R

d , f ∈ HK and H :=
span{K(·,x) : x ∈ R

d}. By (4), H is a dense subspace of HK . Thus there exists a sequence of
functions fn ∈ H , n ∈ N that converges to f in HK . By (40) and (41), τa fn ∈ H and ‖τa fn‖HK

=
‖ fn‖HK

for each n ∈ N. The latter implies that τa fn form a Cauchy sequence in HK . Let g be their
limit in HK . We have that ‖g‖HK

= ‖ f‖HK
. To prove that τa is isometric on HK , it remains to prove

that g = τa f . To this end, we verify for each x ∈ R
d by (3), (40) and (41) that

g(x) = (g,K(·,x))HK
= lim

n→∞
(τa fn,K(·,x))HK

= lim
n→∞

( fn,K(·,x−a))HK
= ( f ,K(·,x−a))HK

= f (x−a).

Similarly, it can be proved that τ−a fn converges to τ−a f , implying that τ−a f ∈ HK . Since τaτ−a f =
f , τa is surjective from HK to HK . This together with τa being isometric shows that it is an isomor-
phism on HK .

Conversely, suppose that for each a ∈ R
d , τa is an isomorphism on HK . This implies that the

adjoint operator τ∗a of τa is identified with τ−a (see, Conway, 1990, page 32). It follows for each
x,y ∈ R

d that τaK(·,y),τ−aK(·,x) ∈ HK and

(τaK(·,y),K(·,x))HK
= (K(·,y),τ−aK(·,x))HK

= (K(·,y),K(·+a,x))HK
= K(x,y+a).

On the other hand, we have by (5) that

(τaK(·,y),K(·,x))HK
= (K(·−a,y),K(·,x))HK

= K(x−a,y).

Combining the above two equations, we obtain that K(x− a,y) = K(x,y + a) for all a,x,y ∈ R
d .

Replacing y with y−a yields (39).

5.2 Characterizations

Suppose that K is a continuous translation invariant kernel on R
d . We are interested in constructing

refinement kernels for K that are continuous and translation invariant as well. Specifically, with a
different measure µ′ ∈ B(Rd) we introduce a new kernel

G(x,y) :=
Z

Rd
ei(x−y,ξ)dµ′(ξ), x,y ∈ R

d

and characterize G being a refinement kernel for K in terms of a relation between µ and µ′.

124



REFINEMENT OF REPRODUCING KERNELS

Theorem 16 There holds HK � HG if and only if µ � µ′. Moreover, if µ � µ′ then G is a nontrivial
refinement kernel for K if and only if

µ′(Rd)−µ(Rd) > 0.

Proof We prove this result by employing Theorem 8 with Y := R
d . To this end, we introduce a

mapping φ : R
d ×R

d → C by setting φ(x,ξ) := ei(x,ξ), for x,ξ ∈ R
d . One can see that K can be

represented by

K(x,y) =
Z

Rd
φ(x,ξ)φ(y,ξ)dµ(ξ), x,y ∈ R

d

and likewise
G(x,y) =

Z

Rd
φ(x,ξ)φ(y,ξ)dµ′(ξ), x,y ∈ R

d .

Note also that for any ω ∈ B(Rd), span{φ(x, ·) : x ∈ R
d} is dense in L2(Rd ,ω). Thus, the result of

this theorem is an immediate consequence of Theorem 8.

We next characterize the inclusion HK �HG by using the structure of HK and HG. Let us prepare
for this analysis by recalling some basic facts about Borel measures on R

d . Suppose ν,ω ∈ B(Rd).
If there is a Borel subset V ⊆ R

d such that for each Borel U ⊆ R
d , ν(U) = ν(U ∩V ), we say that

ν is concentrated on V . We call ν a singular measure with respect to ω if there exist disjoint Borel
subsets U,V of R

d such that ω is concentrated on U and ν is concentrated on V . The Lebesgue
decomposition theorem (see, for example, Rudin, 1987, page 121) asserts that for two measures
ν,ω ∈ B(Rd), there exist two unique measures νc,νs ∈ B(Rd) with νc being absolutely continuous
with respect to ω and νs being singular with respect to ω such that ν has the Lebesgue decomposition
with respect to ω

ν = νc +νs.

The Lebesgue decomposition of measures with respect to the Lebesgue measure leads to a
decomposition of the corresponding continuous translation invariant kernel. Specifically, for a con-
tinuous translation invariant kernel K on R

d , we have the Lebesgue decomposition

K = Kc +Ks, (42)

where
Kc(x,y) =

Z

Rd
ei(x−y,ξ)dµc(ξ), Ks(x,y) =

Z

Rd
ei(x−y,ξ)dµs(ξ), x,y ∈ R

d .

Likewise, for a continuous translation invariant kernel G on R
d , we also have its Lebesgue decom-

position
G = Gc +Gs, (43)

where
Gc(x,y) =

Z

Rd
ei(x−y,ξ)dµ′c(ξ), Gs(x,y) =

Z

Rd
ei(x−y,ξ)dµ′s(ξ), x,y ∈ R

d .

