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Abstract

We study the problem of learning a latent tree graphical mathere samples are available only
from a subset of variables. We propose two consistent angetationally efficient algorithms
for learningminimallatent trees, that is, trees without any redundant hiddelesioUnlike many
existing methods, the observed nodes (or variables) areamstrained to be leaf nodes. Our al-
gorithms can be applied to both discrete and Gaussian randoables and our learned models
are such that all the observed and latent variables haveathe gomain (state space). Our first
algorithm,recursive groupingbuilds the latent tree recursively by identifying sibliggoups using
so-called information distances. One of the main contidimst of this work is our second algo-
rithm, which we refer to a€LGrouping CLGrouping starts with a pre-processing procedure in
which a tree over the observed variables is constructed gibbal step groups the observed nodes
that are likely to be close to each other in the true latest, titeereby guiding subsequent recursive
grouping (or equivalent procedures such as neighborrg)ron much smaller subsets of variables.
This results in more accurate and efficient learning of latteres. We also present regularized ver-
sions of our algorithms that learn latent tree approxinmetiof arbitrary distributions. We compare
the proposed algorithms to other methods by performingnsite numerical experiments on var-
ious latent tree graphical models such as hidden Markov maael star graphs. In addition, we
demonstrate the applicability of our methods on real-wddth sets by modeling the dependency
structure of monthly stock returns in the S&P index and ofitloeds in the 20 newsgroups data set.

Keywords: graphical models, Markov random fields, hidden variabkegrit tree models, struc-
ture learning
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1. Introduction

The inclusion of latent variables in modeling complex phenomena and data Isr@eagnized and
a valuable construct in a variety of applications, including bio-informatidscamputer vision, and
the investigation of machine-learning methods for models with latent variablesuisstantial and
continuing direction of research.

There are three challenging problems in learning a model with latent varideksing the
number of latent variables; inferring the structure of how these laterahlas relate to each other
and to the observed variables; and estimating the parameters charactiizagelationships. Is-
sues that one must consider in developing a new learning algorithm incéweéoging tractable
methods; incorporating the tradeoff between the fidelity to the given datgemetalizability; de-
riving theoretical results on the performance of such algorithms; andgistuépplications that
provide clear motivation and contexts for the models so learned.

One class of models that has received considerable attention in the litesgheelass ofatent
tree modelsthat is, graphical models Markov on trees, in which variables at somesrmegresent
the original (observed) variables of interest while others represeriatant variables. The appeal
of such models for computational tractability is clear: with a tree-structured Indederibing the
statistical relationships, inference—processing noisy observationsnoé ®r all of the original
variables to compute the estimates of all variables—is straightforward alabkcaAlthough the
class of tree-structured models, with or without latent variables, is a eimstk one, there are
interesting applications that provide strong motivation for the work preddmaee. In particular, a
very active avenue of research in computer vision is the use of contexexample, the nature of
a scene to aid the reliable recognition of objects (and at the same time to allovedigmiteon of
particular objects to assist in recognizing the scene). For example, ifmveskthat an image is that
of an office, then one might expect to find a desk, a monitor on that dediperhaps a computer
mouse. Hence if one builds a model with a latent variable representing thiaixtc¢‘office”) and
uses simple, noisy detectors for different object types, one woulcceitpa the detection of a desk
would support the likelihood that one is looking at an office and througtetiizance the reliability
of detecting smaller objects (monitors, keyboards, mice, etc.). Work aloeg tines, including by
some of the authors of this paper (Parikh and Chen, 2007; Choi et 40),2how the promise of
using tree-based models of context.

This paper considers the problem of learning tree-structured latentisndfiall variables are
observed in the tree under consideration, then the well-known algoritihofv and Liu (1968)
provides a tractable algorithm for performing maximum likelihood (ML) estimatibthe tree
structure. However, if not all variables are observed, that islafenttree models, then ML esti-
mation is NP-hard (Roch, 2006). This has motivated a number of investigaifasther tractable
methods for learning such trees as well as theoretical guaranteesfomyarce. Our work repre-
sents a contribution to this area of investigation.

There are three main contributions in our paper. Firstly, by adopting a staltidistance-based
framework, we develop two new algorithms for the learning of latent treesufsive grouping and
CLGrouping, which apply equally well to discrete and Gaussian modelson8is; we provide
consistency guarantees (both structural and parametric) as wellyagsaverable computational
and sample complexity characterizations for both of our algorithms. Thirdigug¢ih extensive
numerical experiments on both synthetic and real-world data, we demorik&ae@periority of our
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approach for a wide variety of models ranging from ones with very laggedrameters (e.g., hidden
Markov models (HMMs)) to star models and complete trees.

Ouir first algorithm, which we refer to ascursive groupingconstructs a latent tree in a bottom-
up fashion, grouping nodes into sibling groups that share the samed padk) recursively at each
level of the resulting hierarchy (and allowing for some of the observeidhias to play roles at
arbitrary levels in the resulting hierarchy). Our second algoritBinGGroupingfirst implements a
global construction step, namely producing the Chow-Liu tree for therebdevariables without
any hidden nodes. This global step then provides guidance for gadugisserved nodes that are
likely to be topologically close to each other in the latent tree, thereby guidireegulent recursive
grouping or neighbor-joining (Saitou and Nei, 1987) computations. E&these algorithms is
consistent and has excellent sample and computational complexity.

As Pearl (1988) points out, the identification of latent tree models has soittxénbambigu-
ity, as there is an entire equivalence class of models in the sense that IWagend variables are
marginalized out, each model in this class yields the same joint distribution ovelngbeved vari-
ables. For example, we can take any such latent model and add anotthen katiable as a leaf
node connected to only one other (hidden or observed) node. Haoch,as one finds in fields such
as state space dynamic systems (e.g., Luenberger, 1979, Sectionajs t@otion of minimality
that is required here, and our results are stated in terms of consisteimdeaf such minimal latent
models.

1.1 Related Work

The relevant literature on learning latent models is vast and in this sectigymwmarize the main
lines of research in this area.

The classicalatent cluster model$LCM) consider multivariate distributions in which there
exists onlyonelatent variable and each state of that variable corresponds to a cluster diattn
(Lazarsfeld and Henry, 1968). Hierarchical latent class (HLC) nsof#hang and Kodka, 2004;
Zhang, 2004; Chen et al., 2008) generalize these models by allowing multgievariables. HLC
allows latent variables to have different number of states, but assumaltbbserved nodes are at
the leaves of the tree. Their learning algorithm is based on a greedyaappod making one local
move at a time (e.g., introducing one hidden node, or replacing an edgeh wltomputationally
expensive and does not have consistency guarantees. A greaupdealgorithm for HLC called
BIN is proposed in Harmeling and Williams (2010), which is computationally mdieiefit. In
addition, Silva et al. (2006) considered the learning of directed latent mosiglg so-called tetrad
constraints, and there have also been attempts to tailor the learning of latemtddels in order
to perform approximate inference accurately and efficiently downst(@damg et al., 2008). In
all these works, the latent variables can have different state spatethebobserved nodes are
required to be leaves of the tree. In contrast, we fix the state spacetohiglaen node, but allow
the possibility that some observed nodes are internal nodes (nonjle@itesassumption leads to
an identifiable model, and we provide algorithms with consistency guarantgek wan recover
the correct structure under mild conditions. In contrast, the works in glaad Kdaka (2004);

1. Atree is called @omplete kary tree (oik-complete tree), if all its internal nodes have dedtemd there exists one
node (commonly referred as the root node) that has the exactly sarapa to all leaf nodes.

2. As we will see, depending on the true latent tree model, one or the dthieese may be more efficient. Roughly
speaking, for smaller diameter graphs (such as the star), recgreiuping is faster, and for larger diameter graphs
(such as an HMM), CLgrouping is more efficient.
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Zhang (2004); Chen et al. (2008); Harmeling and Williams (2010) do raigle such consistency
guarantees.

Many authors also propose reconstructing latent trees using the eipeataximization (EM)
algorithm (Elidan and Friedman, 2005; Kemp and Tenenbaum, 2008). \i¢owaes with all other
EM-based methods, these approaches depend on the initialization aedfeufi the possibility
of being trapped in local optima and thus no consistency guarantees qanouided. At each
iteration, a large number of candidate structures need to be evaluatedssontlethods assume
that all observed nodes are the leaves of the tree to reduce the numtemdidate structures.
Algorithms have been proposed (Hsu et al., 2009) with sample complexitampeas for learning
HMMs under the condition that the joint distribution of the observed variajgesrated by distinct
hidden states are distinct.

Another related line of research is that of (hierarchical) clustering.J8eet al. (1999), Bal-
can and Gupta (2010) and the references therein for extensivesiisos. The primary objective of
hierarchical clustering is to build a tree consisting of nested partitions oftitbereed data, where
the leaves (typically) consist of single data points while the internal nogessent coarser parti-
tions. The difference from our work is that hierarchical clusteringsdoat assume a probabilistic
graphical model (Markov random field) on the data, but imposes camistran the data points
via a similarity matrix. We are interested in learning tree-structured graphicd¢isavith hidden
variables.

The reconstruction of latent trees has been studied extensively iphyt@geneticommunity
where sequences of extant species are available and the unknolwggaistic tree is to be inferred
from these sequences. See Durbin et al. (1999) for a thoroughiewer Efficient algorithms
with provable performance guarantees are availabletdEeat al., 1999; Daskalakis et al., 2006).
However, the works in this area mostly assume that only the leaves are@thserd each internal
node (which is hidden) has the same degree except for the root. Thepomdar algorithm for
constructing phylogenetic trees is theighbor-joining (NJ) metholdy Saitou and Nei (1987). Like
our recursive grouping algorithm, the input to the algorithm is a set of statististances between
observed variables. The algorithm proceeds by recursively pairinghtwes that are the closest
neighbors in the true latent tree and introducing a hidden node as the patiee two nodes. For
more details on NJ, the reader is referred to Durbin et al. (1999, Sec8hn 7

Another popular class of reconstruction methods used in the phylogenetimwaity is the
family of quartet-based distance methofBandelth and Dress, 1986; Kisl et al., 1999; Jiang
et al., 2001) Quartet-based methods first construct a set of quartets for all swb$ets observed
nodes. Subsequently, these quartets are then combined to form a laterititngever, when we
only have access to the samples at the observed nodes, then it is ndit&iraigrd to construct a
latent tree from a set of quartets since the quartets may be not be catfsistefact, it is known
that the problem of determining a latent tree that agrees with the maximum nufndpeareets is
NP-hard (Steel, 1992), but many heuristics have been proposeis(B&72; Sattath and Tversky,
1977). Also, in practice, quartet-based methods are usually much lagatcthan NJ (St. John
et al., 2003), and hence, we only compare our proposed algorithms todd experiments. For
further comparisons (the sample complexity and other aspects of) betveeguaitet methods and
NJ, the reader is referred to @8s (2000) and St. John et al. (2003).

3. A quartetis simply an unrooted binary tree on a set of four observed nodes.
4. The termconsistenthere is not the same as the estimation-theoretic one. Here, we say thabdfagsartets is
consistentf there exists a latent tree such that all quartets agree with the tree.
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Another distance-based algorithm was proposed in Pearl (1988, $8c3i@). This algorithm
is very similar in spirit to quartet-based methods but instead of finding quéotetdl subsets of
four observed nodes, it findisst enouglguartets to determine the location of each observed node in
the tree. Although the algorithm is consistent, it performs poorly when onlyaimgples of observed
nodes are available (Pearl, 1988, Section 8.3.5).

