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Abstract
We study the problem of learning a latent tree graphical model where samples are available only
from a subset of variables. We propose two consistent and computationally efficient algorithms
for learningminimal latent trees, that is, trees without any redundant hidden nodes. Unlike many
existing methods, the observed nodes (or variables) are notconstrained to be leaf nodes. Our al-
gorithms can be applied to both discrete and Gaussian randomvariables and our learned models
are such that all the observed and latent variables have the same domain (state space). Our first
algorithm,recursive grouping, builds the latent tree recursively by identifying siblinggroups using
so-called information distances. One of the main contributions of this work is our second algo-
rithm, which we refer to asCLGrouping. CLGrouping starts with a pre-processing procedure in
which a tree over the observed variables is constructed. This global step groups the observed nodes
that are likely to be close to each other in the true latent tree, thereby guiding subsequent recursive
grouping (or equivalent procedures such as neighbor-joining) on much smaller subsets of variables.
This results in more accurate and efficient learning of latent trees. We also present regularized ver-
sions of our algorithms that learn latent tree approximations of arbitrary distributions. We compare
the proposed algorithms to other methods by performing extensive numerical experiments on var-
ious latent tree graphical models such as hidden Markov models and star graphs. In addition, we
demonstrate the applicability of our methods on real-worlddata sets by modeling the dependency
structure of monthly stock returns in the S&P index and of thewords in the 20 newsgroups data set.

Keywords: graphical models, Markov random fields, hidden variables, latent tree models, struc-
ture learning
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1. Introduction

The inclusion of latent variables in modeling complex phenomena and data is a well-recognized and
a valuable construct in a variety of applications, including bio-informatics and computer vision, and
the investigation of machine-learning methods for models with latent variables is asubstantial and
continuing direction of research.

There are three challenging problems in learning a model with latent variables: learning the
number of latent variables; inferring the structure of how these latent variables relate to each other
and to the observed variables; and estimating the parameters characterizingthose relationships. Is-
sues that one must consider in developing a new learning algorithm include developing tractable
methods; incorporating the tradeoff between the fidelity to the given data andgeneralizability; de-
riving theoretical results on the performance of such algorithms; and studying applications that
provide clear motivation and contexts for the models so learned.

One class of models that has received considerable attention in the literatureis the class oflatent
tree models, that is, graphical models Markov on trees, in which variables at some nodes represent
the original (observed) variables of interest while others represent the latent variables. The appeal
of such models for computational tractability is clear: with a tree-structured model describing the
statistical relationships, inference—processing noisy observations of some or all of the original
variables to compute the estimates of all variables—is straightforward and scalable. Although the
class of tree-structured models, with or without latent variables, is a constrained one, there are
interesting applications that provide strong motivation for the work presented here. In particular, a
very active avenue of research in computer vision is the use of context—for example, the nature of
a scene to aid the reliable recognition of objects (and at the same time to allow the recognition of
particular objects to assist in recognizing the scene). For example, if one knows that an image is that
of an office, then one might expect to find a desk, a monitor on that desk, and perhaps a computer
mouse. Hence if one builds a model with a latent variable representing that context (“office”) and
uses simple, noisy detectors for different object types, one would expect that the detection of a desk
would support the likelihood that one is looking at an office and through that enhance the reliability
of detecting smaller objects (monitors, keyboards, mice, etc.). Work along these lines, including by
some of the authors of this paper (Parikh and Chen, 2007; Choi et al., 2010), show the promise of
using tree-based models of context.

This paper considers the problem of learning tree-structured latent models. If all variables are
observed in the tree under consideration, then the well-known algorithm ofChow and Liu (1968)
provides a tractable algorithm for performing maximum likelihood (ML) estimation of the tree
structure. However, if not all variables are observed, that is, forlatent tree models, then ML esti-
mation is NP-hard (Roch, 2006). This has motivated a number of investigations of other tractable
methods for learning such trees as well as theoretical guarantees on performance. Our work repre-
sents a contribution to this area of investigation.

There are three main contributions in our paper. Firstly, by adopting a statistical distance-based
framework, we develop two new algorithms for the learning of latent trees—recursive grouping and
CLGrouping, which apply equally well to discrete and Gaussian models. Secondly, we provide
consistency guarantees (both structural and parametric) as well as very favorable computational
and sample complexity characterizations for both of our algorithms. Thirdly, through extensive
numerical experiments on both synthetic and real-world data, we demonstratethe superiority of our
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approach for a wide variety of models ranging from ones with very large tree diameters (e.g., hidden
Markov models (HMMs)) to star models and complete trees.1

Our first algorithm, which we refer to asrecursive grouping, constructs a latent tree in a bottom-
up fashion, grouping nodes into sibling groups that share the same parent node, recursively at each
level of the resulting hierarchy (and allowing for some of the observed variables to play roles at
arbitrary levels in the resulting hierarchy). Our second algorithm,CLGroupingfirst implements a
global construction step, namely producing the Chow-Liu tree for the observed variables without
any hidden nodes. This global step then provides guidance for groupsof observed nodes that are
likely to be topologically close to each other in the latent tree, thereby guiding subsequent recursive
grouping or neighbor-joining (Saitou and Nei, 1987) computations. Each of these algorithms is
consistent and has excellent sample and computational complexity.2

As Pearl (1988) points out, the identification of latent tree models has some built-in ambigu-
ity, as there is an entire equivalence class of models in the sense that when all latent variables are
marginalized out, each model in this class yields the same joint distribution over the observed vari-
ables. For example, we can take any such latent model and add another hidden variable as a leaf
node connected to only one other (hidden or observed) node. Hence,much as one finds in fields such
as state space dynamic systems (e.g., Luenberger, 1979, Section 8), there is a notion of minimality
that is required here, and our results are stated in terms of consistent learning of such minimal latent
models.

1.1 Related Work

The relevant literature on learning latent models is vast and in this section, wesummarize the main
lines of research in this area.

The classicallatent cluster models(LCM) consider multivariate distributions in which there
exists onlyone latent variable and each state of that variable corresponds to a cluster in the data
(Lazarsfeld and Henry, 1968). Hierarchical latent class (HLC) models (Zhang and Kǒcka, 2004;
Zhang, 2004; Chen et al., 2008) generalize these models by allowing multiple latent variables. HLC
allows latent variables to have different number of states, but assume thatall observed nodes are at
the leaves of the tree. Their learning algorithm is based on a greedy approach of making one local
move at a time (e.g., introducing one hidden node, or replacing an edge), which is computationally
expensive and does not have consistency guarantees. A greedy learning algorithm for HLC called
BIN is proposed in Harmeling and Williams (2010), which is computationally more efficient. In
addition, Silva et al. (2006) considered the learning of directed latent modelsusing so-called tetrad
constraints, and there have also been attempts to tailor the learning of latent tree models in order
to perform approximate inference accurately and efficiently downstream(Wang et al., 2008). In
all these works, the latent variables can have different state spaces, but the observed nodes are
required to be leaves of the tree. In contrast, we fix the state space of each hidden node, but allow
the possibility that some observed nodes are internal nodes (non-leaves). This assumption leads to
an identifiable model, and we provide algorithms with consistency guarantees which can recover
the correct structure under mild conditions. In contrast, the works in Zhang and Kǒcka (2004);

1. A tree is called acomplete k-ary tree (ork-complete tree), if all its internal nodes have degreek and there exists one
node (commonly referred as the root node) that has the exactly same distance to all leaf nodes.

2. As we will see, depending on the true latent tree model, one or the other of these may be more efficient. Roughly
speaking, for smaller diameter graphs (such as the star), recursivegrouping is faster, and for larger diameter graphs
(such as an HMM), CLgrouping is more efficient.
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Zhang (2004); Chen et al. (2008); Harmeling and Williams (2010) do not provide such consistency
guarantees.

Many authors also propose reconstructing latent trees using the expectation maximization (EM)
algorithm (Elidan and Friedman, 2005; Kemp and Tenenbaum, 2008). However, as with all other
EM-based methods, these approaches depend on the initialization and suffer from the possibility
of being trapped in local optima and thus no consistency guarantees can beprovided. At each
iteration, a large number of candidate structures need to be evaluated, so these methods assume
that all observed nodes are the leaves of the tree to reduce the number ofcandidate structures.
Algorithms have been proposed (Hsu et al., 2009) with sample complexity guarantees for learning
HMMs under the condition that the joint distribution of the observed variablesgenerated by distinct
hidden states are distinct.

Another related line of research is that of (hierarchical) clustering. SeeJain et al. (1999), Bal-
can and Gupta (2010) and the references therein for extensive discussions. The primary objective of
hierarchical clustering is to build a tree consisting of nested partitions of the observed data, where
the leaves (typically) consist of single data points while the internal nodes represent coarser parti-
tions. The difference from our work is that hierarchical clustering does not assume a probabilistic
graphical model (Markov random field) on the data, but imposes constraints on the data points
via a similarity matrix. We are interested in learning tree-structured graphical models with hidden
variables.

The reconstruction of latent trees has been studied extensively by thephylogeneticcommunity
where sequences of extant species are available and the unknown phylogenetic tree is to be inferred
from these sequences. See Durbin et al. (1999) for a thorough overview. Efficient algorithms
with provable performance guarantees are available (Erdős et al., 1999; Daskalakis et al., 2006).
However, the works in this area mostly assume that only the leaves are observed and each internal
node (which is hidden) has the same degree except for the root. The mostpopular algorithm for
constructing phylogenetic trees is theneighbor-joining (NJ) methodby Saitou and Nei (1987). Like
our recursive grouping algorithm, the input to the algorithm is a set of statistical distances between
observed variables. The algorithm proceeds by recursively pairing two nodes that are the closest
neighbors in the true latent tree and introducing a hidden node as the parent of the two nodes. For
more details on NJ, the reader is referred to Durbin et al. (1999, Section 7.3).

Another popular class of reconstruction methods used in the phylogenetic community is the
family of quartet-based distance methods(Bandelth and Dress, 1986; Erdős et al., 1999; Jiang
et al., 2001).3 Quartet-based methods first construct a set of quartets for all subsetsof four observed
nodes. Subsequently, these quartets are then combined to form a latent tree. However, when we
only have access to the samples at the observed nodes, then it is not straightforward to construct a
latent tree from a set of quartets since the quartets may be not be consistent.4 In fact, it is known
that the problem of determining a latent tree that agrees with the maximum number of quartets is
NP-hard (Steel, 1992), but many heuristics have been proposed (Farris, 1972; Sattath and Tversky,
1977). Also, in practice, quartet-based methods are usually much less accurate than NJ (St. John
et al., 2003), and hence, we only compare our proposed algorithms to NJ inour experiments. For
further comparisons (the sample complexity and other aspects of) between the quartet methods and
NJ, the reader is referred to Csűrös (2000) and St. John et al. (2003).

3. A quartetis simply an unrooted binary tree on a set of four observed nodes.
4. The termconsistenthere is not the same as the estimation-theoretic one. Here, we say that a set of quartets is

consistentif there exists a latent tree such that all quartets agree with the tree.
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Another distance-based algorithm was proposed in Pearl (1988, Section 8.3.3). This algorithm
is very similar in spirit to quartet-based methods but instead of finding quartetsfor all subsets of
four observed nodes, it findsjust enoughquartets to determine the location of each observed node in
the tree. Although the algorithm is consistent, it performs poorly when only thesamples of observed
nodes are available (Pearl, 1988, Section 8.3.5).

The learning of phylogenetic trees is related to the emerging field ofnetwork tomography(Cas-
tro et al., 2004) in which one seeks to learn characteristics (such as structure) from data which are
only available at the end points (e.g., sources and sinks) of the network. However, again observations
are only available at the leaf nodes and usually the objective is to estimate the delay distributions
corresponding to nodes linked by an edge (Tsang et al., 2003; Bhamidi et al., 2009). The modeling
of the delay distributions is different from the learning of latent tree graphical models discussed in
this paper.

1.2 Paper Organization

The rest of the paper is organized as follows. In Section 2, we introducethe notations and termi-
nologies used in the paper. In Section 3, we introduce the notion of information distances which
are used to reconstruct tree models. In the subsequent two sections, wemake two assumptions:
Firstly, the true distribution is a latent tree and secondly, perfect knowledge of information distance
of observed variables is available. We introduce recursive grouping inSection 4. This is followed
by our second algorithm CLGrouping in Section 5. In Section 6, we relax theassumption that the
information distances are known and develop sample based algorithms and atthe same time provide
sample complexity guarantees for recursive grouping and CLGrouping.We also discuss extensions
of our algorithms for the case when the underlying model is not a tree and our goal is to learn an
approximation to it using a latent tree model. We demonstrate the empirical performance of our
algorithms in Section 7 and conclude the paper in Section 8. The appendix includes proofs for the
theorems presented in the paper.