In the above equations, the measures µc,µ′c are absolutely continuous with respect to the Lebesgue
measure and µs,µ′s are singular with respect to the Lebesgue measure. By the Radon-Nikodym
theorem, there exist nonnegative functions k,g ∈ L1(Rd) such that

Kc(x,y) =
Z

Rd
ei(x−y,ξ)k(ξ)dξ, Gc(x,y) =

Z

Rd
ei(x−y,ξ)g(ξ)dξ, x,y ∈ R

d . (44)
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The next task is to characterize HK � HG in terms of k,g,µs,µ′s. We start with a simple obser-
vation. We associate with each ψ ∈ L1(Rd) a finite Borel measure µψ on R

d defined on each Borel
subset V ⊆ R

d by

µψ(V ) :=
Z

V
ψ(ξ)dξ.

Lemma 17 If L is a continuous translation invariant kernel on R
d with a Lebesgue decomposition

L = Lc +Ls, then HL is equal to the orthogonal direct sum of HLc and HLs , namely, HL = HLc

L

HLs .

Proof By Lemma 4, it suffices to show that HLc ∩HLs = {0}. We assume that

Lc(x,y) =
Z

Rd
ei(x−y,ξ)l(ξ)dξ, Ls(x,y) =

Z

Rd
ei(x−y,ξ)dρ(ξ), x,y ∈ R

d ,

where l ∈ L1(Rd) is nonnegative and ρ ∈ B(Rd) is singular with respect to the Lebesgue measure.
Suppose that f ∈ HLc ∩HLs . By Lemma 5, there exists g ∈ L2(Rd ,µl) and h ∈ L2(Rd ,ρ) such that

f (x) =
Z

Rd
ei(x,ξ)g(ξ)l(ξ)dξ =

Z

Rd
ei(x,ξ)h(ξ)dρ(ξ), x ∈ R

d .

Define the Borel measure µh,ρ on each Borel set V ⊆ R
d by

µh,ρ(V ) :=
Z

V
h(ξ)dρ(ξ).

By the uniqueness of Fourier transforms (Grafakos, 2004), the two Borel measures µgl , µh,ρ are
identical. However, µgl is absolutely continuous with respect to the Lebesgue measure while µh,ρ
is singular with respect to the Lebesgue measure. Therefore, we must have µgl = µh,ρ = 0. Conse-
quently, f = 0. The proof is complete.

The next result allows us to identify the inclusion HK � HG with two independent inclusions
HKc � HGc and HKs � HGs .

Proposition 18 Suppose that K and G are continuous translation invariant kernels on R
d defined

by (42) and (43). Then HK � HG if and only if HKc � HGc and HKs � HGs .

Proof Suppose that HKc � HGc and HKs � HGs . Let f be an arbitrary function in HK . By Lemma
17, there exists fc ∈ HKc and fs ∈ HKs such that f = fc + fs and

‖ f‖2
HK

= ‖ fc‖2
HKc

+‖ fs‖2
HKs

.

By the assumption, fc ∈ HGc , fs ∈ HGs and

‖ fc‖HGc
= ‖ fc‖HKc

, ‖ fs‖HGs
= ‖ fs‖HKs

.

Lemma 17 asserts that HG = HGc

L

HGs . As a result, we get that f ∈ HG and

‖ f‖2
HG

= ‖ fc‖2
HGc

+‖ fs‖2
HGs

= ‖ fc‖2
HKc

+‖ fs‖2
HKs

= ‖ f‖2
HK

.
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Therefore, we have proved that HK � HG.
Conversely, we assume that G is a refinement kernel for K. Suppose that f ∈ HKc . By Lemma

17, f ∈ HK and ‖ f‖HK
= ‖ f‖HKc

. By the assumption and Lemma 17, there exist two functions
gc ∈ HGc and gs ∈ HGs such that f = gc +gs and

‖ f‖2
HK

= ‖ f‖2
HG

= ‖gc‖2
HGc

+‖gs‖2
HGs

.

To obtain that f ∈ HGc and ‖ f‖HKc
= ‖ f‖HGc

, it suffices to show that gs = 0. Arguments similar to
those used in the proof of Lemma 17 serve this purpose. Since f is an arbitrary function in HKc , we
obtain that HKc � HGc . Likewise, one can show that HKs � HGs . The proof is thus complete.

We next consider HKc � HGc . For a nonnegative function f on R
d , we let Ω f := {x ∈ R

d :
f (x) > 0}. We write k � g to mean that g = k almost everywhere on Ωk with respect to the Lebesgue
measure.

Theorem 19 There holds HKc � HGc if and only if k � g. Moreover, if k � g then Gc is a nontrivial
refinement kernel for Kc if and only if

Z

Rd
(g(ξ)− k(ξ))dξ > 0. (45)

Proof The proof for this result when Gc has the form λKc(2·,2·) for some positive constant λ was
provided in Xu and Zhang (2007), Theorem 23. Arguments similar to those in Xu and Zhang (2007)
can prove the general result described here. We give a different proof below based on Theorem 16.

