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Abstract
Small sample high-dimensional principal component analysis (PCA) suffers from variance infla-
tion and lack of generalizability. It has earlier been pointed out that a simple leave-one-out vari-
ance renormalization scheme can cure the problem. In this paper we generalize the cure in two
directions: First, we propose a computationally less intensive approximate leave-one-out estimator,
secondly, we show that variance inflation is also present in kernel principal component analysis
(kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently re-
store generalizability in kPCA. As for PCA our analysis alsosuggests a simplified approximate
expression.

Keywords: PCA, kernel PCA, generalizability, variance renormalization

1. Introduction

While linear dimensionality reduction by principal component analysis (PCA) isa trusted machine
learning workhorse, kernel based methods fornon-lineardimensionality reduction are only starting
to find application. We expect the use of non-linear dimensionality reduction toexpand in many
applications as recent research has shown that kernel principal component analysis (kPCA) can be
expected to work well as a pre-processing device for pattern recognition (Braun et al., 2008). In the
following we consider non-linear signal detection by kernel PCA followedby a linear discriminant
classifier.

In spite of its conceptual simplicity and ubiquitous use, principal component learning in high
dimensions is in fact highly non-trivial (see, e.g., Hoyle and Rattray, 2007; Kjems et al., 2001).
In the physics literature much attention has been devoted to learnability phase transitions. In PCA
there is a sharp transition as function of sample size fromno learning at allto a regime where
the projections become more and more accurate. In the transition regime wherelearning is still
incomplete there is a mismatch between the test and training projections. In Kjems etal. (2001) it
was shown that this can be interpreted as a case ofover-fittingand leads to pronouncedvariance
inflation in the training set projections and results in lack of generalization to test data as illustrated
in Figure 1.

Variance inflation is of particular concern if PCA is used to reduce dimensionality prior to, for
example, a classifier. When the data analytic pipeline is applied to test data the reduced variance of
the PCA text projections can lead to significantly reduced performance. Fortunately, the bias can
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Figure 1: Illustration of the variance inflation problem in PCA. Because PCAmaximizes variance,
small data sets in high dimensions will be overfitted. When the PCA subspace (A) is
applied to a test data set (B) the projected data will have smaller variance. This leads
to lack of generalizability if the training data is used to train a classifier, say a linear
discriminant (D). In Kjems et al. (2001) this problem was noted and it was shown that the
necessary renormalization can be estimated in a leave-one-out procedure

be reduced effectively by a leave-one-out (LOO) scale renormalization of the PCA test projections
to restore generalizability (Kjems et al., 2001). In this paper we pursue several extensions of this
result. We give a straightforward geometric analysis of the projection problem that suggests a com-
putationally less intensive approximate cure than the one originally proposedby Kjems et al. (2001).
Next, we proceed to investigate the issue in the context ofkernelbased unsupervised dimensionality
reduction. We show in both simulation and in real world data (USPS handwrittendigits and func-
tional MRI data) that variance inflation also happens in kPCA and basically for the same reasons
as in PCA. We then provide an extension to the LOO procedure for kPCA which can cope with
potential non-Gaussian distributions of the kPCA projections, and finally wepropose a simplified
approximate renormalization scheme.

2. Generalizability in PCA

The most complete theoretical picture of principal component learning is presented by Hoyle and
Rattray (2007), which builds on and extends earlier work by, for example, Biehl and Mietzner
(1994), Hoyle and Rattray (2004c), Johnstone (2001), Reimann et al.(1996), and Silverstein and
Combettes (1992). Hoyle and Rattray (2007) consider a general PCA model with a multidimen-
sional normal distributed signal that emerges from an isotropic noise background as the sample size
increases. The stabilization of a given principal component happens ata given sample size and takes
the form of a phase transition. For small sample sizes -below the phase transition point - the train-
ing set principal component eigenvectors are in completely random directions in space and there is
no learning at all. Then, as the sample size increases, the first principal component stabilizes, and
for even larger sample sizes the second, and so forth. Sharp transitionsare strictly present only in a
limit where both dimensionality and sample size are infinite with a finite ratioα =N/D, but the the-
oretical results are very accurate at realistic dimensions as seen in Figure2. The location of the first
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Figure 2: Phase transitions in PCA. Simulated data was created asx = ηu+ ǫ, with a nor-
mal distributed signal of unit strengthη ∼ N(0,1), embedded in i.i.d. normal noise
ǫ ∼ N(0,σ2