2. Latent Tree Graphical Models

In this section, we provide some background and introduce the notion of minimal-tree extensions
and consistency.

2.1 Undirected Graphs

Let G = (W,E) be an undirected graph with vertex (or node) setW = {1, . . . ,M} and edge set
E ⊂

(W
2

)
. Let nbd(i;G) and nbd[i;G] be the set of neighbors of nodei and theclosed neighborhood

of i respectively, that is, nbd[i;G] := nbd(i;G)∪{i}. If an undirected graph does not include any
loops, it is called atree. A collection of disconnected trees is called aforest.5 For a treeT = (W,E),
the set of leaf nodes (nodes with degree 1), the maximum degree, and the diameter are denoted by
Leaf(T), ∆(T), and diam(T) respectively. Thepathbetween two nodesi and j in a treeT = (W,E),
which is unique, is the set of edges connectingi and j and is denoted as Path((i, j);E). Thedistance
between any two nodesi and j is the number of edges in Path((i, j);E). In an undirected tree, we
can choose aroot nodearbitrarily, and define the parent-child relationships with respect to the root:

5. Strictly speaking, a graph with no loops is called a forest, and it is called a tree only if every node is connected to
each other.
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for a pair neighboring nodesi and j, if i is closer to the root thanj is, theni is called theparentof
j, and j is called thechild of i. Note that the root node does not have any parent, and for all other
nodes in the tree, there exists exactly one parent. We useC (i) to denote the set of child nodes. A set
of nodes that share the same parent is called asibling group. A family is the union of the siblings
and the associated parent.

A latent treeis a tree with node setW :=V ∪H, the union of a set of observed nodesV (with
m= |V|), and a set of latent (or hidden) nodesH. Theeffective depthδ(T;V) (with respect toV) is
the maximum distance of a hidden node to its closest observed node, that is,

δ(T;V) := max
i∈H

min
j∈V
|Path((i, j);T)|. (1)

2.2 Graphical Models

An undirected graphical model(Lauritzen, 1996) is a family of multivariate probability distributions
that factorize according to a graphG= (W,E). More precisely, letX = (X1, . . . ,XM) be a random
vector, where each random variableXi , which takes on values in an alphabetX , corresponds to vari-
able at nodei ∈V. The set of edgesE encodes the set of conditional independencies in the model.
The random vectorX is said to beMarkovonG if for every i, the random variableXi is conditionally
independent of all other variables given its neighbors, that is, ifp is the joint distribution6 of X, then

p(xi |xnbd(i;G)) = p(xi |x\i), (2)

wherex\i denotes the set of all variables7 excludingxi . Equation (2) is known as thelocal Markov
property.

In this paper, we consider both discrete and Gaussian graphical models. For discrete models,
the alphabetX = {1, . . . ,K} is a finite set. For Gaussian graphical models,X =R and furthermore,
without loss of generality, we assume that the mean is known to be the zero vector and hence, the
joint distribution

p(x) =
1

det(2πΣ)1/2
exp

(
−1

2
xT

Σ
−1x
)

depends only on the covariance matrixΣ.
An important and tractable class of graphical models is the set of tree-structured graphical mod-

els, that is, multivariate probability distributions that are Markov on an undirected treeT = (W,E).
It is known from junction tree theory (Cowell et al., 1999) that the joint distribution p for such a
model factorizes as

p(x1, . . . ,xM) = ∏
i∈W

p(xi) ∏
(i, j)∈E

p(xi ,x j)

p(xi)p(x j)
. (3)

That is, the sets of marginal{p(xi) : i ∈W} and pairwise joints on the edges{p(xi ,x j) : (i, j) ∈ E}
fully characterize the joint distribution of a tree-structured graphical model.

A special class of a discrete tree-structured graphical models is the set of symmetric discrete
distributions. This class of models is characterized by the fact that the pairs of variables (Xi ,Xj) on

6. We abuse the termdistribution to mean a probability mass function in the discrete case (density with respectto the
counting measure) and a probability density function (density with respectto the Lebesgue measure) in the continuous
case.

7. We will use the terms node, vertex and variable interchangeably in the sequel.
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all the edges(i, j) ∈ E follow the conditional probability law:

p(xi |x j) =

{
1− (K−1)θi j , if xi = x j ,
θi j , otherwise,

(4)

and the marginal distribution ofeveryvariable in the tree is uniform, that is,p(xi) = 1/K for all
xi ∈ X and for all i ∈ V ∪H. The parameterθi j ∈ (0,1/K) in (4), which does not depend on the
state valuesxi ,x j ∈ X (but can be different for different pairs(i, j) ∈ E), is known as thecrossover
probability.

Let xn := {x(1), . . . ,x(n)} be a set ofn i.i.d. samples drawn from a graphical model (distribution)
p, Markov on a latent treeTp = (W,Ep), whereW =V ∪H. Each samplex(l) ∈ XM is a length-M
vector. In our setup, the learner only has access to samples drawn fromthe observed node setV, and
we denote this set of sub-vectors containing only the elements inV, asxn

V := {x(1)V , . . . ,x(n)V }, where

each observed samplex(l)V ∈ Xm is a length-m vector. Our algorithms learn latent tree structures
using the information distances (defined in Section 3) between pairs of observed variables, which
can be estimated from samples.

We now comment on the above model assumptions. Note that we assume that the the hidden
variables have thesamedomain as the observed ones (all of which also have a common domain).
We do not view this as a serious modeling restriction since we develop efficient algorithms with
strong theoretical guarantees, and these algorithms have very good performance on real-world data
(see Section 7). Nonetheless, it may be possible to develop a unified framework to incorporate
variables with different state spaces (i.e., both continuous and discrete) under a reproducing kernel
Hilbert space (RKHS) framework along the lines of Song et al. (2010). We defer this to future work.

2.3 Minimal Tree Extensions

Our ultimate goal is to recover the graphical modelp, that is, the latent tree structure and its param-
eters, givenn i.i.d. samples of the observed variablesxn

V . However, in general, there can be multiple
latent tree models which result in the same observed statistics, that is, the same joint distributionpV

of the observed variables. We consider the class of tree models where it ispossible to recover the
latent tree model uniquely and provide necessary conditions for structure identifiability, that is, the
identifiability of the edge setE.

Firstly, we limit ourselves to the scenario whereall the random variables (both observed and
latent) take values on a common alphabetX . Thus, in the Gaussian case, each hidden and observed
variable is a univariate Gaussian. In the discrete case, each variable takes on values in the same
finite alphabetX . Note that the model may not be identifiable if some of the hidden variables are
allowed to have arbitrary alphabets. As an example, consider a discrete latent tree model with binary
observed variables (K = 2). A latent tree with the simplest structure (fewest number of nodes) is a
tree in which allm observed binary variables are connected to one hidden variable. If weallow the
hidden variable to take on 2m states, then the tree can describe all possible statistics among them
observed variables, that is, the joint distributionpV can be arbitrary.8

A probability distributionpV(xV) is said to betree-decomposableif it is the marginal (of vari-
ables inV) of a tree-structured graphical modelp(xV ,xH). In this case,p (over variables inW) is
said to be atree extensionof pV (Pearl, 1988). A distributionp is said to have aredundanthid-
den nodeh∈ H if we can removeh and the marginal on the set of visible nodesV remains aspV .

8. This follows from a elementary parameter counting argument.
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Figure 1: Examples of minimal latent trees. Shaded nodes are observed and unshaded nodes are
hidden. (a) An identifiable tree. (b) A non-identifiable tree becauseh4 and h5 have
degrees less than 3.

The following conditions ensure that a latent tree does not include a redundant hidden node (Pearl,
1988):

(C1) Each hidden variable has at least three neighbors (which can be either hidden or observed).
Note that this ensures that all leaf nodes are observed (although not allobserved nodes need
to be leaves).

(C2) Any two variables connected by an edge in the tree model are neither perfectly dependent nor
independent.

Figure 1(a) shows an example of a tree satisfying (C1). If (C2), which isa condition on param-
eters, is also satisfied, then the tree in Figure 1(a) is identifiable. The tree shown in Figure 1(b) does
not satisfy (C1) becauseh4 andh5 have degrees less than 3. In fact, if we marginalize out the hidden
variablesh4 andh5, then the resulting model has the same tree structure as in Figure 1(a).

We assume throughout the paper that (C2) is satisfied for all probability distributions. LetT≥3

be the set of (latent) trees satisfying (C1). We refer toT≥3 as the set ofminimal (or identifiable)
latent trees. Minimal latent trees do not contain redundant hidden nodes. The distribution p (over
W and Markov on some tree inT≥3) is said to be aminimal tree extensionof pV . As illustrated in
Figure 1, using marginalization operations, any non-minimal latent tree distribution can be reduced
to a minimal latent tree model.

Proposition 1 (Minimal Tree Extensions) (Pearl, 1988, Section 8.3)

(i) For every tree-decomposable distribution pV , there exists a minimal tree extension p Markov
on a tree T∈ T≥3, which is unique up to the renaming of the variables or their values.

(ii) For Gaussian and binary distributions, if pV is known exactly, then the minimal tree extension
p can be recovered.

(iii) The structure of T is uniquely determined by the pairwise distributions of observed variables
p(xi ,x j) for all i , j ∈V.
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2.4 Consistency

We now define the notion of consistency. In Section 6, we show that our latent tree learning algo-
rithms are consistent.

Definition 2 (Consistency)A latent tree reconstruction algorithmA is a map from the observed
samplesxn

V to an estimated treêTn and an estimated tree-structured graphical modelp̂n. We say
that a latent tree reconstruction algorithmA is structurally consistentif there exists a graph homo-
morphism9 h such that

lim
n→∞

Pr(h(T̂n) 6= Tp) = 0. (5)

Furthermore, we say thatA is risk consistentif to everyε > 0,

lim
n→∞

Pr(D(p|| p̂n)> ε) = 0, (6)

where D(p|| p̂n) is the KL-divergence (Cover and Thomas, 2006) between the true distribution p
and the estimated distribution̂pn.

In the following sections, we design structurally and risk consistent algorithms for (minimal)
Gaussian and symmetric discrete latent tree models, defined in (4). Our algorithms use pairwise
distributions between the observed nodes. However, for general discrete models, pairwise distribu-
tions between observed nodes are, in general, not sufficient to recover the parameters (Chang and
Hartigan, 1991). Therefore, we only prove structural consistency,as defined in (5), for general dis-
crete latent tree models. For such distributions, we consider a two-step procedure for structure and
parameter estimation: Firstly, we estimate the structure of the latent tree using the algorithms sug-
gested in this paper. Subsequently, we use the Expectation Maximization (EM)algorithm (Dempster
et al., 1977) to infer the parameters. Note that, as mentioned previously, riskconsistency will not
be guaranteed in this case.

3. Information Distances

The proposed algorithms in this paper receive as inputs the set of so-called (exact or estimated)
information distances, which are functions of the pairwise distributions. These quantities are defined
in Section 3.1 for the two classes of tree-structured graphical models discussed in this paper, namely
the Gaussian and discrete graphical models. We also show that the information distances have a
particularly simple form for symmetric discrete distributions. In Section 3.2, we use the information
distances to infer the relationships between the observed variables such as j is a child ofi or i and j
are siblings.

3.1 Definitions of Information Distances

We defineinformation distancesfor Gaussian and discrete distributions and show that these dis-
tances are additive for tree-structured graphical models. Recall that for two random variablesXi and
Xj , thecorrelation coefficientis defined as

ρi j :=
Cov(Xi ,Xj)√
Var(Xi)Var(Xj)

. (7)

9. A graph homomorphism is a mapping between graphs that respects their structure. More precisely, agraph homo-
morphism hfrom a graphG= (W,E) to a graphG′ = (V ′,E′), writtenh : G→G′ is a mappingh : V→V ′ such that
(i, j) ∈ E implies that(h(i),h( j)) ∈ E′.
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For Gaussian graphical models, the information distance associated with the pair of variablesXi and
Xj is defined as:

di j :=− log|ρi j |. (8)

Intuitively, if the information distancedi j is large, thenXi andXj are weakly correlated and vice-
versa.

For discrete random variables, letJi j denote the joint probability matrix betweenXi andXj (i.e.,
Ji j

ab= p(xi = a,x j = b),a,b∈ X ). Also letM i be the diagonal marginal probability matrix ofXi (i.e.,
Mi

aa = p(xi = a)). For discrete graphical models, the information distance associated with thepair
of variablesXi andXj is defined as Lake (1994):

di j :=− log
|detJi j |√

detM i detM j
. (9)

Note that for binary variables, that is,K = 2, the value ofdi j in (9) reduces to the expression in (8),
that is, the information distance is a function of the correlation coefficient, defined in (7), just as in
the Gaussian case.

