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Abstract
We demonstrate that there are machine learning algorithms that can achieve success for two sepa-
rate tasks simultaneously, namely the tasks of classification and bipartite ranking. This means that
advantages gained from solving one task can be carried over to the other task, such as the abil-
ity to obtain conditional density estimates, and an order-of-magnitude reduction in computational
time for training the algorithm. It also means that some algorithms are robust to the choice of
evaluation metric used; they can theoretically perform well when performance is measured either
by a misclassification error or by a statistic of the ROC curve(such as the area under the curve).
Specifically, we provide such an equivalence relationship between a generalization of Freund et
al.’s RankBoost algorithm, called the “P-Norm Push,” and a particular cost-sensitive classification
algorithm that generalizes AdaBoost, which we call “P-Classification.” We discuss and validate the
potential benefits of this equivalence relationship, and perform controlled experiments to under-
stand P-Classification’s empirical performance. There is no established equivalence relationship
for logistic regression and its ranking counterpart, so we introduce a logistic-regression-style algo-
rithm that aims in between classification and ranking, and has promising experimental performance
with respect to both tasks.

Keywords: supervised classification, bipartite ranking, area under the curve, rank statistics, boost-
ing, logistic regression

1. Introduction

The success of a machine learning algorithm can be judged in many different ways. Thus, algo-
rithms that are somehow robust to multiple performance metrics may be more generally useful for a
wide variety of problems. Experimental evaluations of machine learning algorithms tend to reflect
this by considering several different measures of success (see, for example, the study of Caruana and
Niculescu-Mizil, 2006). For instance, classification algorithms are commonly judged both by their
classification accuracy and the Area Under the ROC curve (AUC), eventhough these algorithms are
designed only to optimize the classification accuracy, and not the AUC.

If algorithms should be judged using multiple measures of success, it makes sense to analyze
and design algorithms that achieve success with respect to multiple performance metrics. This is the
topic considered in this work, and we show that several additional advantages, such as probabilis-
tic interpretability and computational speed, can be gained from finding equivalence relationships
between algorithms for different problems. It is true that there is no “freelunch” (Wolpert and
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Macready, 1997), we are not claiming that one algorithm can solve all problems. We instead point
out that it is possible to optimize two objectives simultaneously if they have an overlapping set of
optima. The objectives in this case are convexified versions of the performance metrics for classifi-
cation and ranking. In this work, we show that a particular equivalence relationship exists between
two algorithms: a ranking algorithm called the P-Norm Push (Rudin, 2009), which is a general-
ization of RankBoost (Freund et al., 2003) that aims to maximize a weighted area under the curve,
and a classification algorithm that we call P-Classification, which is a generalization of AdaBoost
(Freund and Schapire, 1997) that aims to minimize a weighted misclassification error. Specifically,
we show that P-Classification not only optimizes its objective, but also optimizesthe objective of
the P-Norm Push (and vice versa, the P-Norm Push can be made to optimize P-Classification’s ob-
jective function). Thus, P-Classification and the P-Norm Push performequally well on both of their
objectives; P-Classification can be used as a ranking algorithm, and the P-Norm Push can be made
into a classification algorithm. This equivalence relationship allows us to: 1) obtain conditional
density estimates forP(y= 1|x) for the P-Norm Push (and thus RankBoost as a special case), 2) ob-
tain solutions of the P-Norm Push an order of magnitude faster without sacrificing the quality of the
solution at all, and 3) show a relationship between the P-Norm Push’s objective and the “precision”
metric used in Information Retrieval. This relationship will allow us to conduct a set of controlled
experiments to better understand P-Classification’s empirical performance. It is not clear that such
an equivalence relationship holds between logistic regression and its ranking counterpart; in fact,
our experiments indicate that no such relationship can hold.

Bipartite ranking problems are similar to but distinct from binary classification problems. In
both bipartite ranking and classification problems, the learner is given a training set of examples
{(x1,y1), . . . ,(xm,ym)} consisting of instancesx ∈ X that are either positive (y = 1) or negative
(y = −1). The goal of bipartite ranking is to learn a real-valued ranking functionf : X → R that
ranks future positive instances higher than negative ones. Bipartite ranking algorithms optimize rank
statistics, such as the AUC. There is no decision boundary, and the absolute scores of the examples
do not matter, instead the values of the scores relative to each other are important. Classification
algorithms optimize a misclassification error, and are they are not designed to optimize rank statis-
tics. The “equivalence” is where a classification (or ranking) algorithm aims to optimize not only a
misclassification error, but also a rank statistic.

The first work that suggested such equivalence relationships could hold is that of Rudin and
Schapire (2009), showing that AdaBoost is equivalent to RankBoost.They showed that AdaBoost,
which iteratively minimizes the exponential misclassification loss, also iteratively minimizes Rank-
Boost’s exponential ranking loss, and vice versa, that RankBoost withtrivial modifications can be
made to minimize the exponential misclassification loss. The first result of our work, provided in
Section 3, is to broaden that proof to handle more general ranking lossesand classification losses.
The more general ranking loss is that of the P-Norm Push, which concentrates on “pushing” nega-
tives away from the top of the ranked list. The more general classification loss, determined mainly
by the number of false positives, is minimized by P-Classification, which is introduced formally in
Section 3. Also in Section 3, we consider another simple cost-sensitive version of AdaBoost, and
show the forward direction of its equivalence to RankBoost; in this case, the cost-sensitive version of
AdaBoost minimizes RankBoost’s objective no matter what the cost parameteris. In Section 4, we
will verify the equivalence relationship empirically and provide evidence that no such relationship
holds for logistic regression and its ranking counterpart. In Section 5 we discuss the first two main
benefits gained by this equivalence relationship described above, namelyobtaining probability esti-
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mates, and computing solutions faster. In Section 6 we discuss the relationshipof P-Classification’s
objective to the “precision” metric, and evaluate several parameters influencing the performance of
P-Classification. As a result, we are able to suggest improvements to boost performance. Section 7
introduces a new logistic-regression-style algorithm that solves a problemin between classification
and ranking, in the hopes of performing better than AdaBoost on both counts. Note that this work
does not relate directly to work on reductions (e.g., Balcan et al., 2008), since in this work, the same
set of features are used for both the classification and ranking problemswithout any modification.
Another recent work that addresses the use of classification algorithms for solving ranking problems
is that of Kotlowski et al. (2011), who show loss and regret bounds onthe ranking performance of
classifiers. Their analysis is useful when equivalence relationships, such as the ones we show here,
do not hold.

2. Definitions

We denote the set of instances with positive labels as{xi}i=1,...,I , and the set of instances with
negative labels as{x̃k}i=1,...,K , wherexi , x̃k ∈ X . Throughout most of the paper, the subscriptsi and
k will be used as indices over positive and negative instances, respectively. We assume that(xi ,yi)
are drawn from a joint distributionD onX ×{−1,1}. Our goal is to construct a scoring function
f : X → R which gives a real valued score to each instance inX . Let F denote the hypothesis
space that is the class of convex combinations of features{h j} j=1...n, whereh j : X →{−1,1}. The
function f ∈ F is then defined as a linear combination of the features:

f := fλ := ∑
j

λ jh j ,

whereλ ∈ Rn will be chosen to minimize (or approximately minimize) an objective function. We
always include a y-intercept (feature that is 1 for allx), assigned to the index̄j. This y-intercept
term is important in the equivalence proof; in order to turn the P-Norm Pushinto a classification
algorithm, we need to place a decision boundary by adjusting the y-intercept.