1). In this simulated data set we show the phase transition like behavior
of the overlap (the mean square of the projection) of the first PCA eigenvector and the
signal directionu. The input space has dimensionD = 1000, and the curves are for 10
values of signal to noise within the intervalσ ∈ [0.01,0.5]. For a noise level of, for ex-
ample,σ = 0.17 (black curves) there is a sharp transition both in the theoretical curve
(dash/cross) and the experimental curve (full/circle) aroundN = 120 examples.

phase transition depends on the signal variance to noise variance ratio (SNR). The theoretical result
provides amean biasfor a specific model, hence, cannot directly be used to restore generalizability
in a given data set.

Now, what happens to the generalization performance of PCA in the noisy region? The PCA
projections will be offset by different angles depending on how severe the given component is
affected by the noise. Because of the bias the test projections will follow different probability laws
than the training data, typically with much lower variance. Hence, if we train a classifier on the
training projections the classifier will make additional errors on the test set as visualized in Figure
1.

In the case of PCA the subspace projections are uncorrelated, hence,it is meaningful to renor-
malize them independently. Assuming approximate normality, a simple affine transformation suf-
fices. The scale factor is simply the ratio of the standard deviations of the training and test projec-
tions and can be estimated by a leave-one-out procedure (Kjems et al., 2001). However, since the
LOO procedure involves the computation ofN SVD’s of an(N−1)×(N−1) matrix, it is of interest
to find a simplified estimate.
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Figure 3: Approximating the leave-one-out (LOO) procedure. Here wesimulate data with four
normal independent signal components,x= Σ4

k=1ηkuk+ǫ of strengths(1.4,1.2,1.0,0.8,
embedded in i.i.d. normal noiseǫ ∼ N(0,σ2

1), with σ = 0.2. The dimension was
D = 2000 and the sample size wasN = 50. In the four panels we show the training
set projections (red crosses), the projections corrected for the theoretical mean overlap
(Hoyle and Rattray, 2007) (yellow squares) and the geometric approximation in Equation
(1) (green dots) versus the exact LOO projections (black line).

Let {x1, . . . ,xN} beN training data points in aD dimensional input spaceX (see notation),1 we
consider the caseN≪ D. The LOO step for theN’th point xN concerns projecting onto the PCA
eigenvectors derived from the subset{x1, . . . ,xN−1}. Define the orthogonal and parallel compo-

nents of the test point,xN = x⊥N +x
‖
N, relative to the subspace spanned by the training data. As the

PCA eigenvectors with non-zero variance are all in the span of the trainingdata we obtain

uT
N−1,k ·xN = uT

N−1,k ·x
‖
N ,

whereuN−1,k is thek’th eigenvector of the LOO training set. Assuming that the changes in the PCA
eigenvectors going from sample sizeN to N−1 are small, we can approximate the test projections
as

uT
N−1,k ·xN = uT

N−1,k ·x
‖
N ≈ uT

N,k ·x
‖
N , (1)

whereuN,k is thek’th eigenvector on the full sample. The approximation introduces a small error
of order 1/N as discussed in detail in the Appendix and further illustrated in a simulation data set

in Figure 3. Note that the orthogonal projectionsx
‖
N of the N points may be calculated from the

inverse matrix of the inner products of all data points, inN steps each of a cost scaling asN2, thereby
achieving a computational burden which scales asN3 rather than theN4 scaling for an exact LOO
procedure proposed in Kjems et al. (2001).