For symmetric discrete distributions defined in (4), the information distance defined for discrete
graphical models in (9) reduces to

di j :=−(K−1) log(1−Kθi j ). (10)

Note that there is one-to-one correspondence between the information distancesdi j and the model
parameters for Gaussian distributions (parametrized by the correlation coefficient ρi j ) in (8) and the
symmetric discrete distributions (parametrized by the crossover probabilityθi j ) in (10). Thus, these
two distributions are completely characterized by the information distancesdi j . On the other hand,
this does not hold for general discrete distributions.

Moreover, if the underlying distribution is a symmetric discrete model or a Gaussian model,
the information distancedi j and the mutual informationI(Xi ;Xj) (Cover and Thomas, 2006) are
monotonic, and we will exploit this result in Section 5. For general distributions, this is not valid.
See Section 5.5 for further discussions.

Equipped with these definitions of information distances, assumption (C2) in Section 2.3 can be
rewritten as the following: There exists constants 0< l ,u< ∞, such that

(C2) l ≤ di j ≤ u, ∀(i, j) ∈ Ep. (11)

Proposition 3 (Additivity of Information Distances) The information distances di j defined in (8),
(9), and (10) areadditive tree metrics(Erdős et al., 1999). In other words, if the joint probability
distribution p(x) is a tree-structured graphical model Markov on the tree Tp = (W,Ep), then the
information distances are additive on Tp:

dkl = ∑
(i, j)∈Path((k,l);Ep)

di j , ∀k, l ∈W. (12)

The property in (12) implies that if each pair of verticesi, j ∈W is assigned the weightdi j , then
Tp is a minimum spanning tree onW, denoted as MST(W;D), whereD is the information distance
matrix with elementsdi j for all i, j ∈V.
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Figure 2: Examples for each case inTestNodeRelationships. For each edge,ei represents the
information distance associated with the edge. (a) Case 1:Φi jk = −e8 = −di j for all
k∈V \{i, j}. (b) Case 2:Φi jk = e6−e7 6= di j = e6+e7 for all k∈V \{i, j} (c) Case 3a:
Φi jk = e4+e2+e3−e7 6= Φi jk ′ = e4−e2−e3−e7. (d) Case 3b:Φi jk = e4+e5 6= Φi jk ′ =
e4−e5. (e) Case 3c:Φi jk = e5 6= Φi jk ′ =−e5.

It is straightforward to show that the information distances are additive forthe Gaussian and
symmetric discrete cases using the local Markov property of graphical models. For general discrete
distributions with information distance as in (9), see Lake (1994) for the proof. In the rest of the
paper, we map the parameters of Gaussian and discrete distributions to an information distance
matrixD = [di j ] to unify the analyses for both cases.

3.2 Testing Inter-Node Relationships

In this section, we use Proposition 3 to ascertain child-parent and sibling (cf., Section 2.1) relation-
ships between the variables in a latent tree-structured graphical model. Todo so, for any three vari-
ablesi, j,k∈V, we defineΦi jk := dik−d jk to be the difference between the information distances
dik andd jk. The following lemma suggests a simple procedure to identify the set of relationships
between the nodes.

Lemma 4 (Sibling Grouping) For distances di j for all i , j ∈ V on a tree T∈ T≥3, the following
two properties onΦi jk = dik−d jk hold:

(i) Φi jk = di j for all k ∈V \{i, j} if and only if i is a leaf node and j is its parent.

(i) Φi jk =−di j for all k ∈V \{i, j} if and only if j is a leaf node and i is its parent.

(ii) −di j < Φi jk = Φi jk ′ < di j for all k,k′ ∈V \{i, j} if and only if both i and j are leaf nodes and
they have the same parent, that is, they belong to the same sibling group.

The proof of the lemma uses Proposition 3 and is provided in Appendix A.1. Given Lemma 4,
we can first determine all the values ofΦi jk for triples i, j,k ∈ V. Now we can determine the
relationship between nodesi and j as follows: Fix the pair of nodesi, j ∈ V and consider all the
other nodesk∈V \{i, j}. Then, there are three cases for the set{Φi jk : k∈V \{i, j}}:

1. Φi jk = di j for all k ∈ V \ {i, j}. Then, i is a leaf node andj is a parent ofi. Similarly, if
Φi jk =−di j for all k∈V \{i, j}, j is a leaf node andi is a parent ofj.

2. Φi jk is constant for allk∈V \{i, j} but not equal to eitherdi j or−di j . Theni and j are leaf
nodes and they are siblings.
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3. Φi jk is not equal for allk∈V \{i, j}. Then, there are three cases: Either

(a) Nodesi and j are not siblings nor have a parent-child relationship or,

(b) Nodesi and j are siblings but at least one of them is not a leaf or,

(c) Nodesi and j have a parent-child relationship but the child is not a leaf.

Thus, we have a simple test to determine the relationship betweeni and j and to ascertain whetheri
and j are leaf nodes. We call the above testTestNodeRelationships. See Figure 2 for examples. By
running this test for alli and j, we can determine all the relationships among all pairs of observed
variables.

In the following section, we describe a recursive algorithm that is based on the above
TestNodeRelationships procedure to reconstruct the entire latent tree model assuming that the true
model is a latent tree and that the true distance matrixD = [di j ] are known. In Section 5, we provide
improved algorithms for the learning of latent trees again assuming thatD is known. Subsequently,
in Section 6, we develop algorithms for theconsistentreconstruction of latent trees when infor-
mation distances are unknown and we have to estimate them from the samplesxn

V . In addition,
in Section 6.6 we discuss how to extend these algorithms for the case whenpV is not necessarily
tree-decomposable, that is, the original graphical model is not assumed tobe a latent tree.

4. Recursive Grouping Algorithm Given Information Distances

This section is devoted to the development of the first algorithm for reconstructing latent tree mod-
els, recursive grouping (RG). At a high level, RG is a recursive procedure in which at each step,
TestNodeRelationships is used to identify nodes that belong to the same family. Subsequently, RG
introduces a parent node if a family of nodes (i.e., a sibling group) does not contain an observed
parent. This newly introduced parent node corresponds to a hidden node in the original unknown
latent tree. Once such a parent (i.e., hidden) nodeh is introduced, the information distances fromh
to all other observed nodes can be computed.

The inputs to RG are the vertex setV and the matrix of information distancesD corresponding to
a latent tree. The algorithm proceeds by recursively grouping nodes and adding hidden variables. In
each iteration, the algorithm acts on a so-called active set of nodesY, and in the process constructs
a new active setYnew for the next iteration.10 The steps are as follows:

1. Initialize by settingY :=V to be the set of observed variables.

2. ComputeΦi jk = dik−d jk for all i, j,k∈Y.

3. Using theTestNodeRelationships procedure, define{Πl}Ll=1 to be the coarsest partition11 of
Y such that for every subsetΠl (with |Πl | ≥ 2), any two nodes inΠl are either siblings which

10. Note that the current active set is also used (in Step 6) after the new active set has been defined. For clarity, we also
introduce the quantityYold in Steps 5 and 6.

11. Recall that apartition P of a setY is a collection of nonempty subsets{Πl ⊂ Y}Ll=1 such that∪L
l=1Πl = Y and

Πl ∩Πl ′ = /0 for all l 6= l ′. A partition P is said to becoarser thananother partitionP′ if every element ofP′ is a
subset of some element ofP.
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are leaf nodes or they have a parent-child relationship12 in which the child is a leaf.13 Note
that for somel , Πl may consist of a single node. Begin to construct the new active set by
adding nodes in these single-node partitions:Ynew←

⋃
l :|Πl |=1 Πl .

4. For eachl = 1, . . . ,L with |Πl | ≥ 2, if Πl contains a parent nodeu, updateYnew←Ynew∪{u}.
Otherwise, introduce a new hidden nodeh, connecth (as a parent) to every node inΠl , and
setYnew←Ynew∪{h}.

5. Update the active set:Yold←Y andY←Ynew.

6. For each new hidden nodeh∈Y, compute the information distancesdhl for all l ∈Y using (13)
and (14) described below.

7. If |Y| ≥ 3, return to step 2. Otherwise, if|Y|= 2, connect the two remaining nodes inY with
an edge then stop. If instead|Y|= 1, do nothing and stop.

We now describe how to compute the information distances in Step 6 for each new hidden node
h∈Y and all other active nodesl ∈Y. Let i, j ∈ C (h) be two children ofh, and letk∈Yold \{i, j}
be any other node in the previous active set. From Lemma 4 and Proposition 3, we have that
dih−d jh = dik−d jk = Φi jk anddih+d jh = di j , from which we can recover the information distances
between a previously active nodei ∈Yold and its new hidden parenth∈Y as follows:

dih =
1
2

(
di j +Φi jk

)
. (13)

For any other active nodel ∈Y, we can computedhl using a child nodei ∈ C (h) as follows:

dhl =

{
dil −dih, if l ∈Yold,
dik−dih−dlk, otherwise, wherek∈ C (l). (14)

Using Equations (13) and (14), we can infer all the information distancesdhl between a newly
introduced hidden nodeh to all other active nodesl ∈Y. Consequently, we have all the distances
di j between all pairs of nodes in the active setY. It can be shown that this algorithm recovers all
minimal latent trees. The proof of the following theorem is provided in Appendix A.2.

Theorem 5 (Correctness and Computational Complexity of RG)If Tp ∈ T≥3 and the matrix of
information distancesD (between nodes in V) is available, then RG outputs the true latent tree Tp

correctly in time O(diam(Tp)m3).
We now use a concrete example to illustrate the steps involved in RG. In Figure 3(a), the original

unknown latent tree is shown. In this tree, nodes 1, . . . ,6 are the observed nodes andh1,h2,h3 are the
hidden nodes. We start by considering the set of observed nodes as active nodesY :=V = {1, . . . ,6}.
OnceΦi jk are computed from the given distancesdi j , TestNodeRelationships is used to determine
thatY is partitioned into four subsets:Π1= {1},Π2= {2,4},Π3= {5,6},Π4= {3}. The subsetsΠ1

12. In an undirected tree, the parent-child relationships can be defined with respect to a root node. In this case, the node
in the final active set in Step 7 before the algorithm terminates (or one of thetwo final nodes if|Y|= 2) is selected as
the root node.

13. Note that since we use the active setY in theTestNodeRelationships procedure, the leaf nodes are defined with
respect toY, that is, a node is considered as a leaf node if it has only one neighbor inY or in the set of nodes that
have not yet been in an active set.
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Figure 3: An illustrative example of RG. Solid nodes indicate the active setY for each iteration. (a)
Original latent tree. (b) Output after the first iteration of RG. Red dotted lines indicate
the subsetsΠl in the partition ofY. (c) Output after the second iteration of RG. Note that
h3, which was introduced in the first iteration, is an active node for the second iteration.
Nodes 4,5, and 6 do not belong to the current active set and are represented in grey. (d)
Output after the third iteration of RG, which is same as the original latent tree.

andΠ4 contain only one node. The subsetΠ3 contains two siblings that are leaf nodes. The subset
Π2 contains a parent node 2 and a child node 4, which is a leaf node. SinceΠ3 does not contain a
parent, we introduce a new hidden nodeh1 and connecth1 to 5 and 6 as shown in Figure 3(b). The
information distancesd5h1 andd6h1 can be computed using (13), for example,d5h1 =

1
2(d56+Φ561).

The new active set is the union of all nodes in the single-node subsets, a parent node, and a new
hidden nodeYnew = {1,2,3,h1}. Distances among the pairs of nodes inYnew can be computed
using (14) (e.g.,d1h1 = d15−d5h1). In the second iteration, we again useTestNodeRelationships
to ascertain thatY can be partitioned intoΠ1 = {1,2} andΠ2 = {h1,3}. These two subsets do not
have parents soh2 andh3 are added toΠ1 andΠ2 respectively. Parent nodesh2 andh3 are connected
to their children inΠ1 andΠ2 as shown in Figure 3(c). Finally, we are left with the active set as
Y = {h2,h3} and the algorithm terminates afterh2 andh3 are connected by an edge. The hitherto
unknown latent tree is fully reconstructed as shown in Figure 3(d).

A potential drawback of RG is that it involves multiplelocal operations, which may result in
a high computational complexity. Indeed, from Theorem 5, the worst-casecomplexity isO(m4)
which occurs whenTp, the true latent tree, is a hidden Markov model (HMM). This may be com-
putationally prohibitive ifm is large. In Section 5 we design an algorithm which uses aglobal
pre-processing step to reduce the overall complexity substantially, especially for trees with large
diameters (of which HMMs are extreme examples).