In bipartite ranking, the goal is to rank positive instances higher than the negative ones. The
quality of a ranking function is often measured by the area under the ROC curve (AUC). The as-
sociated misranking loss, related to 1−AUC, is the number of positive instances that are ranked
below negative instances:

standard misranking loss( f ) =
I

∑
i=1

K

∑
k=1

1[ f (xi)≤ f (x̃k)]. (1)

The ranking loss is zero when all negative instances are ranked below the positives instances.
In binary classification, the goal is to correctly predict the true labels of positive and negative

examples. The loss is measured by the misclassification error:

standard misclassification loss( f ) =
I

∑
i=1

1[ f (xi)≤0]+
K

∑
k=1

1[ f (x̃k)≥0]. (2)

Since it is difficult to minimize (1) and (2) directly, a widely used approach is to minimize a convex
upper bound on the loss. The exponential loss that is iteratively minimized by AdaBoost (Freund
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and Schapire, 1997) is one such example:

R AB(λ) :=
I

∑
i=1

e− fλ(xi)+
K

∑
k=1

efλ(x̃k) =: R AB
+ (λ)+R AB

− (λ). (3)

The ranking counterpart of AdaBoost is RankBoost (Freund et al., 2003). RankBoost’s objective
function is a sum of exponentiated differences in scores, a convexifiedversion of (1):

R RB(λ) :=
I

∑
i=1

K

∑
k=1

e−( fλ(xi)− fλ(x̃k)) =
I

∑
i=1

e− fλ(xi)
K

∑
k=1

efλ(x̃k) = R AB
+ (λ)R AB

− (λ). (4)

A generalization of RankBoost that is considered in this paper is the P-Norm Push (Rudin,
2009), which minimizes the following objective:

R PN(λ) :=
K

∑
k=1

(

I

∑
i=1

e−( fλ(xi)− fλ(x̃k))

)p

.

By increasingp, one changes how hard the algorithm concentrates on “pushing” high scoring neg-
ative examples down from the top of the list. The powerp acts as a soft maximum for the highest
scoring negative instance. Whenp= 1, P-Norm Push’s objective reduces to RankBoost’s objective.

We also investigate the equivalence relationship between logistic regressionand its ranking
counterpart, which we call “Logistic Regression Ranking” (LRR). Logistic regression minimizes
the objective:

R LR(λ) :=
I

∑
i=1

log
(

1+e− fλ(xi)
)

+
K

∑
k=1

log
(

1+efλ(x̃k)
)

, (5)

whereas LRR is defined with the following objective:

R LRR(λ) :=
I

∑
i=1

K

∑
k=1

log
(

1+e−( fλ(xi)− fλ(x̃k))
)

. (6)

LRR bears a strong resemblance to the algorithm RankNet (Burges et al., 2005) in that its objective
(6) is similar to the second term of RankNet’s objective (Equation 3 in Burgeset al., 2005). LRR’s
objective (6) is an upper bound on the 0-1 ranking loss in (1), using the logistic loss log(1+e−z) to
upper bound the 0-1 loss1z≤0.

3. Equivalence Relationships

We now introduce P-Classification, which is a boosting-style algorithm that minimizes a weighted
misclassification error. Like the P-Norm Push, it concentrates on “pushing” the negative examples
down from the top of the list. Unlike the P-Norm Push, it minimizes a weighted misclassification
error (rather than a weighted misranking error), though we will show thatminimization of either
objective yields an equally good result for either problem. P-Classificationminimizes the following
loss:

R PC(λ) :=
I

∑
i=1

e− fλ(xi)+
1
p

K

∑
k=1

efλ(x̃k)p =: R PC
+ (λ)+R PC

− (λ) (7)
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where fλ = ∑ j λ jh j . P-Classification is a generalization of AdaBoost, in that whenp = 1 (i.e.,
no emphasis on the top-scoring negatives), P-Classification’s loss reduces exactly to that of Ada-
Boost’s. We implemented P-Classification as coordinate descent (functional gradient descent) on
R PC(λ). Pseudocode is presented in Figure 1, using the notation of Collins et al. (2002), wherei
is the index over all examples (not just positive examples), andM is the “game matrix” for Ada-
Boost, whereMi j = yih j(xi). AdaBoost was originally shown to be a coordinate descent algorithm
by Breiman (1997), Friedman et al. (2000), Rätsch et al. (2001), Duffy and Helmbold (1999) and
Mason et al. (2000).

1. Input: examples{(xi ,yi)}
m
i=1, where(xi ,yi) ∈ X ×{−1,1}, features{h j}

n
j=1, h j : X → R,

number of iterationstmax, parameterp.

2. Define: Mi j := yih j(xi) for all i, j,
φi := 1{yi=1}+ p1{yi=−1} for all i.

3. Initialize: λ1, j = 0 for j = 1, . . . ,n, d1,i = 1/m for i = 1, . . . ,m.

4. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj ∑m
i=1dt,iMi j

(b) Perform a linesearch forαt . That is, find a valueαt that minimizes:

(

m

∑
i=1

dt,iMi, jt e
−αtφiMi, jt

)2

(c) λt+1, j = λt, j +αt1 j= jt

(d) dt+1,i = dt,ie−αtφiMi, jt for i = 1, . . . ,m

(e) dt+1,i =
dt+1,i

∑i dt+1,i

5. Output: λtmax

Figure 1: Pseudocode for the P-Classification algorithm.

There are other cost-sensitive boosting algorithms similar to P-Classification.Sun et al. (2007)
introduced three “modifications” of AdaBoost’s weight update scheme, in order to make it cost
sensitive. Modifications I and II incorporate an arbitrary constant (a cost item) for each example
somewhere within the update scheme, where the third modification is a blend of Modifications I
and II. Since Sun et al. (2007) consider the iteration scheme itself, some oftheir modifications are
not easy to interpret with respect to a global objective, particularly Modification II (and thus III).
Although no global objective is provided explicitly, Modification I seems to correspond to approx-

imate minimization of the following objective:
[

∑i
1
Ci

e−(Mλi)Ci

]

. In that sense, P-Classification is

almost a special case of Modification I, where in our case, we would take their arbitraryCi to be
assigned the value ofφi . The step sizeαt within Modification I is an approximate solution to a line-
search, whereas we use a numerical (exact) linesearch. The AdaCost algorithm of Fan et al. (1999)
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is another cost-sensitive variation of AdaBoost, however it is not associated with a global objective
and in our experiments (not shown here) it tended to choose the interceptrepeatedly as the weak
classifier, and thus the combined classifier was also the intercept. Lozano and Abe (2008) also use
ℓp norms within a boosting-style algorithm, but for the problem of label ranking instead of example
ranking. However, their objective is totally different than ours; for instance, it does not correspond
directly to a 0-1 misranking loss like (1).

We will now show that the P-Norm Push is equivalent to P-Classification, meaning that mini-
mizers of P-Classification’s objective are also minimizers of the P-Norm Push’s objective, and that
there is a trivial transformation of the P-Norm Push’s output that will minimize P-Classification’s
objective. This trivial transformation simply puts a decision boundary in the right place. This proof
will generalize the result of Rudin and Schapire (2009), but with a simpler proof strategy; since
there are pathological cases where minimizers of the objectives occur onlyat infinity, the result of
Rudin and Schapire (2009) used a Bregman distance technique to incorporate these points at infin-
ity. Our proof does not handle the cases at infinity, but does handle, in amuch simpler way, all other
cases. These points at infinity occur because the objectivesR PC andR PN are not strictly convex
(though they are convex). For AdaBoost, there is work showing that theminimization problem can
be essentially split into two subproblems, one which handles examples near thedecision boundary
and is strictly convex, and the other which handles examples that become infinitely far away from
the boundary (Mukherjee et al., 2011).