1. Bold uppercase letters denote matrices, bold lowercase letters represent column vectors, and non-bold letters denote
scalars.a j denotes thej’th column ofA, while ai j denotes the scalar in thei’th row andj’th column ofA. Finally
1NN is aN×N matrix of ones.
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3. Renormalization Cure for Variance Inflation in kernel PCA

The statistical properties of kernel PCA have also been studied extensively by Blanchard et al.
(2007), Hoyle and Rattray (2004a), Hoyle and Rattray (2004b), Mosci et al. (2007), Shawe-Taylor
and Williams (2003) and Zwald and Blanchard (2006), but to our knowledge the geometry of gen-
eralization for kPCA has not been discussed in the extremely ill-posed caseN≪ D.

To better understand the variance inflation problem in relation to kPCA let us recapitulate some
basic aspects of this non-linear dimensional reduction technique.

Let F be the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel function
k(x,x′) = ϕ(x)Tϕ(x′), whereϕ : X 7→ F is a possibly non-linear map from theD-dimensional
input spaceX to the high dimensional (possibly infinite) feature spaceF . In kPCA the PCA step
is carried out in the feature space,F , mapped data (Schölkopf et al., 1998). However, asF can
be infinite dimensional we first apply the kernel trick allowing us to work with theGram matrix
of inner products. Let{x1, . . . ,xN} beN training data points inX and{ϕ(x1), . . . ,ϕ(xN)} be the
corresponding images inF . The mean of theϕ-mapped data points is denotedϕ̄ and the ‘centered’
images are given bỹϕ(x) = ϕ(x)− ϕ̄. The kPCA is performed by solving the eigenvalue problem
K̃αi = λiαi where the centered kernel matrix,̃K, is defined as

K̃ =K−
1
N
1NNK−

1
N
K1NN+

1
N21NNK1NN . (2)

The projection of aϕ-mapped test point onto thei’th component is given by

βi = ϕ̃(x)Tvi =
N

∑
n=1

αinϕ̃(x)T ϕ̃(xn) =
N

∑
n=1

αink̃(x,xn) , (3)

wherevi is thei’th eigenvector of the feature space covariance matrix and theαi ’s have been nor-
malized. The centered kernel function can be found ask̃(x,x′) = k(x,x′)− 1

N11Nkx−
1
N11Nkx′ +

1
N211NK1N1, wherekx = [k(x,x1), . . . ,k(x,xN)]

T . The projection ofϕ(x) onto the firstq princi-
pal components will in be denotedPq(x).

In the following we focus on a Gaussian kernel of the formk(x,x′)= exp(−1
c ||x−x

′||2), where
c is the scale parameter controlling the non-linearity of the kernel map. By the centering operation,
PCA is the obtained in the limit whenc→ ∞. Thus for large values we expect variance inflation to
be present due the reasons discussed above. What happens in the non-linear regime with a finitec?
To answer this question we analyze the LOO scenario for kPCA.

Consider the squared distance||xn−xN||
2 in the exponent in the Gaussian kernel for some

training set pointxn and a test pointxN. If we split the test point in the orthogonal components as
above with respect to the subspace spanned by the training set we obtain,

||xn−xN||
2 = ||xn−x

||
N||

2+ ||x⊥N||
2 .

Inserting this expression in the Gaussian kernel in Equation (3) it is seen that the test projection
acquire a common factor exp

(
−1

c ||x
⊥
N||

2
)
:

βi(xN) =
N−1

∑
n=1

αink̃(xN,xn) = exp

(
−

1
c
||x⊥N ||

2
)N−1

∑
n=1

αink̃(x||N,xn) ,

which can be arbitrary small for small valuesc, that is, in the non-linear regime.
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Figure 4: Approximating the leave-one-out (LOO) procedure for kPCA. We simulate a data
set with four normal independent signal components,x = Σ4

k=1ηkuk + ǫ of strengths
(1.4,1.2,1.0,0.8, embedded in i.i.d. normal noiseǫ ∼N (0,σ2

1), with σ = 0.2. The di-
mension was chosenD = 2000 and the sample size wasN = 50. In the four panels we
show the four kPCA component’s training set projections (red crosses), and the result of
applying the point wise correction factor exp(1

c ||x
⊥
N||

2) for the lost orthogonal projection
(green dots) versus the exact LOO kPCA test projections (black).

