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Abstract

In this paper, we present an open source Error-Correctinpu®odes (ECOC) library. The
ECOC framework is a powerful tool to deal with multi-clasgegorization problems. This li-
brary contains both state-of-the-art coding (one-vemes-one-versus-all, dense random, sparse
random, DECOC, forest-ECOC, and ECOC-ONE) and decodingeghamming, euclidean,
inverse hamming, laplaciaf;density, attenuated, loss-based, probabilistic kelbaskd, and loss-
weighted) with the parameters defined by the authors, asasete option to include your own
coding, decoding, and base classifier.
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1. Error-Correcting Output Codes

The Error-Correcting Output Codes (ECOC) framework (DietterichBaidri, 1995) is a simple but
powerful framework to deal with the multi-class categorization problemdasehe embedding of
binary classifiers. Given a set N classes, the basis of the ECOC framework consists of designing
a codeword for each of the classes. These codewords encode theerakiplinformation of each
class for a given binary problem. Arranging the codewords as roasmadtrix, we obtain a "coding
matrix” Mc, whereM, € {—1,0,1}"*", beingn the length of the codewords codifying each class.
From the point of view of learningyl. is constructed by considerimgbinary problems, each one
corresponding to a column of the mathk. Each of these binary problems (or dichotomizers) splits
the set of classes in two partitions (coded by +1 or -Mgaccording to their class set membership,
or O if the class is not considered by the current binary problem). Ththe decoding step,
applying then trained binary classifiers, a code is obtained for each data point in theeteSthis
code is compared to the base codewords of each class defined in thelvhaaind the data point is
assigned to the class with the "closest” codeword. Several decodinegishave been proposed
in literature. The reader is referred to Escalera et al. (2008) for a detaded review. An example
of an ECOC design is described in Fig. 1.

The ECOC designs are independent of the base classifier appliedinVbkae error-correcting
properties (Dietterich and Bakiri, 1995) and have shown to be able teedtie bias and variance
produced by the learning algorithm (Kong and Dietterich, 1995). Becaithese reasons, ECOCs
have been widely used to deal with multi-class categorization problems.
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| decoding ] ECOC coding design for a 4-class problem. White, black, and
% % x % | drey positions corresponds to the symbols +1, -1, and O, respec-
tively. Once the four binary problems are learnt, at the decoding
step a new test sampkis tested by the classifiers. Then, the
new codewordk = {Xa,..,Xn} IS compared with the class code
words{C;,..C4}, classifying the new sample by the clasa/hich

3 1 codeword minimizes the decoding measure.

hy h, h; h,
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Figure 1: ECOC design example.

2. Library Algorithms

The ECOC:s library is a Matlab/Octave code under the open source GPlsdiggpl) with the
implementation of the state-of-the-art coding and decoding ECOC designairAfunction defines
the multi-class data, coding, decoding, and base classifier. A list of pamemage also included in
order to tune the different strategies. In addition to the implemented codindesradling designs,
which are described in the following section, the user can include his odingiodecoding, and
base classifier as defined in the user guide.

2.1 Implemented Coding Designs

The ECOC designs of the ECOC library cover the state-of-the-art ahgadrategies, mainly di-
vided in two main groups: problem-independent approaches, which ik into account the
distribution of the data to define the coding matrix, and the problem-depeddsigns, where in-
formation of the particular domain is used to guide the coding design.