The forward direction of the equivalence relationship is as follows:

Theorem 1 (P-Classification minimizes P-Norm Push’s objective)
If λPC ∈ argminλR

PC(λ) (assuming minimizers exist), thenλPC ∈ argminλR
PN(λ).

The corresponding proof within Rudin and Schapire (2009) used fourmain steps, which we follow
also in our proof: 1) characterizing the conditions to be at a minimizer of the classification objective
function, 2) using those conditions to develop a “skew” condition on the classes, 3) characterizing
the conditions to be at a minimizer of the ranking objective function and 4) plugging the skew
condition into the equations arising from step 3, and simplifying to show that a minimizer of the
classification objective is also a minimizer of the ranking objective.

Proof Step 1 is to characterize the conditions to be at a minimizer of the classification loss. Define
λ

PC to be a minimizer ofR PC (assuming minimizers exist). AtλPC we have: for allj = 1, . . . ,n:

0=
∂R PC(λ)

∂λ j

∣

∣

∣

λ=λPC
=

K

∑
k=1

ep∑ j λPC
j h j (x̃k)h j(x̃k)+

I

∑
i=1

e−∑ j λPC
j h j (xi)(−h j(xi))

=
K

∑
k=1

vp
kh j(x̃k)+

I

∑
i=1

qi(−h j(xi)) (8)

wherevk := ef
λPC(x̃k) andqi := e− f

λPC(xi).
Step 2 is to develop a skew condition on the classes. Whenj is j̄ thenh j(xi) = 1 for all i, and

h j(x̃k) = 1 for all k. Using this, we can derive the skew condition:

0=
K

∑
k=1

vp
k −

I

∑
i=1

qi := pR PC
− (λPC)−R PC

+ (λPC). (skew condition) (9)
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Step 3 is to characterize the conditions to be at a minimizer of the ranking loss. First we simplify
the derivatives:

∂R PN(λ)

∂λ j
=

K

∑
k=1

p

(

I

∑
i=1

e(− fλ(xi)− fλ(x̃k))

)p−1[ I

∑
i=1

e−( fλ(xi)− fλ(x̃k)) [−(h j(xi)−h j(x̃k))]

]

= p
K

∑
k=1

efλ(x̃k)p

(

I

∑
i=1

e− fλ(xi)

)p−1(

h j(x̃k)
I

∑
i=1

e− fλ(xi)−
I

∑
i=1

h j(xi)e
− fλ(xi)

)

= p

(

I

∑
i=1

e− fλ(xi)

)p−1[ K

∑
k=1

h j(x̃k)e
fλ(x̃k)p

I

∑
i=1

e− fλ(xi)

−
K

∑
k=1

efλ(x̃k)p
I

∑
i=1

h j(xi)e
− fλ(xi)

]

. (10)

To be at a minimizer, the derivatives above must all be zero. Continuing to step 4, whenλ = λ
PC,

we have:

∂R PN(λ)

∂λ j

∣

∣

∣

λ=λPC
= p

(

I

∑
i=1

qi

)p−1[ K

∑
k=1

h j(x̃k)v
p
k

I

∑
i=1

qi −
K

∑
k=1

vp
k

I

∑
i=1

h j(xi)qi

]

.

Using the skew condition (9), and then (8),

∂R PN(λ)

∂λ j

∣

∣

∣

λ=λPC
= p

(

I

∑
i=1

qi

)p−1( I

∑
i=1

qi

)[

K

∑
k=1

h j(x̃k)v
p
k −

I

∑
i=1

h j(xi)qi

]

= p

(

I

∑
i=1

qi

)p
∂R PC(λ)

∂λ j

∣

∣

∣

λ=λPC
= 0. (11)

This means thatλPC is a minimizer of the P-Norm Push’s objective.

The backwards direction of the equivalence relationship is as follows:

Theorem 2 (The P-Norm Push can be trivially altered to minimize P-Classification’s objective.)
Let j̄ index the constant feature hj̄(x) = 1 ∀x. TakeλPN ∈ argminλR

PN(λ) (assuming minimizers
exist). Create a “corrected”λPN,corr as follows:

λ
PN,corr = λ

PN+b·ej̄ ,

where

b=
1

p+1
ln

∑i e
− f

λPN(xi)

∑k ef
λPN(x̃k)p

. (12)

Then,λPN,corr ∈ argminλR
PC(λ).

Rudin and Schapire (2009) have a very simple proof for the reverse direction, but this technique
could not easily be applied here. We have instead used the following proofoutline: first, we
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show that the corrected vectorλPN,corr satisfies the skew condition; then by deriving an expres-
sion similar to (11), we show that if the corrected P-Norm Push’s derivatives are zero, then so are
P-Classification’s derivatives at the corrected P-Norm Push’s solution.

Proof We will first show that the skew condition is satisfied for corrected vectorλ
PN,corr. The

condition we need to prove is:

I

∑
i=1

qcorr
i =

K

∑
k=1

(vcorr
k )p (skew condition), (13)

wherevcorr
k := ef

λPN,corr(x̃k) andqcorr
i := e− f

λPN,corr(xi).
From (12), we have:

e−b =

[

∑k ef
λPN(x̃k)p

∑i e
− f

λPN(xi)

]
1

p+1

.

The left side of (13) thus reduces as follows:

I

∑
i=1

qcorr
i =

I

∑
i=1

e− f
λPN(xi)−b = e−b

I

∑
i=1

e− f
λPN(xi)

=

[

∑K
k=1ef

λPN(x̃k)p

∑I
i=1e− f

λPN(xi)

]
1

p+1 I

∑
i=1

e− f
λPN(xi)

=

[

I

∑
i=1

e− f
λPN(xi)

]
p

p+1
[

K

∑
k=1

ef
λPN(x̃k)p

]
1

p+1

. (14)

Now consider the right side:

K

∑
k=1

(vcorr
k )p =

K

∑
k=1

ef
λPN(x̃k)pebp

=
K

∑
k=1

ef
λPN(x̃k)p

[

∑I
i=1e− f

λPN(xi)

∑k ef
λPN(x̃k)p

]
p

p+1

=

[

I

∑
i=1

e− f
λPN(xi)

]
p

p+1
[

K

∑
k=1

ef
λPN(x̃k)p

]
1

p+1

. (15)

Expression (14) is equal to expression (15), so the skew condition in (13) holds. According to (10),
atλ= λ

PN,corr,

∂R PN(λ)

∂λ j

∣

∣

∣

λ=λPN,corr
= p

(

∑
i

qcorr
i

)p−1[

∑
k

h j(x̃k)(v
corr
k )p∑

i

qcorr
i

−∑
k

(vcorr
k )p∑

i

h j(xi)q
corr
i

]

.

Incorporating (13),

∂R PN(λ)

∂λ j

∣

∣

∣

λ=λPN,corr
= p

(

∑
i

qcorr
i

)p[

∑
k

h j(x̃k)(v
corr
k )p−∑

i

h j(xi)q
corr
i

]

,
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which includes the derivatives ofR PC:

∂R PN(λ)

∂λ j

∣

∣

∣

λ=λPN,corr
= p

(

∑
i

qcorr
i

)p
[

∂R PC(λ)

∂λ j

∣

∣

∣

λ=λPN,corr

]

.

