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Abstract
Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained by op-
timizing a margin-based risk function. Traditionally, these risk functions are computed based on
a labeled data set. We develop a novel technique for estimating such risks using only unlabeled
data and the marginal label distribution. We prove that the proposed risk estimator is consistent
on high-dimensional data sets and demonstrate it on synthetic and real-world data. In particular,
we show how the estimate is used for evaluating classifiers intransfer learning, and for training
classifiers with no labeled data whatsoever.
Keywords: classification, large margin, maximum likelihood

1. Introduction

Many popular linear classifiers, such as logistic regression, boosting, or SVM, are trained by op-
timizing a margin-based risk function. For standard linear classifiersŶ = sign∑θ jXj with Y ∈
{−1,+1}, andX,θ ∈ R

d the margin is defined as the product

Y fθ(X) where fθ(X)
def
=

d

∑
j=1

θ jXj .

Training such classifiers involves choosing a particular value ofθ. This is done by minimizing the
risk or expected loss

R(θ) = E p(X,Y)L(Y, fθ(X)) (1)
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with the three most popular loss functions

L1(Y, fθ(X)) = exp(−Y fθ(X)) , (2)

L2(Y, fθ(X)) = log(1+exp(−Y fθ(X))) and (3)

L3(Y, fθ(X)) = (1−Y fθ(X))+ (4)

being exponential lossL1 (boosting), loglossL2 (logistic regression) and hinge lossL3 (SVM)
respectively (A+ above corresponds toA if A> 0 and 0 otherwise).

Since the riskR(θ) depends on the unknown distributionp, it is usually replaced during training
with its empirical counterpart

Rn(θ) =
1
n

n

∑
i=1

L(Y(i), fθ(X
(i))) (5)

based on a labeled training set

(X(1),Y(1)), . . . ,(X(n),Y(n))
iid∼ p (6)

leading to the following estimator

θ̂n = argmin
θ

Rn(θ).

Note, however, that evaluating and minimizingRn requires labeled data (6). While suitable in some
cases, there are certainly situations in which labeled data is difficult or impossible to obtain.

In this paper we construct an estimator forR(θ) using only unlabeled data, that is using

X(1), . . . ,X(n) iid∼ p (7)

instead of (6). Our estimator is based on the assumption that when the data is high dimensional
(d → ∞) the quantities

fθ(X)|{Y = y}, y∈ {−1,+1} (8)

are normally distributed. This phenomenon is supported by empirical evidence and may also be de-
rived using non-iid central limit theorems. We then observe that the limit distributions of (8) may be
estimated from unlabeled data (7) and that these distributions may be used to measure margin-based
losses such as (2)-(4). We examine two novel unsupervised applications: (i) estimating margin-
based losses in transfer learning and (ii) training margin-based classifiers. We investigate these
applications theoretically and also provide empirical results on synthetic and real-world data. Our
empirical evaluation shows the effectiveness of the proposed framework in risk estimation and clas-
sifier training without any labeled data.

The consequences of estimatingR(θ) without labels are indeed profound. Label scarcity is a
well known problem which has lead to the emergence of semisupervised learning: learning using a
few labeled examples and many unlabeled ones. The techniques we developlead to a new paradigm
that goes beyond semisupervised learning in requiring no labels whatsoever.
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2. Unsupervised Risk Estimation

In this section we describe in detail the proposed estimation framework and discuss its theoretical
properties. Specifically, we construct an estimator forR(θ) defined in (1) using the unlabeled data
(7) which we denotêRn(θ ;X(1), . . . ,X(n)) or simplyR̂n(θ) (to distinguish it fromRn in (5)).

Our estimation is based on two assumptions. The first assumption is that the labelmarginals
p(Y) are known and thatp(Y = 1) 6= p(Y = −1). While this assumption may seem restrictive at
first, there are many cases where it holds. Examples include medical diagnosis (p(Y) is the well
known marginal disease frequency), handwriting recognition or OCR (p(Y) is the easily computable
marginal frequencies of different letters in the English language), life expectancy prediction (p(Y)
is based on marginal life expectancy tables). In these and other examplesp(Y) is known with great
accuracy even if labeled data is unavailable. Our experiments show that assuming a wrong marginal
p′(Y) causes a graceful performance degradation in|p(Y)− p′(Y)|. Furthermore, the assumption of
a knownp(Y) may be replaced with a weaker form in which we know the ordering of the marginal
distributions, for example,p(Y = 1) > p(Y = −1), but without knowing the specific values of the
marginal distributions.

The second assumption is that the quantityfθ(X)|Y follows a normal distribution. Asfθ(X)|Y
is a linear combination of random variables, it is frequently normal whenX is high dimensional.
From a theoretical perspective this assumption is motivated by the central limit theorem (CLT). The
classical CLT states thatfθ(X) = ∑d

i=1 θiXi |Y is approximately normal for larged if the data compo-
nentsX1, . . . ,Xd are iid givenY. A more general CLT states thatfθ(X)|Y is asymptotically normal
if X1, . . . ,Xd|Y are independent (but not necessary identically distributed). Even moregeneral CLTs
state thatfθ(X)|Y is asymptotically normal ifX1, . . . ,Xd|Y are not independent but their dependency
is limited in some way. We examine this issue in Section 2.1 and also show that the normality
assumption holds empirically for several standard data sets.

To derive the estimator we rewrite (1) by taking expectation with respect toY andα = fθ(X)

R(θ) = E p( fθ(X),Y)L(Y, fθ(X)) = ∑
y∈{−1,+1}

p(y)
∫
R

p( fθ(X) = α|y)L(y,α)dα. (9)

Equation (9) involves three termsL(y,α), p(y) and p( fθ(X) = α|y). The loss functionL is
known and poses no difficulty. The second termp(y) is assumed to be known (see discussion
above). The third term is assumed to be normalfθ(X) |{Y = y} = ∑i θiXi |{Y = y} ∼ N(µy,σy)
with parametersµy,σy, y∈ {−1,1} that are estimated by maximizing the likelihood of a Gaussian
mixture model (we denoteµ= (µ1,µ−1) andσ2 = (σ2

1,σ2
−1). These estimated parameters are used

to construct the plug-in estimatorR̂n(θ) as follows:

ℓn(µ,σ) =
n

∑
i=1

log ∑
y(i)∈{−1,+1}

p(y(i))pµy,σy( fθ(X
(i))|y(i)).