5. CLGrouping Algorithm Given Information Distances

In this section, we present CLGrouping, an algorithm for reconstructinglatent trees more efficiently
than RG. As in Section 4, in this section, we assume thatD is known exactly; the extension to
inexact knowledge ofD is discussed in Section 6.5. CLGrouping is a two-step procedure, the first
of which is a global pre-processing step that involves the construction ofa so-calledChow-Liu tree
(Chow and Liu, 1968) over the set of observed nodesV. This step identifies nodes that do not
belong to the same sibling group. In the second step, we complete the recovery of the latent tree
by applying a distance-based latent tree reconstruction algorithm (such as RG or NJ) repeatedly on
smaller subsets of nodes. We review the Chow-Liu algorithm in Section 5.1, relate the Chow-Liu
tree to the true latent tree in Section 5.2, derive a simple transformation of the Chow-Liu tree to
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obtain the latent tree in Section 5.3 and propose CLGrouping in Section 5.4. For simplicity, we
focus on the Gaussian distributions and the symmetric discrete distributions first, and discuss the
extension to general discrete models in Section 5.5.

5.1 A Review of the Chow-Liu Algorithm

In this section, we review the Chow-Liu tree reconstruction procedure. To do so, defineT (V) to
be the set of trees with vertex setV andP (T (V)) to be the set of tree-structured graphical models
whose graph has vertex setV, that is, everyq∈ P (T (V)) factorizes as in (3).

Given an arbitrary multivariate distributionpV(xV), Chow and Liu (1968) considered the fol-
lowing KL-divergence minimizationproblem:

pCL := argmin
q∈P (T (V))

D(pV ||q). (15)

That is, among all the tree-structured graphical models with vertex setV, the distributionpCL is
the closest one topV in terms of the KL-divergence. By using the factorization property in (3),we
can easily verify thatpCL is Markov on theChow-Liu tree TCL = (V,ECL) which is given by the
optimization problem:14

TCL = argmax
T∈T (V)

∑
(i, j)∈T

I(Xi ; Xj). (16)

In (16), I(Xi ; Xj) = D(p(xi ,x j) || p(xi) p(x j)) is themutual information(Cover and Thomas, 2006)
between random variablesXi andXj . The optimization in (16) is a max-weight spanning tree prob-
lem (Cormen et al., 2003) which can be solved efficiently in timeO(m2 logm) using either Kruskal’s
algorithm (Kruskal, 1956) or Prim’s algorithm (Prim, 1957). The edge weights for the max-weight
spanning tree are precisely the mutual information quantities between randomvariables. Note that
once the optimal treeTCL is formed, the parameters ofpCL in (15) are found by setting the pairwise
distributionspCL(xi ,x j) on the edges topV(xi ,x j), that is,pCL(xi ,x j) = pV(xi ,x j) for all (i, j)∈ECL.
We now relate the Chow-Liu tree on the observed nodes and the information distance matrixD.

Lemma 6 (Correspondence betweenTCL and MST) If pV is a Gaussian distribution or a sym-
metric discrete distribution, then the Chow-Liu tree in(16) reduces to the minimum spanning tree
(MST) where the edge weights are the information distances di j , that is,

TCL = MST(V;D) := argmin
T∈T (V)

∑
(i, j)∈T

di j . (17)

Lemma 6, whose proof is omitted, follows because for Gaussian and symmetric discrete mod-
els, the mutual information15 I(Xi ; Xj) is a monotonically decreasing function of the information
distancedi j .16 For other graphical models (e.g., non-symmetric discrete distributions), this relation-
ship is not necessarily true. See Section 5.5 for a discussion. Note that when all nodes are observed
(i.e.,W =V), Lemma 6 reduces to Proposition 3.

14. In (16) and the rest of the paper, we adopt the following simplifying notation; If T = (V,E) and if (i, j) ∈ E, we will
also say that(i, j) ∈ T.

15. Note that, unlike information distancesdi j , the mutual information quantitiesI(Xi ; Xj ) do not form an additive metric
onTp.

16. For example, in the case of Gaussians,I(Xi ; Xj ) =− 1
2 log(1−ρ2

i j ) (Cover and Thomas, 2006).
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5.2 Relationship between the Latent Tree and the Chow-Liu Tree (MST)

In this section, we relate MST(V;D) in (17) to the original latent treeTp. To relate the two trees,
MST(V;D) andTp, we first introduce the notion of a surrogate node.

Definition 7 (Surrogate Node) Given the latent tree Tp = (W,Ep) and any node i∈W, thesurro-
gate nodeof i with respect to V is defined as

Sg(i;Tp,V) := argmin
j∈V

di j .

Intuitively, the surrogate node of a hidden nodeh∈ H is an observed nodej ∈ V that is most
strongly correlated toh. In other words, the information distance betweenh and j is the smallest.
Note that ifi ∈V, then Sg(i;Tp,V) = i sincedii = 0. The map Sg(i;Tp,V) is a many-to-one function,
that is, several nodes may have the same surrogate node, and its inverseis theinverse surrogate set
of i denoted as

Sg−1(i;Tp,V) := {h∈W : Sg(h;Tp,V) = i}.
When the treeTp and the observed vertex setV are understood from context, the surrogate node
of h and the inverse surrogate set ofi are abbreviated as Sg(h) and Sg−1(i) respectively. We now
relate the original latent treeTp = (W,Ep) to the Chow-Liu tree (also termed the MST) MST(V;D)
formed using the distance matrixD.

Lemma 8 (Properties of the MST) The MST in(17) and surrogate nodes satisfy the following
properties:

(i) The surrogate nodes of any two neighboring nodes in Ep are neighbors in the MST, that is,
for all i , j ∈W withSg(i) 6= Sg( j),

(i, j) ∈ Ep⇒ (Sg(i),Sg( j)) ∈MST(V;D). (18)

(ii) If j ∈V and h∈ Sg−1( j), then every node along the path connecting j and h belongs to the
inverse surrogate setSg−1( j).

(iii) The maximum degree of the MST satisfies

∆(MST(V;D))≤ ∆(Tp)
1+ u

l δ(Tp;V), (19)

whereδ(Tp;V) is the effective depth defined in(1) and l,u are the bounds on the information
distances on edges in Tp defined in(11).

The proof of this result can be found in Appendix A.3. As a result of Lemma8, the properties
of MST(V;D) can be expressed in terms of the original latent treeTp. For example, in Figure 5(a),
a latent tree is shown with its corresponding surrogacy relationships, andFigure 5(b) shows the
corresponding MST over the observed nodes.

The properties in Lemma 8(i-ii) can also be regarded asedge-contraction operations(Robinson
and Foulds, 1981) in the original latent tree to obtain the MST. More precisely, an edge-contraction
operation on an edge( j,h) ∈ V ×H in the latent treeTp is defined as the “shrinking” of( j,h) to
a single node whose label is the observed nodej. Thus, the edge( j,h) is “contracted” to a single
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Figure 4: An illustration of CLBlind. The shaded nodes are the observed nodes and the rest are
hidden nodes. The dotted lines denote surrogate mappings for the hidden nodes. (a)
Original latent tree, which belongs to the class of blind latent graphical models, (b) Chow-
Liu tree over the observed nodes, (c) Node 3 is the input to the blind transformation, (d)
Output after the blind transformation, (e) Node 2 is the input to the blind transformation,
(f) Output after the blind transformation, which is same as the original latent tree.

node j. By using Lemma 8(i-ii), we observe that the Chow-Liu tree MST(V;D) is formed by
applying edge-contraction operations to each( j,h) pair for all h∈ Sg−1( j)∩H sequentially until
all pairs have been contracted to a single nodej. For example, the MST in Figure 5(b) is obtained
by contracting edges(3,h3), (5,h2), and then(5,h1) in the latent tree in Figure 5(a).

The properties in Lemma 8 can be used to design efficient algorithms based ontransforming
the MST to obtain the latent treeTp. Note that the maximum degree of the MST,∆(MST(V;D)), is
bounded by the maximum degree in the original latent tree. The quantity∆(MST(V;D)) determines
the computational complexity of one of our proposed algorithms (CLGrouping) and it is small if the
depth of the latent treeδ(Tp;V) is small (e.g., HMMs) and the information distancesdi j satisfy tight
bounds (i.e.,u/l is close to unity). The latter condition holds for (almost) homogeneous models in
which all the information distancesdi j on the edges are almost equal.

5.3 Chow-Liu Blind Algorithm for a Subclass of Latent Trees

In this section, we present a simple and intuitive transformation of the Chow-Liu tree that produces
the original latent tree. However, this algorithm, called Chow-Liu Blind (or CLBlind), is applica-
ble only to a subset of latent trees calledblind latent tree-structured graphical modelsP (Tblind).
Equipped with the intuition from CLBlind, we generalize it in Section 5.4 to design the CLGroup-
ing algorithm that produces the correct latent tree structure from the MSTfor all minimal latent tree
models.

If p∈ P (Tblind), then its structureTp = (W,Ep) and the distance matrixD satisfy the following
properties:

(i) The true latent treeTp ∈ T≥3 and all the internal nodes17 are hidden, that is,V = Leaf(Tp).

(ii) The surrogate node of (i.e., the observed node with the strongest correlation with) each hidden
node is one of its children, that is, Sg(h) ∈ C (h) for all h∈ H.

We now describe the CLBlind algorithm, which involves two main steps. Firstly, MST(V;D)
is constructed using the distance matrixD. Secondly, we apply the blind transformation of the
Chow-Liu treeBlindTransform(MST(V;D)), which proceeds as follows:

17. Recall that an internal node is one whose degree is greater than or equal to 2, that is, a non-leaf.

1787



CHOI, TAN , ANANDKUMAR AND WILLSKY

1. Identify the set of internal nodes in MST(V;D). We perform an operation for each internal
node as follows:

2. For internal nodei, add a hidden nodeh to the tree.

3. Connect an edge betweenh and i (which now becomes a leaf node) and also connect edges
betweenh and the neighbors ofi in thecurrenttree model.

4. Repeat steps 2 and 3 until all internal nodes have been operated on.

See Figure 4 for an illustration of CLBlind. We use the adjectiveblind to describe the transformation
BlindTransform(MST(V;D)) since it does not depend on the distance matrixD but usesonly the
structure of the MST. The following theorem whose proof can be found inAppendix A.4 states the
correctness result for CLBlind.

Theorem 9 (Correctness and Computational Complexity of CLBlind) If the distribution
p∈ P (Tblind) is a blind tree-structured graphical model Markov on Tp and the matrix of distances
D is known, then CLBlind outputs the true latent tree Tp correctly in time O(m2 logm).

The first condition onP (Tblind) that all internal nodes are hidden is not uncommon in applica-
tions. For example, in phylogenetics, (DNA or amino acid) sequences of extant species at the leaves
are observed, while the sequences of the extinct species are hidden (corresponding to the internal
nodes), and the evolutionary (phylogenetic) tree is to be reconstructed.However, the second condi-
tion is more restrictive18 since it implies that each hidden node is directly connected to at least one
observed node and that it is closer (i.e., more correlated) to one of its observed children compared
to any other observed node. If the first constraint is satisfied but not the second, then the blind
transformationBlindTransform(MST(V;D)) does not overestimate the number of hidden variables
in the latent tree (the proof follows from Lemma 8 and is omitted).

Since the computational complexity of constructing the MST isO(m2 logm) wherem= |V|, and
the blind transformation is at most linear inm, the overall computational complexity isO(m2 logm).
Thus, CLBlind is a computationally efficient procedure compared to RG, described in Section 4.

5.4 Chow-Liu Grouping Algorithm

Even though CLBlind is computationally efficient, it only succeeds in recovering latent trees for a
restricted subclass of minimal latent trees. In this section, we propose an efficient algorithm, called
CLGrouping that reconstructsall minimal latent trees. We also illustrate CLGrouping using an
example. CLGrouping uses the properties of the MST as described in Lemma 8.

