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Abstract

The FastInf C++ library is designed to perform memory ancetefficient approximate inference
in large-scale discrete undirected graphical models. dhed of the library is propagation based
approximate inference methods, ranging from the basiojbefief propagation algorithm to prop-
agation based on convex free energies. Various messagauticigeschemes that improve on the
standard synchronous or asynchronous approaches ardeadclilso implemented are a clique
tree based exact inference, Gibbs sampling, and the medrafigrithm. In addition to inference,
FastInf provides parameter estimation capabilities as agelepresentation and learning of shared
parameters. It offers a rich interface that facilitategaston of the basic classes to other inference
and learning methods.

Keywords: graphical models, Markov random field, loopy belief progaiyga approximate infer-
ence

1. Introduction

Probabilistic graphical models (Pearl, 1988) are a framework for septang a complex joint dis-
tribution over a set ofi random variablex = {X;...Xy}. A qualitative graph encodes probabilistic
independencies between the variables and implies a decomposition of theigtiibution into a
product of local terms:

Px) = 2 [TW(E).

whereC; are subsets of defined by the cliques of the graph structure g(;) are the quantitative
parameters (potential functions) that define the distribution. Computing nahmgivbabilities and
likelihood in graphical models are critical tasks needed both for makindgti@us and to facilitate
learning. Obtaining exact answers to these inference queries is oftasiiplie even for relatively
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modest problems. Thus, there is a growing need for inference methddsréhaoth efficient and
can provide reasonable approximate computations. Despite few theogetarahntees, the Loopy
Belief Propagation (LBP, Pearl, 1988) algorithm has gained significaptlprity in the last two
decades due to impressive empirical success, and is now being usedlm@mge of applications
ranging from transmission decoding to image segmentation (Murphy and,\¥883; McEliece
et al., 1998; Shental et al., 2003). Recently there has been an explogiattical and theoretical
interest in propagation based inference methods, and a range of immotgeto the convergence
behavior and approximation quality of the basic algorithms have been saddeéginwright et al.,
2003; Wiegerinck and Heskes, 2003; Elidan et al., 2006; Meshi et0#19)2

We present th&astinf library for efficient approximate inference in large scale discrete prob-
abilistic graphical models. While the library’s focus is propagation basexténte techniques,
implementations of other popular inference algorithms such as mean fiel@iJetrdl., 1998) and
Gibbs sampling are also included. To facilitate inference for a wide rang®deéls, Fastinf’s rep-
resentation is flexible allowing the encoding of standard Markov randdds fées well as template-
based probabilistic relational models (Friedman et al., 1999; Getoor et @ll),20rough the use
of shared parameters. In addition, FastInf also supports learninditaps by providing param-
eter estimation based on the Maximum-Likelihood (ML) principle, with standagdlagization.
Missing data is handled via the Expectation Maximization (EM) algorithm (Dempstdr, 1977).

FastInf has been used successfully in a number of challenging applgatmging from infer-
ence in protein-protein networks with tens of thousands of variablesraatl sycles (Jaimovich
et al., 2005), through protein design (Fromer and Yanover, 2008)jeztdbcalization in cluttered
images (Elidan et al., 2006).

2. Features

The FastInf library was designed while focusing on generality and flexibiitycordingly, a rich
interface enables implementation of a wide range of probabilistic graphica¢lsoa which all
inference and learning methods can be applied. A basic general-pyspmsagation algorithm is
at the base of all propagation variants and allows straightforward éstens

A model is defined via a graph interface that requires the specificationset af cliques
C:...Ck, and a corresponding set of tables that quantify the parametrizati@) for each joint
assignment of the variables in the cliqQe This general setting can be used to perform inference
both for the directed Bayesian network representation and the unditdetdadyv one.

2.1 Inference Methods

FastInf includes implementations of the following inference methods:

Exact inference by the Junction-Tree algorithm (Lauritzen and Spialyeth1988)
Loopy Belief Propagation (Pearl, 1988)

Generalized Belief Propagation (Yedidia et al., 2005)

Tree Re-weighted Belief Propagation (Wainwright et al., 2005)

Propagation based on convexification of the Bethe free energy (Meahj 2009).
Mean field (Jordan et al., 1998)

Gibbs sampling (Geman and Geman, 1984)
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By default, all methods are used with standard asynchronous messagiilseg. We also imple-
mented two alternative scheduling approaches that can lead to bettergemeproperties (Wain-
wright et al., 2002; Elidan et al., 2006). All methods can be applied to bathasud max product
propagation schemes, with or without damping of messages.

2.2 Relational Representation

In many domains, a specific local interaction pattern can recur many timesepfresent such
domains, it is useful to allow multiple cliques to share the same parametrizations ktate a set
of template table parametrizatiogs, ..., Pt are used to parametrize all cliques using

P00 = 711 [] ()

wherel (1) is the set of cliques that are mapped to ttie potential. This template based represen-
tation allows the definition of large-scale models using a relatively small nunfilparrameters.

2.3 Parameter Estimation

Fastinf can also be used for learning the parameters of the model frol@nee. This is done
by using gradient-based methods with the Maximum-Likelihood (ML) objecfiee library also
handles partial evidence by applying the EM algorithm (Dempster et al.))18%teover, Fastinf
supportd.; andL, regularization that is added as a penalty term to the ML objective.

3. Documentation

For detailed instructions on how to install and use the library, examplesdgewsd documentation
on the main classes of the library visit Fastinf home pagétdtp: / / conpbi 0. ¢s. huji.ac.il/
Fast I nf.
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