(µ̂(n), σ̂(n)) = argmax
µ,σ

ℓn(µ,σ).

R̂n(θ) = ∑
y∈{−1,+1}

p(y)
∫
R

p
µ̂(n)y ,σ̂(n)

y
( fθ(X) = α|y)L(y,α)dα.

(10)

(11)

(12)

We make the following observations.
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1. Although we do not denote it explicitly,µy andσy are functions ofθ.

2. The loglikelihood (10) does not use labeled data (it marginalizes over thelabely(i)).

3. The parameters of the loglikelihood (10) areµ= (µ1,µ−1) andσ = (σ1,σ−1) rather than the
parameterθ associated with the margin-based classifier. We consider the latter one as a fixed
constant at this point.

4. The estimation problem (11) is equivalent to the problem of maximum likelihoodfor means
and variances of a Gaussian mixture model where the label marginals are assumed to be
known. It is well known that in this case (barring the symmetric case of a uniform p(y)) the
MLE converges to the true parameter values (Teicher, 1963).

5. The estimator̂Rn (12) is consistent in the limit of infinite unlabeled data

P
(

lim
n→∞

R̂n(θ) = R(θ)
)

= 1.

6. The two risk estimatorŝRn(θ) (12) andRn(θ) (5) approximate the expected lossR(θ). The
latter uses labeled samples and is typically more accurate than the former for a fixedn.

7. Under suitable conditions argminθ R̂n(θ) converges to the expected risk minimizer

P

(

lim
n→∞

argmin
θ∈Θ

R̂n(θ) = argmin
θ∈Θ

R(θ)
)

= 1.

This far reaching conclusion implies that in cases where argminθ R(θ) is the Bayes classifier
(as is the case with exponential loss, log loss, and hinge loss) we can retrieve the optimal
classifier without a single labeled data point.

2.1 Asymptotic Normality of fθ(X)|Y
The quantityfθ(X)|Y is essentially a sum ofd random variables which under some conditions for
larged is likely to be normally distributed. One way to verify this is empirically, as we show in
Figures 1-3 which contrast the histogram with a fitted normal pdf for text, digit images, and face
images data. For these data sets the dimensionalityd is sufficiently high to provide a nearly normal
fθ(X)|Y. For example, in the case of text documents (Xi is the relative number of times wordi
appeared in the document)d corresponds to the vocabulary size which is typically a large number
in the range 103−105. Similarly, in the case of image classification (Xi denotes the brightness of
the i-pixel) the dimensionality is on the order of 102−104.

Figures 1-3 show that in these cases of text and image datafθ(X)|Y is approximately normal
for both randomly drawnθ vectors (Figure 1) and forθ representing estimated classifiers (Figures 2
and 3). A caveat in this case is that normality may not hold whenθ is sparse, as may happen for
example forL1 regularized models (last row of Figure 2).

From a theoretical standpoint normality may be argued using a central limit theorem. We ex-
amine below several progressively more general central limit theorems and discuss whether these
theorems are likely to hold in practice for high dimensional data. The original central limit theorem
states that∑d

i=1Zi is approximately normal for larged if Zi are iid.

3122



MARGIN-BASED CLASSIFICATION WITHOUT LABELS

RCV1 text data face images
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−5 0 5 −5 0 5 −5 0 5

MNIST handwritten digit images

Figure 1: Centered histograms offθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
randomly drawnθ vectors (θi ∼U(−1/2,1/2)). The columns represent data sets (RCV1
text data, Lewis et al., 2004, MNIST digit images, and face images, Pham et al., 2002) and
the rows represent multiple random draws. For uniformity we subtracted theempirical
mean and divided by the empirical standard deviation. The twelve panels show that even
in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784 pixels, face
images: 400 pixels) the assumption thatfθ(X)|Y is normal holds often for randomly
drawnθ.
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RCV1 text data face images
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Figure 2: Centered histograms offθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple θ vectors (four rows: Fisher’s LDA, logistic regression,l2 regularized logistic
regression, andl1 regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: RCV1 text data, Lewis etal., 2004,
MNIST digit images, and face images, Pham et al., 2002). For uniformity we subtracted
the empirical mean and divided by the empirical standard deviation. The twelvepanels
show that even in moderate dimensionality (RCV1: 1000 top words, MNIST digits: 784
pixels, face images: 400 pixels) the assumption thatfθ(X)|Y is normal holds well for fit-
tedθ values (except perhaps forL1 regularization in the last row which promotes sparse
θ).
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USPS ISOLET
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Figure 3: Centered histograms offθ(X)|{Y = 1} overlayed with the pdf of a fitted Gaussian for
multiple θ vectors (four rows: Fisher’s LDA, logistic regression,l2 regularized logistic
regression, andl1 regularized logistic regression-all regularization parameters were se-
lected by cross validation) and data sets (columns: USPS Handwritten Digits, Arcene
data set, and ISOLET). For uniformity we subtracted the empirical mean and divided by
the empirical standard deviation. The twelve panels further confirm that theassumption
that fθ(X)|Y is normal holds well for fittedθ values (except perhaps forL1 regularization
in the last row which promotes sparseθ) for various data sets.

Proposition 1 (de-Moivre) If Zi , i ∈ N are iid with expectation µ and varianceσ2 and
Z̄d = d−1 ∑d

i=1Zi then we have the following convergence in distribution
√

d(Z̄d −µ)/σ N(0,1) as d→ ∞.
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As a result, the quantity∑d
i=1Zi (which is a linear transformation of

√
d(Z̄d−µ)/σ) is approximately

normal for larged. This relatively restricted theorem is unlikely to hold in most practical cases as
the data dimensions are often not iid.

A more general CLT does not require the summandsZi to be identically distributed.

Proposition 2 (Lindberg) For Zi , i ∈ N independent with expectation µi and varianceσ2
i , and de-

noting s2d = ∑d
i=1 σ2

i , we have the following convergence in distribution as d→ ∞

s−1
d

d

∑
i=1

(Zi −µi) N(0,1)

if the following condition holds for everyε > 0

lim
d→∞

s−2
d

d

∑
i=1

E(Zi −µi)
21{|Xi−µi |>εsd} = 0. (13)

This CLT is more general as it only requires that the data dimensions be independent. The condition
(13) is relatively mild and specifies that contributions of each of theZi to the variancesd should not
dominate it. Nevertheless, the Lindberg CLT is still inapplicable for dependent data dimensions.

