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Abstract

We describe version 2.0 of tie add-on packageboost The package implements boosting for
optimizing general risk functions using component-wisen@lized) least squares estimates or re-
gression trees as base-learners for fitting generalizeduiradditive and interaction models to
potentially high-dimensional data.
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1. Overview

The R add-on packagenboost(Hothorn et al., 2010) implements tools for fitting and evaluating
a variety of regression and classification models that have been sufjgestechine learning
and statistics. Optimization within the empirical risk minimization framework is perforuiad
a component-wise functional gradient descent algorithm. The algorittyimates from the statis-
tical view on boosting algorithms (Friedman et al., 2000; Bihimann and Yi8)20®e theory and
its implementation irmboostallow for fitting complex prediction models, taking potentially many
interactions of features into account, as well as for fitting additive andrlimealels. The model
class the package deals with is best described by so-called structuliéideackgression (STAR)
models, where some characteristiof the conditional distribution of a response variallgiven
featuresX is modeled through a regression functibof the feature€(Y|X = x) = f(x). In order

to facilitate parsimonious and interpretable models, the regression furfcigostructured, that is,
restricted to additive function§(x) = zle fi(x). Each model componerft(x) might take only
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a subset of the features into account. Special cases are linear nioxlets x' B, additive mod-
els f(x) = 31, f;(x})), wheref; is a function of thejth featurex)) only (smooth functions or
stumps, for example) or a more complex function whege) is implicitly defined as the sum of
multiple decision trees including higher-order interactions. The latter casesponds to boosting
with trees. Combinations of these structures are also possible. The mostantmmvantage of
such a decomposition of the regression function is that each componartfited model can be
looked at and interpreted separately for gaining a better understarfdimgmodel at hand.

The characteristi€ of the distribution depends on the measurement scale of the respgonse
and the scientific question to be answered. For binary or numeric varigole® function of the
expectation may be appropriate, but also quantiles or expectiles may betinmiggrd he definition
of & is determined by defining a loss functipmvhose empirical risk is to be minimized under some
algorithmic constraints (i.e., limited number of boosting iterations). The model iditteshusing

n p
f1,...,fp) =argminy w; i,y fi(x) |-
Here(yi,x),i = 1,...,n, aren training samples with responsgsand potentially high-dimensional
feature vectors;, andw; are some weights. The component-wise boosting algorithm starts with
some offset forf and iteratively fits residuals defined by the negative gradient of the lossidn
evaluated at the current fit by updating only the best model componeatimiteration. The details
have been described by Bihlmann and Yu (2003). Early stopping \@amg@sg approaches or AIC
leads to sparse models in the sense that only a subset of important modehemts; defines the
final model. A more thorough introduction to boosting with applications in statistisecban
version 1.0 oimboosts given by Biihlmann and Hothorn (2007).

As of version 2.0, the package allows for fitting models to binary, numendered and censored
responses, that is, regression of the mean, robust regressiaificdion (logistic and exponential
loss), ordinal regressiohguantilé- and expectilé regression, censored regression (including Cox,
Weibull!, log-logistict or lognormat models) as well as Poisson and negative binomial regré'ssion
for count data can be performed. Because the structure of thesegrésnctionf (x) can be chosen
independently from the loss functign interesting new models can be fitted (e.g., in geoadditive
regression, Kneib et al., 2009).

2. Design and Implementation

The package incorporates an infrastructure for representing losidns (so-called ‘families’),
base-learners defining the structure of the regression function asdh@umodel components,
and a generic implementation of component-wise functional gradient destdesm main progress
in version 2.0 is that only one implementation of the boosting algorithm is applied posdible
models (linear, additive, tree-based) and all families. Earlier versions based on three imple-
mentations, one for linear models, one for additive models, and one feb&sssl boosting. In
comparison to the 1.0 series, the reduced code basis is easier to maintaimolbusteand regres-
sion tests have been set-up in a more unified way. Specifically, the newbasderesults in an
enhanced and more user-friendly formula interface. In addition, coemee functions for hyper-
parameter selection, faster computation of predictions and improved visulgl wiagnostics are
available.

1. Model family is new in version 2.0 or was added after the releasgbobstl.O.
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Currently implemented base-learners include component-wise linear modedse(anly one
variable is updated in each iteration of the algorithm), additive models with gtiegrenalties
(e.g., for fitting smooth functions via penalized splines, varying coefficients- and trivariate
tensor product splines, Schmid and Hothorn, 2008), and trees.