For a coordinate-wise LOO renormalization procedure we thus propose tocomputeN test pro-
jections by repeated kPCA on theN− 1 sized sub training sets. However, compared to the PCA
case we face two additional challenges, namely the potentially strongly non-Gaussian distributions
and component dependencies.

To check for dependency we appeal to simple pairwise permutation test of significant mutual
information measure (see, e.g., Moddemeijer, 1989). If the null hypothesisis rejected for a given
set of components we cannot expect coordinate-wise renormalization to be effective. If, on the
other hand, the kernel PCA projections pass the independence test we can proceed to renormalize
the components individually. In the following we will assume that a coordinate-wise approach is
acceptable. First, as a simple approximation to the full LOO we consider adjusting for the common
scaling factor due to the lost orthogonal projection. This may indeed provide for viable approxima-
tion as seen in Figure 4.

To address the second challenge, namely the potential non-normality we propose to generalize
the affine scaling method of Kjems et al. (2001) by a non-parametric procedure. Assume that
there exists a monotonic transformation between theN training andN LOO test set projections.
The problem of calibrating for an unknown monotone transformation is a common operation in
image processing, and is used, for example, to transform the gray scale of an image in order to
standardize the pixel histogram (Gonzalez and Wintz, 1977). Equalizing two equal sized samples,
simply involves sorting both and assigning the sorted test projections the sorted values of the training
projections, this procedure is easily seen to equalize the histograms without changing the level sets
(relative ordering) of the LOO test projections. In Figure 5 a simple 1-dimensional data set is used
to illustrate the equalization procedure. The training set clearly contains two classes. However, due
to variance inflation (induced by, for example, kernel PCA) the test set does not follow the same
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Figure 5: Illustration of renormalization by histogram equalization. The left panel shows the train-
ing set (yellow squares) and original test set (red crosses) and theirrespective histograms.
The histograms are then equalized as seen in the right panel, where the green dots are the
renormalized test data. The renormalization clearly restores the variation ofthe test set.

distribution, and may potentially lead to a high misclassification rate. The right panel of the figure
shows how histogram equalization restores generalizability.

Technically, the transformation may be described as follows. LetH( f ) be the cumulative distri-
bution of valuesf of a given kPCA projection of the training set. Let the test set projections on the
same component forNtest samples take valuesg(m). Let I(m) be the index of samplem in a sorted
list of the test set values. Then the renormalized value of the test projectionm is

g̃(m) = H−1(I(m)/Ntest) .

The test set projections can be obtained by the simple relation

g̃(m) = fsort(I(m)) , (4)

where fsort is the sorted list of training set projections. The algorithm for approximate renormaliza-
tion is summarized in Algorithm 1.2

4. Evaluation of the Proposed Cure in Classification Problems

In the following we evaluate the non-parametric exact LOO correction scheme when kPCA is used
as a dimensional reduction step in simulated and real classification data sets.

2. We thank the reviewers for pointing out that while non-normality is expected in the case of kPCA, non-normality
may also appear in PCA calling for application of the proposed non-parametric renormalization scheme in this case.
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Algorithm 1 Approximate renormalization in kernel PCA
Require: Xtr andXteto beNtr ×D andNte×D respectively

ComputeK̃tr using Equation (2) and find the eigenvectors,α1, . . . ,αq

for i = 1 toNtr do
f

i,:
tr ← Pq(x

i,:
tr ) = k̃T

xi
αi:q{see Equation (3)}

end for
for j = 1 toNte do
f

j,:
te ← Pq(x

j,:
te ) = k̃T

x j
αi:q{see Equation (3)}

end for
for d = 1 toq do
[fsort, ]← sort(f :,d

tr ) {ascending order}
[ , I ]← sort(f :,d

te ) {ascending order}
if Ntr = Nte then
h← fsort

else{Ntr 6= Nte}
h← spline

(
[1 : Ntr ],fsort, linspace(1,Ntr ,Nte)