By our assumption thatλPN,corr exists, ∑i q
corr
i is positive and finite. Thus, whenever

∂R PN(λ)
∂λ j

∣

∣

∣

λ=λPN,corr
= 0 for all j we have

∂R PC(λ)

∂λ j

∣

∣

∣

λ=λPN,corr
= 0.

We need only that∂R
PN(λ)
∂λ j

∣

∣

∣

λ=λPN,corr
= 0, ∀ j. This is not difficult to show, since the correction

b never influences the value ofR PN, that is,R PN(λ) = R PN(λcorr).

As an alternative to P-Classification, we consider a simple weighted version of AdaBoost. The
objective for this algorithm, which we call “Cost-Sensitive AdaBoost,” is a weighted combination
of R AB

− andR AB
+ . The objective is:

R CSA(λ) :=
I

∑
i=1

e− fλ(xi)+C
K

∑
k=1

efλ(x̃k) =: R AB
+ (λ)+CR AB

− (λ).

Cost-Sensitive AdaBoost can be implemented by using AdaBoost’s usual update scheme, where
the only change from AdaBoost is the initial weight vector:d0 is set so that the negatives are each
weightedC times as much as the positives.

No matter whatC is, we prove that Cost-Sensitive AdaBoost minimizes RankBoost’s objective.
This indicates that Cost-Sensitive AdaBoost is not fundamentally different than AdaBoost itself. To
show this, we prove the forward direction of the equivalence relationshipbetween Cost-Sensitive
AdaBoost (for anyC) and RankBoost. We did not get this type of result earlier for P-Classification,
because P-Classification produces different solutions than AdaBoost(and the P-Norm Push pro-
duces different solutions than RankBoost). Here is the forward direction of the equivalence rela-
tionship:

Theorem 3 (Cost-Sensitive AdaBoost minimizes RankBoost’s objective.)
If λCSA∈ argminλR

CSA(λ) (assuming minimizers exist), thenλCSA∈ argminλR
RB(λ).

The proof follows the same four steps outlined for the proof of Theorem 1.

Proof DefineλCSA to be a minimizer ofR CSA(assuming minimizers exist). AtλCSAwe have:

0=
∂R CSA(λ)

∂λ j

∣

∣

∣

λ=λCSA
=

∂R AB
+ (λ)

∂λ j
+C

∂R AB
− (λ)

∂λ j

=
I

∑
i=1

qi(−h j(xi))+C
K

∑
k=1

vkh j(x̃k) (16)

wherevk := ef
λCSA(x̃k) andqi := e− f

λCSA(xi). The next step is to develop a skew condition on the
classes. Whenj is j̄ thenh j(xi) = 1 for all i, andh j(x̃k) = 1 for all k. Using this, the skew condition
can be derived as follows:
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0=C
K

∑
k=1

vk−
I

∑
i=1

qi :=CR AB
− (λCSA)−R AB

+ (λCSA). (skew condition)

We now characterize the conditions to be at a minimizer of the ranking loss. We plug the skew
condition into the derivatives from RankBoost’s objective, which is given in (4):

∂R RB(λ)

∂λ j
=

K

∑
k=1

h j(x̃k)vk

I

∑
i=1

qi −
K

∑
k=1

vk

I

∑
i=1

h j(xi)qi

=
K

∑
k=1

h j(x̃k)vk

[

C
K

∑
k=1

vk

]

−

[

K

∑
k=1

vk

]

I

∑
i=1

h j(xi)qi

=

[

K

∑
k=1

vk

][

C
K

∑
k=1

h j(x̃k)vk−
I

∑
i=1

h j(xi)qi

]

.

To be at a minimizer, the derivative must be zero. Whenλ= λ
CSA, from (16) we have:

∂R RB(λ)

∂λ j

∣

∣

∣

λ=λCSA
=

[

K

∑
k=1

vk

]

∂R CSA(λ)

∂λ j

∣

∣

∣

λ=λCSA
= 0.

This means thatλCSA is a minimizer of RankBoost’s objective, regardless of the value ofC.

4. Verification of Theoretical Results

The previous section presented theoretical results; in this section and in thefollowing sections we
demonstrate that these results can have direct implications for empirical practice. The equivalence
of P-Classification and P-Norm Push can be observed easily in experiments, both in the special case
p = 1 (AdaBoost and RankBoost are equivalent, Section 4.2) as well as for their generalizations
whenp> 1 (in Section 4.3). We further investigated whether a similar equivalence property holds
for logistic regression and Logistic Regression Ranking (“LRR,” defined in Section 2). We present
empirical evidence in Section 4.4 suggesting that such an equivalence relationship does not hold
between these two algorithms. Both algorithms have been implemented as coordinate descent on
their objectives. Coordinate descent was first suggested for logistic regression by Friedman et al.
(2000).

4.1 Data Sets

For the experimental evaluation, we used the Letter Recognition, MAGIC, Yeast and Banana data
sets obtained from the UCI repository (Frank and Asuncion, 2010). The Letter Recognition data set
consists of various statistics computed from black-and-white rectangular pixel displays, which each
represent one of the 26 capital-letters of the English alphabet. The learning task is to determine
which letter an image represents. The MAGIC data set contains data from theMajor Atmospheric
GammaImagingCherenkov Telescope project. The goal is to discriminate the statistical signatures
of Monte Carlo simulated “gamma” particles from simulated “hadron” particles. The yeast data
set is a collection of protein sequences and the goal is to predict cellular localization sites of each
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Data Set # Training examples # Test examples # Features

Letter Recognition 1000 4000 15
MAGIC 1000 4000 11

Yeast 500 984 9
Banana 1000 4000 5

Table 1: Sizes of training/test sets used in the experiments. The number of features column repre-
sents the total number of features for the data sets, including the intercept.

protein. Banana is an artificial data set with a banana-shaped distribution of two classes, represented
by two features.

For MAGIC, Letter Recognition, and Yeast data sets, the weight of each featureh j(xi) was
quantized into -1 or +1 based on thresholding on meanih j(xi). The MAGIC data set was not further
pre-processed beyond this, and “hadrons” were used as the positive class. For the Letter Recognition
data set, we transformed the data set to two distinct categories, where the letter A represents the
positive class and the remaining letters collectively form the negative class.This transformation
created a highly imbalanced data set and presented a challenge in our experimental setup for the
RankBoost algorithm, which, in its original implementation uses an analytical solution for the line
search forαt at each iteration. In particular, the analytical solution requires that the fraction in
the expression forαt (Equation 2 in Freund et al., 2003) is neither zero nor infinity. To ensure
this, each featureh j in the training set must have at least one positive example whereh j = 1 and
a negative example whereh j = −1, and similarly, the training set should also contain at least one
positive example whereh j = −1 and a negative example whereh j = 1. Our random sampling of
the training sets for the Letter Recognition data set did not often satisfy the requirement on the
positive examples for “x2bar” and “x-ege” features; we thus removed these two features. Note that
we could not use RankBoost in its original form, since our features are{−1,1}-valued rather than
{0,1}-valued. We simply rederived Equation 2 in Freund et al. (2003) to accommodate this. For
the Yeast data set, from the 10 different classes of localization sites, we used CYT (cytosolic or
cytoskeletal) as the positive class and combined the remaining 9 classes as thenegative class. We
used the 8 numerical features of the Yeast data set and omitted the categorical feature. We increased
the number of features of the Banana data set by mapping the original two features{x1,x2} to a new
four-dimensional feature space{x

′

1,x
′′

1,x
′

2,x
′′

2} by thresholding the original feature values at values
of −4 and−2. Namely, we used the mapping:

x
′

i =

{

+1 if xi >−2

−1 otherwise
and x

′′

i =

{

+1 if xi >−4

−1 otherwise
.

for i = 1,2. The experimental results reported in this section are averaged over 10random and
distinct train/test splits. The size of train/test splits for each data set and the number of features are
presented in Table 1.

