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Abstract
We describe version 2.0 of theR add-on packagemboost. The package implements boosting for
optimizing general risk functions using component-wise (penalized) least squares estimates or re-
gression trees as base-learners for fitting generalized linear, additive and interaction models to
potentially high-dimensional data.
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1. Overview

The R add-on packagemboost(Hothorn et al., 2010) implements tools for fitting and evaluating
a variety of regression and classification models that have been suggested in machine learning
and statistics. Optimization within the empirical risk minimization framework is performedvia
a component-wise functional gradient descent algorithm. The algorithm originates from the statis-
tical view on boosting algorithms (Friedman et al., 2000; Bühlmann and Yu, 2003). The theory and
its implementation inmboostallow for fitting complex prediction models, taking potentially many
interactions of features into account, as well as for fitting additive and linear models. The model
class the package deals with is best described by so-called structured additive regression (STAR)
models, where some characteristicξ of the conditional distribution of a response variableY given
featuresX is modeled through a regression functionf of the featuresξ(Y|X = x) = f (x). In order
to facilitate parsimonious and interpretable models, the regression functionf is structured, that is,
restricted to additive functionsf (x) = ∑p

j=1 f j(x). Each model componentf j(x) might take only
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a subset of the features into account. Special cases are linear modelsf (x) = x⊤β, additive mod-
els f (x) = ∑p

j=1 f j(x( j)), where f j is a function of thejth featurex( j) only (smooth functions or
stumps, for example) or a more complex function wheref (x) is implicitly defined as the sum of
multiple decision trees including higher-order interactions. The latter case corresponds to boosting
with trees. Combinations of these structures are also possible. The most important advantage of
such a decomposition of the regression function is that each component ofa fitted model can be
looked at and interpreted separately for gaining a better understanding of the model at hand.

The characteristicξ of the distribution depends on the measurement scale of the responseY
and the scientific question to be answered. For binary or numeric variables, some function of the
expectation may be appropriate, but also quantiles or expectiles may be interesting. The definition
of ξ is determined by defining a loss functionρ whose empirical risk is to be minimized under some
algorithmic constraints (i.e., limited number of boosting iterations). The model is thenfitted using

( f̂1, . . . , f̂p) = argmin
( f1,..., fp)

n

∑
i=1

wiρ

(

yi ,

p

∑
j=1

f j(x)

)

.

Here(yi ,xi), i = 1, . . . ,n, aren training samples with responsesyi and potentially high-dimensional
feature vectorsxi , andwi are some weights. The component-wise boosting algorithm starts with
some offset forf and iteratively fits residuals defined by the negative gradient of the loss function
evaluated at the current fit by updating only the best model component in each iteration. The details
have been described by Bühlmann and Yu (2003). Early stopping via resampling approaches or AIC
leads to sparse models in the sense that only a subset of important model componentsf j defines the
final model. A more thorough introduction to boosting with applications in statistics based on
version 1.0 ofmboostis given by Bühlmann and Hothorn (2007).

As of version 2.0, the package allows for fitting models to binary, numeric, ordered and censored
responses, that is, regression of the mean, robust regression, classification (logistic and exponential
loss), ordinal regression,1 quantile1 and expectile1 regression, censored regression (including Cox,
Weibull1, log-logistic1 or lognormal1 models) as well as Poisson and negative binomial regression1

for count data can be performed. Because the structure of the regression functionf (x) can be chosen
independently from the loss functionρ, interesting new models can be fitted (e.g., in geoadditive
regression, Kneib et al., 2009).

2. Design and Implementation

The package incorporates an infrastructure for representing loss functions (so-called ‘families’),
base-learners defining the structure of the regression function and thus the model componentsf j ,
and a generic implementation of component-wise functional gradient descent. The main progress
in version 2.0 is that only one implementation of the boosting algorithm is applied to allpossible
models (linear, additive, tree-based) and all families. Earlier versions were based on three imple-
mentations, one for linear models, one for additive models, and one for tree-based boosting. In
comparison to the 1.0 series, the reduced code basis is easier to maintain, morerobust and regres-
sion tests have been set-up in a more unified way. Specifically, the new codebasis results in an
enhanced and more user-friendly formula interface. In addition, convenience functions for hyper-
parameter selection, faster computation of predictions and improved visual model diagnostics are
available.

1. Model family is new in version 2.0 or was added after the release ofmboost1.0.
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Currently implemented base-learners include component-wise linear models (where only one
variable is updated in each iteration of the algorithm), additive models with quadratic penalties
(e.g., for fitting smooth functions via penalized splines, varying coefficientsor bi- and trivariate
tensor product splines, Schmid and Hothorn, 2008), and trees.