At a high-level, CLGrouping involves two distinct steps: Firstly, we construct the Chow-Liu
tree MST(V;D) over the set of observed nodesV. Secondly, we apply RG or NJ to reconstruct a
latent subtree over the closed neighborhoods of every internal node inMST(V;D). If RG (respec-
tively NJ) is used, we term the algorithm CLRG (respectively CLNJ). In therest of the section, we
only describe CLRG for concreteness since CLNJ proceeds along similarlines. Formally, CLRG
proceeds as follows:

1. Construct the Chow-Liu tree MST(V;D) as in (17). SetT = MST(V;D).

18. The second condition onP (Tblind) holds when the tree is (almost) homogeneous.
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Figure 5: Illustration of CLRG. The shaded nodes are the observed nodes and the rest are hidden
nodes. The dotted lines denote surrogate mappings for the hidden nodes sofor example,
node 3 is the surrogate ofh3. (a) The original latent tree, (b) The Chow-Liu tree (MST)
over the observed nodesV, (c) The closed neighborhood of node 5 is the input to RG, (d)
Output after the first RG procedure, (e) The closed neighborhood ofnode 3 is the input
to the second iteration of RG, (f) Output after the second RG procedure,which is same
as the original latent tree.

2. Identify the set of internal nodes in MST(V;D).

3. For each internal nodei, let nbd[i;T] be its closed neighborhood inT and let S =
RG(nbd[i;T],D) be the output of RG with nbd[i;T] as the set of input nodes.

4. Replace the subtree over node set nbd[i;T] in T with S. Denote the new tree asT.

5. Repeat steps 3 and 4 until all internal nodes have been operated on.

Note that the only difference between the algorithm we just described and CLNJ is Step 3 in which
the subroutine NJ replaces RG. Also, observe in Step 3 that RG is only applied to a small subset of
nodes which have been identified in Step 1 as possible neighbors in the true latent tree. This reduces
the computational complexity of CLRG compared to RG, as seen in the following theorem whose
proof is provided in Appendix A.5. Let|J| := |V \Leaf(MST(V;D))|< mbe the number of internal
nodes in the MST.

Theorem 10 (Correctness and Computational Complexity of CLRG)If the distribution Tp∈T≥3

is a minimal latent tree and the matrix of information distancesD is available, then CLRG outputs
the true latent tree Tp correctly in time O(m2 logm+ |J|∆3(MST(V;D))).

Thus, the computational complexity of CLRG is low when the latent treeTp has a small maxi-
mum degree and a small effective depth (such as the HMM) because (19)implies that∆(MST(V;D))
is also small. Indeed, we demonstrate in Section 7 that there is a significant speedup compared to
applying RG over the entire observed node setV.

We now illustrate CLRG using the example shown in Figure 5. The original minimal latent tree
Tp = (W,E) is shown in Figure 5(a) withW = {1,2, . . . ,6,h1,h2,h3}. The set of observed nodes is
V = {1, . . . ,6} and the set of hidden nodes isH = {h1,h2,h3}. The Chow-Liu treeTCL =MST(V;D)
formed using the information distance matrixD is shown in Figure 5(b). Since nodes 3 and 5 are the
only internal nodes in MST(V;D), two RG operations will be executed on the closed neighborhoods
of each of these two nodes. In the first iteration, the closed neighborhood of node 5 is the input to
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Latent variables Distribution MST(V;D) = TCL? Structure Parameter

Non-latent Gaussian X X X

Non-latent Symmetric Discrete X X X

Non-latent General Discrete × X ×
Latent Gaussian X X X

Latent Symmetric Discrete X X X

Latent General Discrete × X ×

Table 1: Comparison between various classes of distributions. In the last two columns, we state
whether CLGrouping is consistent for learning either the structure or parameters of the
model, namely whether CLGrouping is structurally consistent or risk consistent respec-
tively (cf., Definition 2). Note that the first two cases reduce exactly to the algorithm
proposed by Chow and Liu (1968) in which the edge weights are the mutual information
quantities.

RG. This is shown in Figure 5(c) where nbd[5;MST(V;D)] = {1,3,4,5}, which is then replaced by
the output of RG to obtain the tree shown in Figure 5(d). In the next iteration,RG is applied to the
closed neighborhood of node 3 in the current tree nbd[3;T] = {2,3,6,h1} as shown in Figure 5(e).
Note that nbd[3;T] includesh1 ∈ H, which was introduced by RG in the previous iteration. The
distance fromh1 to other nodes in nbd[3;T] can be computed using the distance betweenh1 and
its surrogate node 5, which is part of the output of RG, for example,d2h1 = d25−d5h1. The closed
neighborhood nbd[3;T] is then replaced by the output of the second RG operation and the original
latent treeTp is obtained as shown in Figure 5(f).

Observe that the trees obtained at each iteration of CLRG can be related to the original latent
tree in terms of edge-contraction operations (Robinson and Foulds, 1981), which were defined in
Section 5.2. For example, the Chow-Liu tree in Figure 5(b) is obtained from the latent treeTp

in Figure 5(a) by sequentially contracting all edges connecting an observed node to its inverse
surrogate set (cf., Lemma 8(ii)). Upon performing an iteration of RG, thesecontraction operations
are inverted and new hidden nodes are introduced. For example, in Figure 5(d), the hidden nodes
h1,h2 are introduced after performing RG on the closed neighborhood of node5 on MST(V;D).
These newly introduced hidden nodes in fact, turn out to be the inverse surrogate set of node 5, that
is, Sg−1(5) = {5,h1,h2}. This is not merely a coincidence and we formally prove in Appendix A.5
that at each iteration, the set of hidden nodes introduced correspondsexactly to the inverse surrogate
set of the internal node.

We conclude this section by emphasizing that CLGrouping (i.e., CLRG or CLNJ) has two
primary advantages. Firstly, as demonstrated in Theorem 10, the structureof all minimal tree-
structured graphical models can be recovered by CLGrouping in contrast to CLBlind. Secondly, it
typically has much lower computational complexity compared to RG.

5.5 Extension to General Discrete Models

For general (i.e., not symmetric) discrete models, the mutual informationI(Xi ; Xj) is in general not
monotonic in the information distancedi j , defined in (9).19 As a result, Lemma 6 does not hold,

19. The mutual information, however, is monotonic indi j for asymmetric binary discrete models.
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that is, the Chow-Liu treeTCL is not necessarily the same as MST(V;D). However, Lemma 8 does
hold for all minimal latent tree models. Therefore, for general (non-symmetric) discrete models, we
compute MST(V;D) (instead of the Chow-Liu treeTCL with edge weightsI(Xi ; Xj)), and apply RG
or NJ to each internal node and its neighbors. This algorithm guarantees that the structure learned
using CLGrouping is the same asTp if the distance matrixD is available. These observations are
summarized clearly in Table 1. Note that inall cases, the latent structure is recovered consistently.

6. Sample-Based Algorithms for Learning Latent Tree Structures

In Sections 4 and 5, we designed algorithms for the exact reconstruction of latent trees assuming
that pV is a tree-decomposable distribution and the matrix of information distancesD is available.
In most (if not all) machine learning problems, the pairwise distributionsp(xi ,x j) are unavailable.
Consequently,D is also unavailable so RG, NJ and CLGrouping as stated in Sections 4 and 5 are
not directly applicable. In this section, we consider extending RG, NJ and CLGrouping to the case
when only samplesxn

V are available. We show how to modify the previously proposed algorithms
to accommodate ML estimated distances and we also provide sample complexity results for relaxed
versions of RG and CLGrouping.

6.1 ML Estimation of Information Distances

The canonical method for deterministic parameter estimation is via maximum-likelihood (ML) (Ser-
fling, 1980). We focus on Gaussian and symmetric discrete distributions in thissection. The gener-
alization to general discrete models is straightforward. For Gaussians graphical models, we use ML
to estimate the entries of the covariance matrix,20 that is,

Σ̂i j =
1
n

n

∑
k=1

x(k)i x(k)j , ∀ i, j ∈V. (20)

The ML estimate of the correlation coefficient is defined asρ̂i j := Σ̂i j/(Σ̂ii Σ̂ j j )
1/2. The estimated

information distance is then given by the analog of (8), that is,d̂i j = − log|ρ̂i j |. For symmetric
discrete distributions, we estimate the crossover probabilityθi j via ML as21

θ̂i j =
1
n

n

∑
k=1

I
{

x(k)i 6= x(k)j

}
, ∀ i, j ∈V.

The estimated information distance is given by the analogue of (10), that is,d̂i j =−(K−1) log(1−
Kθ̂i j ). For both classes of models, it can easily be verified from the Central Limit Theorem and
continuity arguments (Serfling, 1980) thatd̂i j −di j = Op(n−1/2), wheren is the number of samples.
This means that the estimates of the information distances are consistent with rateof convergence
beingn−1/2. Them×mmatrix of estimated information distances is denoted asD̂ = [d̂i j ].

6.2 Post-processing Using Edge Contractions

For all sample-based algorithms discussed in this section, we apply a common post-processing step
using edge-contraction operations. Recall from (11) thatl is the minimum bound on the information

20. Recall that we assume that the mean of the true random vectorX is known and equals to the zero vector so we do not
need to subtract the empirical mean in (20).

21. We useI{·} to denote the indicator function.
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distances on edges. After learning the latent tree, if we find that there exists an edge(i,h) ∈W×H
with the estimated distancêdih < l , then(i,h) is contracted to a single node whose label isi, that
is, the hidden nodeh is removed and merged with nodei. This edge contraction operation removes
a hidden node if it is too close in information distances to another node. For Gaussian and binary
variables,d̂ih = − log|ρ̂ih|, so in our experiments, we usel = − log0.9 to contract an edge(i,h) if
the correlation between the two nodes is higher than 0.9.

6.3 Relaxed Recursive Grouping (RG) Given Samples

We now show how to relax the canonical RG algorithm described in Section 4 tohandle the case
when onlyD̂ is available. Recall that RG calls theTestNodeRelationships procedure recursively to
ascertain child-parent and sibling relationships via equality testsΦi jk = dik−d jk (cf., Section 3.2).
These equality constraints are, in general, not satisfied with the estimated differenceŝΦi jk := d̂ik−
d̂ jk, which are computed based on the estimated distance inD̂. Besides, not all estimated distances
are equally accurate. Longer distance estimates (i.e., lower correlation estimates) are less accurate
for a given number of samples.22 As such, not all estimated distances can be used for testing inter-
node relationships reliably. These observations motivate the following threemodifications to the
RG algorithm:

1. Consider using a smaller subset of nodes to test whetherΦ̂i jk is constant (acrossk).

2. Apply a threshold (inequality) test to thêΦi jk values.

3. Improve on the robustness of the estimated distancesd̂ih in (13) and (14) by averaging.

We now describe each of these modifications in greater detail. Firstly, in the relaxed RG algorithm,
we only computêΦi jk for those estimated distanceŝdi j , d̂ik and d̂ jk that are below a prescribed
thresholdτ > 0 since longer distance estimates are unreliable. As such, for each pair ofnodes(i, j)
such thatd̂i j < τ, associate the set

Ki j :=
{

k∈V\{i, j} : max{d̂ik, d̂ jk}< τ
}
. (21)

This is the subset of nodes inV whose estimated distances toi and j are less thanτ. ComputeΦ̂i jk

for all k∈Ki j only.
Secondly, instead of using equality tests inTestNodeRelationships to determine the relationship

between nodesi and j, we relax this test and consider the statistic

Λ̂i j := max
k∈Ki j

Φ̂i jk − min
k∈Ki j

Φ̂i jk (22)

Intuitively, if Λ̂i j in (22) is close to zero, then nodesi and j are likely to be in the same family. Thus,
declare that nodesi, j ∈V are in the same family if

Λ̂i j < ε, (23)

22. In fact, by using a large deviation result in Shen (2007, Theorem 1), we can formally show that a larger number of
samples is required to get a good approximation ofρik if it is small compared to whenρik is large.
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for another thresholdε > 0. Similarly, an observed nodek is identified as a parent node if|d̂ik +
d̂k j− d̂i j |< ε for all i and j in the same family. If such an observed node does not exists for a group
of family, then a new hidden node is introduced as the parent node for the group.

Thirdly, in order to further improve on the quality of the distance estimated̂ih of a newly intro-
duced hidden node to observed nodes, we computed̂ih using (13) with different pairs ofj ∈ C (h)
andk∈Ki j , and take the average as follows:

d̂ih =
1

2(|C (h)|−1)

(

∑
j∈C (h)

d̂i j +
1
|Ki j | ∑

k∈Ki j

Φ̂i jk

)
. (24)

Similarly, for any other nodek /∈ C (h), we computed̂kh using all child nodes inC (h) andC (k) (if
C (k) 6= /0) as follows:

d̂kh =

{
1

|C (h)| ∑i∈C (h)(d̂ik− d̂ih), if k∈V,
1

|C (h)||C (k)| ∑(i, j)∈C (h)×C (k)(d̂i j − d̂ih− d̂ jk), otherwise.
(25)

It is easy to verify that ifd̂ih andd̂kh are equal todih anddkh respectively, then (24) and (25) reduce
to (13) and (14) respectively.