The learning of phylogenetic trees is related to the emerging fietgtwfork tomographyCas-
tro et al., 2004) in which one seeks to learn characteristics (such atustiuitom data which are
only available at the end points (e.g., sources and sinks) of the netwovkeudr, again observations
are only available at the leaf nodes and usually the objective is to estimatelalyeddsributions
corresponding to nodes linked by an edge (Tsang et al., 2003; Bharaidi 2009). The modeling
of the delay distributions is different from the learning of latent tree gcgbpimodels discussed in
this paper.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we introhgceotations and termi-
nologies used in the paper. In Section 3, we introduce the notion of infonmdistances which
are used to reconstruct tree models. In the subsequent two sectionsakeetwo assumptions:
Firstly, the true distribution is a latent tree and secondly, perfect knowletlopnformation distance
of observed variables is available. We introduce recursive groupiSgdation 4. This is followed
by our second algorithm CLGrouping in Section 5. In Section 6, we relamghamption that the
information distances are known and develop sample based algorithmsthadame time provide
sample complexity guarantees for recursive grouping and CLGroupfa@lso discuss extensions
of our algorithms for the case when the underlying model is not a tree angoaliis to learn an
approximation to it using a latent tree model. We demonstrate the empirical parfoe of our
algorithms in Section 7 and conclude the paper in Section 8. The appendidesqghuoofs for the
theorems presented in the paper.

2. Latent Tree Graphical Models

In this section, we provide some background and introduce the notion of ntitrieeaextensions
and consistency.

2.1 Undirected Graphs

Let G = (W,E) be an undirected graph with vertex (or node) 8et= {1,...,M} and edge set
EcC (Vg’) Let nbdi; G) and nbdi; G] be the set of neighbors of nodand theclosed neighborhood

of i respectively, that is, nBdG| := nbd(i;G) U {i}. If an undirected graph does not include any
loops, it is called dree. A collection of disconnected trees is callefbeest® For a tre€T = (W,E),

the set of leaf nodes (nodes with degree 1), the maximum degree, anditeter are denoted by
Leaf(T), A(T), and dianiT) respectively. Th@athbetween two nodesandj in a treeT = (W, E),
which is unique, is the set of edges connectiagdj and is denoted as P&th j); E). Thedistance
between any two nodeésand j is the number of edges in P&th j);E). In an undirected tree, we
can choose sot nodearbitrarily, and define the parent-child relationships with respect to the root:

5. Strictly speaking, a graph with no loops is called a forest, and it is callezkzotrly if every node is connected to
each other.
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for a pair neighboring nodésand j, if i is closer to the root thanis, theni is called theparentof
j, andj is called thechild of i. Note that the root node does not have any parent, and for all other
nodes in the tree, there exists exactly one parent. We (i3¢o denote the set of child nodes. A set
of nodes that share the same parent is callsibblang group. Afamily is the union of the siblings
and the associated parent.

A latent treeis a tree with node s&¥ :=V UH, the union of a set of observed nodégwith
m=|V|), and a set of latent (or hidden) nodés Theeffective deptl®(T;V) (with respect to/) is
the maximum distance of a hidden node to its closest observed node, that is,

O(T;V) := maxmin|Path(i, j); T)|. Q)

ieH jev

2.2 Graphical Models

An undirected graphical modéLauritzen, 1996) is a family of multivariate probability distributions
that factorize according to a gra@= (W,E). More precisely, leX = (Xi,...,Xu) be a random
vector, where each random variabte which takes on values in an alphabgtcorresponds to vari-
able at node € V. The set of edgeB encodes the set of conditional independencies in the model.
The random vectaX is said to beviarkovon G if for everyi, the random variabl¥; is conditionally
independent of all other variables given its neighbors, that [sisthe joint distributiofi of X, then

P(Xi [Xnbdi;6)) = P(Xi[X\i), 2)

wherex,; denotes the set of all variablesxcludingx;. Equation (2) is known as tHecal Markov
property.

In this paper, we consider both discrete and Gaussian graphical moadeldisErete models,
the alphabe = {1,...,K} is a finite set. For Gaussian graphical mod#&ls= R and furthermore,
without loss of generality, we assume that the mean is known to be the zdoo &ad hence, the
joint distribution

1 1
p(x) = e exp(—szE 1x)
depends only on the covariance mafx

An important and tractable class of graphical models is the set of tregwsedgraphical mod-
els, that is, multivariate probability distributions that are Markov on an uotticetreeT = (W, E).
It is known from junction tree theory (Cowell et al., 1999) that the joint thstion p for such a
model factorizes as

p(ﬁ,Xﬂ
p(x1,.-..xm) = [] P(X) e ®3)
ic i.j)ee PG P(X))
That is, the sets of margingp(x;) : i € W} and pairwise joints on the edgép(xi,x;) : (i,]j) € E}
fully characterize the joint distribution of a tree-structured graphical mode
A special class of a discrete tree-structured graphical models is thé sginmetric discrete
distributions This class of models is characterized by the fact that the pairs of vasighl;) on

6. We abuse the termlistributionto mean a probability mass function in the discrete case (density with respibet
counting measure) and a probability density function (density with respdwt Lebesgue measure) in the continuous
case.

7. We will use the terms node, vertex and variable interchangeably in qoelse
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all the edgesi, j) € E follow the conditional probability law:

o [ 1= (K=1)8;, ifx =X,
p(xi[X;) —{ Bij, otherwise @

and the marginal distribution adveryvariable in the tree is uniform, that ip(x) = 1/K for all
X, € X and for alli € VUH. The paramete$;; < (0,1/K) in (4), which does not depend on the
state values;, x; € X (but can be different for different pai(s, j) € E), is known as therossover
probability.

Letx":={xY ... x(W} be a set ohi.i.d. samples drawn from a graphical model (distribution)
p, Markov on a latent tre&, = (W, Ep), whereW =V UH. Each sampla) € XM is a lengthM
vector. In our setup, the learner only has access to samples drawthigahserved node séf and
we denote this set of sub-vectors containing only the elemeMsasx, := {x\(,l), ... ,x\(,”)}, where

each observed sampjé) € XM is a lengthm vector. Our algorithms learn latent tree structures
using the information distances (defined in Section 3) between pairs ofvelseariables, which
can be estimated from samples.

We now comment on the above model assumptions. Note that we assume that hicdgn
variables have theamedomain as the observed ones (all of which also have a common domain).
We do not view this as a serious modeling restriction since we develop effaigorithms with
strong theoretical guarantees, and these algorithms have very gdodaarce on real-world data
(see Section 7). Nonetheless, it may be possible to develop a unified foskngwincorporate
variables with different state spaces (i.e., both continuous and discrete)) a reproducing kernel
Hilbert space (RKHS) framework along the lines of Song et al. (201@)d&fer this to future work.

2.3 Minimal Tree Extensions

Our ultimate goal is to recover the graphical mogdgthat is, the latent tree structure and its param-
eters, givem i.i.d. samples of the observed variabi€s However, in general, there can be multiple
latent tree models which result in the same observed statistics, that is, the gardisjabutionpy

of the observed variables. We consider the class of tree models whepo#sible to recover the
latent tree model uniquely and provide necessary conditions for steuckemtifiability, that is, the
identifiability of the edge sek.

Firstly, we limit ourselves to the scenario whexk the random variables (both observed and
latent) take values on a common alphakiefThus, in the Gaussian case, each hidden and observed
variable is a univariate Gaussian. In the discrete case, each variabfedakvalues in the same
finite alphabetX. Note that the model may not be identifiable if some of the hidden variables are
allowed to have arbitrary alphabets. As an example, consider a discratetatemodel with binary
observed variable(= 2). A latent tree with the simplest structure (fewest number of nodes) is a
tree in which allm observed binary variables are connected to one hidden variable.dllavethe
hidden variable to take or"™2states, then the tree can describe all possible statistics among the
observed variables, that is, the joint distributipncan be arbitrary.

A probability distributionpy (xv) is said to beree-decomposabi¢it is the marginal (of vari-
ables inV) of a tree-structured graphical mod#lxy,xy ). In this casep (over variables iW) is
said to be dree extensiomf py (Pearl, 1988). A distributiom is said to have aedundanthid-
den nodeh € H if we can removéh and the marginal on the set of visible nodesemains agy .

8. This follows from a elementary parameter counting argument.
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(b)

Figure 1: Examples of minimal latent trees. Shaded nodes are obsemethsimaded nodes are
hidden. (a) An identifiable tree. (b) A non-identifiable tree becdusand hs have
degrees less than 3.

The following conditions ensure that a latent tree does not include adaduhidden node (Pearl,
1988):

(C1) Each hidden variable has at least three neighbors (which caithke l@dden or observed).
Note that this ensures that all leaf nodes are observed (although pbsalived nodes need
to be leaves).

(C2) Any two variables connected by an edge in the tree model are nedttiectly dependent nor
independent.

Figure 1(a) shows an example of a tree satisfying (C1). If (C2), whialciendition on param-
eters, is also satisfied, then the tree in Figure 1(a) is identifiable. The trem & Figure 1(b) does
not satisfy (C1) because andhs have degrees less than 3. In fact, if we marginalize out the hidden
variablesh, andhs, then the resulting model has the same tree structure as in Figure 1(a).

We assume throughout the paper that (C2) is satisfied for all probabilttypdisons. Let7>3
be the set of (latent) trees satisfying (C1). We refefflig as the set ominimal (or identifiable)
latent trees Minimal latent trees do not contain redundant hidden nodes. The distribp (over
W and Markov on some tree fi-3) is said to be aninimal tree extensioof py. As illustrated in
Figure 1, using marginalization operations, any non-minimal latent tree distribcan be reduced
to a minimal latent tree model.

Proposition 1 (Minimal Tree Extensions) (Pearl, 1988, Section 8.3)

(i) For every tree-decomposable distributiof,ghere exists a minimal tree extension p Markov
on a tree Te -3, which is unique up to the renaming of the variables or their values.

(i) For Gaussian and binary distributions, ifjds known exactly, then the minimal tree extension
p can be recovered.

(iii) The structure of T is uniquely determined by the pairwise distributiondeéoved variables
p(xi,x;) foralli,jeV.
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2.4 Consistency

We now define the notion of consistency. In Section 6, we show that ount kaée learning algo-
rithms are consistent.

Definition 2 (Consistency)A latent tree reconstruction algoriths is a map from the observed
samplesx|, to an estimated tre@" and an estimated tree-structured graphical mofl We say
that a latent tree reconstruction algorithi is structurally consisterit there exists a graph homo-
morphisnd h such that

lim Pr(h(T") # Tp) =0. (5)

Furthermore, we say that is risk consistenif to everye > 0,
lim Pr(D(p|| ") > &) =0, ()

where O p|| p") is the KL-divergence (Cover and Thomas, 2006) between the true digtribp
and the estimated distributiopl".

In the following sections, we design structurally and risk consistent algosittor (minimal)
Gaussian and symmetric discrete latent tree models, defined in (4). Ouithalgouse pairwise
distributions between the observed nodes. However, for genera¢tisnodels, pairwise distribu-
tions between observed nodes are, in general, not sufficient toerettws parameters (Chang and
Hartigan, 1991). Therefore, we only prove structural consisteaxgefined in (5), for general dis-
crete latent tree models. For such distributions, we consider a two-stepdome for structure and
parameter estimation: Firstly, we estimate the structure of the latent tree usirigahthens sug-
gested in this paper. Subsequently, we use the Expectation Maximizatiora(@fithm (Dempster
et al., 1977) to infer the parameters. Note that, as mentioned previouslgoriskstency will not
be guaranteed in this case.

3. Information Distances

The proposed algorithms in this paper receive as inputs the set of sd-(etiect or estimated)
information distanceavhich are functions of the pairwise distributions. These quantities argedefi
in Section 3.1 for the two classes of tree-structured graphical modelsdetin this paper, namely
the Gaussian and discrete graphical models. We also show that the informistiances have a
particularly simple form for symmetric discrete distributions. In Section 3.2,sedle information
distances to infer the relationships between the observed variablessspisheachild ofi ori andj
are siblings.

3.1 Definitions of Information Distances

We defineinformation distance$or Gaussian and discrete distributions and show that these dis-
tances are additive for tree-structured graphical models. Recalbittstd random variableX; and
Xj, thecorrelation coefficients defined as

L Cov(X;, Xj)
Pij = Vv Var(X)Var(X;)

9. A graph homomorphism is a mapping between graphs that respeictsttheture. More precisely, graph homo-
morphism Hrom a graphG = (W, E) to a graphG’ = (V/,E’), writtenh: G — G’ is a mappindh: V — V' such that
(i,]) € E implies that(h(i),h(j)) € E'.