By Theorem 16, HKc � HGc if and only if µk � µg and dµk/dµg equals 1 almost everywhere on
Ωk and equals 0 almost everywhere elsewhere. Therefore, HKc � HGc if and only if for each Borel
V ⊆ Ωk

Z

V
k(ξ)dξ =

Z

V
g(ξ)dξ.

Clearly, the above equation holds for all Borel V ⊆ Ωk if and only if k � g. The second statement of
the result follows from the observation that the right hand side of (45) is equal to µg(R

d)−µk(R
d).

We are ready to present a characterization of HK � HG in terms of conditions on k,g,µs,µ′s.

Theorem 20 Let K and G be continuous translation invariant kernels on R
d defined by (42) and

(43). Then HK � HG if and only if k � g and µs � µ′s. The refinement kernel G is nontrivial for K if
and only if there holds (45) or µ′s(R

d)−µs(R
d) > 0.

Proof The result of this theorem follows directly from Proposition 18 and Theorems 19, 16.

The next result is a direct consequence of Theorem 19. Suppose that k ∈ L1(Rd) is positive
almost everywhere on R

d and define

K(x,y) :=
Z

Rd
ei(x−y,ξ)k(ξ)dξ, x,y ∈ R

d . (46)

Corollary 21 For k ∈ L1(Rd) positive almost everywhere on R
d , define K as in (46). Suppose that

G is a continuous translation invariant kernel on R
d with a Lebesgue decomposition (43). Then

HK � HG if and only if Gc = K. The kernel G is a nontrivial refinement kernel for K if and only if
Gc = K and Gs 6= 0.
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5.3 B-spline Kernels

Our next example is concerned with the B-spline kernel. For a nontrivial compactly supported
function f0 ∈ L2(Rd) such that

f0(−x) = f0(x), x ∈ R
d , (47)

we define recursively

fn(x) :=
Z

Rd
fn−1(x− y) f0(y)dy, x ∈ R

d , n ∈ N.

For each odd integer p ∈ N, we let

K(x,y) := fp(x− y), x,y ∈ R
d . (48)

In the next proposition, we show that K is a kernel on R
d and characterize refinement kernels for K.

To this end, we need the Fourier transform f̂ of a function f ∈ L1(Rd) defined as

f̂ (ξ) :=
Z

Rd
f (x)e−i(x,ξ)dx, ξ ∈ R

d .

By a standard approximation process (Grafakos, 2004), the Fourier transform can be extended to be
a bounded operator on L2(Rd).

Proposition 22 For each odd integer p∈N, K defined by (48) is a kernel on R
d . Moreover, suppose

that G is a continuous translation invariant kernel on R
d with a Lebesgue decomposition (43). Then

G is a refinement kernel for K if and only if Gc = K.

Proof Since f0 is compactly supported, f0 ∈ L1(Rd). By the Schwartz inequality and by induction,
we have that fp ∈ L1(Rd). By the Fourier transform of convolutions, we know that

( fp)ˆ = (( f0)ˆ)
p+1.

Condition (47) ensures that ( f0)ˆ is real on R
d . Since p is odd, ( fp)ˆ is nonnegative. By the Bochner

theorem, to prove that K is a kernel on R
d , it suffices to show that (( f0)ˆ)p+1 ∈ L1(Rd). This is clear

since (( f0)ˆ)2 ∈ L1(Rd) and ( f0)ˆ is bounded.
Since f0 is compactly supported, by the Paley-Wiener theorem (see, for example, Gasquet and

Witomski, 1999, page 293), ( f0)ˆ is real-analytic on R
d . Also, it is nontrivial since f0 is assumed

to be nontrivial. By Corollary 21, to conclude our second statement it suffices to point out the
well-known fact that the zeros of a nontrivial real-analytic function on R

d form a set of Lebesgue
measure zero in R

d .

A particular example of (48) are the B-spline kernels (see, for example, Schölkopf and Smola,
2002, page 98, and the references therein), which are defined as (48) by f0 that is the characteristic
function of a ball in R

d centered at the origin.
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5.4 Radial Kernels

We next turn to the radial kernels on R
d . They are kernels of the form

K(x,y) := r(‖x− y‖), x,y ∈ R
d , (49)

where r is a function on R+ := [0,+∞) and ‖ ·‖ denotes the standard Euclidean norm on R
d . It was

proved in Schoenberg (1938) that the function K in the form (49) with a continuous function r on
R+ defines a kernel on R

d for all d ∈ N if and only if there exists some µ ∈ B(R+) such that

r(t) :=
Z

R+

e−σt2
dµ(σ), t ∈ R+. (50)

Theorem 23 Suppose that K is a nontrivial radial kernel defined by (49), (50) with µ({0}) = 0.
Then a continuous translation invariant kernel G on R

d with a Lebesgue decomposition (43) is a
refinement kernel for K if and only if Gc = K.