)
{interpolate to createNte values offsort in

the interval[1 : Ntr ]}
end if
for n= 1 toNte do
g̃

I(n),d
te ← hn,d {renormalized test data in the principal subspace, see Equation (4)}

end for
end for

4.1 Simulated Data

To get some insight into the non-linear regime, we design a synthetic data set containing two 2-
dimensional semi-circular clusters which cannot be separated linearly (cf., Jenssen et al., 2006).
Gaussian noise is added to one of the clusters, and the data is further embedded in 1000 ‘noise
dimensions’. The basis is changed so that the 2D signal space occupies ageneral position. The
noise is as earlier assumed i.i.d. with varianceσ2. The assignment variable ist = 0,1, and in the
experiments the data set is assumed unbalanced withp(t = 0) = 0.6.

In Figure 6 we show in the left panel a linear discriminant trained on the training set projections
in a data set ofN = 500 in D = 1000 dimensions. The role of the non-linearity as controlled by
the parameterc in the Gaussian kernel is investigated in Figure 7 for a simulation setup similar to
Figure 6. As seen the inflation problem dramatically amplifies as non-linearity increases. Finally,
Figure 8 shows how renormalization improves the learning curve for the sameproblem.

4.2 USPS Handwritten Digit Data

The USPS handwritten digit benchmark data set is often used to illustrate unsupervised and super-
vised kernel methods. The USPS data set consists ofD = 16×16= 256 pixels handwritten digits.3

For each digit we randomly chose 10 examples for training and another 10 examples for testing. The
scale was chosen as the 5th percentile of the mutual distances of the data points leading toc≈ 120,

3. The USPS data set is described by Hull (1994) and can be downloaded fromwww.kernel-machines.org.
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Figure 6: An unbalanced two cluster data set showing a pronounced variance inflation problem in
the projections of the test data in the middle panel. In the right panel we have applied the
cure based on non-parametric renormalization to equalize training and test projections us-
ing histogram equalization. The linear discriminant performs close to the optimalBayes
rate after non-parametric renormalization. The sample size isN = 500 inD = 1000 di-
mensions and the SNR is 10. The training error rate is 0.002 while the uncorrected test
error rate is 0.4. Renormalization reduces the test error to 0.002.

and the number of principal components was chosen so 85% of the variance was contained in the
principal subspace leading to aroundq= 57 PCs to be included.

The first step is to submit the data to the mutual information permutation test. For every pair
of principal components a permutation test with 1000 permutations was performed in order to test
the null hypothesis of the two given components being independent. Using aρ = 0.05 significance
level, we find that the null hypothesis can only be rejected for approximately2% of the principal
component pairs when not using Bonferroni correction. The combinations for which the null hy-
pothesis can be rejected are equally distributed across the principal components. Since the expected
number of rejected tests at the given confidence level is 5%, hence, we can safely proceed with the
coordinate-wise renormalization process.

In theq dimensional principal subspace the projections of the test set are renormalized to follow
the training set histogram. We chose in these experiments for demonstration to classify digit 8 versus
the rest. A linear discriminant classifier was trained on the kernel PCA projections of the training
set, and the classification error was found using both the conventional kernel PCA projections of the
test set and their renormalized counterparts. In order to compare the two methods, the procedure
was repeated 300 times using random training and test sets. While classification based on the
conventional projections resulted in a mean classification error rate (± 1 std) of 0.06±0.01, using
the renormalized projections lowered the error rate to 0.05±0.02. A paired t-test showed that this
reduction is highly significant (p= 2.0875·10−11).

Figure 9 shows an example of the projections before and after renormalization. The axis are
fixed across the two methods. The top row clearly illustrates the inflation problem for conventional
kPCA. Furthermore, due to the imbalanced nature of the data set, the inflation causes a high misclas-
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Figure 7: The role of non-linearity on the variance inflation problem. We carry out three experi-
ments at different values of the Gaussian kernel scale parameter (top to bottom:c= 0.05,
c= 0.1, c= 0.5). We show classification errors as a function of SNR. The linear discrim-
inant performs close to the optimal Bayes rate after the renormalization operation in all
cases, while the un-renormalized systems suffers from poor generalizability. The sample
size isN = 500 and the number of dimensions isD = 1000.

sification rate. The bottom row illustrates how renormalization overcomes the distortions induced
by the variance inflation. The discriminant line is seen to separate the two classes appropriately.