As a major improvement over the 1.0 series, computations on larger data sets (both with re-
spect to the number of observations and the number of variables) are nowfacilitated by memory
efficient implementations of the base-learners, mostly by applying sparse matrix techniques (pack-
ageMatrix, Bates and Mächler, 2009) and parallelization for a cross-validation-based choice of the
number of boosting iterations (per default via packagemulticore, Urbanek, 2009). A more elaborate
description ofmboost2.0 features is available from themboost vignette.2

3. User Interface by Example

We illustrate the main components of the user-interface by a small example on human body fat
composition: Garcia et al. (2005) used a linear model for predicting body fat content by means
of common anthropometric measurements that were obtained forn= 71 healthy German women.
In addition, the women’s body composition was measured by Dual Energy X-Ray Absorptiometry
(DXA). The aim is to describe the DXA measurements as a function of the anthropometric features.
Here, we extend the linear model by i) an intrinsic variable selection via early stopping, ii) addi-
tional terms allowing for smooth deviations from linearity where necessary (by means of penalized
splines orthogonalized to the linear effect, Kneib et al., 2009), iii) a possibleinteraction between
two variables with known impact on body fat composition (hip and waist circumference) and iv)
using a robust median regression approach instead ofL2 risk. For the data (available as data frame
bodyfat), the model structure is specified via a formula involving the base-learnerscorrespond-
ing to the different model components (linear terms:bols(); smooth terms:bbs(); interactions:
btree()). The loss function (here, the check function for the 0.5 quantile) along with its negative
gradient function are defined by theQuantReg(0.5) family (Fenske et al., 2009). The model struc-
ture (specified using the formulafm), the data and the family are then passed to functionmboost()
for model fitting:3

R> library("mboost") ### attach package ‘mboost’
R> print(fm) ### model structure

DEXfat ~ bols(age) + bols(waistcirc) + bols(hipcirc) + bols(elbowbreadth) +
bols(kneebreadth) + bols(anthro3a) + bols(anthro3b) + bols(anthro3c) +
bols(anthro4) + bbs(age, center = TRUE, df = 1) + bbs(waistcirc,
center = TRUE, df = 1) + bbs(hipcirc, center = TRUE, df = 1) +
bbs(elbowbreadth, center = TRUE, df = 1) + bbs(kneebreadth,
center = TRUE, df = 1) + bbs(anthro3a, center = TRUE, df = 1) +
bbs(anthro3b, center = TRUE, df = 1) + bbs(anthro3c, center = TRUE,
df = 1) + bbs(anthro4, center = TRUE, df = 1) + btree(hipcirc,
waistcirc, tree_controls = ctree_control(maxdepth = 2, mincriterion = 0))

R> ### fit model for conditional median of DEXfat
R> model <- mboost(fm, ### model structure

2. Accessible viavignette("mboost", package = "mboost").
3. The completeR code for reproducing this example is given in the accompanying filemboost-MLOSS.R.
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Figure 1: Out-of-bag empirical risk (A) indicating that 500 iterations are appropriate. Fitted model
components for variableanthro3b, consisting of a linear (B) and smooth term (C). The
right panel shows the interaction model component between hip and waist circumfer-
ences.

+ data = bodyfat, ### 71 observations
+ family = QuantReg(tau = 0.5)) ### median regression

Once the model has been fitted it is important to assess the appropriate numberof boosting iterations
via the out-of-sample empirical risk. By default, 25 bootstrap samples from the training data are
drawn and the out-of-bag empirical risk is computed (parallel computation if possible):

R> ### bootstrap for assessing the ‘optimal’ number
R> ### of boosting iterations
R> cvm <- cvrisk(model, grid = 1:100 * 10)
R> model[mstop(cvm)] ### restrict model to optimal mstop(cvm) iterations

Now, the final model is ready for a visual inspection:

R> plot(cvm) ### depict out-of bag risk and
R> plot(model) ### selected components

The resulting plots are given in Figure 1. They indicate that a model based on three components,
including a smooth function ofanthro3b and a bivariate function of hip and waist circumference,
provides the best characterization of the median body fat composition (given the model specification
offered to the boosting algorithm). A hip circumference larger than 110 cm leads to increased body
fat but only if the waist circumference is larger than 90 cm.

The sources of themboostpackage are distributed at the ComprehensiveR Archive Network
under GPL-2, along with binaries for all major platforms as well as documentation and regression
tests. Development versions are available fromhttp://R-forge.R-project.org.
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