2.1.1 PROBLEM-INDEPENDENTECOC DESIGNS

e One-versus-all (Rifkin and Klautau, 2004; dichotomizers are learnt fd¥. classes, where each
one splits one class from the rest of classes.

e One-versus-one (Nilsson, 1965):= N¢(N; — 1)/2 dichotomizers are learnt fod. classes,
splitting each possible pair of classes.

e Dense Random (Allwein et al., 2003)= 10-logN; dichotomizers are suggested to be learnt
for Nc classes, wherB(—1) = 1—P(+1), beingP(—1) andP(+1) the probability of the symbols
-1 and +1 to appear, respectively. Then, from a set of definecorardatrices, the one which
maximizes a decoding measure among all possible rowk @ selected.

e Sparse Random (Escalera et al., 2008)= 15- logN; dichotomizers are suggested to be
learnt forN; classes, wherB(0) = 1—P(—1) — P(+1), defining a set of random matrick% and
selecting the one which maximizes a decoding measure among all possiblef fdws o
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2.1.2 RROBLEM-DEPENDENTECOC DESIGNS

e DECOC (Puijol et al., 2006): problem-dependent design thatusekl, — 1 dichotomizers. The
partitions of the problem are learnt by means of a binary tree structurg eslraustive search or a
SFFScriterion. Finally, each internal node of the tree is embedded as a colulg in

e Forest-ECOC (Escalera et al., 2007): problem-dependent desigustist= (N — 1) - T di-
chotomizers, wher€ stands for the number of binary tree structures to be embedded. Thimappr
extends the variability of the classifiers of the DECOC design by including eithotomizers.

e ECOC-ONE (Pujol et al., 2008): problem-dependent design thatuse&- N. suggested
dichotomizers. A validation sub-set is used to extend any initial mafgxand to increase its
generalization by including new dichotomizers that focus on difficult to sjalgses.

2.2 Implemented Decoding Designs

The software comes with a complete set of ECOC decoding strategies. Etonaised refers to
that used in (Escalera et al., 2008):

e Hamming decodingHD(x,y;) = z?zl(l—sign(xj -yﬂ))/2, beingx a test codeword ang a
codeword fromM, corresponding to class.

e Inverse Hamming decodindHD (x,y;) = maxA~1D"), whereA(i1,i2) = HD(yi,,Vi,), and
D is the vector of Hamming decoding values of the test codewdod each of the base codewords
i

e Euclidean decodingzD(x,yi) = 1/ 3 [_ (X —yh2.

¢ Attenuated Euclidean decodingED(X, ;) \/ZJ 11 yI || x| (xi — y,) :

e Loss-based decodind:B(p,y;) = Zj:l'—()/i - fl(p)), wherep is a test sampld., is a loss-
function, andf is a real-valued functiori : " — R.

e Probabilistic-based decoding: _
PD(y;,X)=— Iog(|‘|JE (L1 Mc(i, )#)P(xl Mc(i, j)|f)) + K), whereK is a constant factor that col-
lects the probability mass dlspersed on the invalid codes, and the prob&giity= Mc(i, j)| /)

is estimated by means &f(x) =y/|fl) = ——1 - where vector® andw are obtained by

l+eyi (i fital)’
solving an optimization problem (Passerini et al., 2004).

e Laplacian decodingt AP(x,y;) = % whereaq; is the number of matched positions be-
tweenx andy;, B is the number of miss-matches without considering the positions coded bg 0, an

K is an integer value that codifies the number of classes considered bysbdieta

e Pessimisti@3-Density Distribution decoding: accurasy: \X' Wi (v,ai,Bi)dv = 3, where

i (v,0i,Bi) = %v“i(l—v)ﬁi, Y is the B-Density Distribution between a codewoxdand a class
codewordy; for classc;, andv € R : [0, 1].

e Loss-Weighted decodingW (p,i) = 3_; Mw(i, j)L (yI f(p j)), whereMy(i, j) = <l J())

Yie el
HL 1) = & SR 0 (0} 1, 1), 9 04,0, ) { o ctherwiss

samples from class;, andpL is thekth sample from class;.

' , my is the number of training
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3. Implementation Details

The ECOCs Library comes with detailed documentation. A user guide desthbeisage of the
software. All the strategies and parameters used in the functions andréildescribed in detail.
The user guide also presents examples of variable setting and executioding a demo file.

About the computational complexity, the training and testing time depends on thesida,
coding and decoding algorithms, as well as the base classifier used in @@ &€sign.
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