Proof We prove this theorem by applying Corollary 21 with identifying the function k ∈ L1(Rd)
that is positive almost everywhere.

Recalling that for all σ > 0 there holds

exp
(

−σ‖x− y‖2) =
1

(2π)d

Z

Rd

(π
σ

)d/2
ei(x−y,ξ)e−

‖ξ‖2

4σ dξ, x,y ∈ R
d ,

by the hypothesis that µ({0}) = 0, we have for all x,y ∈ R
d that

K(x,y) =
Z

(0,+∞)

1
(2π)d

Z

Rd

(π
σ

)d/2
ei(x−y,ξ)e−

‖ξ‖2

4σ dξdµ(σ).

Define

k(ξ) :=
Z

(0,+∞)

1
(2π)d

(π
σ

)d/2
e−

‖ξ‖2

4σ dµ(σ), ξ ∈ R
d .

It can be verified by the Fubini theorem (see, Rudin, 1987, page 164) that

Z

Rd
k(ξ)dξ =

Z

(0,+∞)
dµ(σ)

Z

Rd

1
(2π)d

(π
σ

)d/2
e−

‖ξ‖2

4σ dξ =
Z

(0,+∞)
dµ(σ) = µ(R+).

Therefore, k is a nontrivial function in L1(Rd). Again, by the Fubini theorem we get that

K(x,y) =
Z

Rd
ei(x−y,ξ)k(ξ)dξ, x,y ∈ R

d .

Thus, to conclude the result of this theorem by Corollary 21, it remains to show that k is positive
almost everywhere on R

d . To this end, we observe that the function

ϕ(t) :=
Z

(0,+∞)

1
(2π)d

(π
σ

)d/2
e−

t
4σ dµ(σ), t > 0

belongs to C∞(0,+∞) and satisfies for each nonnegative integer j that (−1) jϕ( j)(t) > 0, for t > 0.
In other words, ϕ is completely monotonic in (0,+∞) and is hence real-analytic on the interval (see,
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Widder, 1941, pages 145–146). Consequently, k = ϕ(‖ · ‖2) is real-analytic on R
d \ {0}. This to-

gether with ‖k‖L1(Rd) > 0 proves that k is almost everywhere positive on R
d . The proof is complete.

We remark that if µ({0}) > 0 then K is the sum of a constant kernel and a radial kernel satisfying
the hypothesis of the last theorem. Note that a constant kernel is defined by a singular Borel measure.
Therefore, by Theorems 20 and 23, a continuous kernel G with a Lebesgue decomposition (43) is a
refinement kernel for K if and only if Gc = K − µ({0}) and µ′s({0}) = µ({0}) since µ′s and µ must
agree at the origin.

As a direct consequence of Theorem 23, we have the following result about the Gaussian kernels

Gσ(x,y) := exp
(

−σ‖x− y‖2) , x,y ∈ R
d , σ > 0.

Corollary 24 A continuous translation invariant kernel G on R
d with a Lebesgue decomposition

(43) is a refinement kernel for the Gaussian kernel Gσ if and only if Gc = Gσ. It is a nontrivial
refinement kernel for Gσ if and only if Gc = Gσ and Gs 6= 0.

The corollary above suggests that we may refine the Gaussian kernel Gσ by adding to it a kernel
Gs defined by a singular measure on R

d . The RKHS for a Gaussian kernel has been well understood
(see, for example, Walder et al., 2006). In particular, we can see by Lemma 5 that

HGσ :=

{

f ∈ L2(Rd) :
Z

Rd
| f̂ (ξ)|2e

‖ξ‖2

4σ dξ < +∞
}

, (51)

and the inner product on HGσ is given as

( f ,g)HGσ
=

1
(2π)d

(σ
π

)d/2 Z

Rd
f̂ (ξ)ĝ(ξ)e

‖ξ‖2

4σ dξ.

By (51), HGσ ⊆ HGσ′ for σ < σ′. However, since functions with a continuous compactly supported
Fourier transform are contained in HGσ and are dense in HGσ′ , HGσ is dense in HGσ′ . But, HGσ is
not closed under the norm of HGσ′ . Therefore, there does not exist σ′ with σ < σ′ such that Gσ′ is a
refinement kernel for Gσ.

5.5 Periodic Kernels

We now investigate kernels defined by continuous periodic functions and their refinement. For this
purpose, we recall the Fourier coefficients of a function f ∈ L2([0,2π]d) which are defined by setting
for each n ∈ Z

d

cn( f ) :=
1

(2π)d

Z

[0,2π]d
f (x)e−i(n,x)dx.

A function f on R
d is called 2π-periodic if for all n ∈ Z

d , f = f (·+2πn).