4.2 Equivalence of AdaBoost and RankBoost

Although AdaBoost and RankBoost perform (asymptotically) equally well,it is not immediately
clear whether this equivalence would be able to be observed if the algorithmis stopped before the
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Figure 2: Verifying the forward direction of the equivalence relationshipfor AdaBoost and Rank-
Boost

regime of convergence is reached. We present empirical evidence to support the forward direction
of the theoretical equivalence relationship forp= 1, on both the training and test splits, for all data
sets described above.

In Figure 2,{λr}r and{λc}c denote sequences of coefficients produced by RankBoost and Ada-
Boost respectively; the subscriptsr andc stand forranking andclassification. The figure illustrates
both the convergence of AdaBoost and the convergence of RankBoost, with respect to RankBoost’s
objectiveRRB. The x-axis denotes the number of iterations. The illustration supports the conver-
gence of AdaBoost to a minimizer of RankBoost’s objective. Because of the way that RankBoost is
designed,R RB(λr) converges more rapidly (in terms of the number of iterations), thanR RB(λc).

4.3 Equivalence of P-Classification and P-Norm Push

In the same experimental setting, we now validate the equivalence of P-Classification and P-Norm
Push. In Figure 3,{λr}r and{λc}c denote sequences of coefficients produced by the P-Norm Push
and P-Classification respectively. Convergence is illustrated for both algorithms with respect to
the P-Norm Push’s objectiveRPN. The x-axis again denotes the number of iterations. The figure
illustrates that P-Classification can effectively be used to minimize the P-Norm Push’s objective.
Comparing with thep = 1 results in Figure 2, the convergence behavior on the training sets are
similar, whereas there are small differences in convergence behavior on the test sets. One impor-
tant distinction between training and testing phases is that the ranking loss is required to decrease
monotonically on the training set, but not on the test set. As discussed in depthin Rudin (2009),
generalization is more difficult asp grows, so we expect a larger difference between training and
test behavior for Figure 3.
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The next experiment verifies the backwards direction of the equivalence relationship. We
demonstrate that a sequence of correctedλ’s minimizing P-Norm Push’s objective also minimizes
P-Classification’s objective. At each iteration of the P-Norm Push, we computeb as defined in (12)
and updateλr accordingly. The sequences ofR PC values for{λc}c and the corrected{λr}r are
shown in Figure 4.

4.4 Equivalence Does Not Seem To Hold For Logistic Regression and Logistic Regression
Ranking

We implemented a coordinate descent algorithm for minimizing LRR’s objective function (6), where
pseudocode is given in Figure 5. Note that the pseudocode for minimizing logistic regression’s
objective function would be similar, with the only change being that the definitionof the matrixM
is the same as in Figure 1.

Figure 6 provides evidence that no such equivalence relationship holdsfor logistic regression
and Logistic Regression Ranking. For this experiment,{λr}r and{λc}c denote sequences of coef-
ficients produced by LRR and logistic regression respectively. Convergence is illustrated for both
algorithms with respect to LRR’s objective. Even after many more iterations than the earlier ex-
periments, and after LRR’s objective function values have plateaued forthe two algorithms, these
values are not close together.
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Figure 3: Verifying the forward direction of the equivalence theorem for P-Classification and the
P-Norm Push (p=4)
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5. Benefits of the Equivalence Relationship

Four major benefits of the equivalence relationship are (i) theoretical motivation, using an algo-
rithm that optimizes classification and ranking objectives simultaneously (ii) gaining the ability to
estimate conditional probabilities from a ranking algorithm, (iii) much faster runtimes for rank-
ing tasks, by passing to a classification algorithm and using the equivalencerelationship, and (iv)
building a relationship between the P-Norm Push and the “precision” performance metric through
P-Classification’s objective (discussed in Section 6). We have already discussed theoretical motiva-
tion, and we will now discuss the other two benefits.

5.1 Estimating Probabilities

The main result in this section is that the scoring functionfλ(x) can be used to obtain estimates of the
conditional probabilityP(y= 1|x). This result relies on properties of the loss functions, including
smoothness, and the equivalence relationship of Theorem 2. Note that theconditional probability
estimates for AdaBoost are known not to be very accurate asymptotically in many cases (e.g., see
Mease et al., 2007), even though AdaBoost generally provides models with high classification and
ranking accuracy (e.g., see Caruana and Niculescu-Mizil, 2006). In other words, even in cases
where the probability estimates are not accurate, the relative ordering of probability estimates (the
ranking) can be accurate.
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Figure 4: Verifying the backward direction of the equivalence for P-Classification and P-Norm Push
(p=4).λr are corrected withb that is defined in (12).

2918



ON EQUIVALENCE RELATIONSHIPSBETWEEN CLASSIFICATION ANDRANKING ALGORITHMS

1. Input: Examples{(xi ,yi)}
m
i=1, wherexi ∈ X , yi ∈ {−1,1}, features{h j}

n
j=1, h j : X → R ,

number of iterationstmax.

2. Define: Mik, j := h j(xi)−h j(x̃k) for all i,k, j, where the first index is over all positive-negative
pairs indexed byik, for ik = 1, . . . , IK .

3. Initialize: λ1, j = 0 for j = 1, . . . ,n, d1,ik = 1/IK for ik = 1, . . . , IK .

4. Loop for t = 1, ..., tmax

(a) jt ∈ argmaxj ∑ik dt,ikMik, j

(b) Perform a linesearch forαt . That is, find a valueαt that minimizes:

(

IK

∑
ik=1

Mik, jt
1

1+e[(∑ j Mik, jt λt)+αikMik, jt ]

)2

(c) λt+1, j = λt, j +αt1 j= jt

(d) dt+1,ik =
1

1+e(∑ j Mik, j λt+1, j)
for i = 1, . . . , I ,k= 1, . . . ,K

(e) dt+1,ik =
dt+1,ik

∑ik dt+1,ik

5. Output: λtmax

Figure 5: Pseudocode for the Logistic Regression Ranking algorithm.

Theorem 4 Probability estimates for P-Classification and for the P-Norm Push algorithm (with λ

corrected trivially as in Theorem 2) can be obtained from the scoring functionfλ(x) as follows:

P̂(y= 1|x) =
1

1+e− fλ(x)(1+p)
.

Proof This proof (in some sense) generalizes results from the analysis of AdaBoost and logistic
regression (see Friedman et al., 2000; Schapire and Freund, 2011).A general classification objective
function can be regarded as an estimate for the expected loss:

Rtrue( f ) := Ex,y∼D[l(y, f (x))],

where expectation is over randomly selected examples from the true distribution D. This quantity
can be split into two terms, as follows:

Ex,y∼D[l(y, f (x))] = Ex
[

Ey|x[l(y, f (x)|x)]
]

= Ex[P(y= 1|x)l(1, f (x))+(1−P(y= 1|x))l(−1, f (x))].

