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Abstract

This paper describes the ecosystem of R add-on packagdspkd@round the infrastructure pro-
vided by the packagerules. The packages provide comprehensive functionality fotlyaiag
interesting patterns including frequent itemsets, assioci rules, frequent sequences and for build-
ing applications like associative classification. Aftesalissing the ecosystem’s design we illustrate
the ease of mining and visualizing rules with a short example
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1. Overview

Mining frequent itemsets and association rules is a popular and well ceeglimethod for dis-
covering interesting relations between variables in large databasesci#&t&sorules are used in
many applications and have become prominent as an important exploratogdn@tiuncovering

cross-selling opportunities in large retail databases.

Agrawal et al. (1993) introduced the problem of mining association rutes fransaction data
as follows:

Let | = {is,i2,...,in} be a set oh binary attributes calleitems Let D = {t3,t5,....tn} be
a set of transactions called tlatabase Each transaction irD has a unique transaction ID and
contains a subset of the itemslin A rule is defined as an implication of the forfh=-Y where
X,Y Cl andXNY = 0 are calleditemsets On itemsets and rules several quality measures can
be defined. The most important measures are support and confid€heasupportsupgX) of
an itemseiX is defined as the proportion of transactions in the data set which containriseite
ltemsets with a support which surpasses a user defined threshoddcalledrequent itemsetshe
confidencef a rule is defined as cofif = Y) = supdXUY)/supgX). Association rulesre rules
with supg X UY) > o and confX) > d whereo andd are user defined thresholds.
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Figure 1: Thearules ecosystem.

The R packagarules (Hahsler et al., 2005, 2010) implements the basic infrastructure for cre-
ating and manipulating transaction databases and basic algorithms to efficiedthnfi analyze
association rules. Over the last five years several packages wkrabund thear ules infrastruc-
ture to create the ecosystem shown in Figure 1. Compared to other toodsutee ecosystem is
fully integrated, implements the latest approaches and has the vast futigtion& for further
analysis of found patterns at its disposal.

2. Design and I mplementation

The core packagarules provides an object-oriented framework to represent transaction databa
and patterns. To facilitate extensibility, patterns are implemented as an abspeaotlasassocia-
tionsand then concrete subclasses implement individual types of pattearsil&s the associations
itemsetsaandrulesare provided. Databases and associations both use a sparse mag$enégtion
for efficient storage and basic operations like sorting, subsetting andhimgiare supported. Dif-
ferent aspects of arules were discussed in previous publicationsl@dat al., 2005; Hahsler and
Hornik, 2007b,a; Hahsler et al., 2008).

In this paper we focus on the ecosystem of several R-packages at@dbuilt on top of the
arules infrastructure. While arules provid&griori andEclat (implementations by Borgelt, 2003),
two of the most important frequent itemset/association rule mining algorithms, addigdgo-
rithms can easily be added as new packages. For example, packbegpNBMiner (Hahsler, 2010)
implements an algorithm to find NB-frequent itemsets (Hahsler, 2006). A tiolkeaf further im-
plementations which could be interfaced by arules in the future and a compafistate-of-the-art
algorithms can be found at the Frequent ltemset Mining Implementations Repds

ar ulesSequences (Buchta and Hahsler, 2010) implements mining frequent sequences in trans
action databases. It implements additional association classes safjednceandsequencerules
and provides the algorithoSpade(Zaki, 2001) to efficiently mine frequent sequences. Another
application currently under developmentaisulesClassify which uses the arules infrastructure to
implement rule-based classifiers, includi@tpssification Based on Association rul@BA, Liu
et al., 1998) and general associative classification techniques (Jalaithnd Zaiane, 2010).

A known drawback of mining for frequent patterns such as associatles is that typically the
algorithm returns a very large set of results where only a small fractipatbérns is of interest to
the analysts. Many researchers introduced visualization techniquesinmgckahtter plots, matrix

1. The Frequent ltemset Mining Implementations Repository can belfatimitp: //fi m . ua. ac. be/.
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Figure 2: Visualization of all 410 rules as (a) a scatter plot and (b) sktiwsvip 3 rules according
to lift as a graph.

visualizations, graphs, mosaic plots and parallel coordinates plots to afalge sets of association
rules (see Bruzzese and Davino, 2008, for a recent overview )papalesViz (Hahsler and Chel-
luboina, 2010) implements most of these methods for arules while also providprgvements
using color shading, reordering and interactive features.

Finally, arules provides Rredictive Model Markup Language (PMMLgjterface to import and
export rules via packagamml (Williams et al., 2010). PMML is the leading standard for exchang-
ing statistical and data mining models and is supported by all major solution previdihough
pmml provides interfaces for different packages it is still consideredgidhe arules ecosystem.

The packages in the described ecosystem are available for Linux, Qfl XVandows. All
packages are distributed via the Comprehensive R Archive Networkler GPL-2, along with
comprehensive manuals, documentation, regression tests and sodeceDavelopment versions
of most packages are available from R-Fotge.

3. User Interface

We illustrate the user interface and the interaction between the packagesairutegecosystem
with a small example using a retail data set calBrdcerieswhich contains 9835 transactions with
items aggregated to 169 categories. We mine association rules and them fireseles found as
well as the top 3 rules according to the interest meakfirédeviation from independence) in two
visualizations.

> library("arules") ### attach package 'arules'
> library("arulesViz") ### attach package 'arulesViz'
> data("Groceries") ### load data set

> ### mine association rules

2. The Comprehensive R Archive Network can be founitt &p: / / CRAN. R- pr oj ect . or g.
3. R-Forge can be found htt p: // R- Forge. R- proj ect . org.
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> rules <- apriori(Groceries, parameter = list(supp = 0.001 , conf = 0.8))
> rules
set of 410 rules

### visualize rules as a scatter plot (with jitter to reduce occlusion)
plot(rules, control=list(jitter=2))

### select and inspect rules with highest lift

rules_high_lift <- head(sort(rules, by="lift"), 3)

inspect(rules_high_lift)

lhs rhs support  confidence lift

1 {liquor, red/blush wine}

=> {bottled beer} 0.001931876 0.9047619 11.235269

V V V VYV

2 {citrus fruit, other vegetables, soda, fruit/'vegetable | uice}
=> {root vegetables} 0.001016777 0.9090909 8.340400
3 {tropical fruit, other vegetables, whole milk, yogurt, oi I}

=> {root vegetables} 0.001016777 0.9090909 8.340400

> ### plot selected rules as graph
> plot(rules_high_lift, method="graph", control=list(t ype="items"))

Figure 2 shows the visualizations produced by the example code. Bothizégioms clearly
show that there exists a rulgl ( quor, red/blush wine} => {bottled beer}) with high sup-
port, confidence and lift. With the additionally available interactive featwetht scatter plot and
other available plots like the grouped matrix visualization, the rule set carrthefexplored.
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