(7)
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For Gaussian graphical models, the information distance associated wititloé yariablesX; and
X; is defined as:

dij == —log|pij|. (8)

Intuitively, if the information distancel; is large, thernX; andX; are weakly correlated and vice-
versa.

~ For discrete random variables, Bt denote the joint probability matrix betwegpandX; (i.e.,
Jap = P(% = a,x; =b),a,b € X). Also letM' be the diagonal marginal probability matrixxf(i.e.,
ML, = p(xi = a)). For discrete graphical models, the information distance associated wiplaithe
of variablesx; andX; is defined as Lake (1994).

|detd |
VdetMidetM1

Note that for binary variables, that is,= 2, the value of;; in (9) reduces to the expression in (8),
that is, the information distance is a function of the correlation coefficiefinetkin (7), just as in
the Gaussian case.

For symmetric discrete distributions defined in (4), the information distanceedifior discrete
graphical models in (9) reduces to

dij = —log 9)

dij = —(K—l) Iog(l—Keij). (10)

Note that there is one-to-one correspondence between the informatiancgis;; and the model
parameters for Gaussian distributions (parametrized by the correlatitiiciene p;;) in (8) and the
symmetric discrete distributions (parametrized by the crossover probdhj)ity (10). Thus, these
two distributions are completely characterized by the information distadice®n the other hand,
this does not hold for general discrete distributions.

Moreover, if the underlying distribution is a symmetric discrete model or a Gaussodel,
the information distance;j and the mutual informatioh(X;; X;) (Cover and Thomas, 2006) are
monotonic, and we will exploit this result in Section 5. For general distribsfidms is not valid.
See Section 5.5 for further discussions.

Equipped with these definitions of information distances, assumption (C2tin8&.3 can be
rewritten as the following: There exists constants Qu < oo, such that

(C2) I<dj<u,  Y(j)€Ep. (11)

Proposition 3 (Additivity of Information Distances) The information distances;ddefined in (8),
(9), and (10) areadditive tree metric$Erdds et al., 1999). In other words, if the joint probability
distribution p(x) is a tree-structured graphical model Markov on the trge=T(W,Ep), then the
information distances are additive oR:T

du = % dij, Vk,l eW. (12)
(i,j)ePati{ (k| );Ep)

The property in (12) implies that if each pair of vertigepe W is assigned the weiglk;, then

Tp is @ minimum spanning tree o, denoted as MS(W; D), whereD is the information distance
matrix with elementsl; for alli, j € V.
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Figure 2: Examples for each case TaestNodeRelationships. For each edgeg represents the
information distance associated with the edge. (a) Cas®;jk:= —eg = —dj; for all
keV\{i,j}. (b) Case 2®jx =es—e; #djj =es+e7 forallke V\ {i, j} (c) Case 3a:
Dijk = &4+ e+ — €7 # Djj = &4 — & —e3— €. (d) Case 3bDjjx = €4+ 65 # Djjr =
es— 5. (e) Case 3cdijx = &5 # Djj = —6s.

It is straightforward to show that the information distances are additivéhioiGaussian and
symmetric discrete cases using the local Markov property of graphicallmdete general discrete
distributions with information distance as in (9), see Lake (1994) for thefpim the rest of the
paper, we map the parameters of Gaussian and discrete distributions temm@maitndn distance
matrix D = [djj] to unify the analyses for both cases.

3.2 Testing Inter-Node Relationships

In this section, we use Proposition 3 to ascertain child-parent and sibfin@éction 2.1) relation-
ships between the variables in a latent tree-structured graphical modis. kg for any three vari-
ablesi, j,k € V, we defined;jx := dik — djk to be the difference between the information distances
dik anddj. The following lemma suggests a simple procedure to identify the set of relaifens
between the nodes.

Lemma 4 (Sibling Grouping) For distances g for all i,j € V on a tree Te 7>3, the following
two properties or®;jx = dix — dj¢ hold:

(i) ®ijk =djforallkeV\{i,j}ifand onlyifiis aleaf node and j is its parent.
(i) ®ijx =—d;forallk eV \{i,j}ifand onlyif jis aleaf node and i is its parent.

(i) —dij < Pjj = Pij < dij forallk, k' e V\ {i, j} if and only if both i and j are leaf nodes and
they have the same parent, that is, they belong to the same sibling group.

The proof of the lemma uses Proposition 3 and is provided in Appendix AvienGiemma 4,
we can first determine all the values ®fj for triplesi, j,k € V. Now we can determine the
relationship between nodésnd j as follows: Fix the pair of nodesj € V and consider all the
other node& € V\ {i, j}. Then, there are three cases for the{skt : ke V \ {i,j}}:

1. &k =dj forallkeV\ {i,j}. Then,i is a leaf node andg is a parent oi. Similarly, if
®jjx = —dj forallke V\ {i, j}, j is a leaf node andis a parent of.

2. ®jj is constant for alk € V' \ {i, j} butnotequal to eithed;; or —d;;. Theni andj are leaf
nodes and they are siblings.
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3. ®jjk is not equal for alk € V\ {i, j}. Then, there are three cases: Either

(a) Noded andj are not siblings nor have a parent-child relationship or,
(b) Nodes andj are siblings but at least one of them is not a leaf or,

(c) Nodes and| have a parent-child relationship but the child is not a leaf.

Thus, we have a simple test to determine the relationship betwseathj and to ascertain whether
and|j are leaf nodes. We call the above t@sttNodeRelationships. See Figure 2 for examples. By
running this test for all and j, we can determine all the relationships among all pairs of observed
variables.

In the following section, we describe a recursive algorithm that is basedhe above
TestNodeRelationships procedure to reconstruct the entire latent tree model assuming that the true
model is a latent tree and that the true distance mBtrix[d;; | are known. In Section 5, we provide
improved algorithms for the learning of latent trees again assumindgtisaknown. Subsequently,
in Section 6, we develop algorithms for tkensistentreconstruction of latent trees when infor-
mation distances are unknown and we have to estimate them from the saghplés addition,
in Section 6.6 we discuss how to extend these algorithms for the casepyhsmot necessarily
tree-decomposable, that is, the original graphical model is not assurbedhttatent tree.

4. Recursive Grouping Algorithm Given Information Distances

This section is devoted to the development of the first algorithm for recanistg latent tree mod-
els, recursive grouping (RG). At a high level, RG is a recursive gatace in which at each step,
TestNodeRelationships is used to identify nodes that belong to the same family. Subsequently, RG
introduces a parent node if a family of nodes (i.e., a sibling group) doesomtain an observed
parent. This newly introduced parent node corresponds to a hidanindhe original unknown
latent tree. Once such a parent (i.e., hidden) rogantroduced, the information distances frém
to all other observed nodes can be computed.

The inputs to RG are the vertex $eand the matrix of information distancBscorresponding to
a latent tree. The algorithm proceeds by recursively grouping natkadding hidden variables. In
each iteration, the algorithm acts on a so-called active set of ngdisd in the process constructs
a new active setphe for the next iteratiot® The steps are as follows:

1. Initialize by settingr :=V to be the set of observed variables.
2. Computedjjx = dix — djk foralli,j,keY.

3. Using theTestNodeRelationships procedure, definélT, }Il_:l to be the coarsest partitibhof
Y such that for every subsE; (with || > 2), any two nodes ifil; are either siblings which

10. Note that the current active set is also used (in Step 6) after theatiee set has been defined. For clarity, we also
introduce the quantityyq in Steps 5 and 6.

11. Recall that gartition P of a setY is a collection of nonempty subsefl;  Y}|._; such thatJL_,M, =Y and
M NNy =0foralll #1’. A partition P is said to becoarser thananother partitior?’ if every element of’ is a
subset of some element Bf
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are leaf nodes or they have a parent-child relatiorghipwhich the child is a leat®> Note
that for somd, M, may consist of a single node. Begin to construct the new active set by
adding nodes in these single-node partitiongy « UI:\I‘h =M.

4. Foreach =1,...,L with || > 2, if [; contains a parent node updateéYyew <— YnewU {U}.
Otherwise, introduce a new hidden nddeconnecth (as a parent) to every node iy, and

5. Update the active sefyg < Y andY < Ynew

6. For each new hidden nollec Y, compute the information distancgyg for all | € Y using (13)
and (14) described below.

7. If [Y]| > 3, return to step 2. Otherwise, || = 2, connect the two remaining nodesyirwith
an edge then stop. If inste@d| = 1, do nothing and stop.

We now describe how to compute the information distances in Step 6 for eadtidaen node
h €Y and all other active nodds= Y. Leti, j € C(h) be two children oh, and letk € Yo\ {i, j}
be any other node in the previous active set. From Lemma 4 and Propositise Bave that
din — djh = dix — djk = Pjjx anddip +djn = dij, from which we can recover the information distances
between a previously active note Yy g and its new hidden parehte Y as follows:

1
din = > (dij + Pijk) - (13)

For any other active nodec Y, we can computey using a child nodé € C(h) as follows:

d { dii — din, if 1 € Yoid,
hl =

dik —din —dik, otherwise wherek € C(l). (14)

Using Equations (13) and (14), we can infer all the information distadgebetween a newly
introduced hidden node to all other active nodelse Y. Consequently, we have all the distances
dij between all pairs of nodes in the active ¥etlt can be shown that this algorithm recovers all
minimal latent trees. The proof of the following theorem is provided in AppeAd.

Theorem 5 (Correctness and Computational Complexity of RG)f Ty, € 7>3 and the matrix of
information distance® (between nodes in V) is available, then RG outputs the true latent free T
correctly in time @diam(Tp)m®).

We now use a concrete example to illustrate the steps involved in RG. In Fig)réti original
unknown latent tree is shown. In this tree, nodes.16 are the observed nodes andh,, h; are the
hidden nodes. We start by considering the set of observed nodeth@swdey :=V ={1,...,6}.
Once®d;jk are computed from the given distanalys TestNodeRelationships is used to determine
thaty is partitioned into four subsetBt; = {1},M, ={2,4}, M3 = {5,6},M4 = {3}. The subsetdl;

12. In an undirected tree, the parent-child relationships can be defittedespect to a root node. In this case, the node
in the final active set in Step 7 before the algorithm terminates (or one tith&nal nodes ifY| = 2) is selected as
the root node

13. Note that since we use the active ¥eh the TestNodeRelationships procedure, the leaf nodes are defined with
respect toy, that is, a node is considered as a leaf node if it has only one neighlooiirin the set of nodes that
have not yet been in an active set.
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(b) (¢ @

Figure 3: Anillustrative example of RG. Solid nodes indicate the activE ateach iteration. (a)
Original latent tree. (b) Output after the first iteration of RG. Red dotted lindicate
the subset§l, in the partition ofY. (c) Output after the second iteration of RG. Note that
hs, which was introduced in the first iteration, is an active node for the skiteration.
Nodes 4,5, and 6 do not belong to the current active set and arseeped in grey. (d)
Output after the third iteration of RG, which is same as the original latent tree.

and4 contain only one node. The sub$&i contains two siblings that are leaf nodes. The subset
I, contains a parent node 2 and a child node 4, which is a leaf node. Bydees not contain a
parent, we introduce a new hidden ndgeand connech; to 5 and 6 as shown in Figure 3(b). The
information distancedsn, anddg,, can be computed using (13), for exampulg,, = %(d56+ Pse1).
The new active set is the union of all nodes in the single-node subsetsemt mode, and a new
hidden nodeYnew = {1,2,3,h;}. Distances among the pairs of nodesYja,, can be computed
using (14) (e.g.din, = di5—dsp,). In the second iteration, we again uSestNodeRelationships
to ascertain that can be partitioned intbl; = {1,2} andlM, = {hy,3}. These two subsets do not
have parents sm andhs are added t61; andll, respectively. Parent nodasandhs are connected
to their children inM; andM, as shown in Figure 3(c). Finally, we are left with the active set as
Y = {hy,hz} and the algorithm terminates after andhs are connected by an edge. The hitherto
unknown latent tree is fully reconstructed as shown in Figure 3(d).