Proposition 25 Let f be a continuous 2π-periodic function on R
d . Then K(x,y) := f (x−y) defines

a kernel on R
d if and only if f := [cn( f ) : n ∈ Z

d ] ∈ `1(Zd) and f ≥ 0.
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Proof If f ∈ `1(Zd) and f ≥ 0, then we define the Borel measure µ that is supported on Z
d with

µ(n) := cn( f ), n ∈ Z
d . By the Fourier series expansion of f , we get that

K(x,y) = f (x− y) = ∑
n∈Zd

cn( f )ei(n,x−y) =
Z

Rd
ei(x−y,ξ)dµ(ξ), x,y ∈ R

d .

By the Bochner theorem, K is a kernel on R
d .

Conversely, if K is a kernel on R
d , then again by the Bochner theorem, there is a µ ∈ B(Rd)

such that
f (x) =

Z

Rd
ei(x,ξ)dµ(ξ), x ∈ R

d . (52)

Since f is 2π-periodic, we have for each n ∈ Z
d that

Z

Rd
ei(x,ξ)dµ(ξ) =

Z

Rd
ei(x,ξ)ei2π(n,ξ)dµ(ξ), x ∈ R

d .

By the uniqueness of Fourier transforms, there holds for almost every ξ ∈ R
d with respect to µ that

ei2π(n,ξ) = 1, for n ∈Z
d . Note that this equation holds for all n ∈Z

d if and only if ξ ∈Z
d . Therefore,

µ(Rd \Z
d) = 0. Consequently, by (52) we obtain that

f (x) = ∑
n∈Zd

µ({n})ei(n,x), x ∈ R
d .

It is implied that cn( f ) = µ({n}), n ∈ Z
d . Since µ is finite and positive, f ∈ `1(Zd) and f ≥ 0.

By the last proposition, for c := [cn : n ∈Z
d ]∈ `1(Zd) with cn ≥ 0 for each n ∈Z

d , we introduce
kernel

fc(x− y) := ∑
n∈Zd

cnei(n,x−y), x,y ∈ R
d , (53)

and set Ωc := {n ∈ Z
d : cn > 0}. The function c ∈ `1(Zd) will be viewed at the same time as a Borel

measure on Z
d whose measure on n ∈ Z

d is defined to be cn.

Proposition 26 Suppose that a,b ∈ `1(Zd) with an,bn ≥ 0 for each n ∈ Z
d and define fa, fb as in

(53). Then H fa � H fb if and only if

Ωa ⊆ Ωb and for all n ∈ Ωa, an = bn. (54)

If H fa � H fb then fb is a nontrivial refinement kernel for fa if and only if Ωa is a proper subset of
Ωb.

Proof By Theorem 20, H fa � H fb if and only if a � b. We now show that a � b is equivalent to
(54).

Suppose that condition (54) holds. By Ωa ⊆ Ωb we have that a � b. The derivative c := da/db
is given by

cn :=

{ an

bn
, n ∈ Ωa,

0, otherwise.
(55)

131



XU AND ZHANG

Therefore, a � b.
Conversely, suppose that a � b. Since a � b, we have Ωa ⊆ Ωb. Also, since the derivative

c := da/db given by (55) is equal to 1 or 0 almost everywhere with respect to b, we have an = bn

for each n ∈ Ωa. Hence, (54) holds.

5.6 Refinement via an Expanding Matrix

To close this section, we consider a special refinement process in the sense of refinable kernels
introduced in Xu and Zhang (2007). The translation invariant kernels Kc defined by (44) via a non-
negative function k ∈ L1(Rd) are of special interest. We call them translation invariant kernels of
continuous type. Next, we consider updating kernels of this type through an expanding matrix. Let
D be a d × d real matrix with determinant detD bigger than 1. Such a matrix is called expanding.
Refinable functions with respect to an expanding matrix and the corresponding wavelets were stud-
ied by many authors (see, for example, Chen et al., 2003, 2007; Daubechies, 1992; Goodman and
Lee, 1994; Jia, 1999; Jia et al., 1999; Micchelli and Sauer, 1997; Micchelli and Xu, 1994; Wang,
2002, and the references cited therein). In particular, the interesting relation between wavelets and
tiling was investigated in Wang (2002). For a continuous translation invariant kernel Kc defined by
(44), we consider a refinement kernel Gc having the form

Gc(x,y) = λKc(Dx,Dy), x,y ∈ R
d . (56)

We are interested in characterizing HKc � HGc in terms of k, λ and D. A special case of this problem
when D is the dilation matrix 2I was studied in Xu and Zhang (2007).

Theorem 27 Suppose that Kc is defined by (44) via a nonnegative k ∈ L1(Rd) and Gc is given by
(56). Then, HKc � HGc if and only if for almost every ξ ∈ Ωk,

k(ξ) =
λ

detD
k((DT )−1ξ).

If HKc � HGc then Gc is a nontrivial refinement kernel for Kc if and only if

Z

Ωk\(DT )−1Ωk

k(ξ)dξ > 0. (57)

Proof Through a change of variables, we obtain from (56) that

Gc(x,y) =
λ

detD

Z

Rd
ei(x−y,ξ)k((DT )−1ξ)dξ, x,y ∈ R

d .