To gain a better understanding of how the variance inflation and quality of therenormalization
are effected by noise, we added Gaussian noise (N (0,σ2

e)) with σe ∈ [0,5]. For every noise level,
300 random training and test sets where drawn as explained above and kPCA was performed. Once
again our goal was to classify digit 8 versus the rest by a linear classifierin the principal subspace.
The results are summarized in Figure 10 where we show the error rate before and after renormal-
ization as well as the result based on renormalizing according to the leave-one-out error. In the last
case, theN projections determined from leave-one-out cross validation (LOOCV) are renormalized
to follow the entire training set histogram. Renormalization is then only applied to thetest set when
this renormalized LOOCV error is less than the estimated baseline error. In theright panel of Figure
10 it is seen how renormalizing the projections leads to a much improved classifier as long as the
SNR is ‘reasonable’. Even whenσe = 0 there is some inherent noise in the data, which explains
why renormalization still improves the classification. Asσe reaches 1 it is no longer possible to
identify the digits by visual inspection, and classification becomes increasingly difficult.

The left panel of Figure 10 shows how the conventional error rate converges to the baseline of
0.1 (misclassifying all digits 8), for high noise levels. Basically, increasing thenoise result in a
more skewed test set subspace in relation to the subspace spanned by thetraining set (see Figure
1). At a given threshold this causes all the projections to lie on the same side of the discrimination
function due to the imbalanced composition, leading to a misclassifications rate of 1/10. As the
idea of renormalization by histogram equalization is to restore the variation in thetest set, this be-
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Figure 8: Classification error learning curves for the two semicircular clusters in i.i.d. noise setup.
The signal to noise ratio wasSNR= 60. The linear discriminant performs close to the
optimal Bayes rate after the renormalization operation in all cases, while the conventional
system suffers from poor generalizability, and requires about ten times as many examples
to reach the same error level as the renormalized classifier. The experiment was carried
out withD = 2000.

havior is naturally not encountered for the renormalized projections. Instead, as the SNR decreases,
renormalization increases the error rate, as the test set observations are forced to be distributed on
both sides of the discrimination line - which leads to many misclassifications when thesignal is sup-
pressed by the noise. However, using LOOCV based renormalization prevents the error rate from
blowing up while at the same time improving the classification in the more sensible SNR regime as
compared to conventional kPCA.

4.3 Functional MRI Data

As a second high dimensional real data example, functional magnetic resonance imaging (fMRI)
data was used to illustrate the effect of renormalization. The fMRI data set was acquired by Dr. Egill
Rostrup at Hvidovre Hospital on a 1.5 T Magnetom Vision MR scanner. The scanning sequence was
a 2D gradient echo EPI (T2- weighted) with 66 ms echo time and 50◦ RF flip angle. The images
were acquired with a matrix ofD = 128× 128= 16,384 pixels, with FOV of 230 mm, and 10
mm slice thickness, in a para-axial orientation parallel to the calcarine sulcus. The visual paradigm
consisted of a rest period of 20 sec of darkness using a light fixation dot, followed by 10 sec of
full-field checkerboard reversing at 8 Hz, and ending with 20 sec of rest (darkness). In total, 150
images were acquired in 50 sec, corresponding to a period of approximately 330 msec per image.
The experiment was repeated in 10 separate runs containing 150 images each. In order to reduce
saturation effects, the first 29 images were discarded, leaving 121 imagesfor each run. We use a
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Figure 9: USPS handwritten digits test set projections. The top row shows the conventional projec-
tions, while the bottom row shows the projections after renormalization. In this example
the third kPC carries a large part of the signal, and hence this component isshown versus
the other five first PCs. The variance reduction and the consequent shift is evident from
the top row. The dashed line indicates the linear discriminant function for classifying
digit 8 vs the rest.

simple on-off activation reference function for supervision of the classifier. The reference function
is off-set by 4 seconds to emulate the hemodynamic delay.