More general CLTs replace the condition thatZi , i ∈ N be independent with the notion ofm(k)-
dependence.

Definition 3 The random variables Zi , i ∈N are said to be m(k)-dependent if whenever s−r >m(k)
the two sets{Z1, . . . ,Zr}, {Zs, . . . ,Zk} are independent.

An early CLT form(k)-dependent RVs was provided by Hoeffding and Robbins (1948). Below is a
slightly weakened version of the CLT, as proved in Berk (1973).

Proposition 4 (Berk) For each k∈ N let d(k) and m(k) be increasing sequences and suppose that

Z(k)
1 , . . . ,Z(k)

d(k) is an m(k)-dependent sequence of random variables. If

1. E |Z(k)
i |2 ≤ M for all i and k,

2. Var(Z(k)
i+1+ . . .+Z(k)

j )≤ ( j − i)K for all i , j,k,

3. limk→∞ Var(Z(k)
1 + . . .+Z(k)

d(k))/d(k) exists and is non-zero, and

4. limk→∞ m2(k)/d(k) = 0

then ∑d(k)
i=1 Z(k)

i√
d(k)

is asymptotically normal as k→ ∞.

Proposition 4 states that under mild conditions the sum ofm(k)-dependent RVs is asymptotically
normal. Ifm(k) is a constant, that is,m(k) =m, m(k)-dependence implies that aZi may only depend
on its neighboring dimensions (in the sense of Definition 3). Intuitively, dimensions whose indices
are far removed from each other are independent. The full power of Proposition 4 is invoked when
m(k) grows withk relaxing the independence restriction as the dimensionality grows. Intuitively,
the dependency of the summands is not fixed to a certain order, but it cannot grow too rapidly.

A more realistic variation ofm(k) dependence where the dependency of each variable is speci-
fied using a dependency graph (rather than each dimension depends onneighboring dimensions) is
advocated in a number of papers, including the following recent result byRinott (1994).
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Definition 5 A graphG = (V ,E) indexing random variables is called a dependency graph if for
any pair of disjoint subsets ofV , A1 and A2 such that no edge inE has one endpoint in A1 and the
other in A2, we have independence between{Zi : i ∈ A1} and{Zi : i ∈ A2}. The degree d(v) of a
vertex is the number of edges connected to it and the maximal degree ismaxv∈V d(v).

Proposition 6 (Rinott) Let Z1, . . . ,Zn be random variables having a dependency graph whose max-
imal degree is strictly less than D, satisfying|Zi − EZi | ≤ B a.s., ∀i, E(∑n

i=1Zi) = λ and
Var(∑n

i=1Zi) = σ2 > 0, Then for any w∈ R,
∣

∣

∣

∣

P

(

∑n
i=1Zi −λ

σ
≤ w

)

−Φ(w)

∣

∣

∣

∣

≤ 1
σ

(

1√
2π

DB+16
( n

σ2

)1/2
D3/2B2+10

( n
σ2

)

D2B3
)

whereΦ(w) is the CDF corresponding to a N(0,1) distribution.

The above theorem states a stronger result than convergence in distribution to a Gaussian in that it
states a uniform rate of convergence of the CDF. Such results are known in the literature as Berry
Essen bounds (Davidson, 1994). WhenD andB are bounded andVar(∑n

i=1Zi) = O(n) it yields a
CLT with an optimal convergence rate ofn−1/2.

The question of whether the above CLTs apply in practice is a delicate one. For text one can
argue that the appearance of a word depends on some words but is independent of other words.
Similarly for images it is plausible to say that the brightness of a pixel is independent of pixels
that are spatially far removed from it. In practice one needs to verify the normality assumption
empirically, which is simple to do by comparing the empirical histogram offθ(X) with that of a
fitted mixture of Gaussians. As the figures above indicate this holds for text and image data for
some values ofθ, assuming it is not sparse. Also, it is worth mentioning that one dimensional CLTs
kick in relatively early perhaps at 50 or 100 dimensions. Even when the high dimensional data lie
on a lower dimensional manifold whose dimensionality is on the order of 100 dimensions, the CLT
still applies to some extent (see histogram plots).

2.2 Unsupervised Consistency of̂Rn(θ)

We start with proving identifiability of the maximum likelihood estimator (MLE) for a mixture of
two Gaussians with known ordering of mixture proportions. Invoking classical consistency results in
conjunction with identifiability we show consistency of the MLE estimator for(µ,σ) parameterizing
the distribution offθ(X)|Y. As a result consistency of the estimatorR̂n(θ) follows.

Definition 7 A parametric family{pα : α ∈ A} is identifiable when pα(x) = pα′(x),∀x impliesα =
α′.

Proposition 8 Assuming known label marginals with p(Y = 1) 6= p(Y =−1) the Gaussian mixture
family

pµ,σ(x) = p(y= 1)N(x;µ1,σ2
1)+ p(y=−1)N(x;µ−1,σ2

−1)

is identifiable.

Proof It can be shown that the family of Gaussian mixture model with no apriori information about
label marginals is identifiable up to a permutation of the labelsy (Teicher, 1963). We proceed by
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assuming with no loss of generality thatp(y = 1) > p(y = −1). The alternative casep(y= 1) <
p(y= −1) may be handled in the same manner. Using the result of Teicher (1963) we have that if
pµ,σ(x) = pµ′,σ′(x) for all x, then(p(y),µ,σ) = (p(y),µ′,σ′) up to a permutation of the labels. Since
permuting the labels violates our assumptionp(y= 1) > p(y=−1) we establish(µ,σ) = (µ′,σ′)
proving identifiability.

The assumption thatp(y) is known is not entirely crucial. It may be relaxed by assuming that it
is known whetherp(Y = 1)> p(Y =−1) or p(Y = 1)< p(Y =−1). Proving Proposition 8 under
this much weaker assumption follows identical lines.

Proposition 9 Under the assumptions of Proposition 8 the MLE estimates for(µ,σ) =
(µ1,µ−1,σ1,σ−1)

(µ̂(n), σ̂(n)) = argmax
µ,σ

ℓn(µ,σ),

ℓn(µ,σ) =
n

∑
i=1

log ∑
y(i)∈{−1,+1}

p(y(i))pµy,σy( fθ(X
(i))|y(i)).

are consistent, that is,(µ̂(n)1 , µ̂(n)−1, σ̂
(n)
1 , σ̂(n)

−1) converge as n→ ∞ to the true parameter values with
probability 1.

