Journal of Machine Learning Research 11 (2010) 1141-1144 Submitted 6/09; Published 3/10

SFO: A Toolbox for Submodular Function Optimization

Andreas Krause KRAUSEA@CALTECH.EDU
Computer Science

California Institute of Technology

Pasadena, CA 91125 USA

Editor: Soeren Sonnenburg

Abstract

In recent years, a fundamental problem structure has echage®ery useful in a variety of ma-
chine learning applications: Submodularity is an int@tiliminishing returns property, stating that
adding an element to a smaller set helps more than adding itai@er set. Similarly to convexity,
submodularity allows one to efficiently find provably (ngaptimal solutions for large problems.
We present SFO, a toolbox for use in MATLAB or Octave that iempénts algorithms for mini-
mization and maximization of submodular functions. A tigbscript illustrates the application of
submodularity to machine learning and Al problems such atsife selection, clustering, inference
and optimized information gathering.

1. Introduction

Convex optimization has become a powerful tool in machine learning: Sumglgismany prob-
lems that intuitively require the optimization of highly multi-modal objectives, sigchlastering
and non-linear classification, can be reduced to convex programs,irajl@fficient and optimal
solution. More formally, they require finding a solutighe R¢:

X* = argming(x) s.t.x € g,
X

whereg is a convex function, an§ C RY is a (convex) set of feasible solutions.

However, many optimization problems in machine learning, such as featucticelestruc-
ture learning and inference in discrete graphical models, require fisgdingions tocombinatorial
optimization problems: They can be reduced to the problem

A* =argminF (4) s.t. 4 € 3,
acy
whereF is a set functiorF : 27 — R defined over a finite set’, andg C 27 is a collection of
feasible subsets of, for example, all sets of size at mdsty = {4 C V' : | 4| < k}.

In many machine learning problems, the functtosatisfiessubmodularityan intuitive dimin-
ishing returns property, stating that adding an element to a smaller set helpshan adding it to
a larger set. Formally, for aft C B C ¥ ands< %\ B it must hold that- (A2 U {s}) — F(4) >
F(BU{s}) — F(B). Similarly to convexity, submodularity allows one to efficiently find provably
(near-) optimal solutions for large problems. Interestingly, for submedutections, guarantees
can be obtained both for minimization and for maximization problems. This is impodiaice
applications require both minimization (e.g., in clustering, inference and steulgarning) and
maximization (e.g., in feature selection and optimized information gathering). ¥¢epr SFO, a

(©2010 Andreas Krause.



KRAUSE

toolboxt for use in MATLAB or Octave that implements various algorithms fanimization and
maximizatiorof submodular functions. Examples illustrate the application of submodularityto ma
chine learning and Al problems such as clustering (Narasimhan et al.),20f@%ence in graphical
models (Kolmogorov and Zabih, 2004) and optimized information gatheringu@& et al., 2006).

2. Implementation of Submodular Functions

The SFO toolbox includes several examples of submodular functionsaldaseasily extendable
with additional functions. The ground séf is implemented as a MATLAB array. Submodular
functions are implemented as MATLAB objects, inheriting frefo.fn. The following shows ex-
ample code defining the submodular function

F(A) = 1(Xa; Xon 1) = H(Xpn 2) —H(Xgn 4 | Xa),

that is, the mutual information between a set of random variakileand its complement,, 4,

based on a joint multivariate normal distributiBX,, = X,/) = A[(X4; 0,Z) with covariance matrix
P = RlOOXlOO:

V = 1:100;
F = sfo_fn_mi(Sigma,hV);
F(1:3) % evaluate F on set A=[1,2,3]

This objective function has been used for experimental design in Gayssieesses (Krause et al.,
2008), structure learning (Narasimhan and Bilmes, 2004) and clust&targgimhan et al., 2005).
Often, algorithms require computing marginal increments

&3 (A) =F(AU{s}) - F(A) andd; (A) =F(A\ {s}) - F(A),

that is, computing the change in submodular value by adding (removing)meriefrom a set4.
Often, computind= (AU {s}) (or F(A4\ {s})) is more efficient wherf (1) has already been com-
puted. E.g., for mutual information, incrementally computifig? U {s}) requires up-/downdating
of the Cholesky decomposition of covariance makijy. To speed up computation, the submodu-
lar function objects in SFO support methadsanddec:

F = init(F,1:5); % cache computation of F(1:5)
inc(F,1:5,9) % efficient evaluation of F([1:5 9])
dec(F,1:5,3) % efficient evaluation of F([1:2 4:5])