At eachx, differentiating the inside with respect tof (x) and setting the derivative to 0 at the point
f (x) = f ∗(x), we obtain:

0= P(y= 1|x)l
′
(1, f ∗(x))+(1−P(y= 1|x))l

′
(−1, f ∗(x)),
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Figure 6: Doubt on equivalence relationship for logistic regression andLRR

and solving this equation forP(y= 1|x),

P(y= 1|x) =
1

l ′ (1, f ∗(x))
−l ′ (−1, f ∗(x))

+1
. (17)

P-Classification’s objective is an empirical sum over the training instances rather than an expectation
over the true distribution:

R PC(λ) =
I

∑
i=1

e− fλ(xi)+
K

∑
k=1

1
p

efλ(x̃k)p.

Thus, estimates of the conditional probabilitiesP̂(y= 1|x) can be obtained using (17) where:

l(1, f (x)) = e− f (x) andl(−1, f (x)) =
1
p

ef (x)p,

and instead off ∗(x), which cannot be calculated, we usefλ(x). To do this, we first find derivatives:

l(1, f (x)) = e− f (x) ⇒ l
′
(1, f (x)) =−e− f (x)

l(−1, f (x)) =
1
p

ef (x)p ⇒ l
′
(−1, f (x)) = ef (x)p.

Substituting into (17), we obtain estimated conditional probabilities as follows:

P̂(y= 1|x) =
1

1+ l ′ (1, fλ(x))
−l ′ (−1, fλ(x))

=
1

1+ −e− fλ(x)

−efλ(x)p

=
1

1+e− fλ(x)(1+p)
.

This expression was obtained for P-Classification, and extends to the P-Norm Push (withλ cor-
rected) by the equivalence relationship of Theorem 2.

Note that forp= 1, Theorem 4 yields conditional probabilities for RankBoost.
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Letter Recognition

Algorithm Objective # of Iterations(for .05%) Time (sec.)

1K
T

ra
in

AdaBoost R RB 123.4±21.6 0.1±0.0
RankBoost R RB 50.2±10.4 1.1±0.3
P-Classification R PN 132.5±23.9 0.6±0.1
PNormPush R PN 43.3±7.0 3.3±0.6
Logistic Regression R LRR N/A N/A
LRR R LRR 50.0±11.9 8.0±3.0

3K
T

ra
in

AdaBoost R RB 112.3±28.5 0.1±0.0
RankBoost R RB 43.7±9.3 10.7±2.7
P-Classification R PN 136.5±36.4 1.3±0.3
PNormPush R PN 44.0±8.8 29.3±6.5
Logistic Regression R LRR N/A N/A
LRR R LRR 43.8±11.4 65.8±18.2

5K
T

ra
in

AdaBoost R RB 108.9±18.8 0.1±0.0
RankBoost R RB 43.2±7.5 29.2±7.8
P-Classification R PN 138.3±29.4 1.7±0.3
PNormPush R PN 41.9±6.2 72.0±12.5
Logistic Regression R LRR N/A N/A
LRR R LRR 44.4±8.3 218.3±40.6

Table 2: Comparison of runtime performances over varying training set sizes. p = 4 for P-
Classification and P-Norm Push.

5.2 Runtime Performances

Faster runtime is a major practical benefit of the equivalence relationship proved in Section 3. As
we have shown in Sections 4.2 and 4.3, when comparing how ranking algorithms and classification
algorithms approach the minimizers of the misranking error, the ranking algorithms tend to converge
more rapidly in terms of the number of iterations. Convergence with fewer iterations, however,
does not translate intofasterconvergence. Each iteration of either algorithm requires a search for
the optimal weak hypothesisj. For the P-Norm Push, each comparison requires quadratic space
(involving a vector multiplication of sizeI ×K). In contrast, P-Classification’s comparisons are
linear in the number of examples (involving a vector multiplication of sizeI +K). For RankBoost,
note that a more efficient implementation is possible for bipartite ranking (see Section 3.2 of Freund
et al., 2003), though a more efficient implementation has not previously beenexplored in general
for the P-Norm Push; in fact, the equivalence relationship allows us to useP-Classification instead,
making it somewhat redundant to derive one.

Table 2 presents the number of iterations and the amount of time required to traineach of
the algorithms (AdaBoost, RankBoost, P-Classification for p=4, P-Norm Push for p=4, logistic
regression, and Logistic Regression Ranking) in an experiment, using a 2.53 gHz macbook pro
with 4 GB ram. We used the RankBoost algorithm with the “second method” for computingαt

given by Freund et al. (2003), since it is the special case corresponding to the P-Norm Push with
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p= 1. The results are presented for the Letter Recognition data set, which is thelargest data set in
our experimental corpus. To assess the scalability of the algorithms, we generated 10 training sets
each of sizes 1000 examples, 3000 examples, and 5000 examples (30 totaltraining sets). For each
algorithm, we report the mean and variance (over 10 training sets) of the number of iterations and
the time elapsed (in seconds) for the ranking loss to be within 0.05% of the asymptotic minimum
ranking loss. The asymptotic value was obtained using 200 iterations of the corresponding ranking
algorithm (for AdaBoost and RankBoost, we used RankBoost; for P-Classification and the P-Norm
Push, we used the P-Norm Push; and for logistic regression and LRR, we used LRR). Note that
logistic regression may never converge to within 0.05% of the ranking loss obtained by LRR (there
is no established equivalence relationship), so “N/A” has been placed in the table when this occurs.

Comparing the runtime performances of classification and ranking algorithms inTable 2, Ada-
Boost and P-Classification yield dramatic improvement over their ranking counterparts. Despite
the fact that they require more than double the number of iterations to obtain thesame quality of
solution, it only takes them a fraction of the time. Further, AdaBoost and P-Classification appear
to scale better with the sample size. Going from 1K to 5K, AdaBoost’s run time roughly doubles,
on average from 0.08 to 0.14 seconds, whereas RankBoost takes over 27 times longer (29.19/1.08
≈ 27). Similarly, P-Classification’s run time on the 5K data set is slightly more than twice the run
time on the 1K data set, as opposed to approximately 22 times longer (72/3.32≈ 21.7) for P-Norm
Push on the 5K data set. Thus, the equivalence relationship between classification and ranking al-
gorithms enables us to pass the efficiency of classification algorithms to their ranking counterparts,
which leads to significant speed improvement for ranking tasks.

6. Experiments on Prediction Performance

When evaluating the prediction performance of the P-Classification algorithm,we chosepreci-
sion as our performance metric, motivated by a specific relationship between precision and P-
Classification’s objective that we derive in this section. In Information Retrieval (IR) contexts,
precision is defined as the number of relevant instances retrieved as a result of a query, divided by
the total number of instances retrieved. Similarly, in a classification task the precision is defined as

Precision :=
TP

TP+FP

where TP (true positives) are the number of instances correctly labeled as belonging to the positive
class and FP (false positives) are the number of instances incorrectly labeled as belonging to the
positive class. In a classification task, 100% precision means that every instance labeled as belong-
ing to the positive class does indeed belong to the positive class, whereas 0% precision means that
all positive instances are misclassified.