Proof Denoting pη(z) = ∑y p(y)pµy,σy(z|y) with η = (µ,σ) we note thatpη is identifiable (see
Proposition 8) inη and the available samplesz(i) = fθ(X(i)) are iid samples frompη(z). We there-
fore use standard statistics theory which indicates that the MLE for identifiable parametric model is
strongly consistent (Ferguson, 1996, Chapter 17).

Proposition 10 Under the assumptions of Proposition 8 and assuming the lossL is given by one of
(2)-(4) with a normal fθ(X)|Y ∼ N(µy,σ2

y), the plug-in risk estimate

R̂n(θ) = ∑
y∈{−1,+1}

p(y)
∫
R

p
µ̂(n)y ,σ̂(n)

y
( fθ(X) = α|y)L(y,α)dα. (14)

is consistent, that is, for allθ,

P
(

lim
n

R̂n(θ) = R(θ)
)

= 1.

Proof The plug-in risk estimatêRn in (14) is a continuous function (whenL is given by (2), (3)
or (4)) of µ̂(n)1 , µ̂(n)−1, σ̂

(n)
1 , σ̂(n)

−1 (note thatµy and σy are functions ofθ), which we denoteR̂n(θ) =
h(µ̂(n)1 , µ̂(n)−1, σ̂

(n)
1 , σ̂(n)

−1).
Using Proposition 9 we have that

lim
n→∞

(µ̂(n)1 , µ̂(n)−1, σ̂
(n)
1 , σ̂(n)

−1) = (µtrue
1 ,µtrue

−1 ,σ
true
1 ,σtrue

−1 )

with probability 1. Since continuous functions preserve limits we have

lim
n→∞

h(µ̂(n)1 , µ̂(n)−1, σ̂
(n)
1 , σ̂(n)

−1) = h(µtrue
1 ,µtrue

−1 ,σ
true
1 ,σtrue

−1 )

with probability 1 which implies convergence limn→∞ R̂n(θ) = R(θ) with probability 1.
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2.3 Unsupervised Consistency ofargminR̂n(θ)

The convergence abovêRn(θ) → R(θ) is pointwise inθ. If the stronger concept of uniform con-
vergence is assumed overθ ∈ Θ we obtain consistency of argminθ R̂n(θ). This surprising result
indicates that in some cases it is possible to retrieve the expected risk minimizer (and therefore the
Bayes classifier in the case of the hinge loss, log-loss and exp-loss) using only unlabeled data. We
show this uniform convergence using a modification of Wald’s classical MLE consistency result
(Ferguson, 1996, Chapter 17).

Denoting

pη(z) = ∑
y∈{−1,+1}

p(y)pµy,σy( f (X) = z|y), η = (µ1,µ−1,σ1,σ−1)

we first show that the MLE converges to the true parameter valueη̂n → η0 uniformly. Uniform
convergence of the risk estimatorR̂n(θ) follows. Since changingθ ∈ Θ results in a differentη ∈ E
we can state the uniform convergence inθ ∈ Θ or alternatively inη ∈ E.

Proposition 11 Letθ take values inΘ for whichη ∈ E for some compact set E. Then assuming the
conditions in Proposition 10 the convergence of the MLE to the true valueη̂n → η0 is uniform in
η0 ∈ E (or alternativelyθ ∈ Θ).

Proof We start by making the following notation

U(z,η,η0) = logpη(z)− logpη0(z),

α(η,η0) = Epη0
U(z,η,η0) =−D(pη0, pη)≤ 0

with the latter quantity being non-positive and 0 iffη = η0 (due to Shannon’s inequality and identi-
fiability of pη).

Forρ > 0 we define the compact setSη0,ρ = {η ∈ E : ‖η−η0‖ ≥ ρ}. Sinceα(η,η0) is continu-
ous it achieves its maximum (with respect toη) onSη0,ρ denoted byδρ(η0) = maxη∈Sη0,ρ

α(η,η0)<
0 which is negative sinceα(η,η0) = 0 iff η = η0. Furthermore, note thatδρ(η0) is itself continuous
in η0 ∈ E and sinceE is compact it achieves its maximum

δ = max
η0∈E

δρ(η0) = max
η0∈E

max
η∈Sη0,ρ

α(η,η0)< 0

which is negative for the same reason.
Invoking the uniform strong law of large numbers (Ferguson, 1996, Chapter 16) we have

n−1 ∑n
i=1U(z(i),η,η0) → α(η,η0) uniformly over (η,η0) ∈ E2. Consequentially, there existsN

such that forn> N (with probability 1)

sup
η0∈E

sup
η∈Sη0,ρ

1
n

n

∑
i=1

U(z(i),η,η0)< δ/2< 0.

But sincen−1 ∑n
i=1U(z(i),η,η0)→ 0 for η = η0 it follows that the MLE

η̂n = max
η∈E

1
n

n

∑
i=1

U(z(i),η,η0)

is outsideSη0,ρ (for n> N uniformly in η0 ∈ E) which implies‖η̂n−η0‖ ≤ ρ. Sinceρ > 0 is arbi-
trarily andN does not depend onη0 we haveη̂n → η0 uniformly overη0 ∈ E.
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Proposition 12 Assuming that X,Θ are bounded in addition to the assumptions of Proposition 11
the convergencêRn(θ)→ R(θ) is uniform inθ ∈ Θ.

Proof SinceX,Θ are bounded the margin valuefθ(X) is bounded with probability 1. As a result
the loss function is bounded in absolute value by a constantC. We also note that a mixture of two
Gaussian model (with known mixing proportions) is Lipschitz continuous in its parameters
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which may be verified by noting that the partial derivatives ofpη(z) = ∑y p(y)pµy,σy(z|y)
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are bounded for a compactE. These observations, together with Proposition 11 lead to

|R̂n(θ)−R(θ)| ≤ ∑
y∈{−1,+1}

p(y)
∫
∣

∣
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uniformly overθ ∈ Θ.