The SFO toolbox implements several other examples of submodular funétiolsling

sfo_fn_entropy | Entropy of multivariate Gaussians
sfo_fn_infogain | Information gain for multivariate Gaussians
sfo_fn_mi Mutual information in multivariate Gaussians
sfo_fn_varred | Variance reduction in multivariate Gaussians
sfo_fn_detect Improvement in detection performance
sfo_fn_cutfun Cut function in graphs

sfo_fn_ising Energy in ising models with attractive potentials

1. The toolbox is available &t t p: / / www. subnodul arity. org.

1142



SFO: A TOOLBOX FORSUBMODULAR FUNCTION OPTIMIZATION

Creating submodular functions from other submodular functions is alsig@susingsfo_fn_lincomb
for nonnegative linear combinations, asfd_fn_trunc for truncation. Custom submodular functions
can be used either by inheriting frasfo_fn, or by using thesfo_fn_wrapper function, which wraps a
pointer to an anonymous function in a submodular function object. The foltpgiample wraps an
anonymous functiofn which computes, for any set of integesthe number of distinct remainders
modulo 5:

fn = @(A) length (unique (mod(A,5)));
F = sfo_fn_wrapper(fn);

F([1 6]) % returns 1

F([1:10]) % returns 5

3. Implemented Algorithmsfor Submodular Function Optimization

SFO implements various algorithms for (constrained) maximization and minimizatiarbofcd-
ular functions. Their use is demonstratedfn tutorial andsfo_tutorial_octave.
Minimization of Submodular Functions

sfo_min_norm_point: The minimum norm point algorithm of Fujishige (2005) for solviag=
argmin, - F () for general submodular functions.

sfo_queyranne: Algorithm of Queyranne (1995) solving* = argminc 4.0 4<|| F(A) for
symmetric submodular functions (i.&(4) = F(V\ A4) for all sets4).

sfo_ssp: The submodular-supermodular procedure of Narasimhan and Bilmes)(26r
(heuristically) minimizing the difference between two submodular functions

a* = argmingc o F1(A) — F2(A4).

sfo_s_t_min_cut: Solves4* = argmin,, F(4) s.t.se At ¢ 4.

sfo_greedy_splitting: The algorithm of Zhao et al. (2005) for submodular clustering

Maximization of Submodular Functions

sfo_greedy_lazy: The greedy algorithm of Nemhauser et al. (1978) for constrained maadmiz
tion / coverage, using the lazy evaluation technique of Minoux (1978).

sfo_cover: Greedy coverage algorithm using lazy evaluations.

sfo_celf: The CELF algorithm for approximately solving* = argmax; F(4) s.t.C(4) < B,

for linear cost functiorC (Leskovec et al., 2007).

sfo_Is_lazy: The (deterministic) local search algorithm of Feige et al. (2007) foonsirained
maximization of nonnegative submodular functions, using lazy evaluations.

sfo_pspiel: The PSPIEL algorithm of Krause et al. (2006pSPIEL approximately solves
A* =argmax; F(A4) s.t.C(A4) < B, whereC(4) is the cost of a cheapest path connecting the
nodes4 in a graph.

sfo_saturate: The SATURATE algorithm of Krause et al. (2008) for approximately swv
the robust optimization problet” = argmaxgz <, min; K (4).

sfo_balance: The ESPASS algorithm for approximately solving the optimization problem
max ,u...ua/<mMini F () (Krause et al., 2009).

sfo_max_dca_lazy: The Data Correcting algorithm for maximizing general (not necessarily
nondecreasing) submodular functions (Goldengorin et al., 1999).

1143



KRAUSE

Acknowledgments

This research was supported by ONR grant NO0014-09-1-104&, GQI$S-0932392, a gift from
Microsoft Corporation and an Okawa Foundation Research Grant.
References

U. Feige, V. Mirrokni, and J. Vondrak. Maximizing non-monotone subntexdunctions. IfFOCS
2007.

S. Fujishige.Submodular Functions and Optimizatiolsevier, 2nd edition, 2005.

B. Goldengorin, G. Sierksma, G. A. Tijssen, and M. Tso. The dataecting algorithm for the
minimization of supermodular functionsigmt Science45(11):1539-1551, 1999.

V. Kolmogorov and R. Zabih. What energy functions can be minimized viglgcats?IEEE Trans
Patt An Mach Int (PAMI)26(2):147-159, February 2004.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimalsgiacements: Maximizing
information while minimizing communication cost. IRSN 2006.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placemer@auissian processes:
Theory, efficient algorithms and empirical studiesJMLR, volume 9, 2008.

A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin. Simultaneous platemeé scheduling of
sensors. Innformation Processing in Sensor NetwqrR809.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesehN. Glance. Cost-effective
outbreak detection in networks. KDD, 2007.

M. Minoux. Accelerated greedy algorithms for maximizing submodular setioms. Optimization
Technigues, LNC®ages 234-243, 1978.

M. Narasimhan and J. Bilmes. Pac-learning bounded tree-width graphazils. InUncertainty
in Artificial Intelligence 2004.

M. Narasimhan and J. Bilmes. A submodular-supermodular procedurepnilicaions to discrim-
inative structure learning. INIPS 19 2006.

M. Narasimhan, N. Jojic, and J. Bilmes. Q-clusteringNIi?S 2005.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approxinsat@mmaximizing sub-
modular set functiondvlathematical Programmingl4:265—-294, 1978.

M. Queyranne. A combinatorial algorithm for minimizing symmetric submodulactfans. In
SODA 1995.

L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for@gmating multiway
partition problemsMathematical Programmingl02(1):167-183, 2005.

1144