In order to derive the relationship between precision and P-Classification’s objective, consider
P-Classification’s objective:

R PC(λ) =
I

∑
i=1

e− fλ(xi)+
1
p

K

∑
k=1

efλ(x̃k)p. (18)
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There is a potential for the second term to be much larger than the first term when p > 1, so we
consider:

R PC(λ)≥
1
p ∑

k

efλ(x̃k)p (19)

≥
1
p ∑

k

eγp
1[ fλ(x̃k)≥γ] =

1
p

eγp∑
k

1[ fλ(x̃k)≥γ]. (20)

Transitioning from (19) to (20) uses the fact thatefλ(x̃k) > eγp when fλ(x̃k)≥ γ, ∀γ. Let Ī fλ>γ, K̄ fλ>γ
denote the number of positive and negative instances that score higher than the cutoff thresholdγ,
respectively. Then,

∑
k

1[ fλ(x̃k)≥γ] = K̄ fλ≥γ

=
(

Ī fλ≥γ + K̄ fλ≥γ
)

(

1−
Ī fλ≥γ

Ī fλ≥γ + K̄ fλ≥γ

)

=
(

Ī fλ≥γ + K̄ fλ≥γ
)

(1−Precision@( fλ = γ)) . (21)

Note thatĪ fλ≥γ + K̄ fλ≥γ is simply the number of all instances with scores greater thanγ. Plugging
(21) into (20) yields

R PC(λ)≥
1
p

eγp(Ī fλ≥γ + K̄ fλ≥γ
)

(1−Precision@( fλ = γ))

which indicates that minimizing P-Classification’s objective may yield solutions thathave high
precision. Through the equivalence of the P-Norm Push and P-Classification, a similar relationship
with precision also exists for the P-Norm Push.

6.1 Effect of p:

In this section, we explore the prediction performance of the P-Classification algorithm with respect
to p, for various levels ofγ, whereγ is the cutoff threshold for calculating precision. We have three
hypotheses that we want to investigate, regarding the relationship betweenp and precision.

Hypothesis 1: The presence of exponent p in the second term in (18) enables P-Classification
to achieve improved prediction performance.

The first term of (18) can be much smaller than the second term, due mainly to thepresence
of p in the exponent. This means that the bound in (19) becomes tighter with the presence ofp.
This may indicate that the exponentp can influence the algorithm’s performance with respect to
precision. The empirical analysis that we present later in this section investigates the influence and
impact of the exponentp on precision accuracy.

Hypothesis 2: Increasing p in P-Classification’s objective yields improvedprediction perfor-
mance.

As p increases, the bound in (19) becomes tighter and the largest terms inR PC correspond to the
highest scoring negative examples. MinimizingR PC thus “pushes” these negative examples down
the ranked list, potentially leading to higher values of precision.

Hypothesis 3: P-Classification can achieve better performance than AdaBoost.
P-Classification is a generalized version of AdaBoost. We hypothesize that as p increases, it

will be possible to obtain better prediction performance.
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We are able to make the hypotheses above since we have chosen precisionto be the performance
metric. Another metric for evaluating the performance of a ranking function isrecall, which is
defined as the number of true positives divided by the total number of positive examples. A perfect
recall of 100% indicates that all positive examples are above the cutoff threshold. Therefore, if
our goal was to optimize recall instead of precision, we would want to put theexponentp on the
first term ofR PC rather than the second term, since it will create the effect of pushing the positive
examples from bottom to top of the list. As the goal is to concentrate on the correct rankings at the
top of the list, we particularly aim at achieving higher precision, rather than higher recall. In many
IR systems, including web search, what matters most is how many relevant (positive) results there
are on the first page or the first few pages—this is reflected directly by precision. Recall does not
accurately represent the performance at the top of the list, since it concerns the performance across
all of the positives; this would require us to go much farther down the list than is reasonable to
consider for these applications, in order to span all of the positive examples.

We will now describe the experimental setup. We chose training sets as follows: for MAGIC,
1000 randomly chosen examples, for Yeast, 500 randomly chosen examples, for Banana, 1000
randomly chosen examples and for Letter Recognition, 1200 examples with 200 positives and 1000
positives to achieve an imbalance ratio of 1:5. Increasing the number of positive examples in the
training set of Letter Recognition enabled us to keep the “x-ege” attribute, but discard only the
“x2bar” attribute, due to RankBoost’s requirement discussed in Section 4.1. For all data sets except
Yeast, we randomly selected 4000 examples as the test set. For Yeast, we selected the remaining 983
examples as the test set. The experiments were conducted for three cutoffthresholdsγ, to consider
the top 50%, 25% and 10% of the list. The algorithms were run until they had converged (hundreds
of iterations).

Table 3 presents the precision results on the test sets from all four data sets. In order to inves-
tigate the hypotheses above, we redefine Cost-Sensitive AdaBoost as an algorithm that minimizes
the following objective:

R AB
cs (λ) =

I

∑
i=1

e−yi fλ(xi)+C
1
p

K

∑
k=1

e−yk fλ(x̃k). (22)

In order to test the first hypothesis, we fixC= 1. WhenC= 1, (22) resembles P-Classification’s
objective in (7), the only difference is thatp is missing in the exponent. WhenC = 1 andp = 1,
(22) reduces to AdaBoost’s objective (3). In that case, P-Classification and AdaBoost give the same
performance trivially. As shown in Table 3, for fixed values ofp, wherep > 1, our experiments
indicate that P-Classification yields higher precision than Cost-Sensitive AdaBoost, which agrees
with our first hypothesis. To see this, compare element-wise the “AdaB.CS” rows (C = 1, p > 1)
in the table with the corresponding “P-Classification” rows; this is 36 comparisons that all show
P-Classification giving higher precision than AdaBoost. This was a controlled experiment in which
the treatment was the presence of the exponentp. Our results indicate that the presence of the
exponentp can be highly effective in achieving higher precision values.

In order to test the second hypothesis, we investigated the impact of increasing p in
P-Classification’s objective. We considered four values ofp for each of three cutoff thresholds.
Table 3 shows that increasingp in P-Classification’s objective leads to higher precision values. To
see this, consider the P-Classification rows in Table 3. Within each column of the table, perfor-
mance improves asp increases. With increasingp, P-Classification focuses more on pushing down
the high-scored negative instances from top of the list, yielding higher precision.
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MAGIC Letter Recognition
50% 25% 10% 50% 25% 10%

AdaB.CS

p=1,C=1 63.94±3.26 69.40±2.75 94.75±1.03 66.88±8.13 66.88±8.13 72.78±7.20
p=2,C=1 55.92±2.68 69.40±2.75 94.75±1.03 61.76±8.14 61.76±8.14 72.60±6.99
p=3,C=1 54.25±1.41 69.40±2.75 94.75±1.03 58.91±7.61 58.91±7.61 72.82±7.24
p=4,C=1 54.25±1.41 69.40±2.75 94.75±1.03 55.61±7.23 56.02±6.82 72.78±7.20
p=4,C=#neg

#pos 55.20±2.35 69.40±2.75 94.75±1.03 68.42±7.09 68.42±7.09 72.88±7.33

P-Class.

p=1,C=1 63.94±3.26 69.40±2.75 94.75±1.03 66.88±8.13 66.88±8.13 72.78±7.20
p=2,C=1 64.45±3.13 70.22±2.77 94.97±0.97 68.98±8.02 68.98±8.02 77.20±7.62
p=3,C=1 65.21±2.99 70.46±2.60 95.15±0.91 70.09±7.65 70.09±7.65 78.45±8.63
p=4,C=1 65.13±2.96 70.60±2.62 95.15±0.94 70.38±7.43 70.38±7.43 78.93±8.41
p=4,C=#neg

#pos 82.27±7.68 82.49±7.08 95.15±0.94 90.96±3.39 90.96±3.39 90.96±3.39
LR 65.31±2.90 69.51±2.65 94.78±1.08 69.49±7.63 69.49±7.63 77.10±8.22
LRCS C=#neg