Proposition 13 Under the assumptions of Proposition 12

P

(

lim
n→∞

argmin
θ∈Θ

R̂n(θ) = argmin
θ∈Θ

R(θ)
)

= 1.
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Proof We denotet∗ = argminR(θ), tn = argminR̂n(θ). SinceR̂n(θ) → R(θ) uniformly, for each
ε > 0 there existsN such that for alln> N, |R̂n(θ)−R(θ)|< ε.

Let S= {θ : ‖θ− t∗‖ ≥ ε} and minθ∈SR(θ)> R(t∗) (S is compact and thusR achieves its min-
imum on it). There existsN′ such that for alln > N′ andθ ∈ S, R̂n(θ) ≥ R(t∗)+ ε. On the other
hand,R̂n(t∗)→ R(t∗) which together with the previous statement implies that there existsN′′ such
that forn> N′′, R̂n(t∗) < R̂n(θ) for all θ ∈ S. We thus conclude that forn> N′′, tn 6∈ S. Since we
showed that for eachε > 0 there existsN such that for alln > N we have‖tn− t∗‖ ≤ ε, tn → t∗

which concludes the proof.

2.4 Asymptotic Variance

In addition to consistency, it is useful to characterize the accuracy of our estimatorR̂n(θ) as a
function of p(y),µ,σ. We do so by computing the asymptotic variance of the estimator which
equals the inverse Fisher information

√
n(η̂mle

n −η0) N(0, I−1(ηtrue))

and analyzing its dependency on the model parameters. We first derive the asymptotic variance of
MLE for mixture of Gaussians (we denote belowη = (η1,η2),ηi = (µi ,σi))

pη(z) = p(Y = 1)N(z;µ1,σ2
1)+ p(Y =−1)N(z;µ−1,σ2

−1)

= p1pη1(z)+ p−1pη−1(z).

The elements of 4×4 information matrixI(η)

I(ηi ,η j) = E

(

∂ logpη(z)

∂ηi

∂ logpη(z)
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)
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where

Mm,n

(

pηi (z), pη j (z)
)

=
∫ ∞

−∞

(

z−µi

σi

)m(z−µj

σ j

)n pηi (z)pη j (z)

pη(z)
dx.

In some cases it is more instructive to consider the asymptotic variance of the risk estimator
R̂n(θ) rather than that of the parameter estimate forη = (µ,σ). This could be computed using the
delta method and the above Fisher information matrix

√
n(R̂n(θ)−R(θ)) N(0,∇h(ηtrue)T I−1(ηtrue)∇h(ηtrue))

where∇h is the gradient vector of the mappingR(θ) = h(η). For example, in the case of the
exponential loss (2) we get
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Figure 4 plots the asymptotic accuracy ofR̂n(θ) for log-loss. The left panel shows that the
accuracy ofR̂n increases with the imbalance of the marginal distributionp(Y). The right panel
shows that the accuracy ofR̂n increases with the difference between the means|µ1−µ−1| and the
variancesσ1/σ2.

2.5 Multiclass Classification

Thus far, we have considered unsupervised risk estimation in binary classification. In this section
we describe a multiclass extension based on standard extensions of the margin concept to multiclass
classification. In this case the margin vector associated with the multiclass classifier

Ŷ = argmax
k=1,...,K

fθk(X), X,θk ∈ R
d

is fθ(X) = ( fθ1(X), . . . , fθK (X)). Following our discussion of the binary case,fθk(X)|Y, k= 1, . . . ,K
is assumed to be normally distributed with parameters that are estimated by maximizing the like-
lihood of a Gaussian mixture model. We thus haveK Gaussian mixture models, each one withK
mixture components. The estimated parameters are plugged-in as before into the multiclass risk

R(θ) = Ep( fθ(X),Y)L(Y, fθ(X))
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Figure 4: Left panel: asymptotic accuracy (inverse of trace of asymptoticvariance) ofR̂n(θ) for
logloss as a function of the imbalance of the class marginalp(Y). The accuracy increases
with the class imbalance as it is easier to separate the two mixture components. Right
panel: asymptotic accuracy (inverse of trace of asymptotic variance) as afunction of the
difference between the means|µ1 − µ−1| and the variancesσ1/σ2. See text for more
information.

whereL is a multiclass margin based loss function such as

L(Y, fθ(X)) = ∑
k6=Y

log(1+exp(− fθk(X))), (15)

L(Y, fθ(X)) = ∑
k6=Y

(1+ fθk(X))+. (16)

Care should be taken when defining the loss function for the multi-class case, as a straight-forward
extension from the binary case might render the framework inconsistent. We use the specific ex-
tension which is proved to be consistent for various loss functions (including hinge-loss) by Tewari
and Bartlett (2007). Since the MLE for a Gaussian mixture model withK components is consistent
(assumingP(Y) is known and all probabilitiesP(Y = k),k= 1, . . . ,K are distinct) the MLE estima-
tor for fθk(X)|Y = k′ are consistent. Furthermore, if the lossL is a continuous function of these
parameters (as is the case for (15)-(16)) the risk estimatorR̂n(θ) is consistent as well.

3. Application 1: Estimating Risk in Transfer Learning

We consider applying our estimation framework in two ways. The first application, which we
describe in this section, is estimating margin-based risks in transfer learning where classifiers are
trained on one domain but tested on a somewhat different domain. The transfer learning assumption
that labeled data exists for the training domain but not for the test domain motivates the use of our
unsupervised risk estimation. The second application, which we describe inthe next section, is
more ambitious. It is concerned with training classifiers without labeled data whatsoever.

In evaluating our framework we consider both synthetic and real-world data. In the synthetic
experiments we generate high dimensional data from two uniform distributionsX|{Y = 1} and
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Figure 5: The relative accuracy of̂Rn (measured by|R̂n(θ)−Rn(θ)|/Rn(θ)) as a function ofn,
classifier accuracy (acc) and the label marginalp(Y) (left: logloss, right: hinge-loss).
The estimation error nicely decreases withn (approaching 1% atn= 1000 and decaying
further). It also decreases with the accuracy of the classifier (top) and non-uniformity of
p(Y) (bottom) in accordance with the theory of Section 2.4.

X|{Y = −1} with independent dimensions and prescribedp(Y) and classification accuracy. This
controlled setting allows us to examine the accuracy of the risk estimator as a function of n, p(Y),
and the classifier accuracy.