As a major improvement over the 1.0 series, computations on larger data astsvith re-
spect to the number of observations and the number of variables) aréaoititated by memory
efficient implementations of the base-learners, mostly by applying sparsi& teatrniques (pack-
ageMatrix, Bates and Méchler, 2009) and parallelization for a cross-validatieaebehoice of the
number of boosting iterations (per default via packamggticore Urbanek, 2009). A more elaborate
description oimboost.0 features is available from thoost vignette?

3. User Interface by Example

We illustrate the main components of the user-interface by a small example om lgdg fat
composition: Garcia et al. (2005) used a linear model for predicting batdgdntent by means
of common anthropometric measurements that were obtainad=for1 healthy German women.
In addition, the women’s body composition was measured by Dual Eneiggy<Absorptiometry
(DXA). The aim is to describe the DXA measurements as a function of theggrahmetric features.
Here, we extend the linear model by i) an intrinsic variable selection via eping, i) addi-
tional terms allowing for smooth deviations from linearity where necessgrynéans of penalized
splines orthogonalized to the linear effect, Kneib et al., 2009), iii) a possitdeaction between
two variables with known impact on body fat composition (hip and waist cirevanice) and iv)
using a robust median regression approach instead n$k. For the data (available as data frame
bodyf at ), the model structure is specified via a formula involving the base-leacoersspond-
ing to the different model components (linear terrst s() ; smooth termshbs() ; interactions:
btree()). The loss function (here, the check function for thg Quantile) along with its negative
gradient function are defined by tReant Reg( 0. 5) family (Fenske et al., 2009). The model struc-
ture (specified using the formula), the data and the family are then passed to functimost ()

for model fitting?

R> |ibrary("nboost") ### attach package ‘ nboost’
R> print(fm ### model structure

DEXfat ~ bol s(age) + bol s(waistcirc) + bols(hipcirc) + bol s(el bowbreadth) +
bol s(kneebreadth) + bol s(anthro3a) + bol s(anthro3b) + bol s(anthro3c) +
bol s(anthro4) + bbs(age, center = TRUE, df = 1) + bbs(waistcirc,
center = TRUE, df = 1) + bbs(hipcirc, center = TRUE, df = 1) +
bbs(el bowbreadth, center = TRUE, df = 1) + bbs(kneebreadth,
center = TRUE, df = 1) + bbs(anthro3a, center = TRUE, df = 1) +
bbs(ant hro3b, center = TRUE, df = 1) + bbs(anthro3c, center = TRUE,
df = 1) + bbs(anthro4, center = TRUE, df = 1) + btree(hipcirc,
wai stcirc, tree _controls = ctree_control (maxdepth = 2, mincriterion = 0))

R> ### fit nodel for conditional median of DEXfat
R> nodel <- nboost(fm ### nodel structure

2. Accessible viai gnet t e("nboost ", package = "mboost").
3. The complet® code for reproducing this example is given in the accompanyingtfidest - MLCSS. R.
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Figure 1: Out-of-bag empirical risk (A) indicating that 500 iterations amgayriate. Fitted model
components for variablent hr 03b, consisting of a linear (B) and smooth term (C). The
right panel shows the interaction model component between hip and vi@isiéer-
ences.

+ dat a = bodyf at, ### 71 observations
+ famly = QuantReg(tau = 0.5)) ### nedi an regression

Once the model has been fitted it is important to assess the appropriate riilnbesting iterations
via the out-of-sample empirical risk. By default, 25 bootstrap samples frentrdiming data are
drawn and the out-of-bag empirical risk is computed (parallel computatiarsgiple):

R> ### bootstrap for assessing the ‘optinmal’ nunber

R> ### of boosting iterations

R> cvm <- cvrisk(nodel, grid = 1:100 » 10)

R> nodel [ mstop(cvm) ] ### restrict nmodel to optinmal nstop(cvn) iterations

Now, the final model is ready for a visual inspection:

R> pl ot (cvm ### depi ct out-of bag risk and
R> pl ot (nbdel ) ### sel ected conponents

The resulting plots are given in Figure 1. They indicate that a model bas&tt@e components,
including a smooth function afnt hr 03b and a bivariate function of hip and waist circumference,
provides the best characterization of the median body fat compositien(tiie model specification
offered to the boosting algorithm). A hip circumference larger than 110 adsléo increased body
fat but only if the waist circumference is larger than 90 cm.

The sources of thenboostpackage are distributed at the ComprehenBivrchive Network
under GPL-2, along with binaries for all major platforms as well as docurtientand regression
tests. Development versions are available fildamp: // R- f or ge. R- proj ect. org.
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