
Journal of Machine Learning Research 11 (2010) 1141-1144 Submitted 6/09; Published 3/10

SFO: A Toolbox for Submodular Function Optimization

Andreas Krause KRAUSEA@CALTECH.EDU

Computer Science
California Institute of Technology
Pasadena, CA 91125 USA

Editor: Soeren Sonnenburg

Abstract
In recent years, a fundamental problem structure has emerged as very useful in a variety of ma-
chine learning applications: Submodularity is an intuitive diminishing returns property, stating that
adding an element to a smaller set helps more than adding it toa larger set. Similarly to convexity,
submodularity allows one to efficiently find provably (near-) optimal solutions for large problems.
We present SFO, a toolbox for use in MATLAB or Octave that implements algorithms for mini-
mization and maximization of submodular functions. A tutorial script illustrates the application of
submodularity to machine learning and AI problems such as feature selection, clustering, inference
and optimized information gathering.

1. Introduction

Convex optimization has become a powerful tool in machine learning: Surprisingly, many prob-
lems that intuitively require the optimization of highly multi-modal objectives, such as clustering
and non-linear classification, can be reduced to convex programs, allowing efficient and optimal
solution. More formally, they require finding a solutionx∗ ∈ R

d:

x∗ = argmin
x

g(x) s.t. x ∈ F,

whereg is a convex function, andF ⊆ R
d is a (convex) set of feasible solutions.

However, many optimization problems in machine learning, such as feature selection, struc-
ture learning and inference in discrete graphical models, require findingsolutions tocombinatorial
optimization problems: They can be reduced to the problem

A∗ = argmin
A⊆V

F(A) s.t.A ∈ F,

whereF is a set functionF : 2V → R defined over a finite setV , andF ⊆ 2V is a collection of
feasible subsets ofV , for example, all sets of size at mostk, F = {A ⊆ V : |A | ≤ k}.

In many machine learning problems, the functionF satisfiessubmodularity, an intuitive dimin-
ishing returns property, stating that adding an element to a smaller set helps more than adding it to
a larger set. Formally, for allA ⊆ B ⊆ V ands∈ V \B it must hold thatF(A ∪{s})−F(A) ≥
F(B ∪{s})−F(B). Similarly to convexity, submodularity allows one to efficiently find provably
(near-) optimal solutions for large problems. Interestingly, for submodular functions, guarantees
can be obtained both for minimization and for maximization problems. This is important,since
applications require both minimization (e.g., in clustering, inference and structure learning) and
maximization (e.g., in feature selection and optimized information gathering). We present SFO, a

c©2010 Andreas Krause.

KRAUSE

toolbox1 for use in MATLAB or Octave that implements various algorithms forminimization and
maximizationof submodular functions. Examples illustrate the application of submodularity to ma-
chine learning and AI problems such as clustering (Narasimhan et al., 2005), inference in graphical
models (Kolmogorov and Zabih, 2004) and optimized information gathering (Krause et al., 2006).

2. Implementation of Submodular Functions

The SFO toolbox includes several examples of submodular functions. It isalso easily extendable
with additional functions. The ground setV is implemented as a MATLAB array. Submodular
functions are implemented as MATLAB objects, inheriting fromsfo fn. The following shows ex-
ample code defining the submodular function

F(A) = I(XA ;XV \A) = H(XV \A)−H(XV \A | XA),

that is, the mutual information between a set of random variablesXA and its complementXV \A ,
based on a joint multivariate normal distributionP(XV = xV) =N (xV ;0,Σ) with covariance matrix
Σ ∈ R

100×100:

V = 1 : 1 0 0 ;
F = s f o f n m i (Sigma ,V) ;
F (1 : 3) % e v a l u a t e F on s e t A= [1 , 2 , 3]

This objective function has been used for experimental design in Gaussian processes (Krause et al.,
2008), structure learning (Narasimhan and Bilmes, 2004) and clustering (Narasimhan et al., 2005).
Often, algorithms require computing marginal increments

δ+
s (A) = F(A ∪{s})−F(A) andδ−s (A) = F(A \{s})−F(A),

that is, computing the change in submodular value by adding (removing) an elements from a setA .
Often, computingF(A ∪{s}) (or F(A \{s})) is more efficient whenF(A) has already been com-
puted. E.g., for mutual information, incrementally computingF(A ∪{s}) requires up-/downdating
of the Cholesky decomposition of covariance matrixΣAA . To speed up computation, the submodu-
lar function objects in SFO support methodsinc anddec:

F = i n i t (F , 1 : 5) ; % cache compu ta t i on o f F (1 : 5)
i n c (F , 1 : 5 , 9) % e f f i c i e n t e v a l u a t i o n o f F ([1 : 5 9])
dec (F , 1 : 5 , 3) % e f f i c i e n t e v a l u a t i o n o f F ([1 : 2 4 : 5])

The SFO toolbox implements several other examples of submodular functions,including

sfo fn entropy Entropy of multivariate Gaussians
sfo fn infogain Information gain for multivariate Gaussians
sfo fn mi Mutual information in multivariate Gaussians
sfo fn varred Variance reduction in multivariate Gaussians
sfo fn detect Improvement in detection performance
sfo fn cutfun Cut function in graphs
sfo fn ising Energy in ising models with attractive potentials