Figure 5 shows that the relative error ofR̂n(θ) (measured by|R̂n(θ)−Rn(θ)|/Rn(θ)) in estimat-
ing the logloss (left) and hinge loss (right). The curves decrease withn and achieve accuracy of
greater than 99% forn > 1000. In accordance with the theoretical results in Section 2.4 the fig-
ure shows that the estimation error decreases as the classifiers become more accurate and asp(Y)
becomes less uniform. We found these trends to hold in other experiments as well. In the case of
exponential loss, however, the estimator performed substantially worse across the board, in some
cases with an absolute error of as high as 10. This is likely due to the exponential dependency of
the loss onY fθ(X) which makes it very sensitive to outliers.

Table 1 shows the accuracy of logloss estimation for a real world transferlearning experiment
based on the 20-newsgroup data. We followed the experimental setup of used by Dai et al. (2007)
in order to have different distributions for training and test sets. More specifically, 20-newsgroup
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Data Rn |Rn− R̂n| |Rn− R̂n|/Rn n p(Y = 1)
sci vs. comp 0.7088 0.0093 0.013 3590 0.8257
sci vs. rec 0.641 0.0141 0.022 3958 0.7484
talk vs. rec 0.5933 0.0159 0.026 3476 0.7126
talk vs. comp 0.4678 0.0119 0.025 3459 0.7161
talk vs. sci 0.5442 0.0241 0.044 3464 0.7151
comp vs. rec 0.4851 0.0049 0.010 4927 0.7972

Table 1: Error in estimating logloss for logistic regression classifiers trainedon one 20-newsgroup
classification task and tested on another. We followed the transfer learningsetup described
by Dai et al. (2007) which may be referred to for more detail. The train andtesting sets
contained samples from two top categories in the topic hierarchy but with different subcat-
egory proportions. The first column indicates the top category classification task and the
second indicates the empirical log-lossRn calculated using the true labels of the testing set
(5). The third and forth columns indicate the absolute and relative errors of R̂n. The fifth
and sixth columns indicate the train set size and the label marginal distribution.

data has a hierarchical class taxonomy and the transfer learning problemis defined at the top-level
categories. We split the data based on subcategories such that the trainingand test sets contain data
sampled from different subcategories within the same top-level category.Hence, the training and
test distributions differ. We trained a logistic regression classifier on the training set and estimate its
risk on the test set of a different distribution. Our unsupervised risk estimator was quite effective in
estimating the risk with relative accuracy greater than 96% and absolute error less than 0.02.

4. Application 2: Unsupervised Learning of Classifiers

Our second application is a very ambitious one: training classifiers using unlabeled data by min-
imizing the unsupervised risk estimateθ̂n = argminR̂n(θ). We evaluate the performance of the
learned classifier̂θn based on three quantities: (i) the unsupervised risk estimateR̂n(θ̂n), (ii) the su-
pervised risk estimateRn(θ̂n), and (iii) its classification error rate. We also compare the performance
of θ̂n = argminR̂n(θ) with that of its supervised analog argminRn(θ).

We computeθ̂n = argminR̂n(θ) using two algorithms (see Algorithms 1-2) that start with an
initial θ(0) and iteratively construct a sequence of classifiersθ(1), . . . ,θ(T) which steadily decrease
R̂n. Algorithm 1 adopts a gradient descent-based optimization. At each iterationt, it approximates
the gradient vector∇R̂n(θ(t)) numerically using a finite difference approximation (17). We com-
pute the integral in the loss function estimator using numeric integration. Since theintegral is one
dimensional a variety of numeric methods may be used with high accuracy and fast computation.
Algorithm 2 proceeds by constructing a grid search along every dimensionof θ(t) and set[θ(t)]i to
the grid value that minimizeŝRn (iteratively optimize one dimension at a time). This amounts to
greedy search converging to local maxima. The same might hold for Algorithm1, but we observe
that Algorithm 1 works slightly better in practice, leading to lower test error withless number of
training iterations.
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Although we focus on unsupervised training of logistic regression (minimizingunsupervised
logloss estimate), the same techniques may be generalized to train other margin-based classifiers
such as SVM by minimizing the unsupervised hinge-loss estimate.

Algorithm 1 Unsupervised Gradient Descent

Input: X(1), . . . ,X(n) ∈ R
d, p(Y), step sizeα

Initialize t = 0, θ(t) = θ0 ∈ R
d

repeat
Computefθ(t)(X

( j)) = 〈θ(t),X( j)〉 ∀ j = 1, . . . ,n
Estimate(µ̂1, µ̂−1, σ̂1, σ̂−1) by maximizing (11)
for i = 1 to d do

Plug-in the estimates into (14) to approximate

∂R̂n(θ(t))

∂θi
=

R̂n(θ(t)+hiei)− R̂n(θ(t)−hiei)

2hi

(ei is an all zero vector except for[ei ]i = 1) (17)

end for
Form∇R̂n(θ(t)) = ( ∂R̂n(θ(t))

∂θ(t)1

, . . . , ∂R̂n(θ(t))
∂θ(t)d

)

Updateθ(t+1) = θ(t)−α∇R̂n(θ(t)), t = t +1
until convergence
Output: linear classifierθfinal = θ(t)

Algorithm 2 Unsupervised Grid Search

Input: X(1), . . . ,X(n) ∈ R
d, p(Y), grid-sizeτ

Initialize θi ∼ Uniform(−2,2) for all i
repeat

for i = 1 to d do
Constructτ points grid in the range[θi −4τ,θi +4τ]
Compute the risk estimate (14) where all dimensions ofθ(t) are fixed except for[θ(t)]i which
is evaluated at each grid point.
Set[θ(t+1)]i to the grid value that minimized (14)

end for
until convergence
Output: linear classifierθfinal = θ

Figures 6-7 displaŷRn(θ̂n), Rn(θ̂n) and error-rate(θ̂n) on the training and testing sets as on two
real world data sets: RCV1 (text documents) and MNIST (handwritten digitimages) data sets. In
the case of RCV1 we discarded all but the most frequent 504 words (after stop-word removal) and
represented documents using their tfidf scores. We experimented on the binary classification task of
distinguishing the top category (positive) from the next 4 top categories (negative) which resulted
in p(y= 1) = 0.3 andn= 199328. 70% of the data was chosen as a (unlabeled) training set and the
rest was held-out as a test-set. In the case of MNIST data, we normalizedeach of the 28×28= 784
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pixels to have 0 mean and unit variance. Our classification task was to distinguish images of the
digit one (positive) from the digit 2 (negative) resulting in 14867 samples and p(Y = 1) = 0.53. We
randomly choose 70% of the data as a training set and kept the rest as a testing set.