The data set is split in two equal sized subsets: Five runs for training andfive runs for testing.
As the test and training data are independent, the test error estimate is an unbiased estimator of
performance. The scale of the Gaussian kernel was chosen as the 5th percentile of the mutual
distances leading toc≈ 15000, while the dimension of the principal subspace is chosen asq= 20.

Again the principal components are tested for independence by a mutual information permuta-
tion test. Using 1000 permutations and aρ= 0.05 significance level, we find that the null hypothesis
is rejected for approximately 1% of the principal component pairs.

Similar to the handwritten digit data we perform linear classification in the kernel principal
subspace. This was repeated 300 times using random splits for differentnoise levels. The results
are summarized in Figure 11. Again renormalization is seen to decrease the error rate significantly,
while the LOOCV based scheme furthermore prevents the increase in error rate for high noise levels
(low SNR).

Figure 12 shows the projection of the data onto the first kPC’s before andafter renormalization.
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Figure 10: Mean error rates± 1 standard deviation as a function of the noise level. The test error
based on conventional kernel PCA projections, renormalized projections, and a LOOCV
scheme is shown. Renormalization is seen to improve the performance, while LOOCV
based renormalization prevents the classification error to blow up in the verylow SNR
regime.

5. Conclusion

Dimensionality reduction by PCA and kPCA can lack generalization due to training set variance
inflation in the extremely ill-posed case when the sample size is much smaller than the input space
dimension. In this work we have provided a simple geometric explanation for themain effect,
namely that test points ‘loose’ their orthogonal projections, when their embedding is computed.
This insight allowed for a speed-up of a previously proposed LOO scheme for renormalization.
For kPCA we showed that the effects can be even more dramatic than in PCA,and we proposed a
scheme for exact LOO renormalization of the embedding, and an approximateexpression at lower
cost. The viability of the new scheme was demonstrated for kPCA when used for dimensionality
reduction both in simple synthetic data, in the USPS digit classification problem, and for fMRI brain
state decoding.
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Figure 11: Mean error rates± 1 standard deviation as a function of the noise level for fMRI data
(D = 16,384,N = 605) . The test error based on conventional kernel PCA projections,
renormalized projections, and a LOOCV scheme is shown. Renormalization is seen to
clearly improve the performance. Arrow ’A’ indicates the noise level usedin Figure 12

Appendix A.

Let uN,k be thek’th eigenvector of the covariance matrix on the full sampleΣN anduN−1,k be the
corresponding eigenvector of LOO training set covariance matrixΣN−1. In the following we use
first order perturbation theory to show that

uT
N−1,k ·xN ≈ uT

N,k ·x
‖
N ,

where the data vectorx has been split in its orthogonal and parallel components,xN = x⊥N +x
‖
N,

relative to the subspace spanned by the training data. Thus, we are interested in the difference
betweenuN,k anduN−1,k. Simple manipulations of the covariance matrices lead to

ΣN−1 =ΣN +
1

N−1
ΣN−

1
N
(xN−µN−1)(xN−µN−1)

T

︸ ︷︷ ︸
O( 1

N )

.

By introducing the shorthandA=ΣN−1 andB =ΣN we get

A=B+δC , (5)

whereδ is of order 1
N . Note that all matrices are symmetric. We now look at thek’th eigenvector of

A andB:

Buk = λkuk , (6)

Avk = νkvk . (7)
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Figure 12: Test set projections of the fMRI data with Gaussian noise added as marked on Figure
11 (εi =N (0,3.82)). The top row shows the conventional projections, while the bottom
row shows the projections after renormalization. The ‘red class’ indicatesactivation,
while the blue observations are acquired during rest. The dashed line marks the linear
discriminant. The scale is chosen as the 5th percentile of the mutual distances.