#pos 84.54±8.64 84.54±8.64 95.00±0.96 90.62±4.18 90.62±4.18 90.62±4.18

Banana Yeast
50% 25% 10% 50% 25% 10%

AdaB.CS

p=1,C=1 75.56±0.39 88.77±1.75 90.35±2.49 52.77±4.59 52.77±4.59 56.27±3.87
p=2,C=1 75.56±0.39 88.77±1.75 90.35±2.49 44.24±2.54 49.11±3.91 56.06±3.85
p=3,C=1 74.91±0.94 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85
p=4,C=1 74.15±1.09 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85
p=4,C=#neg

#pos 75.56±0.39 88.77±1.75 90.35±2.49 42.66±1.56 49.11±3.91 56.06±3.85

P-Class.

p=1,C=1 75.56±0.39 88.77±1.75 90.35±2.49 52.77±4.59 52.77±4.59 56.27±3.87
p=2,C=1 75.57±0.39 89.16±0.60 96.70±2.79 53.20±4.23 53.20±4.23 56.37±4.66
p=3,C=1 75.57±0.39 89.16±0.60 97.80±0.86 53.25±4.22 53.25±4.22 56.47±5.38
p=4,C=1 75.57±0.39 89.16±0.60 98.55±1.02 53.26±4.22 53.26±4.22 56.98±4.74
p=4,C=#neg

#pos 88.75±9.45 92.86±2.86 98.55±1.02 56.37±6.26 56.37±6.26 58.12±6.20
LR 75.57±0.39 89.16±0.60 90.35±2.49 53.23±4.24 53.23±4.24 56.57±5.15
LRCS C=#pos

#neg 88.75±9.45 92.86±2.86 90.35±2.49 55.88±6.09 55.88±6.09 57.59±6.57

Table 3: Precision values at the top 50%, 25% and 10% of the ranked list.

Evaluating the third hypothesis, Table 3 shows that P-Classification forp > 1 yields superior
precision than AdaBoost in all comparisons (36 of them in total, from 4 data sets, 3γ levels and 3
values ofp> 1).

6.2 Effect of ParameterC

Our next set of experiments focus on the behavior that we observe in Cost-Sensitive AdaBoost’s
results, which is that increasingp has a detrimental effect on precision, whereas in P-Classification,
increasingp leads to higher precision. Given that the only difference betweenR PC andR AB

cs is the
presence of the exponentp in R PC, the behavior that we observe can be explained by the hypothesis
that the exponentp in P-Classification is the dominant factor in determining the misclassification
penalty on the negative examples, overwhelming the effect of the1

p factor.

This leaves room for the possibility that altering the1
p factor could lead to improved perfor-

mance. We tested this possibility as follows: first, we varied the coefficientC in Cost-Sensitive
AdaBoost’s objective in (22); second, we introduced the sameC into P-Classification’s objective,
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and thus defined a Cost-Sensitive P-Classification algorithm that minimizes the following loss:

R PC
cs (λ) =

I

∑
i=1

e− fλ(xi)+C
1
p

K

∑
k=1

efλ(x̃k)p.

In the experiments, we heuristically setC= #neg
#pos in order to reduce, and possibly eliminate, the

detrimental effect of the1p term. Our data sets share characteristics similar to many other real world
data sets in that the number of positive examples is less than the number of negative examples;
thereforeC > 1 for all four data sets. The#neg

#pos ratios averaged over 10 splits for each data set
are 354/646, 200/1000, 400/600 and 155/345 for MAGIC, Letter Recognition, Banana and Yeast,
respectively. The last row in Table 3 for Cost-Sensitive AdaBoost, andalso the last row for P-
Classification, contains performance results withC = #neg

#pos. As seen, for a fixedp (p = 4 in this
case), using this new value forC dramatically improves precision for P-Classification in most cases
(10 out of 12 comparisons) and for AdaBoost in some cases (5 out of 12 comparisons). To see this,
compare thep = 4,C = 1 row with thep = 4,C = #neg

#pos row for each algorithm. UsingC > 1 is
equivalent to giving higher misclassification penalty to the negative examples, which can result in a
stronger downward push on these examples, raising precision.

6.3 Comparison of P-Classification With Logistic Regression

Table 3 also presents results for logistic regression, both using its originalformulation (5) as well
as its cost-sensitive variant; the objective for cost-sensitive logistic regression is formulated by mul-
tiplying the second term of logistic regression’s objective in (5) with the coefficientC. In compar-
ing P-Classification (p=4) with logistic regression, P-Classification performed worse than logistic
regression in only one comparison out of 12 (3γ levels and 4 data sets). Considering their cost-
sensitive variants withC = #neg

#pos, P-Classification and logistic regression generally outperformed
their original (non-cost-sensitive) formulations (10 out of 12 comparisons for P-Classification vs.
Cost-Sensitive P-Classification withp=4, and 11 out of 12 comparisons for logistic regression vs
cost-sensitive logistic regression). Furthermore, Cost-Sensitive P-Classification performed worse
than cost-sensitive logistic regression in only 2 out of 12 comparisons.

7. A Hybrid Approach for Logistic Regression

As we discussed in Section 4.4, logistic regression and LRR do not seem to exhibit the equivalence
property that we have established for boosting-style algorithms. Consequently, neither logistic re-
gression or LRR may have the benefit of low classification loss and rankingloss simultaneously.
This limitation can be mitigated to some degree, through combining the benefits of logistic re-
gression and LRR into a single hybrid algorithm that aims to solve both classification and ranking
problems simultaneously. We define the hybrid loss function as:

R LR+LRR= R LR+βR LRR

whereβ denotes a non-negative regularization factor.β= 0 reduces the hybrid loss to that of logistic
regression, whereas increasingβ tilts the balance towards LRR. The trade-off between classification
and ranking accuracy is shown explicitly in Figure 7, which presents the 0-1 classification loss and
0-1 ranking loss of this hybrid approach at variousβ settings. For comparison, we have included
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Figure 7: Effect ofβ on the misclassification error and misranking error rates for MAGIC data set.

the baseline performance of AdaBoost, logistic regression and LRR. Forthis particular experiment,
logistic regression was able to achieve a better misclassification result than AdaBoost (see Figure
7(a)), but at the expense of a very large misranking error (see Figure 7(b)). Asβ increases, Figure
7(b) shows that the misranking error decreases almost to the level of AdaBoost’s, whereas Figure
7(a) shows that the classification error increases to be higher than AdaBoost’s. The value ofβ
should be chosen based on the desired performance criteria for the specific application, determining
the balance between desired classification vs ranking accuracy.

8. Conclusion

We showed an equivalence relationship between two algorithms for two different tasks, based on
a relationship between the minimizers of their objective functions. This equivalence relationship
provides an explanation for why these algorithms perform well with respect to multiple evaluation
metrics, it allows us to compute conditional probability estimates for ranking algorithms, and per-
mits the solution of ranking problems an order of magnitude faster. The two algorithms studied in
this work are generalizations of well-known algorithms AdaBoost and RankBoost. We showed that
our new classification algorithm is related to a performance metric used for ranking, and studied
empirically how aspects of our new classification algorithm influence rankingperformance. This
allowed us to suggest improvements to the algorithm in order to boost performance. Finally, we pre-
sented a new algorithm inspired by logistic regression that solves a task thatis somewhere between
classification and ranking, with the goal of providing solutions to both problems. This suggests
many avenues for future work. For instance, it may be possible to directly relate either the objec-
tive of P-Classification or the P-Norm Push to other performance metrics (see also the discussion
in Rudin, 2009). It may also be interesting to vary the derivation of P-Classification to include an
exponent on both terms in order to handle, for instance, both precision and recall.
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