Figures 6-7 indicate that minimizing the unsupervised logloss estimate is quite effective in
learning an accurate classifier without labels. Both the unsupervised andsupervised risk estimates
R̂n(θ̂n), Rn(θ̂n) decay nicely when computed over the train set as well as the test set. Also interesting
is the decay of the error rate. For comparison purposes supervised logistic regression with the same
n achieved only slightly better test set error rate: 0.05 on RCV1 (instead of 0.1) and 0.07 or MNIST
(instead of 0.1).

In another experiment we examined the proposed approach on severaldifferent data sets and
compared the classification performance with a supervised baseline (logisticregression) and Gaus-
sian mixture modeling (GMM) clustering with known label proportions in the original data space
(Table 2). The comparison was made under the same experimental setting (n, p(Y)) for all three
approaches. We used data sets from UCI machine learning repository (Frank and Asuncion, 2010)
and from previously cited sources, unless otherwise noted. The following tasks were considered for
each data set.

• RCV1: top category versus next 4 categories

• MNIST: Digit 1 versus Digit 2

• 20 newsgroups: Comp category versus Recreation category

• USPS1: Digit 2 versus Digit 5

• Umist1: Male face (16 subjects) versus Female faces (4 subjects) with image resolution re-
duced to 40×40

• Arcene: Cancer versus Normal

• Isolet: Vowels versus Consonants

• Dexter: Documents about corporate acquisitions versus rest

• Secom: Semiconductor manufacturing defects versus good items

• Pham faces: Face versus Non-face images

• CMU pie face2: male (30 subjects) vs female (17 subjects)

• Madelon3: It consists of data points (artificially generated) grouped in 32 clusters placed on
the vertices of a five dimensional hypercube and randomly labeled +1 or -1, corrupted with
features that are not useful for classification.

1. Data set can be found athttp://www.cs.nyu.edu/ ˜ roweis/data.html .
2. Data set can be found athttp://www.zjucadcg.cn/dengcai/Data/FaceData.html .
3. Data set can be found athttp://archive.ics.uci.edu/ml/machine-learning-data bases/madelon/

Dataset.pdf .
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Figure 6: Performance of unsupervised logistic regression classifierθ̂n computed using Algorithm 1
(left) and Algorithm 2 (right) on the RCV1 data set. The top two rows show the decay
of the two risk estimateŝRn(θ̂n), Rn(θ̂n) as a function of the algorithm iterations. The
risk estimates of̂θn were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error rate ofθ̂n as a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatively accurate
classifier (testing set error rate 0.1, andR̂n decaying similarly toRn) without the use
of a single labeled example. For comparison, the test error rate for supervised logistic
regression with the samen is 0.07.
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Figure 7: Performance of unsupervised logistic regression classifierθ̂n computed using Algorithm 1
(left) and Algorithm 2 (right) on the MNIST data set. The top two rows show thedecay
of the two risk estimateŝRn(θ̂n), Rn(θ̂n) as a function of the algorithm iterations. The
risk estimates of̂θn were computed using the train set (top) and the test set (middle).
The bottom row displays the decay of the test set error rate ofθ̂n as a function of the
algorithm iterations. The figure shows that the algorithm obtains a relatively accurate
classifier (testing set error rate 0.1, andR̂n decaying similarly toRn) without the use
of a single labeled example. For comparison, the test error rate for supervised logistic
regression with the samen is 0.05.
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Data set Dimensions Supervised log-reg USL-2 GMM

RCV1 top 504 words 0.0500 0.0923 0.2083
Mnist 784 0.0700 0.1023 0.3163

20 news group top 750 words 0.0652 0.0864 0.1234
USPS 256 0.0348 0.0545 0.1038
Umist 400 PCA components 0.1223 0.1955 0.2569
Arcene 1000 PCA components 0.1593 0.1877 0.3843*
Isolet 617 0.0462 0.0568 0.1332
Dexter top-700 words 0.0564 0.1865 0.2715
Secom 591 0.1246 0.1532 0.2674

Pham faces 400 0.1157 0.1669 0.2324
CMU pie face 1024 0.0983 0.1386 0.2682*

Madelon 500 0.0803 0.1023 0.1120

Table 2: Comparison (test set error rate) between supervised logistic regression, Unsupervised lo-
gistic regression and Gaussian mixture modeling in original data space. The unsupervised
classifier performs better than the GMM clustering on the original space andcompares
well with its supervised counterpart on most data sets. See text for more details. The stars
represent GMM with covarianceσ2I due to the high dimensionality. In all other cases we
used a diagonal covariance matrix. Non-diagonal covariance matrix wasimpractical due
to the high dimensionality.

Table 2 displays the test set error for the three methods on each data set. We note that our
unsupervised approach achieves test set errors comparable to the supervised logistic regression in
several data sets. The poor performance of the unsupervised technique on the Dexter data set is
due to the fact that the data contains many irrelevant features. In fact it was engineered for a
feature selection competition and has a sparse solution vector. In generalour method significantly
outperforms Gaussian mixture model clustering in the original feature space. A likely explanation
is that (i) fθ(X)|Y is more likely to be normal thanX|Y and (ii) it is easier to estimate in one
dimensional space rather than in a high dimensional space.

4.1 Inaccurate Specification ofp(Y)

Our estimation framework assumes that the marginalp(Y) is known. In some cases we may only
have an inaccurate estimate ofp(Y). It is instructive to consider how the performance of the learned
classifier degrades with the inaccuracy of the assumedp(Y).

Figure 8 displays the performance of the learned classifier for RCV1 dataas a function of the
assumed value ofp(Y = 1) (correct value isp(Y = 1) = 0.3). We conclude that knowledge ofp(Y)
is an important component in our framework but precise knowledge is not crucial. Small deviations
of the assumedp(Y) from the truep(Y) result in a small degradation of logloss estimation quality
and testing set error rate. Naturally, large deviation of the assumedp(Y) from the truep(Y) renders
the framework ineffective.
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Figure 8: Performance of unsupervised classifier training on RCV1 data(top class vs. classes 2-5)
for misspecifiedp(Y). The performance of the estimated classifier (in terms of training
set empirical loglossRn (5) and test error rate measured using held-out labels) decreases
with the deviation between the assumed and truep(Y = 1) (true p(Y = 1) = 0.3)). The
classifier performance is very good when the assumedp(Y) is close to the truth and
degrades gracefully when the assumedp(Y) is not too far from the truth.