The following theorem shows that relaxed RG is consistent, and with appropriately chosen
thresholdsε andτ, it has the sample complexity logarithmic in the number of observed variables.
The proof follows from standard Chernoff bounds and is provided in Appendix A.6.

Theorem 11 (Consistency and Sample Complexity of Relaxed RG)(i) Relaxed RG is struc-
turally consistent for all Tp ∈ T≥3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective depth isδ(Tp;V) = O(1) (i.e., constant in m)
and relaxed RG is used to reconstruct the tree givenD̂. For everyη > 0, there exists thresholds
ε,τ > 0 such that if

n>C log(m/ 3
√

η) (26)

for some constant C> 0, the error probability for structure reconstruction in(5) is bounded above
by η. If, in addition, p is a Gaussian or symmetric discrete distribution and n> C′ log(m/ 3

√
η),

the error probability for distribution reconstruction in(6) is also bounded above byη. Thus, the
sample complexity of relaxed RG, which is the number of samples requiredto achieve a desired level
of accuracy, is logarithmic in m, the number of observed variables.

As we observe from (26), the sample complexity for RG is logarithmic inm for shallow trees
(i.e., trees where the effective depth is constant). This is in contrast to NJ where the sample com-
plexity is super-polynomial in the number of observed nodes for the HMM (St. John et al., 2003;
Lacey and Chang, 2006).

6.3.1 RGWITH k-MEANS CLUSTERING

In practice, if the number of samples is limited, the distance estimatesd̂i j are noisy and it is difficult
to select the thresholdε in Theorem 11 to identify sibling nodes reliably. In our experiments, we
employ a modified version of thek-means clustering algorithm to cluster a set of nodes with small
Λ̂i j , defined in (22), as a group of siblings. Recall that we test eachΛ̂i j locally with a fixed threshold
ε in (23). In contrast, thek-means algorithm provides aglobal scheme and circumvents the need
to select the thresholdε. We adopt thesilhouette method(Rousseeuw, 1987) with dissimilarity
measurêΛi j to select optimal the number of clustersk.
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6.4 Relaxed Neighbor-Joining Given Samples

In this section, we describe how NJ can be relaxed when the true distancesare unavailable. We relax
the NJ algorithm by using ML estimates of the distancesd̂i j in place of unavailable distancesdi j .
NJ typically assume that all observed nodes are at the leaves of the latent tree, so after learning the
latent tree, we perform the post-processing step described in Section 6.2to identify internal nodes
that are observed.23 The sample complexity of NJ is known to beO(exp(diam(Tp)) logm) (St. John
et al., 2003) and thus does not scale well when the latent treeTp has a large diameter. Compar-
isons between the sample complexities of other closely related latent tree learning algorithms are
discussed in Atteson (1999), Erdős et al. (1999), Cs̋urös (2000) and St. John et al. (2003).

6.5 Relaxed CLGrouping Given Samples

In this section, we discuss how to modify CLGrouping (CLRG and CLNG) when we only have
access to the estimated information distanceD̂. The relaxed version of CLGrouping differs from
CLGrouping in two main aspects. Firstly, we replace the edge weights in the construction of the
MST in (17) with the estimated information distancesd̂i j , that is,

T̂CL = MST(V; D̂) := argmin
T∈T (V)

∑
(i, j)∈T

d̂i j . (27)

The procedure in (27) can be shown to be equivalent to the learning of the ML tree structure given
samplesxn

V if pV is a Gaussian or symmetric discrete distribution.24 It has also been shown that
the error probability of structure learning Pr(T̂CL 6= TCL) converges to zero exponentially fast in
the number of samplesn for both discrete and Gaussian data (Tan et al., 2010, 2011). Secondly,
for CLRG (respectively CLNJ), we replace RG (respectively NJ) with the relaxed version of RG
(respectively NJ). The sample complexity result of CLRG (and its proof) issimilar to Theorem 11
and the proof is provided in Appendix A.7.

Theorem 12 (Consistency and Sample Complexity of Relaxed CLRG)(i) Relaxed CLRG is
structurally consistent for all Tp ∈ T≥3. In addition, it is risk consistent for Gaussian and symmetric
discrete distributions. (ii) Assume that the effective depth isδ(Tp;V) = O(1) (i.e., constant in m).
Then the sample complexity of relaxed CLRG is logarithmic in m.

6.6 Regularized CLGrouping for Learning Latent Tree Approximations

For many practical applications, it is of interest to learn a latent tree thatapproximatesthe given
empirical distribution. In general, introducing more hidden variables enables better fitting to the em-
pirical distribution, but it increases the model complexity and may lead to overfitting. The Bayesian
Information Criterion (Schwarz, 1978) provides a trade-off between model fitting and model com-
plexity, and is defined as follows:

BIC(T̂) = logp(xn
V ; T̂)− κ(T̂)

2
logn (28)

23. The processing (contraction) of the internal nodes can be done in any order.
24. This follows from the observation that the ML search for the optimal structure is equivalent to the KL-divergence

minimization problem in (15) withpV replaced bŷpV , the empirical distribution ofxn
V .
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whereT̂ is a latent tree structure andκ(T̂) is the number of free parameters, which grows linearly
with the number of hidden variables becauseT̂ is a tree. Here, we describeregularized CLGrouping,
in which we use the BIC in (28) to specify a stopping criterion on the number ofhidden variables
added.

For each internal node and its neighbors in the Chow-Liu tree, we use relaxed NJ or RG to
learn a latent subtree. Unlike in regular CLGrouping, before we integratethis subtree into our
model, we compute its BIC score. Computing the BIC score requires estimating themaximum
likelihood parameters for the models, so for general discrete distributions,we run the EM algorithm
on the subtree to estimate the parameters.25 After we compute the BIC scores for all subtrees
corresponding to all internal nodes in the Chow-Liu tree, we choose the subtree that results in the
highest BIC score and incorporate that subtree into the current tree model.

The BIC score can be computed efficiently on a tree model with a few hidden variables. Thus,
for computational efficiency, each time a set of hidden nodes is added to themodel, we generate
samples of hidden nodes conditioned on the samples of observed nodes, and use these augmented
samples to compute the BIC score approximately when we evaluate the next subtree to be integrated
in the model.

If none of the subtrees increases the BIC score (i.e., the current tree has the highest BIC score),
the procedure stops and outputs the estimated latent tree. Alternatively, if wewish to learn a latent
tree with a given number of hidden nodes, we can used the BIC-based procedure mentioned in
the previous paragraph to learn subtrees until the desired number of hidden nodes is introduced.
Depending on whether we use NJ or RG as the subroutine, we denote the specific regularized
CLGrouping algorithm asregCLNJor regCLRG.

This approach of using an approximation of the BIC score has been commonly used to learn
a graphical model with hidden variables (Elidan and Friedman, 2005; Zhang and Kǒcka, 2004).
However, for these algorithms, the BIC score needs to be evaluated for alarge subset of nodes,
whereas in CLGrouping, the Chow-Liu tree among observed variables prunes out many subsets, so
we need to evaluate BIC scores only for a small number of candidate subsets (the number of internal
nodes in the Chow-Liu tree).

7. Experimental Results

In this section, we compare the performances of various latent tree learning algorithms. We first
show simulation results on synthetic data sets with known latent tree structures todemonstrate
the consistency of our algorithms. We also analyze the performance of these algorithms when we
change the underlying latent tree structures. Then, we show that our algorithms can approximate
arbitrary multivariate probability distributions with latent trees by applying them totwo real-world
data sets, a monthly stock returns example and the 20 newsgroups data set.

7.1 Simulations using Synthetic Data Sets

In order to analyze the performances of different tree reconstructionalgorithms, we generate sam-
ples from known latent tree structures with varying sample sizes and apply reconstruction algo-
rithms. We compare the neighbor-joining method (NJ) (Saitou and Nei, 1987) with recursive

25. Note that for Gaussian and symmetric discrete distributions, the modelparameters can be recovered from information
distances directly using (8) or (10).
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(b) HMM(a) Double star

(c) 5-complete

Figure 6: Latent tree structures used in our simulations.

grouping (RG), Chow-Liu Neighbor Joining (CLNJ), and Chow-Liu Recursive Grouping (CLRG).
Since the algorithms are given only samples of observed variables, we usethe sample-based algo-
rithms described in Section 6. For all our experiments, we use the same edge-contraction threshold
ε′ = − log0.9 (see Sections 6.4 and 6.5), and setτ in Section 6.3 to grow logarithmically with the
number of samples.

Figure 6 shows the three latent tree structures used in our simulations. The double-star has
2 hidden and 80 observed nodes, the HMM has 78 hidden and 80 observed nodes, and the 5-
complete tree has 25 hidden and 81 observed nodes including the root node. For simplicity, we
present simulation results only on Gaussian models but note that the behavioron discrete models
is similar. All correlation coefficients on the edgesρi j were independently drawn from a uniform
distribution supported on[0.2,0.8]. The performance of each method is measured by averaging
over 200 independent runs with different parameters. We use the following performance metrics to
quantify the performance of each algorithm in Figure 7:

(i) Structure recovery error rate : This is the proportion of times that the proposed algorithm
fails to recover the true latent tree structure. Note that this is a very strict measure since even
a single wrong hidden node or misplaced edge results in an error for the entire structure.

(ii) Robinson Foulds metric (Robinson and Foulds, 1981): This popular phylogenetic tree-
distortion metric computes the number of graph transformations (edge contraction or expan-
sion) needed to be applied to the estimated graph in order to get the correct structure. This
metric quantifies the difference in the structures of the estimated and true models.

(iii) Error in the number of hidden variables : We compute the average number of hidden vari-
ables introduced by each method and plot the absolute difference betweenthe average esti-
mated hidden variables and the number of hidden variables in the true structure.
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Figure 7: Performance of RG, NJ, CLRG, and CLNJ for the latent trees shown in Figure 6.

(iv) KL-divergence D(pV || p̂n
V): This is a measure of the distance between the estimated and the

true models over the set of observed nodesV.26

We first note that from the structural error rate plots that the double star isthe easiest structure
to recover and the 5-complete tree is the hardest. In general, given the same number of observed
variables, a latent tree with more hidden variables or larger effective depth (see Section 2) is more
difficult to recover.

For the double star, RG clearly outperforms all other methods. With only 1,000samples, it
recovers the true structure exactly in all 200 runs. On the other hand, CLGrouping performs sig-
nificantly better than RG for the HMM. There are two reasons for such performance differences.
Firstly, for Gaussian distributions, it was shown (Tan et al., 2010) that given the same number of
variables and their samples, the Chow-Liu algorithm is most accurate for a chain and least accurate
for a star. Since the Chow-Liu tree of a latent double star graph is close to astar, and the Chow-Liu

26. Note that this is not the same quantity as in (6) because if the number of hidden variables is estimated incorrectly,
D(p|| p̂n) is infinite so we plotD(pV || p̂n

V) instead. However, for Gaussian and symmetric discrete distributions,
D(p|| p̂n) converges to zero in probability since the number of hidden variables is estimated correctly asymptotically.
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RG NJ CLRG CLNJ
HMM 10.16 0.02 0.10 0.05

5-complete 7.91 0.02 0.26 0.06
Double star 1.43 0.01 0.76 0.20

Table 2: Average running time of each algorithm in seconds.

tree of a latent HMM is close to a chain, the Chow-Liu tree tend to be more accurate for the HMM
than for the double star. Secondly, the internal nodes in the Chow-Liu treeof the HMM tend to
have small degrees, so we can apply RG or NJ to a very small neighborhood, which results in a
significant improvement in both accuracy and computational complexity.

Note that NJ is particularly poor at recovering the HMM structure. In fact,it has been shown
that even if the number of samples grows polynomially with the number of observed variables (i.e.,
n= O(mB) for anyB> 0), it is insufficient for NJ to recover HMM structures (Lacey and Chang,
2006). The 5-complete tree has two layers of hidden nodes, making it verydifficult to recover
the exact structure using any method. CLNJ has the best structure recovery error rate and KL
divergence, while CLRG has the smallest Robinson-Foulds metric.

Table 2 shows the running time of each algorithm averaged over 200 runs and all sample sizes.
All algorithms are implemented in MATLAB. As expected, we observe that CLRGis significantly
faster than RG for HMM and 5-complete graphs. NJ is fastest, but CLNJ is also very efficient and
leads to much more accurate reconstruction of latent trees.

Based on the simulation results, we conclude that for a latent tree with a few hidden variables,
RG is most accurate, and for a latent tree with a large diameter, CLNJ performs the best. A latent
tree with multiple layers of hidden variables is more difficult to recover correctly using any method,
and CLNJ and CLRG outperform NJ and RG.