1. The toolbox is available athttp://www.submodularity.org.

1142

SFO: A TOOLBOX FORSUBMODULAR FUNCTION OPTIMIZATION

Creating submodular functions from other submodular functions is also possible, usingsfo fn lincomb
for nonnegative linear combinations, andsfo fn trunc for truncation. Custom submodular functions
can be used either by inheriting fromsfo fn, or by using thesfo fn wrapper function, which wraps a
pointer to an anonymous function in a submodular function object. The following example wraps an
anonymous functionfn which computes, for any set of integersA , the number of distinct remainders
modulo 5:

fn = @(A) l e n g t h (un ique (mod (A , 5))) ;
F = s f o f n w r a p p e r (fn) ;
F ([1 6]) % r e t u r n s 1
F ([1 : 1 0]) % r e t u r n s 5

3. Implemented Algorithms for Submodular Function Optimization

SFO implements various algorithms for (constrained) maximization and minimization of submod-
ular functions. Their use is demonstrated insfo tutorial andsfo tutorial octave.
Minimization of Submodular Functions

• sfo min norm point: The minimum norm point algorithm of Fujishige (2005) for solvingA∗ =
argminA⊆V F(A) for general submodular functions.

• sfo queyranne: Algorithm of Queyranne (1995) solvingA∗ = argminA⊆V :0<|A |<|V |F(A) for
symmetric submodular functions (i.e.,F(A) = F(V \A) for all setsA).

• sfo ssp: The submodular-supermodular procedure of Narasimhan and Bilmes (2006) for
(heuristically) minimizing the difference between two submodular functions
A∗ = argminA⊆V F1(A)−F2(A).

• sfo s t min cut: SolvesA∗ = argminA⊆V F(A) s.t. s∈ A , t /∈ A .
• sfo greedy splitting: The algorithm of Zhao et al. (2005) for submodular clustering

Maximization of Submodular Functions

• sfo greedy lazy: The greedy algorithm of Nemhauser et al. (1978) for constrained maximiza-
tion / coverage, using the lazy evaluation technique of Minoux (1978).

• sfo cover: Greedy coverage algorithm using lazy evaluations.
• sfo celf: The CELF algorithm for approximately solvingA∗ = argmaxA F(A) s.t.C(A)≤ B,

for linear cost functionC (Leskovec et al., 2007).
• sfo ls lazy: The (deterministic) local search algorithm of Feige et al. (2007) for unconstrained

maximization of nonnegative submodular functions, using lazy evaluations.
• sfo pspiel: The PSPIEL algorithm of Krause et al. (2006).PSPIEL approximately solves
A∗ = argmaxA F(A) s.t.C(A)≤ B, whereC(A) is the cost of a cheapest path connecting the
nodesA in a graph.

• sfo saturate: The SATURATE algorithm of Krause et al. (2008) for approximately solving
the robust optimization problemA∗ = argmax|A |≤k mini Fi(A).

• sfo balance: The ESPASS algorithm for approximately solving the optimization problem
max|A1∪···∪Ak|≤mmini F(Ai) (Krause et al., 2009).

• sfo max dca lazy: The Data Correcting algorithm for maximizing general (not necessarily
nondecreasing) submodular functions (Goldengorin et al., 1999).

1143

KRAUSE

Acknowledgments

This research was supported by ONR grant N00014-09-1-1044, NSF CNS-0932392, a gift from
Microsoft Corporation and an Okawa Foundation Research Grant.

References

U. Feige, V. Mirrokni, and J. Vondrak. Maximizing non-monotone submodular functions. InFOCS,
2007.

S. Fujishige.Submodular Functions and Optimization. Elsevier, 2nd edition, 2005.

B. Goldengorin, G. Sierksma, G. A. Tijssen, and M. Tso. The data-correcting algorithm for the
minimization of supermodular functions.Mgmt Science, 45(11):1539–1551, 1999.

V. Kolmogorov and R. Zabih. What energy functions can be minimized via graph cuts?IEEE Trans
Patt An Mach Int (PAMI), 26(2):147–159, February 2004.

A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg. Near-optimal sensor placements: Maximizing
information while minimizing communication cost. InIPSN, 2006.

A. Krause, A. Singh, and C. Guestrin. Near-optimal sensor placements inGaussian processes:
Theory, efficient algorithms and empirical studies. InJMLR, volume 9, 2008.

A. Krause, R. Rajagopal, A. Gupta, and C. Guestrin. Simultaneous placement and scheduling of
sensors. InInformation Processing in Sensor Networks, 2009.

J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen,and N. Glance. Cost-effective
outbreak detection in networks. InKDD, 2007.

M. Minoux. Accelerated greedy algorithms for maximizing submodular set functions.Optimization
Techniques, LNCS, pages 234–243, 1978.

M. Narasimhan and J. Bilmes. Pac-learning bounded tree-width graphicalmodels. InUncertainty
in Artificial Intelligence, 2004.

M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with applications to discrim-
inative structure learning. InNIPS 19, 2006.

M. Narasimhan, N. Jojic, and J. Bilmes. Q-clustering. InNIPS, 2005.

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing sub-
modular set functions.Mathematical Programming, 14:265–294, 1978.

M. Queyranne. A combinatorial algorithm for minimizing symmetric submodular functions. In
SODA, 1995.

L. Zhao, H. Nagamochi, and T. Ibaraki. Greedy splitting algorithms for approximating multiway
partition problems.Mathematical Programming, 102(1):167–183, 2005.

1144