We then identify the nonnegative function g ∈ L1(Rd) in the definition (44) of the translation invari-
ant kernel Gc of continuous type as follows

g(ξ) =
λ

detD
k((DT )−1ξ), ξ ∈ R

d .

The first statement of this theorem now follows directly from the first statement of Theorem 19.
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If HKc � HGc , by the first statement of this theorem, we have that
Z

Rd
g(ξ)dξ =

Z

Rd
k(ξ)dξ+

Z

Rd\Ωk

λ
detD

k((DT )−1ξ)dξ.

Using this identity, we observe that inequality (45) is equivalent to inequality
Z

Rd\Ωk

k((DT )−1ξ)dξ > 0.

By a change of variables, we find that the inequality above is equivalent to inequality (57).

Along this direction, we present a corollary to Proposition 26.

Corollary 28 Let D be an invertible matrix in Z
d×d , fa a kernel defined as in (53) and G defined

as G(x,y) = λ fa(Dx−Dy) for some positive constant λ. Then G is a refinement kernel for fa if and
only if Ωa ⊆ DT Ωa and for each n ∈ Ωa, an = λa(DT )−1n.

We shall see in the next section that Proposition 26 and Corollary 28 are special instances of
refinement of Hilbert-Schmidt kernels.

6. Refinement of Hilbert-Schmidt Kernels

We characterize in this section refinement kernels for two types of Hilbert-Schmidt kernels. As
special examples, we study refinement of the Bergman kernels, the Szegö kernels, the Schoenberg
kernels, and kernels having finite dimensional feature spaces.

Let a be a nonnegative function on N and set an := a(n), n ∈ N. We denote by `2
a(N) the set of

functions f on N such that ∑n∈N an| fn|2 < +∞. It is a Hilbert space with the inner product

( f ,g)`2
a(N) := ∑

n∈N

an fngn, f ,g ∈ `2
a(N).

Suppose that we have a sequence of functions φn on the input space X , n ∈ N such that for each
x ∈ X the function Φ(x) on N defined as

Φ(x)(n) := φn(x), n ∈ N (58)

belongs to `2
a(N). The Hilbert-Schmidt kernel Ka associated with a is given as

Ka(x,y) := (Φ(x),Φ(y))`2
a(N) = ∑

n∈N

anφn(x)φn(y), x,y ∈ X . (59)

The Mercer theorem (see, for example, Cucker and Smale, 2002; Hochstadt, 1973; Mercer, 1909;
Sun, 2005) in the theory of reproducing kernels indicates that (59) represents a large class of kernels.
Hilbert-Schmidt kernels are a key element of recent studies Opfer (2006) and Rakotomamonjy and
Canu (2005).

The support of a function a on N, denoted as suppa, is the set of n∈N for which an 6= 0. Let a,b
be two nonnegative functions on N. Set c := max{a,b} and assume that the sequence φn satisfies
for each x ∈ X that Φ(x) ∈ `2

c(N) and

span{Φ(x) : x ∈ X} = `2
c(N).
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We shall consider the inclusion HKa �HKb . For this purpose, we make the convention that whenever
we write a � b for two functions a,b on N, it means that suppa ⊆ suppb and an = bn for each
n ∈ suppa.

Theorem 29 There holds HKa � HKb if and only if a � b. Moreover, if a � b then Kb is a nontrivial
refinement kernel for Ka if and only if suppa is a proper subset of suppb.

Proof This theorem is proved by using Theorem 8 with an identification of measures µ and ν. We
introduce three nonnegative functions ã, b̃, c̃ in `1(N) by setting for n ∈ N

ãn :=

{ an
n2cn

, n ∈ suppa,

0, otherwise,
b̃n :=

{

bn
n2cn

, n ∈ suppb,

0, otherwise,

and

c̃n :=

{ 1
n2 , n ∈ suppc,
0, otherwise.

We also define a function φ : X ×N → C by

φ(x,n) := n
√

cnφn(x), x ∈ X , n ∈ N.

It is observed that c̃ = (ã+ b̃)/2+ |ã− b̃|/2, φ(x, ·) ∈ `2
c̃(N) for all x ∈ X and span{φ(x, ·) : x ∈ X}

is dense in `2
c̃(N). Moreover,

Ka(x,y) = (φ(x, ·),φ(y, ·))`2
ã(N), Kb(x,y) = (φ(x, ·),φ(y, ·))`2

b̃
(N), x,y ∈ X .

Let Y := N. We identify measures µ,ν ∈ B(Y ) with ã and b̃, respectively, such that

Ka(x,y) =
Z

Y
φ(x,ξ)φ(y,ξ)dµ(ξ), Kb(x,y) =

Z

Y
φ(x,ξ)φ(y,ξ)dν(ξ), x,y ∈ X .