A potential drawback of RG is that it involves multiplecal operations, which may result in
a high computational complexity. Indeed, from Theorem 5, the worst-casplexity isO(m?)
which occurs whefT), the true latent tree, is a hidden Markov model (HMM). This may be com-
putationally prohibitive ifm is large. In Section 5 we design an algorithm which usegoaal
pre-processing step to reduce the overall complexity substantially, iekbpdor trees with large
diameters (of which HMMs are extreme examples).

5. CLGrouping Algorithm Given Information Distances

In this section, we present CLGrouping, an algorithm for reconstrutdbegt trees more efficiently
than RG. As in Section 4, in this section, we assume Eh#& known exactly; the extension to
inexact knowledge ob is discussed in Section 6.5. CLGrouping is a two-step procedure, the first
of which is a global pre-processing step that involves the constructiarsofcalledChow-Liu tree
(Chow and Liu, 1968) over the set of observed nodesThis step identifies nodes that do not
belong to the same sibling group. In the second step, we complete the reobvke latent tree

by applying a distance-based latent tree reconstruction algorithm (suRG &r NJ) repeatedly on
smaller subsets of nodes. We review the Chow-Liu algorithm in Section 3ate the Chow-Liu

tree to the true latent tree in Section 5.2, derive a simple transformation of the-Ohb tree to
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obtain the latent tree in Section 5.3 and propose CLGrouping in Section 5r4sirRplicity, we
focus on the Gaussian distributions and the symmetric discrete distributidnsfidsdiscuss the
extension to general discrete models in Section 5.5.

5.1 A Review of the Chow-Liu Algorithm

In this section, we review the Chow-Liu tree reconstruction procedusedolso, defineZ (V) to
be the set of trees with vertex 3étand?(Z7(V)) to be the set of tree-structured graphical models
whose graph has vertex 8étthat is, everyg € (‘7 (V)) factorizes as in (3).

Given an arbitrary multivariate distributiopy (xv), Chow and Liu (1968) considered the fol-
lowing KL-divergence minimizatioproblem:

pcL := argmin D(pv ||q). (15)
ae?(T(V))

That is, among all the tree-structured graphical models with verte¥ stte distributionpc, is
the closest one tpy in terms of the KL-divergence. By using the factorization property in\@),
can easily verify thapc, is Markov on theChow-Liu tree &_ = (V,EcL) which is given by the
optimization problent?

TcL = argmax (X5 Xj). (16)

TeT(V) (i,))eT

In (16),1(X;; Xj) = D(p(xi,xj) || p(Xi) p(Xj)) is themutual information(Cover and Thomas, 2006)
between random variabléé andX;. The optimization in (16) is a max-weight spanning tree prob-
lem (Cormen et al., 2003) which can be solved efficiently in e’ logm) using either Kruskal’'s
algorithm (Kruskal, 1956) or Prim’s algorithm (Prim, 1957). The edge fsidor the max-weight
spanning tree are precisely the mutual information quantities between rarati@bles. Note that
once the optimal tre&c, is formed, the parameters pg, in (15) are found by setting the pairwise
distributionspcy (i, X;) on the edges tpy (X, x;), thatis,pcL (X, X;) = pv (%, X;) forall (i, j) € EcL.
We now relate the Chow-Liu tree on the observed nodes and the inform&tanak matripD.

Lemma 6 (Correspondence betweefic. and MST) If py is a Gaussian distribution or a sym-
metric discrete distribution, then the Chow-Liu tree(ir6) reduces to the minimum spanning tree
(MST) where the edge weights are the information distangethat is,

TcL = MST(V; D) := argmin dij. a7
TeT(V) (i,)eT

Lemma 6, whose proof is omitted, follows because for Gaussian and symmnistrietd mod-
els, the mutual informatidf 1 (X;; X;) is @ monotonically decreasing function of the information
distanced;; .16 For other graphical models (e.g., non-symmetric discrete distributions)ethison-
ship is not necessarily true. See Section 5.5 for a discussion. Note teatallimodes are observed
(i.e.,W =V), Lemma 6 reduces to Proposition 3.

14. In (16) and the rest of the paper, we adopt the following simplifyiotgtion; If T = (V,E) and if (i, j) € E, we will
also say thafi, j) € T.

15. Note that, unlike information distancgg, the mutual information quantitig$X; ; Xj) do not form an additive metric
onTp.

16. For example, in the case of Gaussid(¥;; Xj) = —% log(1— pizl-) (Cover and Thomas, 2006).
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5.2 Relationship between the Latent Tree and the Chow-Liu Tree (M$)

In this section, we relate MSV;D) in (17) to the original latent tre€,. To relate the two trees,
MST(V;D) andTp, we first introduce the notion of a surrogate node.

Definition 7 (Surrogate Node) Given the latent tree JJ= (W, Ep) and any node & W, thesurro-
gate nodef i with respect to V is defined as

Sq(i; Tp, V) := argmind;;.
jev

Intuitively, the surrogate node of a hidden ndde H is an observed nodge V that is most
strongly correlated th. In other words, the information distance betwéeand j is the smallest.
Note thatifi € V, then Sdi; Tp,V) =i sinced;; = 0. The map S@; Tp,V ) is a many-to-one function,
that is, several nodes may have the same surrogate node, and its iswhesaverse surrogate set
of i denoted as

Sg1(i;Tp,V) :={heW:Sgh; T, V) =i}.

When the tre€l, and the observed vertex sétare understood from context, the surrogate node
of h and the inverse surrogate setiaire abbreviated as 89 and Sg*(i) respectively. We now
relate the original latent treg, = (W, E;) to the Chow-Liu tree (also termed the MST) M&T D)
formed using the distance matiix

Lemma 8 (Properties of the MST) The MST in(17) and surrogate nodes satisfy the following
properties:

() The surrogate nodes of any two neighboring nodes jrate neighbors in the MST, that is,
foralli,j e W withSqg(i) # Sdj),

(i,]) €Ep=(Sdi),Sqj)) € MST(V;D). (18)

(i) If j €V and he Sg(j), then every node along the path connecting j and h belongs to the
inverse surrogate s&g1(j).

(iii) The maximum degree of the MST satisfies
AMST(V;D)) < A(Tp)H13MV) (19)

whered(Tp; V) is the effective depth defined(ih) and |, u are the bounds on the information
distances on edges ir Tefined in(11).

The proof of this result can be found in Appendix A.3. As a result of LerBimtae properties
of MST(V; D) can be expressed in terms of the original latent Tige-or example, in Figure 5(a),
a latent tree is shown with its corresponding surrogacy relationshipsfigonde 5(b) shows the
corresponding MST over the observed nodes.

The properties in Lemma 8(i-ii) can also be regardeddige-contraction operation{&obinson
and Foulds, 1981) in the original latent tree to obtain the MST. More pigc@eedge-contraction
operation on an edg@,h) € V x H in the latent tre€l,, is defined as the “shrinking” ofj, h) to
a single node whose label is the observed npdéhus, the edgéj, h) is “contracted” to a single
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D &S O E
®

Figure 4: An illustration of CLBlind. The shaded nodes are the obseredésand the rest are
hidden nodes. The dotted lines denote surrogate mappings for the hiddea. n(a)
Original latent tree, which belongs to the class of blind latent graphical lsdié Chow-
Liu tree over the observed nodes, (c) Node 3 is the input to the blind tranafion, (d)
Output after the blind transformation, (e) Node 2 is the input to the blind wamsttion,
(f) Output after the blind transformation, which is same as the original lateat tr

node j. By using Lemma 8(i-ii), we observe that the Chow-Liu tree M®]D) is formed by
applying edge-contraction operations to eaghn) pair for allh € Sg~1(j) N H sequentially until
all pairs have been contracted to a single npdeor example, the MST in Figure 5(b) is obtained
by contracting edge&, hg), (5,h2), and then5, h;) in the latent tree in Figure 5(a).

The properties in Lemma 8 can be used to design efficient algorithms bageahsforming
the MST to obtain the latent trélg. Note that the maximum degree of the M&ATMST(V; D)), is
bounded by the maximum degree in the original latent tree. The quaiM$T(V; D)) determines
the computational complexity of one of our proposed algorithms (CLGroYiging it is small if the
depth of the latent tre& Tp;V) is small (e.g., HMMs) and the information distancgssatisfy tight
bounds (i.e.u/I is close to unity). The latter condition holds for (almost) homogeneous models in
which all the information distances; on the edges are almost equal.

5.3 Chow-Liu Blind Algorithm for a Subclass of Latent Trees

In this section, we present a simple and intuitive transformation of the Chowrde that produces
the original latent tree. However, this algorithm, called Chow-Liu Blind (oB@hd), is applica-
ble only to a subset of latent trees calleithd latent tree-structured graphical mode® Tyjing)-
Equipped with the intuition from CLBIlind, we generalize it in Section 5.4 to desigrCthGroup-
ing algorithm that produces the correct latent tree structure from thefotSall minimal latent tree
models.

If pe P(Toiing), then its structurd, = (W, E,) and the distance matri2 satisfy the following
properties:

(i) The true latent tred, € 7-3 and all the internal nodé&are hidden, that i3/ = Leaf(Ty).

(i) The surrogate node of (i.e., the observed node with the strongestation with) each hidden
node is one of its children, that is, g € C(h) for allh € H.

We now describe the CLBIind algorithm, which involves two main steps. Firstly] (WSD)
is constructed using the distance matix Secondly, we apply the blind transformation of the
Chow-Liu treeBlind Transform(MST(V; D)), which proceeds as follows:

17. Recall that an internal node is one whose degree is greater thqunadite 2, that is, a non-leaf.
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1. Identify the set of internal nodes in M87; D). We perform an operation for each internal
node as follows:

2. For internal nodé add a hidden nodeto the tree.

3. Connect an edge betwebrandi (which now becomes a leaf node) and also connect edges
betweerh and the neighbors afin the currenttree model.

4. Repeat steps 2 and 3 until all internal nodes have been operated on.

See Figure 4 for an illustration of CLBlind. We use the adjedbited to describe the transformation
BlindTransform(MST(V;D)) since it does not depend on the distance mdribut usesonly the
structure of the MST. The following theorem whose proof can be fourgpendix A.4 states the
correctness result for CLBIind.

Theorem 9 (Correctness and Computational Complexity of CLBIlind) If  the  distribution
p € P(Tpiing) is a blind tree-structured graphical model Markov op dnd the matrix of distances
D is known, then CLBIlind outputs the true latent trgecdrrectly in time gn?logm).

The first condition onP(Zying) that all internal nodes are hidden is not uncommon in applica-
tions. For example, in phylogenetics, (DNA or amino acid) sequencesarftspecies at the leaves
are observed, while the sequences of the extinct species are hidaezsponding to the internal
nodes), and the evolutionary (phylogenetic) tree is to be reconstridteeever, the second condi-
tion is more restrictive® since it implies that each hidden node is directly connected to at least one
observed node and that it is closer (i.e., more correlated) to one of itevebdsehildren compared
to any other observed node. If the first constraint is satisfied but eosebond, then the blind
transformatiorBlind Transform(MST(V; D)) does not overestimate the number of hidden variables
in the latent tree (the proof follows from Lemma 8 and is omitted).

Since the computational complexity of constructing the MS®(is¥ logm) wherem= |V|, and
the blind transformation is at most linearrm the overall computational complexity@{n?logm).
Thus, CLBIind is a computationally efficient procedure compared to RGritbes in Section 4.