7.2 Monthly Stock Returns

In this and the next section, we test our algorithms on real-world data sets. The probability distri-
butions that govern these data sets of course do not satisfy the assumptions required for consistent
learning of the latent tree models. Nonetheless the experiments here demonstrate that our algo-
rithms are also useful inapproximatingcomplex probability distributions by latent models in which
the hidden variables have the same domain as the observed ones.

We apply our latent tree learning algorithms to model the dependency structure of monthly stock
returns of 84 companies in the S&P 100 stock index.27 We use the samples of the monthly returns
from 1990 to 2007. As shown in Table 3 and Figure 8, CLNJ achieves the highest log-likelihood and
BIC scores. NJ introduces more hidden variables than CLNJ and has lower log-likelihoods, which
implies that starting from a Chow-Liu tree helps to get a better latent tree approximation. Figure 11
shows the latent tree structure learned using the CLNJ method. Each observed node is labeled with
the ticker of the company. Note that related companies are closely located on the tree. Many hidden
nodes can be interpreted as industries or divisions. For example, h1 hasVerizon, Sprint, and T-
mobile as descendants, and can be interpreted as the telecom industry, andh3 correspond to the
technology division with companies such as Microsoft, Apple, and IBM as descendants. Nodes h26
and h27 group commercial banks together, and h25 has all retail stores as child nodes.

27. We disregard 16 companies that have been listed on S&P 100 only after 1990.
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Log-Likelihood BIC # Hidden # Parameters Time (secs)
CL -13,321 -13,547 0 84 0.15
NJ -12,400 -12,747 45 129 0.02

RG -14,042 -14,300 12 96 21.15
CLNJ -11,990 -12,294 29 113 0.24
CLRG -12,879 -13,174 26 110 0.40

Table 3: Comparison of the log-likelihood, BIC, number of hidden variablesintroduced, number of
parameters, and running time for the monthly stock returns example.

-14,500 

-14,000 

-13,500 

-13,000 

-12,500 

-12,000 

CL NJ RG CLNJ CLRG

BIC score

Figure 8: Plot of BIC scores for the monthly stock returns example.

7.3 20 Newsgroups with 100 Words

For our last experiment, we apply our latent tree learning algorithms to the 20 Newsgroups data set
with 100 words.28 The data set consists of 16,242 binary samples of 100 words, indicating whether
each word appears in each posting or not. In addition to the Chow-Liu tree (CL), NJ, RG, CLNJ, and
CLRG, we also compare the performances with the regCLNJ and regCLRG (described in Section
6.6), the latent cluster model (LCM) (Lazarsfeld and Henry, 1968), and BIN, which is a greedy
algorithm for learning latent trees (Harmeling and Williams, 2010).

Table 4 shows the performance of different algorithms, and Figure 9 plotsthe BIC score. We
use the MATLAB code (a small part of it is implemented in C) provided by Harmeling and Williams
(2010)29 to run LCM and BIN. Note that although LCM has only one hidden node, the hidden node
has 16 states, resulting in many parameters. We also tried to run the algorithm byChen et al. (2008),
but their JAVA implementation on this data set did not complete even after several days. For NJ, RG,
CLNJ, and CLRG, we learned the structures using only information distances (defined in (9)) and
then used the EM algorithm to fit the parameters. For regCLNJ and regCLRG, the model parameters
are learned during the structure learning procedure by running the EM algorithm locally, and once
the structure learning is over, we refine the parameters by running the EM algorithm for the entire
latent tree. All methods are implemented in MATLAB except the E-step of the EM algorithm, which
is implemented in C++.

28. The data set can be found athttp://cs.nyu.edu/ ˜ roweis/data/20news_w100.mat .
29. Code can be found athttp://people.kyb.tuebingen.mpg.de/harmeling/code/l tt-1.3.tar .
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Log-Likelihood BIC Hidden Params
Time (s)

Total Structure EM
CL -238,713 -239,677 0 199 8.9 - -

LCM -223,096 -230,925 1 1,615 8,835.9 - -
BIN -232,042 -233,952 98 394 3,022.6 - -
NJ -230,575 -232,257 74 347 1,611.2 3.3 1,608.2

RG -239,619 -240,875 30 259 927.1 30.8 896.4
CLNJ -230,858 -232,540 74 347 1,479.6 2.7 1,476.8
CLRG -231,279 -232,738 51 301 1,224.6 3.1 1,224.6

regCLNJ -235,326 -236,553 27 253 630.8 449.7 181.1
regCLRG -234,012 -235,229 26 251 606.9 493.0 113.9

Table 4: Comparison between various algorithms on the newsgroup set.

-242,000 

-240,000 

-238,000 

-236,000 

-234,000 

-232,000 

-230,000 

CL LCM BIN NJ RG CLNJ CLRG regCLNJ regCLRG

BIC score

Figure 9: The BIC scores of various algorithms on the newsgroup set.

Despite having many parameters, the models learned via LCM have the best BIC score. How-
ever, it does not reveal any interesting structure and is computationally more expensive to learn. In
addition, it may result in overfitting. In order to show this, we split the data setrandomly and use
half as the training set and the other half as the test set. Table 5 shows the performance of applying
the latent trees learned from the training set to the test set, and Figure 10 shows the log-likelihood on
the training and the test sets. For LCM, the test log-likelihood drops significantly compared to the
training log-likelihood, indicating that LCM is overfitting the training data. NJ, CLNJ, and CLRG
achieve high log-likelihood scores on the test set. Although regCLNJ and regCLRG do not result
in a better BIC score, they introduce fewer hidden variables, which is desirable if we wish to learn
a latent tree with small computational complexity, or if we wish to discover a few hidden variables
that are meaningful in explaining the dependencies of observed variables.

Figure 12 shows the latent tree structure learned using regCLRG from theentire data set. Many
hidden variables in the tree can be roughly interpreted as topics—h5 as sports, h9 as computer tech-
nology, h13 as medical, etc. Note that some words have multiple meanings and appear in different
topics—for example,program can be used in the phrase “space program” as well as “computer
program”, andwin may indicate the windows operating system or winning in sports games.
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Train Test
Hidden Params

Time (s)
Log-Like BIC Log-Like BIC Total Struct EM

CL -119,013 -119,909 -120,107 -121,003 0 199 3.0 - -
LCM -112,746 -117,288 -116,884 -120,949 1 1,009 3,197.7 - -
BIN -117,172 -118,675 -117,957 -119,460 78 334 1,331.3 - -
NJ -115,319 -116,908 -116,011 -117,600 77 353 802.8 1.3 801.5

RG -118,280 -119,248 -119,181 -120,149 8 215 137.6 7.6 130.0
CLNJ -115,372 -116,987 -116,036 -117,652 80 359 648.0 1.5 646.5
CLRG -115,565 -116,920 -116,199 -117,554 51 301 506.0 1.7 504.3

regCLNJ -117,723 -118,924 -118,606 -119,808 34 267 425.5 251.3 174.2
regCLRG -116,980 -118,119 -117,652 -118,791 27 253 285.7 236.5 49.2

Table 5: Comparison between various algorithms on the newsgroup data setwith a train/test split.

-121,000 

-120,000 

-119,000 

-118,000 

-117,000 

-116,000 

-115,000 

-114,000 

-113,000 

-112,000 

CL LCM BIN NJ RG CLNJ CLRG regCLNJ regCLRG

Train

Test

Log-likelihood

Figure 10: Train and test log-likelihood scores of various algorithms on thenewsgroup data set with
a train/test split.

8. Discussion and Conclusion

In this paper, we proposed algorithms to learn a latent tree model from the information distances
of observed variables. Our first algorithm, recursive grouping (RG), identifies sibling and parent-
child relationships and introduces hidden nodes recursively. Our second algorithm, CLGrouping,
maintains a tree in each iteration and adds hidden variables by locally applying latent-tree learn-
ing procedures such as recursive grouping. These algorithms are structurally consistent (and risk
consistent as well in the case of Gaussian and discrete symmetric distributions), and have sample
complexity logarithmic in the number of observed variables for constant depthtrees.

Using simulations on synthetic data sets, we showed that RG performs well whenthe num-
ber of hidden variables is small, while CLGrouping performs significantly better than other algo-
rithms when there are many hidden variables in the latent tree. We compared our algorithms to
other EM-based approaches and the neighbor-joining method on real-world data sets, under both
Gaussian and discrete data modeling. Our proposed algorithms show superior results in both ac-
curacy (measured by KL-divergence and graph distance) and computational efficiency. In addi-
tion, we introduced regularized CLGrouping, which can learn a latent treeapproximation by trad-
ing off model complexity (number of hidden nodes) with data fidelity. This is very relevant for
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Figure 11: Tree structure learned from monthly stock returns using CLNJ.
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Figure 12: Tree structure learned from 20 newsgroup data set using regCLRG.
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practical implementation on real-world data sets. In future, we plan to developa unified frame-
work for learning latent trees where each random variable (node) may be continuous or discrete.
The MATLAB implementation of our algorithms can be downloaded from the project webpage
http://people.csail.mit.edu/myungjin/latentTree.htm l .
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Appendix A. Proofs

In this appendix, we provide proofs for the theorems presented in the paper.

A.1 Proof of Lemma 4: Sibling Grouping

We prove statement (i) in Lemma 4 using (12) in Proposition 3. Statement (ii) follows along similar
lines and its proof is omitted for brevity.

If : From the additive property of information distances in (12), ifi is a leaf node andj is its
parent,dik = di j +d jk and thusΦi jk = di j for all k 6= i, j.

Only If: Now assume thatΦi jk = di j for all k∈V \{i, j}. In order to prove thati is a leaf node
and j is its parent, assume to the contrary, thati and j are not connected with an edge, then there
exists a nodeu 6= i, j on the path connectingi and j. If u∈V, then letk = u. Otherwise, letk be
an observed node in the subtree away fromi and j (see Figure 13(a)), which exists sinceTp ∈ T≥3.
By the additive property of information distances in (12) and the assumption that all distances are
positive,

di j = diu +du j > diu−du j = dik−dk j = Φi jk

which is a contradiction. Ifi is not a leaf node inTp, then there exist a nodeu 6= i, j such that
(i,u) ∈ Ep. Let k= u if u∈V, otherwise, letk be an observed node in the subtree away fromi and
j (see Figure 13(b)). Then,

Φi jk = dik−d jk =−di j < di j ,

which is again a contradiction. Therefore,(i, j) ∈ Ep andi is a leaf node.

A.2 Proof of Theorem 5: Correctness and Computational Complexity of RG

The correctness of RG follows from the following observations: Firstly, from Proposition 3, for all
i, j in the active setY, the information distancesdi j can be computed exactly with Equations (13)
and (14). Secondly, at each iteration of RG, the sibling groups withinY are identified correctly using
the information distances by Lemma 4. Since the new parent node added to a partition that does not
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Figure 13: Shaded nodes indicate observed nodes and the rest indicatehidden nodes. (a),(b) Figures
for Proof of Lemma 4. Dashed red line represent the subtrees away from i and j. (c)
Figure for Proof of Lemma 8(i). (d) Figure for Proof of Lemma 8(iI)

contain an observed parent corresponds to a hidden node (in the original latent tree), a subforest of
Tp is recovered at each iteration, and when|Y| ≤ 2, and the entire latent tree is recovered.

The computational complexity follows from the fact there are a maximum ofO(m3) differences
Φi jk = dik− d jk that we have to compute at each iteration of RG. Furthermore, there are at most
diam(Tp) subsets in the coarsest partition (cf., step 3) ofY at the first iteration, and the number of
subsets reduce at least by 2 from one iteration to the next due to the assumption thatTp ∈ T≥3. This
proves the claim that the computational complexity is upper bounded byO(diam(Tp)m3).

A.3 Proof of Lemma 8: Properties of the MST

(i) For an edge(i, j) ∈ Ep such that Sg(i) 6= Sg( j), letVi\ j ⊂V andVj\i ⊂V denote observed nodes
in the subtrees obtained by the removal of edge(i, j), where the former includes nodei and excludes
node j and vice versa (see Figure 13(c)). Using part (ii) of the lemma and the fact that Sg(i) 6=Sg( j),
it can be shown that Sg(i) ∈Vi\ j and Sg( j) ∈Vj\i . Since(i, j) lies on the unique path fromk to l on
Tp, for all observed nodesk∈Vi\ j , l ∈Vj\i , we have

dkl = dki +di j +d jl ≥ dSg(i),i +di j +dSg( j), j = dSg(i),Sg( j),

where the inequality is from the definition of surrogacy and the final equalityuses the fact that
Sg(i) 6= Sg( j). By using the property of the MST that(Sg(i),Sg( j)) is the shortest edge fromVi\ j

to Vj\i , we have (18).
(ii) First assume that we have a tie-breaking rule consistent across all hidden nodes so that if

duh = dvh = mini∈V dih andduh′ = dvh′ = mini∈V dih′ then bothh andh′ choose the same surrogate
node. Letj ∈V, h∈ Sg−1( j), and letu be a node on the path connectingh and j (see Figure 13(d)).
Assume that Sg(u) = k 6= j. If du j > duk, then

dh j = dhu+du j > dhu+duk = dhk,

which is a contradiction sincej = Sg(h). If du j = duk, thendh j = dhk, which is again a contradiction
to the consistent tie-breaking rule. Thus, the surrogate node ofu is j.