Note that µ � ν is equivalent to a � b. The result of this theorem now follows immediately from
Theorem 8.

One can see that Proposition 26 may be viewed as a corollary of Theorem 29. We next present
two more concrete applications of Theorem 29.

For the first example, we assume R ∈ (0,+∞] and specify our input space X to be {z ∈ C : |z| <
R1/2}. Here we make the convention that if R = +∞ then X := C. For two nonnegative functions
a,b defined on N satisfying

max

{

limsup
n→∞

n
√

an, limsup
n→∞

n
√

bn

}

≤ 1
R

, (60)

we define the kernels

Ka(ξ,η) := ∑
n∈N

anξn−1ηn−1, Kb(ξ,η) := ∑
n∈N

bnξn−1ηn−1, ξ,η ∈ X . (61)

Classical kernels such as the Bergman kernels and the Szegö kernels (see, for example, Saitoh,
1988) have the above form.
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Proposition 30 Suppose that a,b are nonnegative functions defined on N satisfying (60) and kernels
Ka,Kb are defined in (61). Then HKa � HKb if and only if a � b, and the refinement is nontrivial if
and only if suppa is a proper subset of suppb.

Proof We define a sequence of functions φn, n ∈ N on the input space X by setting

φn(ξ) := ξn−1, ξ ∈ X .

Let c := max{a,b}. Condition (60) ensures that Φ defined by (58) with the φn defined above satis-
fies the condition that Φ(ξ) ∈ `2

c(N) for each ξ ∈ X . It is clear that span{Φ(ξ) : ξ ∈ X} is dense in
`2

c(N). The result of this proposition follows directly from Theorem 29.

Our second example concerns the Schoenberg kernels (Schoenberg, 1942) on the unit sphere S
d

in R
d+1. We shall need the ultraspherical polynomials Pd

n , n∈Z+. When d = 1, P1
n is the Chebyshev

polynomial of degree n (Rivlin, 1990) and for d > 1, Pd
n is determined by

1

(1−2zt + z2)(d−1)/2
= ∑

n∈Z+

Pd
n (t)zn, |z| < 1, t ∈ [−1,1].

For a nonnegative function h defined on N satisfying the conditions

∑
n∈N

hnPd
n−1(1) < +∞, (62)

we introduce a Schoenberg kernel on S
d by setting

Sh(x,y) := ∑
n∈N

hnPd
n−1((x,y)), x,y ∈ S

d , (63)

where (·, ·) denotes the inner product on R
d+1.

Theorem 31 Suppose that a and b are two nonnegative functions defined on N satisfying the con-
dition (62) and Sa and Sb are the corresponding Schoenberg kernels on S

d defined as in (63). Then,
HSa � HSb if and only if a � b. If a � b then Sb is a nontrivial refinement kernel for Sa if and only if
suppa is a proper subset of suppb.

Proof We shall write the kernels Sa,Sb in the form of Hilbert-Schmidt kernels and then apply
Theorem 29. To this end, we recall some basic facts of spherical harmonics (Stein and Weiss,
1971). For each n ∈ Z+ we let Hn be the set of all homogeneous harmonic polynomials of total
degree n on R

d+1 restricted to S
d . We consider Hn as a subspace of L2(Sd ,ω) where ω is the

Lebesgue measure on S
d . Let dn denote the dimension of Hn and {Y n

j : j ∈ Ndn} an orthonormal
basis for Hn. If n 6= n′ then Hn is orthogonal to Hn′ (Stein and Weiss, 1971). For each n ∈ Z+, there
exists a positive constant cn such that

Pd
n ((x,y)) = cn ∑

j∈Ndn

Y n
j (x)Y n

j (y), x,y ∈ S
d . (64)

By Equations (63) and (64), we have that

Sa(x,y) = ∑
n∈N

ancn−1 ∑
j∈Ndn−1

Y n−1
j (x)Y n−1

j (y), x,y ∈ S
d
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and
Sb(x,y) = ∑

n∈N

bncn−1 ∑
j∈Ndn−1

Y n−1
j (x)Y n−1

j (y), x,y ∈ S
d .

The result of this theorem hence follows immediately from Theorem 29 and the orthogonality of
Y n

j .

We now return to general Hilbert-Schmidt kernels defined by a sequence of functions φn on X
and investigate the case when φn’s are coupled. We shall work in the Hilbert space `2(N) under the
assumption that Φ(x) ∈ `2(N) for each x ∈ X and

span{Φ(x) : x ∈ X} = `2(N). (65)

For each bounded, positive, and self-adjoint linear operator C on `2(N), we denote by `2
C(N) the

Hilbert space completed upon the linear space `2(N) under the inner product

(u,v)`2
C(N) := (Cu,v)`2(N), u,v ∈ `2(N).