5.4 Chow-Liu Grouping Algorithm

Even though CLBIind is computationally efficient, it only succeeds in redogdatent trees for a
restricted subclass of minimal latent trees. In this section, we proposéi@eargfalgorithm, called
CLGrouping that reconstructl minimal latent trees. We also illustrate CLGrouping using an
example. CLGrouping uses the properties of the MST as described in Lemma 8

At a high-level, CLGrouping involves two distinct steps: Firstly, we corgttthe Chow-Liu
tree MSTV; D) over the set of observed nodés Secondly, we apply RG or NJ to reconstruct a
latent subtree over the closed neighborhoods of every internal ndd&TiV; D). If RG (respec-
tively NJ) is used, we term the algorithm CLRG (respectively CLNJ). Inrést of the section, we
only describe CLRG for concreteness since CLNJ proceeds along sliméar Formally, CLRG
proceeds as follows:

1. Construct the Chow-Liu tree MSV;D) asin (17). SeT = MST(V;D).

18. The second condition aP(Zpjing) holds when the tree is (almost) homogeneous.
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(b) © (d) ©

Figure 5: lllustration of CLRG. The shaded nodes are the observessrantt] the rest are hidden
nodes. The dotted lines denote surrogate mappings for the hidden nddegsample,
node 3 is the surrogate bg. (a) The original latent tree, (b) The Chow-Liu tree (MST)
over the observed nod¥s (c) The closed neighborhood of node 5 is the input to RG, (d)
Output after the first RG procedure, (e) The closed neighborhoodad 3 is the input
to the second iteration of RG, (f) Output after the second RG procedtiieh is same
as the original latent tree.

2. ldentify the set of internal nodes in M8T; D).

3. For each internal nodé let nbdi;T] be its closed neighborhood ifi and letS =
RG(nbdi; T],D) be the output of RG with ndd T| as the set of input nodes.

4. Replace the subtree over node set[nfdin T with S. Denote the new tree s
5. Repeat steps 3 and 4 until all internal nodes have been operated on.

Note that the only difference between the algorithm we just described laNRd S Step 3 in which
the subroutine NJ replaces RG. Also, observe in Step 3 that RG is only &pplesmall subset of
nodes which have been identified in Step 1 as possible neighbors in the¢ntddae. This reduces
the computational complexity of CLRG compared to RG, as seen in the followingetmewhose
proof is provided in Appendix A.5. L8| := |V \ Leaf(MST(V;D))| < mbe the number of internal
nodes in the MST.

Theorem 10 (Correctness and Computational Complexity of CLRG)If the distribution | € 7>3
is a minimal latent tree and the matrix of information distanbPeis available, then CLRG outputs
the true latent tree Jcorrectly in time @n?logm-+ |J|A3(MST(V;D))).

Thus, the computational complexity of CLRG is low when the latent Tigleas a small maxi-
mum degree and a small effective depth (such as the HMM) becausenfd@s thath(MST(V; D))
is also small. Indeed, we demonstrate in Section 7 that there is a significadiugpeompared to
applying RG over the entire observed node\set

We now illustrate CLRG using the example shown in Figure 5. The original minirteaiti&ree
Tp = (W,E) is shown in Figure 5(a) witktV = {1,2,...,6,h;,hy,h3}. The set of observed nodes is
V ={1,...,6} and the set of hidden nodeHs= {hy,hy, h3}. The Chow-Liu trefic;. = MST(V;D)
formed using the information distance matxs shown in Figure 5(b). Since nodes 3 and 5 are the
only internal nodes in MS{V; D), two RG operations will be executed on the closed neighborhoods
of each of these two nodes. In the first iteration, the closed neighbdifarode 5 is the input to
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Latent variable§ ~ Distribution | MST(V;D) = Tc.? | Structure| Parametet
Non-latent Gaussian v v v
Non-latent | Symmetric Discrete v v v
Non-latent General Discrete X v X

Latent Gaussian v v v
Latent Symmetric Discrete v v v
Latent General Discrete X v X

Table 1. Comparison between various classes of distributions. In the lastalwmns, we state
whether CLGrouping is consistent for learning either the structure @npeters of the
model, namely whether CLGrouping is structurally consistent or risk consistepec-
tively (cf., Definition 2). Note that the first two cases reduce exactly to therithm
proposed by Chow and Liu (1968) in which the edge weights are the mufoahation
gquantities.

RG. This is shown in Figure 5(c) where fBdMST(V;D)] = {1,3,4,5}, which is then replaced by

the output of RG to obtain the tree shown in Figure 5(d). In the next itera®@nis applied to the
closed neighborhood of node 3 in the current tree[8f3d = {2,3,6,h; } as shown in Figure 5(e).
Note that nbB;T] includesh; € H, which was introduced by RG in the previous iteration. The
distance fromh; to other nodes in nkd; T] can be computed using the distance betwleeand

its surrogate node 5, which is part of the output of RG, for exantplg,= das — dsp,. The closed
neighborhood nb@;T] is then replaced by the output of the second RG operation and the original
latent tre€T}, is obtained as shown in Figure 5(f).

Observe that the trees obtained at each iteration of CLRG can be relatexldogimal latent
tree in terms of edge-contraction operations (Robinson and Foulds,, MBith were defined in
Section 5.2. For example, the Chow-Liu tree in Figure 5(b) is obtained frematient treeT,
in Figure 5(a) by sequentially contracting all edges connecting an agservde to its inverse
surrogate set (cf., Lemma 8(ii)). Upon performing an iteration of RG, thest&raction operations
are inverted and new hidden nodes are introduced. For example, ireE¢d); the hidden nodes
h1,hy are introduced after performing RG on the closed neighborhood of BateMSTV; D).
These newly introduced hidden nodes in fact, turn out to be the invensgate set of node 5, that
is, Sg1(5) = {5,hs, hy}. This is not merely a coincidence and we formally prove in Appendix A.5
that at each iteration, the set of hidden nodes introduced correspracty to the inverse surrogate
set of the internal node.

We conclude this section by emphasizing that CLGrouping (i.e., CLRG or £bHd two
primary advantages. Firstly, as demonstrated in Theorem 10, the stroftabeminimal tree-
structured graphical models can be recovered by CLGrouping in sbntr&LBlind. Secondly, it
typically has much lower computational complexity compared to RG.

5.5 Extension to General Discrete Models

For general (i.e., not symmetric) discrete models, the mutual informb@6nX;) is in general not
monotonic in the information distanakj, defined in (9)%° As a result, Lemma 6 does not hold,

19. The mutual information, however, is monotoniajpfor asymmetric binary discrete models.
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that is, the Chow-Liu tre@c_ is not necessarily the same as M8TD). However, Lemma 8 does
hold for all minimal latent tree models. Therefore, for general (non-sytmeheiscrete models, we
compute MSTV; D) (instead of the Chow-Liu tre&, with edge weight$(X; X;)), and apply RG

or NJ to each internal node and its neighbors. This algorithm guaranteféhstructure learned
using CLGrouping is the same &g if the distance matriD is available. These observations are
summarized clearly in Table 1. Note thatah cases, the latent structure is recovered consistently.

6. Sample-Based Algorithms for Learning Latent Tree Structures

In Sections 4 and 5, we designed algorithms for the exact reconstrudtiateot trees assuming
that py is a tree-decomposable distribution and the matrix of information distdncesvailable.

In most (if not all) machine learning problems, the pairwise distributiofxg x;) are unavailable.
ConsequentlyD is also unavailable so RG, NJ and CLGrouping as stated in Sections 4 aad 5 ar
not directly applicable. In this section, we consider extending RG, NJ &@tdliping to the case
when only samples, are available. We show how to modify the previously proposed algorithms
to accommodate ML estimated distances and we also provide sample complext/forsalaxed
versions of RG and CLGrouping.

6.1 ML Estimation of Information Distances

The canonical method for deterministic parameter estimation is via maximum-likeliMigd$er-
fling, 1980). We focus on Gaussian and symmetric discrete distributions isdtii®n. The gener-
alization to general discrete models is straightforward. For Gaussigoisigahmodels, we use ML
to estimate the entries of the covariance matfihat is,

~ 1.0 .
T A SRR @0
=1

The ML estimate of the correlation coefficient is definedbgs= %ij/(%i2j;)%/2. The estimated
information distance is then given by the analog of (8), thatlis= —log|pi;|. For symmetric
discrete distributions, we estimate the crossover probaBilityia ML as’

1 0h -
i = nkzl]l{xi(k) ;éxgk)}, Vi, jeV.

The estimated information distance is given by the analogue of (10), tIuTqHs,—(K —1)log(1—
K@ij). For both classes of models, it can easily be verified from the Central Lindbiem and
continuity arguments (Serfling, 1980) th‘ﬁt— dij = Op(nfl/z), wheren is the number of samples.
This means that the estimates of the information distances are consistent with cateergence
beingn—1/2. Them x mmatrix of estimated information distances is denoteB as|d;].

6.2 Post-processing Using Edge Contractions

For all sample-based algorithms discussed in this section, we apply a comsteprpoessing step
using edge-contraction operations. Recall from (11)tiethe minimum bound on the information

20. Recall that we assume that the mean of the true random veg&dmown and equals to the zero vector so we do not
need to subtract the empirical mean in (20).
21. We usd{-} to denote the indicator function.
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distances on edges. After learning the latent tree, if we find that therts exidgei,h) € W x H
with the estimated distana, < I, then(i,h) is contracted to a single node whose labél ithat

is, the hidden nodh is removed and merged with nodeThis edge contraction operation removes
a hidden node if it is too close in information distances to another node. Rrss@a and binary
variablesdi, = — log |pin|, SO in our experiments, we use= —log0.9 to contract an edgg, h) if

the correlation between the two nodes is higher th@n 0

6.3 Relaxed Recursive Grouping (RG) Given Samples

We now show how to relax the canonical RG algorithm described in Sectiorhdrtdle the case
when onlyﬁ is available. Recall that RG calls tfiestNodeRelationships procedure recursively to
ascertain child-parent and sibling relationships via equality ®gts= dik — djk (cf., Section 3.2).
These equality constraints are, in general, not satisfied with the estimatatdadd)‘é&ﬁ)ijk = oTik —

a\jk, which are computed based on the estimated distande Besides, not all estimated distances
are equally accurate. Longer distance estimates (i.e., lower correlationtesiirag less accurate
for a given number of samplé&$.As such, not all estimated distances can be used for testing inter-
node relationships reliably. These observations motivate the following theekfications to the

RG algorithm:;

1. Consider using a smaller subset of nodes to test Wh&l;me'rs constant (acrods.
2. Apply a threshold (inequality) test to ti& values.
3. Improve on the robustness of the estimated distaﬁgm (13) and (14) by averaging.

We now describe each of these modifications in greater detail. Firstly, inltheedeRG algorithm,
we only compute@ijk for those estimated distanceg, dix anddjk that are below a prescribed
thresholdrt > 0 since longer distance estimates are unreliable. As such, for each pablexi, j)
such that;j < 1, associate the set

Kij = {keV\{i, it: max{(ﬂk,dAjk} < r}. (21)

This is the subset of nodes¥hwhose estimated distancesitand j are less than. Compute®; ik
for all k € %j; only.

Secondly, instead of using equality testg#stNodeRelationships to determine the relationship
between nodeisand j, we relax this test and consider the statistic

Aij := max®;ix — min ®;; 22
ij ke, ijk ke ijk ( )
Intuitively, if 7\ij in (22) is close to zero, then nodeeand j are likely to be in the same family. Thus,
declare that noddsj € V are in the same family if

Aij <, (23)

22. In fact, by using a large deviation result in Shen (2007, Theoremelfan formally show that a larger number of
samples is required to get a good approximatiopieff it is small compared to whepiy is large.
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fgr angther threshold > 0. Similarly, an observed nodeis identified as a parent node]ifik +
dkj —dij| < e for all i and j in the same family. If such an observed node does not exists for a group
of family, then a new hidden node is introduced as the parent node fordbp.g

Thirdly, in order to further improve on the quality of the distance estirdgtef a newly intro-
duced hidden node to observed nodes, we comgitesing (13) with different pairs of € C(h)
andk € %jj, and take the average as follows:

dh=————— dij + —— Dijk | - (24)
" D (,-%m TP )
Similarly, for any other nod& ¢ C(h), we computedy, using all child nodes irC(h) and (k) (if

C(k) # 0) as follows:

> _{ Wlh)\ZieC(h)(ai\k—ai\h), if ke V,
- 1

dkh S s s : (25)
EEIEG] 3 (i.j)echyxck (dij —din —djc), otherwise

It is easy to verify that it and(ﬂ(h are equal ta,, anddyy, respectively, then (24) and (25) reduce
to (13) and (14) respectively.