First order perturbation theory posits

νk = λk+δξk , (8)

vk = uk+δwk . (9)

That is, when going fromN to N−1 samples we only have a small (O( 1
N)) change in eigenvalues

and rotation of eigenvectors. Since all eigenvectors are orthonormal it follows thatuk⊥wk, c.f.,

||vk||
2 = ||uk+δwk||

2 = ||uk||
2

︸ ︷︷ ︸
=1

+ δ2
︸︷︷︸
≈0

||wk||
2+2δuT

k wk = 1

δuT
k wk = 0 .

We now expand Equation (7) using Equation (5), (8) and (9)

Avk = νkvk ⇒

(B+δC)(uk+δwk) = (λk+δξk)(uk+δwk) ,

ignoring higher order terms ofδ gives

Buk+δCuk+δBwk = λkuk+δλkwk+δξkuk ,
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Finally, exploiting Equation (6) reduces the above to

Cuk+Bwk = λkwk+ξkuk . (10)

We now look for an estimate ofξk by left multiplying withuT
k

uT
k Cuk+uT

k Bwk = λku
T
k wk+ξku

T
k uk ,

using||uk||
2 = 1 anduk⊥wk gives

uT
k Cuk+uT

k Bwk = ξk ,

sinceB is symmetric,uk is both a left and right singular vector. Hence,uT
k Bwk = λku

T
k wk=0.

Thus finally, it follows that

uT
k Cuk = ξk . (11)

Next, we find an estimate ofwk by left multiplying Equation (10) withuT
j j 6= k.

uT
j Cuk+uT

j Bwk = λku
T
j wk+ξku

T
j uk ,

again we exploit the fact thatB is symmetric and thatu j is orthogonal touk, which gives

uT
j Cuk+λ ju

T
j wk = λku

T
j wk . (12)

Assuming that span{u1,u2, . . . ,uD} = span{v1,v2, . . . ,vD}, that is, thev-basis is a rotation of the
u-basis, which implies thatwk can be represented as a linear combination of theu-vectors (or
v-vectors), leads to

wk =
D

∑
m=1

hkmum .

Due to orthonormality of the eigenvectors, we now realize thathkk= 0 anduT
j wk =uT

j ∑D
m=1hkmum

will only be non-zero form= j. Hence, Equation (12) reduces to

uT
j Cuk+λ jhk j = λkhk j ⇒

hk j =
uT

j Cuk

λk−λ j
k 6= j

hkk = 0 .

In the above we have assumed a nondegenerate system, that is,λk 6= λ j ∀k 6= j. Thus,wk can be
expressed as

wk =
N

∑
m=16=k

uT
mCuk

λk−λm
um , (13)

2042



A CURE FORVARIANCE INFLATION IN HIGH DIMENSIONAL KERNEL PCA

where we used thatCuk is only non-zero fork≤ N. We are now ready to return to Equation (8)
and (9) inserting the expressions derived forξk andwk in Equation (11) and (13) respectively:

νk = λk+δuT
k Cuk (14)

vk = uk+δ
N

∑
m=16=k

(uT
m(xN−µN−1))(u

T
k
(xN−µN−1))

λk−λm
um . (15)

Equation (14) shows that the change in eigenvalue is indeed small (O( 1
N)) when going fromN to

N−1 samples. For the eigenvector perturbation, Equation (15), we can bound the squared length
of the sum and obtain a similar result,

∣∣∣∣∣

∣∣∣∣∣
1
N

N

∑
m=16=k

(uT
m(xN−µN−1))(u

T
k
(xN−µN−1))

λk−λm
um

∣∣∣∣∣

∣∣∣∣∣

2

≤

1
N2 ||xN−µN−1||

2

∣∣∣∣∣

∣∣∣∣∣
N

∑
m=16=k

(uT
m(xN−µN−1))

λk−λm
um

∣∣∣∣∣

∣∣∣∣∣=

1
N2 ||xN−µN−1||

2
N

∑
m=16=k

|(uT
m(xN−µN−1))|

2

|λk−λm|2
≤

1
N2

2||xN−µN−1||
4

|∆λk|2
,

where∆λk is the spacing between thek’th eigenvalue and the closest neighbor, and the factor of two
compensates for the missingk’th term in the sum, that is, the perturbation is of orderO(1/N)
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