Note that `2
C(N) is a Hilbert space of equivalent classes. In other words, two elements u,v ∈ `2(N)

are identical in `2
C(N) if and only if u−v∈ kerC := {x ∈ `2(N) : Cx = 0}. For two bounded, positive

and self-adjoint linear operators A,B from `2(N) to itself, we introduce two kernels by setting

KA(x,y) := (Φ(x),Φ(y))`2
A(N), KB(x,y) := (Φ(x),Φ(y))`2

B(N), x,y ∈ X .

Before delving into conditions equivalent to HKA � HKB , we review necessary results from func-
tional analysis. For each bounded, positive and self-adjoint linear operator C on `2(N), we let PC,⊥
denote the orthogonal projection from `2(N) to the orthogonal complement (kerC)⊥ of kerC. Note
that u ∈ `2(N) satisfies (Cu,u)`2(N) = 0 if and only if u ∈ kerC. Moreover, for each u ∈ `2(N) there
holds that

(Cu,u)`2(N) = (CPC,⊥u,PC,⊥u)`2(N).

Thus C is a bijective mapping from (kerC)⊥ to ranC. We denote by C̃−1 its inverse from ranC to
(kerC)⊥.

Our characterization of HKA � HKB is as follows.

Theorem 32 Suppose that A,B are bounded, positive and self-adjoint linear operators from `2(N)
to itself. Then, HKA � HKB if and only if ranA ⊆ ranB and for each v ∈ ranA,

PA,⊥B̃−1v = Ã−1v. (66)

Proof By Lemma 5, HKA � HKB if and only if for each u ∈ `2(N) there exists v ∈ `2(N) such that

(Φ(x),Au)`2(N) = (Φ(x),Bv)`2(N), x ∈ X (67)

and
(Au,u)`2(N) = (Bv,v)`2(N). (68)

By the density assumption (65), (67) is equivalent to that

Au = Bv. (69)
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Suppose that HKA � HKB . Then for each u ∈ `2(N) there exists v ∈ `2(N) satisfying (68) and
(69). By (69), we have that ranA ⊆ ranB. Let u ∈ (kerA)⊥. Then v in (69) can be taken as B̃−1Au.
Similarly, if we choose u′ ∈ (kerA)⊥ and let v′ := B̃−1Au′ then (67) and (69) hold true with u,v
replaced by u′,v′. Since HKA is a subspace of HKB , we have

(Au′,u)`2(N) = ((Φ(x),Au)`2(N),(Φ(x),Au′)`2(N))HKA

= ((Φ(x),Bv)`2(N),(Φ(x),Bv′)`2(N))HKB

= (Bv′,v)`2(N).

By the above equation and (69), we get that

(Au′,PA,⊥B̃−1Au)`2(N) = (Au′, B̃−1Au)`2(N) = (Bv′,v)`2(N) = (Au′,u)`2(N).

Note that the above equation is true for all u,u′ ∈ (kerA)⊥. Thus there must hold

PA,⊥B̃−1Au = u = Ã−1Au.

Since A is surjective from (kerA)⊥ onto ranA, we obtain (66) for each v ∈ ranA.
Conversely, suppose that ranA ⊆ ranB and there holds for each v ∈ ranA Equation (66). There-

fore, for each u ∈ (kerA)⊥ there exists v ∈ `2(N) satisfying (69). Moreover, we calculate by (66)
that

(Bv,v)`2(N) = (Bv,PB,⊥v)`2(N) = (Bv, B̃−1Au)`2(N) = (Au, B̃−1Au)`2(N)

= (Au,PA,⊥B̃−1Au)`2(N) = (Au, Ã−1Au)`2(N) = (Au,u)`2(N).

Thus (68) holds true. We hence prove that HKA � HKB .

To close this section, as an application of Theorem 32, we consider kernels of finite dimensional
feature spaces. Let n ≤ m be two positive integers and A,B hermitian and strictly positive definite
matrices of sizes n×n and m×m, respectively. Suppose that φ j, j ∈ Nm form a sequence of linearly
independent functions on X . The kernels we consider are

GA(x,y) := ∑
j,k∈Nn

A jkφk(x)φ j(y), GB(x,y) := ∑
j,k∈Nm

B jkφk(x)φ j(y), x,y ∈ X . (70)

We remark that a kernel has a finite dimensional feature space if and only if its RKHS has finite
dimension. It was proven in Aronszajn (1950) that a RKHS is finite dimensional if and only if
its reproducing kernel has the form of (70). The following corollary is a direct consequence of
Theorem 32.

Corollary 33 Let kernels GA,GB be defined by (70). Then HGA � HGB if and only if B−1 is an
augmentation of A−1, namely, B−1

jk = A−1
jk , j,k ∈ Nn. In particular, if GA,GB have the form

GA(x,y) := ∑
j∈Nn

a jφ j(x)φ j(y), GB(x,y) := ∑
k∈Nm

bkφk(x)φk(y), x,y ∈ X

for some positive constants a j,bk then HGA � HGB if and only if a j = b j for each j ∈ Nn. In both
cases, if HGA � HGB then GB is a nontrivial refinement kernel for GA if and only if m > n.
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