The following theorem shows that relaxed RG is consistent, and with apately chosen
thresholds andT, it has the sample complexity logarithmic in the number of observed variables.
The proof follows from standard Chernoff bounds and is providedgpekdix A.6.

Theorem 11 (Consistency and Sample Complexity of Relaxed RQG)) Relaxed RG is struc-
turally consistent for all f € 7>3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective dep®(Tp;V) = O(1) (i.e., constant in m)
and relaxed RG is used to reconstruct the tree gi@enFor everyn > 0, there exists thresholds
€,T > 0such that if

n> Clog(m/¥n) (26)

for some constant G 0, the error probability for structure reconstruction {%) is bounded above
by n. If, in addition, p is a Gaussian or symmetric discrete distribution and @ log(m/ 1),
the error probability for distribution reconstruction i6) is also bounded above by Thus, the
sample complexity of relaxed RG, which is the number of samples reduietieve a desired level
of accuracy, is logarithmic in m, the number of observed variables.

As we observe from (26), the sample complexity for RG is logarithmimifor shallow trees
(i.e., trees where the effective depth is constant). This is in contrast toheewhe sample com-
plexity is super-polynomial in the number of observed nodes for the HMMJ@n et al., 2003;
Lacey and Chang, 2006).

6.3.1 RGWITH k-MEANS CLUSTERING

In practice, if the number of samples is limited, the distance estirrfqtase noisy and it is difficult

to select the thresholelin Theorem 11 to identify sibling nodes reliably. In our experiments, we
employ a modified version of tHemeans clustering algorithm to cluster a set of nodes with small
7\ij , defined in (22), as a group of siblings. Recall that we test &adlmcally with a fixed threshold

€ in (23). In contrast, th&-means algorithm providesgobal scheme and circumvents the need
to select the thresholedd We adopt thesilhouette methogRousseeuw, 1987) with dissimilarity
measure'A\ij to select optimal the number of clustées
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6.4 Relaxed Neighbor-Joining Given Samples

In this section, we describe how NJ can be relaxed when the true distneagsavailable. We relax
the NJ algorithm by using ML estimates of the distandgsn place of unavailable distancels.
NJ typically assume that all observed nodes are at the leaves of the latgrddrafter learning the
latent tree, we perform the post-processing step described in Sectitmi@éntify internal nodes
that are observet® The sample complexity of NJ is known to B¥exp(diam(T,)) logm) (St. John
et al., 2003) and thus does not scale well when the latenfTyd®s a large diameter. Compar-
isons between the sample complexities of other closely related latent tree ¢ealgdimithms are
discussed in Atteson (1999), Eislet al. (1999), (gds (2000) and St. John et al. (2003).

6.5 Relaxed CLGrouping Given Samples

In this section, we discuss how to modify CLGrouping (CLRG and CLNG)we only have
access to the estimated information distaBceThe relaxed version of CLGrouping differs from
CLGrouping in two main aspects. Firstly, we replace the edge weights in tretreotion of the
MST in (17) with the estimated information distanals that is,

TeL =MST(V;D) :=argmin ¥ dj. (27)
TeETV) (i,)eT

The procedure in (27) can be shown to be equivalent to the learning dfithtree structure given
samples() if py is a Gaussian or symmetric discrete distribuidnlt has also been shown that
the error probability of structure learning (HA’@L # TcL) converges to zero exponentially fast in
the number of sampleas for both discrete and Gaussian data (Tan et al., 2010, 2011). Secondly
for CLRG (respectively CLNJ), we replace RG (respectively NJ) with riddaxed version of RG
(respectively NJ). The sample complexity result of CLRG (and its prodfinslar to Theorem 11

and the proof is provided in Appendix A.7.

Theorem 12 (Consistency and Sample Complexity of Relaxed CLRQ]J) Relaxed CLRG is
structurally consistent for all J€ 7->3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective dep(Tg;V) = O(1) (i.e., constant in m).
Then the sample complexity of relaxed CLRG is logarithmic in m.

6.6 Regularized CLGrouping for Learning Latent Tree Approximations

For many practical applications, it is of interest to learn a latent treeajhatoximateghe given
empirical distribution. In general, introducing more hidden variables eadglger fitting to the em-
pirical distribution, but it increases the model complexity and may lead to ttirggfi The Bayesian
Information Criterion (Schwarz, 1978) provides a trade-off betweedetfitting and model com-
plexity, and is defined as follows:

BIC(T) = logp(x{}; T) — K(ZT)Iogn (28)

23. The processing (contraction) of the internal nodes can be domg order.
24. This follows from the observation that the ML search for the optimakstre is equivalent to the KL-divergence
minimization problem in (15) withpy replaced bypy, the empirical distribution o%y;.
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whereT is a latent tree structure amdT) is the number of free parameters, which grows linearly
with the number of hidden variables becaiiss a tree. Here, we describegularized CLGrouping

in which we use the BIC in (28) to specify a stopping criterion on the numbkrdafen variables
added.

For each internal node and its neighbors in the Chow-Liu tree, we usedeMJ or RG to
learn a latent subtree. Unlike in regular CLGrouping, before we integhigesubtree into our
model, we compute its BIC score. Computing the BIC score requires estimatingakienum
likelihood parameters for the models, so for general discrete distributiensn the EM algorithm
on the subtree to estimate the parametergfter we compute the BIC scores for all subtrees
corresponding to all internal nodes in the Chow-Liu tree, we chooseuthteeg that results in the
highest BIC score and incorporate that subtree into the current treel mod

The BIC score can be computed efficiently on a tree model with a few hidaigailes. Thus,
for computational efficiency, each time a set of hidden nodes is added todtiel, we generate
samples of hidden nodes conditioned on the samples of observed nodeseathese augmented
samples to compute the BIC score approximately when we evaluate the negedolbe integrated
in the model.

If none of the subtrees increases the BIC score (i.e., the currentasabdihighest BIC score),
the procedure stops and outputs the estimated latent tree. Alternativelywifslvéo learn a latent
tree with a given number of hidden nodes, we can used the BIC-baseddure mentioned in
the previous paragraph to learn subtrees until the desired number enhmddies is introduced.
Depending on whether we use NJ or RG as the subroutine, we denoteettificspegularized
CLGrouping algorithm asegCLNJor regCLRG

This approach of using an approximation of the BIC score has been cdmosed to learn
a graphical model with hidden variables (Elidan and Friedman, 2005;¢Zhad Kdaka, 2004).
However, for these algorithms, the BIC score needs to be evaluatedidogeasubset of nodes,
whereas in CLGrouping, the Chow-Liu tree among observed variablegepout many subsets, so
we need to evaluate BIC scores only for a small number of candidatetsitteenumber of internal
nodes in the Chow-Liu tree).

7. Experimental Results

In this section, we compare the performances of various latent tree lgaigarithms. We first
show simulation results on synthetic data sets with known latent tree structudesnionstrate
the consistency of our algorithms. We also analyze the performance efdlgsithms when we
change the underlying latent tree structures. Then, we show that auitlalgs can approximate
arbitrary multivariate probability distributions with latent trees by applying thetwitoreal-world
data sets, a monthly stock returns example and the 20 newsgroups data set.

7.1 Simulations using Synthetic Data Sets

In order to analyze the performances of different tree reconstruatgmrithms, we generate sam-
ples from known latent tree structures with varying sample sizes and apgiyistruction algo-
rithms. We compare the neighbor-joining method (NJ) (Saitou and Nei, 198/)recursive

25. Note that for Gaussian and symmetric discrete distributions, the mpadeheters can be recovered from information
distances directly using (8) or (10).
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) Double star

(c) 5-complete

Figure 6: Latent tree structures used in our simulations.

grouping (RG), Chow-Liu Neighbor Joining (CLNJ), and Chow-Liu Resive Grouping (CLRG).
Since the algorithms are given only samples of observed variables, whaisample-based algo-
rithms described in Section 6. For all our experiments, we use the sameeiulgaetion threshold
¢ = —1og0.9 (see Sections 6.4 and 6.5), andséat Section 6.3 to grow logarithmically with the
number of samples.

Figure 6 shows the three latent tree structures used in our simulations. oUbk-dtar has
2 hidden and 80 observed nodes, the HMM has 78 hidden and 80 elsendes, and the 5-
complete tree has 25 hidden and 81 observed nodes including the raot Rod simplicity, we
present simulation results only on Gaussian models but note that the betvadiscrete models
is similar. All correlation coefficients on the edggg were independently drawn from a uniform
distribution supported o0if0.2,0.8]. The performance of each method is measured by averaging
over 200 independent runs with different parameters. We use the fotigrerformance metrics to
guantify the performance of each algorithm in Figure 7:

(i) Structure recovery error rate: This is the proportion of times that the proposed algorithm
fails to recover the true latent tree structure. Note that this is a very stricureeaince even
a single wrong hidden node or misplaced edge results in an error fortihe sructure.

(i) Robinson Foulds metric (Robinson and Foulds, 1981): This popular phylogenetic tree-
distortion metric computes the number of graph transformations (edge domracexpan-
sion) needed to be applied to the estimated graph in order to get the comwettrg. This
metric quantifies the difference in the structures of the estimated and true models

(iii) Error in the number of hidden variables: We compute the average number of hidden vari-
ables introduced by each method and plot the absolute difference betfvecaverage esti-
mated hidden variables and the number of hidden variables in the true structur
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Struture Recovery Error Rate Robinson-Foulds Metric Error in Hidden Variables log4q (KL-divergence)
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Figure 7: Performance of RG, NJ, CLRG, and CLNJ for the latent tleesrs in Figure 6.

(iv) KL-divergence D(py ||p)): This is a measure of the distance between the estimated and the
true models over the set of observed node$

We first note that from the structural error rate plots that the double stheigasiest structure
to recover and the 5-complete tree is the hardest. In general, givennigeraamber of observed
variables, a latent tree with more hidden variables or larger effectivilh dspe Section 2) is more
difficult to recover.

For the double star, RG clearly outperforms all other methods. With only ls@ftples, it
recovers the true structure exactly in all 200 runs. On the other han@rdCiping performs sig-
nificantly better than RG for the HMM. There are two reasons for sucfopeance differences.
Firstly, for Gaussian distributions, it was shown (Tan et al., 2010) thatngthe same number of
variables and their samples, the Chow-Liu algorithm is most accurate f@ia ahd least accurate
for a star. Since the Chow-Liu tree of a latent double star graph is closstéw, and the Chow-Liu

26. Note that this is not the same quantity as in (6) because if the numbetdeihvariables is estimated incorrectly,
D(p|| p") is infinite so we ploD(py || i) instead. However, for Gaussian and symmetric discrete distributions,
D(p|| p") converges to zero in probability since the number of hidden variablesrisaged correctly asymptotically.
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RG NJ | CLRG | CLNJ

HMM 10.16| 0.02| 0.10 | 0.05
5-complete| 7.91 | 0.02| 0.26 | 0.06
Double star] 1.43 | 0.01| 0.76 | 0.20

Table 2: Average running time of each algorithm in seconds.

tree of a latent HMM is close to a chain, the Chow-Liu tree tend to be more dedarahe HMM

than for the double star. Secondly, the internal nodes in the Chow-Liwfréeee HMM tend to
have small degrees, so we can apply RG or NJ to a very small neighbonvbarh results in a
significant improvement in both accuracy and computational complexity.

Note that NJ is particularly poor at recovering the HMM structure. In fiadtas been shown
that even if the number of samples grows polynomially with the number of obdeariables (i.e.,
n= O(mP) for any B > 0), it is insufficient for NJ to recover HMM structures (Lacey and QGhan
2006). The 5-complete tree has two layers of hidden nodes, making itdviqult to recover
the exact structure using any method. CLNJ has the best structureengaavor rate and KL
divergence, while CLRG has the smallest Robinson-Foulds metric.

Table 2 shows the running time of each algorithm averaged over 200 mdredlzssample sizes.
All algorithms are implemented in MATLAB. As expected, we observe that Cli&k&gnificantly
faster than RG for HMM and 5-complete graphs. NJ is fastest, but CLNdasvary efficient and
leads to much more accurate reconstruction of latent trees.