(iii) First we claim that
|Sg−1(i)| ≤ ∆(Tp)

u
l δ(Tp;V). (29)
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To prove this claim, letγ be the longest (worst-case) graph distance of any hidden nodeh∈ H from
its surrogate, that is,

γ := max
h∈H
|Path(h,Sg(h);Tp)|. (30)

From the degree bound, for eachi ∈ V, there are at most∆(Tp)
γ hidden nodes that are within the

graph distance ofγ,30 so
|Sg−1(i)| ≤ ∆(Tp)

γ (31)

for all i ∈V. Let d∗ := maxh∈H dh,Sg(h) be the longest (worst-case) information distance between a
hidden node and its surrogate. From the bounds on the information distances, lγ≤ d∗. In addition,
for eachh∈ H, let z(h) := argminj∈V |Path((h, j);Tp)| be the observed node that is closest toh in
graph distance. Then, by definition of the effective depth,dh,Sg(h) ≤ dh,z(h) ≤ uδ for all h∈ H, and
we haved∗ ≤ uδ. Sincelγ≤ d∗ ≤ uδ, we also have

γ≤ uδ/l . (32)

Combining this result with (31) establishes the claim in (29). Now consider

∆(MST(V;D))
(a)
≤ ∆(Tp)max

i∈V
|Sg−1(i)|

(b)
≤ ∆(Tp)

1+ u
l δ(Tp;V)

where(a) is a result of the application of (18) and(b) results from (29). This completes the proof
of the claim in (19) in Lemma 8.

A.4 Proof of Theorem 9: Correctness and Computational Complexity of CLBlind

It suffices to show that the Chow-Liu tree MST(V;d) is a transformation of the true latent treeTp

(with parameters such thatp ∈ P (Tblind)) as follows: contract the edge connecting each hidden
variableh with its surrogate node Sg(h) (one of its children and a leaf by assumption). Note that
the blind transformation on the MST is merely the inverse mapping of the above. From (18), all
the children of a hidden nodeh, except its surrogate Sg(h), are neighbors of its surrogate node
Sg(h) in MST(V;d). Moreover, these children ofh which are not surrogates of any hidden nodes
are leaf nodes in the MST. Similarly for two hidden nodesh1,h2 ∈ H such that(h1,h2) ∈ Ep,
(Sg(h1),Sg(h2)) ∈ MST(V;d) from Lemma 8(i). Hence, CLBlind outputs the correct tree struc-
tureTp. The computational complexity follows from the fact that the blind transformationis linear
in the number of internal nodes, which is less than the number of observed nodes, and that learning
the Chow-Liu tree takesO(m2 logm) operations.

A.5 Proof of Theorem 10: Correctness and Computational Complexity of CLRG

We first define some new notations.
Notation: Let I :=V \Leaf(MST(V;d)) be the set of internal nodes. Letvr ∈ I be the internal

node visited at iterationr, and letHr be all hidden nodes in the inverse surrogate set Sg−1(vr),
that is,Hr = Sg−1(vr) \ {vr}. Let Ar := nbd[vr ;Tr−1], and henceAr is the node set input to the
recursive grouping routine at iterationr, and let RG(Ar ,d) be the output latent tree learned by
recursive grouping. DefineTr as the tree output at the end ofr iterations of CLGrouping. Let
Vr := {vr+1,vr+2, . . . ,v|I |} be the set of internal nodes that have not yet been visited by CLGrouping

30. The maximum size of the inverse surrogate set in (30) is attained by a∆(Tp)-ary complete tree.
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Figure 14: Figure for Proof of Theorem 10. (a) Original latent tree. (b) Illustration of CLGrouping.
(c) Illustration of the trees constructed using edge contractions.

at the end ofr iterations. Let EC(Tp,Vr) be the tree constructed using edge contractions as follows:
in the latent treeTp, we contract edges corresponding to each nodeu ∈ Vr and all hidden nodes
in its inverse surrogate set Sg−1(u). Let Sr be a subtree of EC(Tp,Vr) spanningvr , Hr and their
neighbors.

For example, in Figure 14, the original latent treeTp is shown in Figure 14(a), andT0, T1,
T2 are shown in Figure 14(b). The set of internal nodes isI = {3,5}. In the first iteration,
v1 = 5, A1 = {1,3,4,5} and H1 = {h1,h2}. In the second iteration,v2 = 3, A2 = {2,3,6,h1}
andH1 = {h3}. V0 = {3,5}, V1 = {3}, andV2 = /0, and in Figure 14(c), we show EC(Tp,V0),
EC(Tp,V1), and EC(Tp,V2). In EC(Tp,V1), S1 is the subtree spanning 5,h1,h2 and their neighbors,
that is,{1,3,4,5,h1,h2}. In EC(Tp,V2), S2 is the subtree spanning 3,h3 and their neighbors, that
is, {2,3,6,h1,h3}. Note thatT0 = EC(Tp,V0), T1 = EC(Tp,V1), andT2 = EC(Tp,V2); we show
below that this holds for all CLGrouping iterations in general.

We prove the theorem by induction on the iterationsr = 1, . . . , |I | of the CLGrouping algorithm.
Induction Hypothesis:At the end ofk iterations of CLGrouping, the tree obtained is

Tk = EC(Tp,V
k), ∀k= 0,1, . . . , |I |. (33)

In words, the latent tree afterk iterations of CLGrouping can be constructed by contracting each
surrogate node inTp that has not been visited by CLGrouping with its inverse surrogate set. Note
thatV |I |= /0 and EC(Tp,V |I |) is equivalent to the original latent treeTp. Thus, if the above induction
in (33) holds, then the output of CLGroupingT |I | is the original latent tree.

Base Step r= 0: The claim in (33) holds sinceV0 = I and the input to the CLGrouping pro-
cedure is the Chow-Liu tree MST(V;D), which is obtained by contracting all surrogate nodes and
their inverse surrogate sets (see Section 5.2).

Induction Step:Assume (33) is true fork= 1, . . . , r−1. Now considerk= r.
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We first compare the two latent trees EC(Tp,Vr) and EC(Tp,Vr−1). By the definition of EC, if
we contract edges withvr and the hidden nodes in its inverse surrogate setHr on the tree EC(Tp,Vr),
then we obtain EC(Tp,Vr−1), which is equivalent toTr−1 by the induction assumption. Note that
as shown in Figure 14, this transformation is local to the subtreeSr : contractingvr with Hr on
EC(Tp,Vr) transformsSr into a star graph withvr at its center and the hidden nodesHr removed
(contracted withvr ).

Recall that the CLGrouping procedure replaces the induced subtree ofAr in Tr−1 (which is
precisely the star graph mentioned above by the induction hypothesis) with RG(Ar ,d) to obtainTr .
Thus, to prove thatTr = EC(Tp,Vr), we only need to show that RG reverses the edge-contraction
operations onvr andHr , that is, the subtreeSr = RG(Ar ,d). We first show thatSr ∈ T≥3, that is,
it is identifiable (minimal) whenAr is the set of visible nodes. This is because an edge contraction
operation does not decrease the degree of any existing nodes. SinceTp ∈ T≥3, all hidden nodes in
EC(Tp,Vr) have degrees equal to or greater than 3, and since we are including all neighbors ofHr in
the subtreeSr , we haveSr ∈ T≥3. By Theorem 5, RG reconstructs all latent trees inT≥3 and hence,
Sr = RG(Ar ,d).

The computational complexity follows from the corresponding result in recursive grouping. The
Chow-Liu tree can be constructed withO(m2 logm) complexity. The recursive grouping procedure
has complexity maxr |Ar |3 and maxr |Ar | ≤ ∆(MST(V; d̂)).

A.6 Proof of Theorem 11: Consistency and Sample Complexity of Relaxed RG

(i) Structural consistency follows from Theorem 5 and the fact that the ML estimates of information
distanceŝdi j approachdi j (in probability) for all i, j ∈V as the number of samples tends to infinity.

Risk consistency for Gaussian and symmetric discrete distributions follows from structural con-
sistency. If the structure is correctly recovered, we can use the equations in (13) and (14) to infer the
information distances. Since the distances are in one-to-one correspondence to the correlation coef-
ficients and the crossover probability for Gaussian and symmetric discrete distribution respectively,
the parameters are also consistent. This implies that the KL-divergence betweenp and p̂n tends to
zero (in probability) as the number of samplesn tends to infinity. This completes the proof.

(ii) The theorem follows by using the assumption that the effective depthδ = δ(Tp;V) is con-
stant. Recall thatτ > 0 is the threshold used in relaxed RG (see (21) in Section 6.3). Let the set of
triples (i, j,k) whose pairwise information distances are less thanτ apart beJ , that is,(i, j,k) ∈ J
if and only if max{di j ,d jk,dki} < τ. Since we assume that the true information distances are uni-
formly bounded, there existτ > 0 and some sufficiently smallλ > 0 so that if|Φ̂i jk −Φi jk | ≤ λ for
all (i, j,k) ∈ J , then RG recovers the correct latent structure.

Define the error eventEi jk := {|Φ̂i jk−Φi jk |> λ}. We note that the probability of the eventEi jk

decays exponentially fast, that is, there existsJi jk > 0 such that for alln∈ N,

Pr(Ei jk)≤ exp(−nJi jk). (34)
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The proof of (34) follows readily for Chernoff bounds (Hoeffding,1958) and is omitted. The error
probability associated to structure learning can be bounded as follows:

Pr
(

h(T̂n) 6= Tp

) (a)
≤ Pr


 ⋃

(i, j,k)∈J
Ei jk


 (b)
≤ ∑

(i, j,k)∈J
Pr(Ei jk)

≤ m3 max
(i, j,k)∈J

Pr(Ei jk)
(c)
≤ exp(3logm)exp

[
−n min

(i, j,k)∈J
Ji jk

]
,

where(a) follows from the fact that if the event{h(T̂n) 6= Tp} occurs, then there is at least one
sibling or parent-child relationship that is incorrect, which corresponds tothe union of the events
Ei jk , that is, there exists a triple(i, j,k) ∈ J is such that̂Φi jk differs from Φi jk by more thanλ.
Inequality(b) follows from the union bound and(c) follows from (34).

Because the information distances are uniformly bounded, there also existsa constantJmin > 0
(independent ofm) such that min(i, j,k)∈J Ji jk ≥ Jmin for all m∈ N. Hence for everyη > 0, if the
number of samples satisfiesn> 3(log(m/ 3

√
η))/Jmin, the error probability is bounded above byη.

Let C := 3/Jmin to complete the proof of the sample complexity result in (26). The proof for the
logarithmic sample complexity of distribution reconstruction for Gaussian and symmetric discrete
models follows from the logarithmic sample complexity result for structure learning and the fact
that the information distances are in a one-to-one correspondence with thecorrelation coefficients
(for Gaussian models) or crossover probabilities (for symmetric discrete models).

A.7 Proof of Theorem 12: Consistency and Sample Complexity of Relaxed CLRG

(i) Structural consistency of CLGrouping follows from structural consistency of RG (or NJ) and
the consistency of the Chow-Liu algorithm. Risk consistency of CLGrouping for Gaussian or sym-
metric distributions follows from the structural consistency, and the proof issimilar to the proof of
Theorem 11(i).

(ii) The input to the CLGrouping procedurêTCL is the Chow-Liu tree and hasO(logm) sample
complexity (Tan et al., 2010, 2011), wherem is the size of the tree. This is true for both discrete
and Gaussian data. From Theorem 11, the recursive grouping procedure hasO(logm) sample com-
plexity (for appropriately chosen thresholds) when the input information distances are uniformly
bounded. In any iteration of the CLGrouping, the information distances satisfy di j ≤ γu, whereγ,
defined in (30), is the worst-case graph distance of any hidden node from its surrogate. Sinceγ
satisfies (32),di j ≤ u2δ/l . If the effective depthδ = O(1) (as assumed), the distancesdi j = O(1)
and the sample complexity isO(logm).
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