4.2 Effect of Regularization and Dimensionality Reduction

In Figure 9 we examine the effect of regularization on the performance ofthe unsupervised classifier.
In this experiment we use theL1 regularization software available athttp://www.cs.ubc.ca/

˜ schmidtm/Software/L1General.html . Clearly, regularization helps in the supervised case. It
appears that in the USL case weak regularization may improve performancebut not as drastically as
in the supervised case. Furthermore, the positive effect ofL1 regularization in the USL case appears
to be weaker thanL2 regularization (compare the left and right panels of Figure 9). One possible
reason is that the sparsity promoting nature ofL1 conflicts with the CLT assumption.

In Figure 10 we examine the effect of reducing the data dimensionality via PCAprior to training
the unsupervised classifier. Specifically, the 256 dimensions USPS image dataset was embedded
in an increasingly lower dimensional space via PCA. For the original dimensionality of 256 or a
slightly lower dimensionality the classification performance of the unsupervised classifier is com-
parable to the supervised. Once the dimensions are reduced to less than 150 a significant perfor-
mance gap appears. This is consistent with our observation above that for lower dimensions the
CLT approximation is less accurate. The supervised classifier also degrades in performance as less
dimensions are used but not as fast as the unsupervised classifier.

5. Related Work

Semi-supervised approaches:Semisupervised learning is closely related to our work in that un-
supervised classification may be viewed as a limiting case. One of the first attempts at studying
the sample complexity of classification with unlabeled and labeled data was by Castelli and Cover
(1995). They consider a setting when data is generated by mixture distributions and show that with
infinite unlabeled data, the probability of error decays exponentially fasterin the labeled data to the
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Figure 9: Test set error rate versus regularization parameter (L2 on the left panel andL1 on the right
panel) for supervised and unsupervised logistic regression on RCV1 data set.
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Figure 10: Test set error rate versus the amount of dimensions used (extracted via PCA) for super-
vised and unsupervised logistic regression on USPS data set. The original dimensional-
ity was 256.

Bayes risk. They also analyze the case when there are only finite labeled and unlabeled data sam-
ples, with known class conditional densities but unknown mixing proportions(Castelli and Cover,
1996). A variant of the same scenario with known parametric forms for the class conditionals
(specificallyn-dimensional Gaussians) but unknown parameters and mixing proportionsis also an-
alyzed by J. Ratsaby and Venkatesh (1995). Some of the more recent work in the area concentrated
on analyzing semisupervised learning under the cluster assumption or the manifold assumption. We
refer the reader to a recent survey by Zhu and Goldberg (2009) fora discussion of recent approaches.
However, none of the prior work consider mixture modeling in the projected 1-d space along with
a CLT assumption which we exploit. In addition, assuming known mixing proportions, we propose
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a framework for training a classifier with no labeled samples, while approaches above still need
labeled samples for classification.

Unsupervised approaches:The most recent related research approaches are by Quadrianto et al.
(2009), Gomes et al. (2010), and Donmez et al. (2010). The work by Quadrianto et al. (2009) aims
to estimate the labels of an unlabeled testing set using known label proportionsof several sets
of unlabeled observations. The key difference between their approach and ours is that they require
separate training sets from different sampling distributions with different and known label marginals
(one for each label). Our method assumes only a single data set with a knownlabel marginal but on
the other hand assumed the CLT approximation. Furthermore, as noted previously (see comment
after Proposition 8), our analysis is in fact valid when only the order of label proportions is known,
rather than the absolute values.

A different attempt at solving this problem is provided by Gomes et al. (2010) which focuses
on discriminative clustering. This approach attempts to estimate a conditional probabilistic model
in an unsupervised way by maximizing mutual information between the empirical input distribution
and the label distribution. A key difference is the focus on probabilistic classifiers and in partic-
ular logistic regression whereas our approach is based on empirical riskminimization which also
includes SVM. Another key difference is that the work by Gomes et al. (2010) lacks consistency
results which characterize when it works from a theoretical perspective. The approach by Donmez
et al. (2010) focuses on estimating the error rate of a given stochastic classifier (not necessarily
linear) without labels. It is similar in that it estimates the 0/1 risk rather than the margin based risk.
However, it uses a different strategy and it replaces the CLT assumptionwith a symmetric noise
assumption.

An important distinction between our work and the references above is thatour work provides an
estimate for the margin-based risk and therefore leads naturally to unsupervised versions of logistic
regression and support vector machines. We also provide asymptotic analysis showing convergence
of the resulting classifier to the optimal classifier (minimizer of (1)). Experimental results show
that in practice the accuracy of the unsupervised classifier is on the same order (but slightly lower
naturally) as its supervised analog.

6. Discussion

In this paper we developed a novel framework for estimating margin-basedrisks using only unla-
beled data. We show that it performs well in practice on several different data sets. We derived
a theoretical basis by casting it as a maximum likelihood problem for Gaussian mixture model
followed by plug-in estimation.

Remarkably, the theory states that assuming normality offθ(X) and a knownp(Y) we are able
to estimate the riskR(θ) without a single labeled example. That is the risk estimate converges to the
true risk as the number of unlabeled data increase. Moreover, using uniform convergence arguments
it is possible to show that the proposed training algorithm converges to the optimal classifier as
n → ∞ without any labeled data. The results in the paper are applicable only to linearclassifiers,
which are an extremely important class of classifiers especially in the high dimensional case. In
the non-linear classification scenario, it is worth examining if the CLT assumptions on the mapped
high-dimensional feature space could be used for building non-linear classifiers via the kernel trick.

On a more philosophical level, our approach points at novel questions that go beyond supervised
and semi-supervised learning. What benefit do labels provide over unsupervised training? Can
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our framework be extended to semi-supervised learning where a few labels do exist? Can it be
extended to non-classification scenarios such as margin based regression or margin based structured
prediction? When are the assumptions likely to hold and how can we make our framework even
more resistant to deviations from them? These questions and others form new and exciting open
research directions.
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