Based on the simulation results, we conclude that for a latent tree with a felerhicriables,
RG is most accurate, and for a latent tree with a large diameter, CLNJ pertoe best. A latent
tree with multiple layers of hidden variables is more difficult to recover ctlgresing any method,
and CLNJ and CLRG outperform NJ and RG.

7.2 Monthly Stock Returns

In this and the next section, we test our algorithms on real-world data deg¢sprobability distri-
butions that govern these data sets of course do not satisfy the assigmptjaired for consistent
learning of the latent tree models. Nonetheless the experiments here dexteotisit our algo-
rithms are also useful iapproximatingcomplex probability distributions by latent models in which
the hidden variables have the same domain as the observed ones.

We apply our latent tree learning algorithms to model the dependency sea¢tmonthly stock
returns of 84 companies in the S&P 100 stock indeXVe use the samples of the monthly returns
from 1990 to 2007. As shown in Table 3 and Figure 8, CLNJ achievedghest log-likelihood and
BIC scores. NJ introduces more hidden variables than CLNJ and hasltmyvikelihoods, which
implies that starting from a Chow-Liu tree helps to get a better latent treexdpytion. Figure 11
shows the latent tree structure learned using the CLNJ method. Eacherbgsede is labeled with
the ticker of the company. Note that related companies are closely located waghMany hidden
nodes can be interpreted as industries or divisions. For example, Rehiasn, Sprint, and T-
mobile as descendants, and can be interpreted as the telecom industng eoatespond to the
technology division with companies such as Microsoft, Apple, and IBMegsendants. Nodes h26
and h27 group commercial banks together, and h25 has all retail stocbgdnodes.

27. We disregard 16 companies that have been listed on S&P 100 ol 28@.
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Log-Likelihood | BIC | #Hidden| # Parameters Time (secs)
CL -13,321 -13,547 0 84 0.15
NJ -12,400 -12,747 45 129 0.02
RG -14,042 -14,300 12 96 21.15
CLNJ -11,990 -12,294 29 113 0.24
CLRG -12,879 -13,174 26 110 0.40

Table 3: Comparison of the log-likelihood, BIC, number of hidden variainesduced, number of
parameters, and running time for the monthly stock returns example.

BIC score

-12,000

-12,500

-13,000

-13,500

-14,000 -:I

-14,500 . — .

cL NJ RG CLNJ  CLRG

Figure 8: Plot of BIC scores for the monthly stock returns example.

7.3 20 Newsgroups with 100 Words

For our last experiment, we apply our latent tree learning algorithms to thee2@dtoups data set
with 100 words?® The data set consists of 16,242 binary samples of 100 words, indicatietievh
each word appears in each posting or not. In addition to the Chow-LiuGteeNlJ, RG, CLNJ, and
CLRG, we also compare the performances with the regCLNJ and regCHegar{bed in Section
6.6), the latent cluster model (LCM) (Lazarsfeld and Henry, 1968), BN, which is a greedy
algorithm for learning latent trees (Harmeling and Williams, 2010).

Table 4 shows the performance of different algorithms, and Figure 9 thletBIC score. We
use the MATLAB code (a small part of it is implemented in C) provided by Harrgedmd Williams
(2010¥%° to run LCM and BIN. Note that although LCM has only one hidden node, thegnichode
has 16 states, resulting in many parameters. We also tried to run the algoritBhebyet al. (2008),
but their JAVA implementation on this data set did not complete even after $degsa For NJ, RG,
CLNJ, and CLRG, we learned the structures using only information distgidedined in (9)) and
then used the EM algorithm to fit the parameters. For regCLNJ and regQthB@odel parameters
are learned during the structure learning procedure by running thel@dvitam locally, and once
the structure learning is over, we refine the parameters by running thddevitam for the entire
latent tree. All methods are implemented in MATLAB except the E-step of thelgdtighm, which
is implemented in C++.

28. The data set can be founchép://cs.nyu.edu/ ~ roweis/data/20news_w2100.mat
29. Code can be found http://people.kyb.tuebingen.mpg.de/harmeling/code/l tt-1.3.tar
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_. ] Time (s)
Log-Likelihood BIC Hidden | Params Total T Structurel EM
CL -238,713 -239,677 0 199 8.9 - -
LCM -223,096 -230,925 1 1,615 | 8,835.9 - -
BIN -232,042 -233,952| 98 394 | 3,022.6 - -
NJ -230,575 -232,257| 74 347 | 1,611.2 3.3 1,608.2
RG -239,619 -240,875| 30 259 927.1 30.8 896.4
CLNJ -230,858 -232,540| 74 347 | 1,479.6 2.7 1,476.8
CLRG -231,279 -232,738| 51 301 | 1,224.6 3.1 1,224.6
regCLNJ -235,326 -236,553| 27 253 630.8 449.7 181.1
regCLRG -234,012 -235,229| 26 251 606.9 493.0 113.9

Table 4: Comparison between various algorithms on the newsgroup set.

BIC score
-230,000

-232,000
-234,000 -
-236,000 A
-238,000 -
-240,000 -
-242,000 -

CL LCM BIN NJ RG CLNJ  CLRG regCLNJregCLRG

Figure 9: The BIC scores of various algorithms on the newsgroup set.

Despite having many parameters, the models learned via LCM have the kest@ie. How-
ever, it does not reveal any interesting structure and is computationally empensive to learn. In
addition, it may result in overfitting. In order to show this, we split the datasetomly and use
half as the training set and the other half as the test set. Table 5 showsftirenp@ce of applying
the latent trees learned from the training set to the test set, and Figurevif e log-likelihood on
the training and the test sets. For LCM, the test log-likelihood drops signifjceompared to the
training log-likelihood, indicating that LCM is overfitting the training data. NJNJl.and CLRG
achieve high log-likelihood scores on the test set. Although regCLNJeg@URG do not result
in a better BIC score, they introduce fewer hidden variables, which isatds if we wish to learn
a latent tree with small computational complexity, or if we wish to discover a fedednidiariables
that are meaningful in explaining the dependencies of observed variable

Figure 12 shows the latent tree structure learned using regCLRG froemtine data set. Many
hidden variables in the tree can be roughly interpreted as topics—h5ras, $f8as computer tech-
nology, h13 as medical, etc. Note that some words have multiple meanings et apdifferent
topics—for exampleprogram can be used in the phrase “space program” as well as “computer
program”, andvin may indicate the windows operating system or winning in sports games.
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Train Test Hidden | Params Time (s)
Log-Like BIC Log-Like BIC Total Struct | EM
CL -119,013 | -119,909 | -120,107 | -121,003 0 199 3.0 - -
LCM -112,746 | -117,288 | -116,884 | -120,949 1 1,009 | 3,197.7 -
BIN -117,172 | -118,675| -117,957 | -119,460 78 334 1,331.3 - -
NJ -115,319 | -116,908 | -116,011 | -117,600 77 353 802.8 1.3 801.5
RG -118,280 | -119,248 | -119,181 | -120,149 8 215 137.6 7.6 130.0
CLNJ -115,372 | -116,987 | -116,036 | -117,652 80 359 648.0 15 646.5
CLRG -115,565 | -116,920 | -116,199 | -117,554 51 301 506.0 1.7 504.3
regCLNJ | -117,723 | -118,924 | -118,606 | -119,808 34 267 4255 | 251.3 | 174.2
regCLRG | -116,980 | -118,119| -117,652 | -118,791 27 253 285.7 | 236.5 | 49.2

Table 5: Comparison between various algorithms on the newsgroup datalsattrain/test split.

Log-likelihood

-112,000

-113,000 B Train
-114,000 Test
-115,000
-116,000
-117,000
-118,000 -
-119,000 -
-120,000 -
-121,000 - T T T T T
CL LCM BIN NJ

RG CLNJ CLRG  regCLNJ regCLRG

Figure 10: Train and test log-likelihood scores of various algorithms ondtwsgroup data set with
a train/test split.

8. Discussion and Conclusion

In this paper, we proposed algorithms to learn a latent tree model from threniation distances
of observed variables. Our first algorithm, recursive grouping (Rf&ntifies sibling and parent-
child relationships and introduces hidden nodes recursively. Oundeagorithm, CLGrouping,
maintains a tree in each iteration and adds hidden variables by locally applyemg-tieee learn-
ing procedures such as recursive grouping. These algorithms actusally consistent (and risk
consistent as well in the case of Gaussian and discrete symmetric distripuéindshave sample
complexity logarithmic in the number of observed variables for constant diegab.

Using simulations on synthetic data sets, we showed that RG performs well ttagrum-
ber of hidden variables is small, while CLGrouping performs significantly béten other algo-
rithms when there are many hidden variables in the latent tree. We comparathorithms to
other EM-based approaches and the neighbor-joining method on redl-aata sets, under both
Gaussian and discrete data modeling. Our proposed algorithms shoviosuesults in both ac-
curacy (measured by KL-divergence and graph distance) and catigmal efficiency. In addi-
tion, we introduced regularized CLGrouping, which can learn a lateniajppeoximation by trad-
ing off model complexity (number of hidden nodes) with data fidelity. This iy vetevant for
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practical implementation on real-world data sets. In future, we plan to deeelopfied frame-

work for learning latent trees where each random variable (node) mayitinuous or discrete.
The MATLAB implementation of our algorithms can be downloaded from the ptojebpage

http://people.csail.mit.edu/myungjin/latentTree.htm l.
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Appendix A. Proofs

In this appendix, we provide proofs for the theorems presented in thex.pap

A.1 Proof of Lemma 4. Sibling Grouping

We prove statement (i) in Lemma 4 using (12) in Proposition 3. Statement (ii) fobdong similar
lines and its proof is omitted for brevity.

If : From the additive property of information distances in (12),iff a leaf node and is its
parentdy = dij 4 djx and thusb; = d;j forallk #1, j.

Only If: Now assume thab;j, = djj for allk € V\ {i, j}. In order to prove thaitis a leaf node
and j is its parent, assume to the contrary, thahd j are not connected with an edge, then there
exists a nodel # i, j on the path connectingand j. If u €V, then letk = u. Otherwise, lek be
an observed node in the subtree away ficand j (see Figure 13(a)), which exists sinGge 7-3.
By the additive property of information distances in (12) and the assumptiatralihdistances are
positive,

dij = diy +dyj > diy — duj = dik — dyj = Pijk
which is a contradiction. If is not a leaf node i, then there exist a node# i, j such that

(i,u) € Ep. Letk=uif ueV, otherwise, lek be an observed node in the subtree away framd
j (see Figure 13(b)). Then,

Djjk = dix — djk = —dij < dij,

which is again a contradiction. Therefo(e,j) € Ep andi is a leaf node. O

A.2 Proof of Theorem 5: Correctness and Computational Complexit of RG

The correctness of RG follows from the following observations: Firstymf Proposition 3, for all
i, ] in the active seY, the information distanced;j can be computed exactly with Equations (13)
and (14). Secondly, at each iteration of RG, the sibling groups witlaire identified correctly using
the information distances by Lemma 4. Since the new parent node addedrtibiarpthat does not
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(d)

Figure 13: Shaded nodes indicate observed nodes and the rest imdtickee nodes. (a),(b) Figures
for Proof of Lemma 4. Dashed red line represent the subtrees awayi faod j. (c)
Figure for Proof of Lemma 8(i). (d) Figure for Proof of Lemma 8(il)

contain an observed parent corresponds to a hidden node (in theabtadent tree), a subforest of
Ty is recovered at each iteration, and wH¥gn< 2, and the entire latent tree is recovered.

The computational complexity follows from the fact there are a maximu@®(of®) differences
®;jk = dik —djk that we have to compute at each iteration of RG. Furthermore, there aresait mo
diam(Tp) subsets in the coarsest partition (cf., step 3Y @it the first iteration, and the number of
subsets reduce at least by 2 from one iteration to the next due to the d@ssuthatT, € 7>3. This
proves the claim that the computational complexity is upper bound&{ dam(T,)m?). O

A.3 Proof of Lemma 8: Properties of the MST

(i) For an edgdi, j) € Ep such that S§) # Sq(j), letV;,; CV andV;,; C V denote observed nodes
in the subtrees obtained by the removal of egg), where the former includes nodand excludes
nodej and vice versa (see Figure 13(c)). Using part (ii) of the lemma and theth&tSdi) # Sq(j ),

it can be shown that 9 < Vi\; and Sgj) € Vj\;. Since(i, ) lies on the unique path froito | on
Tp, for all observed noddse V;, j,| € Vj\;, we have

da = dki + dij +dji > dsgi),; + dij +dsgj),j = dsg(i),sqj)s

where the inequality is from the definition of surrogacy and the final equadigs the fact that
Sq(i) # Sq(j). By using the property of the MST th&bg(i),Sq(j)) is the shortest edge frol,
toVj\;, we have (18).

(i) First assume that we have a tie-breaking rule consistent across dérhitbdes so that if
duh = dyh = Miniey din anddyy = dyy = Miniey diy then bothh andh’ choose the same surrogate
node. Letj €V, he Sg™1(j), and letu be a node on the path connectimgnd j (see Figure 13(d)).
Assume that S@i) =k # j. If dyj > duk, then

dhj = dhy+dyj > dny+ duk = Ok,
which is a contradiction sincg= Sg(h). If dyj = duk, thendn; = dnk, which is again a contradiction
to the consistent tie-breaking rule. Thus, the surrogate nodésoff.

(iii) First we claim that
[SgH(0)] < A(Tp) PV, (29)
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To prove this claim, ley be the longest (worst-case) graph distance of any hiddenmade from
its surrogate, that is,
Y= rrp%x| Path(h,Sg(h); Tp)|. (30)
S

From the degree bound, for eaich V, there are at mogk(T,)Y hidden nodes that are within the
graph distance of,%° so
ISg(i)| < A(Tp)Y (31)

foralli € V. Letd" := maXcy dy sqn) b€ the longest (worst-case) information distance between a
hidden node and its surrogate. From the bounds on the information distineed*. In addition,

for eachh € H, let z(h) := argmin. [Pati{(h, j);Tp)| be the observed node that is closeshto
graph distance. Then, by definition of the effective depglygn) < dy,n) < udforallheH, and

we haved* < ud. Sincely < d* < ud, we also have

y < ud/l. (32)

Combining this result with (31) establishes the claim in (29). Now consider
@ 1y © 1+Y5(TpV
A(MST(V;D)) < A(Tp)mz\:l/x|Sg (i) < A(Tp)H V)
le

where(a) is a result of the application of (18) ari) results from (29). This completes the proof
of the claim in (19) in Lemma 8. O

A.4 Proof of Theorem 9: Correctness and Computational Complexit of CLBlind

It suffices to show that the Chow-Liu tree M87;d) is a transformation of the true latent trég
(with parameters such thgte P(Zying)) as follows: contract the edge connecting each hidden
variableh with its surrogate node $k) (one of its children and a leaf by assumption). Note that
the blind transformation on the MST is merely the inverse mapping of the aboee @E8), all
the children of a hidden node except its surrogate $g), are neighbors of its surrogate node
Sgh) in MST(V;d). Moreover, these children &f which are not surrogates of any hidden nodes
are leaf nodes in the MST. Similarly for two hidden nodesh, € H such that(hi,hy) € Ep,
(Sg(hy),Sghy)) € MST(V;d) from Lemma 8(i). Hence, CLBIind outputs the correct tree struc-
ture Tp. The computational complexity follows from the fact that the blind transformasidinear

in the number of internal nodes, which is less than the number of obsepded rand that learning
the Chow-Liu tree take®(n?logm) operations. O

A.5 Proof of Theorem 10: Correctness and Computational Complety of CLRG

We first define some new notations.

Notation: Let I :=V \ Leaf(MST(V;d)) be the set of internal nodes. Léte I be the internal
node visited at iteration, and letH" be all hidden nodes in the inverse surrogate set'84),
that is,H" = Sg }(v')\ {V'}. Let A" :=nbdV';T"~1], and henceX is the node set input to the
recursive grouping routine at iteration and let RGA",d) be the output latent tree learned by
recursive grouping. Defin&" as the tree output at the end ofterations of CLGrouping. Let
VI = {v+tv+2 . vlll} be the set of internal nodes that have not yet been visited by CLGrpupin

30. The maximum size of the inverse surrogate set in (30) is attained\Bpa-ary complete tree
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(b)

~ EC(T, V%)

EC(T,, v"‘jw EC(T, V1) EC(T, V1)
(©

Figure 14: Figure for Proof of Theorem 10. (a) Original latent tregll{ustration of CLGrouping.
(c) lllustration of the trees constructed using edge contractions.

at the end of iterations. Let ECT,,V") be the tree constructed using edge contractions as follows:
in the latent tre€T,, we contract edges corresponding to each nodev" and all hidden nodes
in its inverse surrogate set Sgu). Let S be a subtree of EQp, V") spannings’, H" and their
neighbors.

For example, in Figure 14, the original latent trggis shown in Figure 14(a), ant®, T,
T2 are shown in Figure 14(b). The set of internal noded is {3,5}. In the first iteration,
vt =5, Al = {1,345} andH? = {hy,hy}. In the second iterationy? = 3, A = {2,3,6,h;}
andH! = {hg}. VO = {3,5}, V1 = {3}, andV2 = 0, and in Figure 14(c), we show ET,,V°),
EC(Tp, V1), and EGTp,V2). In EC(T,, V1), Stis the subtree spanningl, h, and their neighbors,
that is, {1,3,4,5,hs,ho}. In EC(Tp,V2), & is the subtree spanningl® and their neighbors, that
is, {2,3,6,h1,h3}. Note thatT® = EC(Tp,VO), Tt = EC(Tp, V1), andT2 = EC(Tp,V2); we show
below that this holds for all CLGrouping iterations in general.

We prove the theorem by induction on the iteratiors1, ..., || of the CLGrouping algorithm.

Induction HypothesisAt the end ofk iterations of CLGrouping, the tree obtained is

TK=EC(Tp,V¥),  Vk=0,1,....]1 (33)

In words, the latent tree aftériterations of CLGrouping can be constructed by contracting each
surrogate node iff, that has not been visited by CLGrouping with its inverse surrogate set. Note
thatv!!l = 0 and EGT,,V!!l) is equivalent to the original latent tr@g. Thus, if the above induction

in (33) holds, then the output of CLGroupifid’! is the original latent tree.

Base Step = 0: The claim in (33) holds since® = I and the input to the CLGrouping pro-
cedure is the Chow-Liu tree MYV; D), which is obtained by contracting all surrogate nodes and
their inverse surrogate sets (see Section 5.2).

Induction StepAssume (33) is true fok=1,...,r — 1. Now considek =r.
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We first compare the two latent trees @, V") and EGTp,V'~1). By the definition of EC, if
we contract edges witl and the hidden nodes in its inverse surrogat¢i$en the tree ECTp, V'),
then we obtain ECTp,,V'~1), which is equivalent td"~! by the induction assumption. Note that
as shown in Figure 14, this transformation is local to the sulfeecontractingy" with H" on
EC(Tp,V") transformsS' into a star graph witlv" at its center and the hidden nodds removed
(contracted with/").

Recall that the CLGrouping procedure replaces the induced subtr&eiofT"—t (which is
precisely the star graph mentioned above by the induction hypothesis) with’ Ri3 to obtainT".
Thus, to prove thal" = EC(T,,V"), we only need to show that RG reverses the edge-contraction
operations orv' andH', that is, the subtre8 = RG(A",d). We first show thaB € T>3, that is,
it is identifiable (minimal) wher" is the set of visible nodes. This is because an edge contraction
operation does not decrease the degree of any existing nodes.TsiacE.3, all hidden nodes in
EC(Tp,V") have degrees equal to or greater than 3, and since we are includinghboes ofH" in
the subtre&S’, we haveS € T-3. By Theorem 5, RG reconstructs all latent treegig and hence,

S =RG(A",d).

The computational complexity follows from the corresponding result inredoeigrouping. The
Chow-Liu tree can be constructed wid{n?logm) complexity. The recursive grouping procedure
has complexity maXA'|® and max|A'| < A(MST(V;d)). O

A.6 Proof of Theorem 11: Consistency and Sample Complexity of Relaxi RG

(i) Structural consistency follows from Theorem 5 and the fact that theeMimates of information
distancesl;; approachd;j (in probability) for alli, j € V as the number of samples tends to infinity.

Risk consistency for Gaussian and symmetric discrete distributions followsdtructural con-
sistency. If the structure is correctly recovered, we can use the egsiati¢l 3) and (14) to infer the
information distances. Since the distances are in one-to-one correspenig the correlation coef-
ficients and the crossover probability for Gaussian and symmetric disiseibution respectively,
the parameters are also consistent. This implies that the KL-divergencedrgiand p" tends to
zero (in probability) as the number of sampietends to infinity. This completes the proof.

(if) The theorem follows by using the assumption that the effective dé@pttd(T,;V) is con-
stant. Recall that > 0 is the threshold used in relaxed RG (see (21) in Section 6.3). Let thé set o
triples (i, j, k) whose pairwise information distances are less thapart be7, that is, (i, j,k) € J
if and only if max{d;;,djk,dki} < 1. Since we assume that the true information distances are uni-

formly bounded, there exist> 0 and some sufficiently small > 0 so that if|a>ijk — Djj| < A for
all (i, j,k) € 7, then RG recovers the correct latent structure.

Define the error evertj .= {@ijk — @;ix| > A}. We note that the probability of the evefi
decays exponentially fast, that is, there exigis> 0 such that for alh € N,

Pr(Eijk) < exp(—ndijk). (34)
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The proof of (34) follows readily for Chernoff bounds (Hoeffdidg58) and is omitted. The error
probability associated to structure learning can be bounded as follows:

- @ (b
Pr(h(T”)#Tp) < Pr(_U fijk) < > PrZ)

(i,jKes

=

(c)
< m max Pr(ZEi) < exp(3logm)exp|—n min Jix|.
T (ikes (i) < exp(3logm) p[ (i.ik)es ”"}

where (a) follows from the fact that if the evenfth(T") To} occurs, then there is at least one
sibling or parent-child relationship that is incorrect, which correspondisgainion of the events
Fijk, that is, there exists a tripl@, j,k) € 7 is such thaﬁ)ijk differs from ®;x by more tham.
Inequality (b) follows from the union bound ang) follows from (34).

Because the information distances are uniformly bounded, there also@®xmtstandy,, > 0
(independent ofm) such that mip j k)< Jijk > Jmin for all me N. Hence for every) > 0, if the
number of samples satisfias> 3(log(m/¥1n))/JImin, the error probability is bounded above ky
Let C := 3/Jmin to complete the proof of the sample complexity result in (26). The proof for the
logarithmic sample complexity of distribution reconstruction for Gaussian amingyric discrete
models follows from the logarithmic sample complexity result for structure legraird the fact
that the information distances are in a one-to-one correspondence withrtieéation coefficients
(for Gaussian models) or crossover probabilities (for symmetric discredels)jo

A.7 Proof of Theorem 12: Consistency and Sample Complexity of Relaxl CLRG

(i) Structural consistency of CLGrouping follows from structural déstesicy of RG (or NJ) and
the consistency of the Chow-Liu algorithm. Risk consistency of CLGroumgnghaussian or sym-
metric distributions follows from the structural consistency, and the prasifngar to the proof of
Theorem 11(j).

(i) The input to the CLGrouping procedufie, is the Chow-Liu tree and ha&3(logm) sample
complexity (Tan et al., 2010, 2011), whareis the size of the tree. This is true for both discrete
and Gaussian data. From Theorem 11, the recursive groupingdureceaO(logm) sample com-
plexity (for appropriately chosen thresholds) when the input informatistaices are uniformly
bounded. In any iteration of the CLGrouping, the information distancedysaljs< yu, wherey,
defined in (30), is the worst-case graph distance of any hidden nodeifs surrogate. Since
satisfies (32)dij < u3/1. If the effective depttd = O(1) (as assumed), the distanags= O(1)
and the sample complexity &(logm). O
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