
Journal of Machine Learning Research 12 (2011) 2293-2296 Submitted 5/10; Revised 3/11; Published 7/11

MSVMpack: A Multi-Class Support Vector Machine Package

Fabien Lauer FABIEN.LAUER@LORIA .FR

Yann Guermeur YANN .GUERMEUR@LORIA .FR

LORIA – Equipe ABC
Campus Scientifique, BP 239
54506 Vandœuvre-lès-Nancy cedex, France

Editor: Mikio Braun

Abstract

This paper describesMSVMpack, an open source software package dedicated to our generic model
of multi-classsupport vector machine. All four multi-class support vector machines (M-SVMs)
proposed so far in the literature appear as instances of thismodel. MSVMpack provides for them
the first unified implementation and offers a convenient basis to develop other instances. This is
also the first parallel implementation for M-SVMs. The package consists in a set of command-line
tools with a callable library. The documentation includes atutorial, a user’s guide and a developer’s
guide.

Keywords: multi-class support vector machines, open source, C

1. Introduction

In the framework of polytomy computation, a multi-class support vector machine(M-SVM) is a
support vector machine (SVM) dealing with all the categories simultaneously.Four M-SVMs can
be found in the literature: the models of Weston and Watkins (1998), Crammer and Singer (2001),
Lee et al. (2004), and the M-SVM2 of Guermeur and Monfrini (2011). The proposed software
implements them all in a single package namedMSVMpack. Its design paves the way for the im-
plementation of our generic model of M-SVM and the integration of additional functionalities such
as model selection algorithms. The current version offers a parallel implementation with the pos-
sibility to use custom kernels. This software package is available for Linux under the terms of the
GPL athttp://www.loria.fr/ ˜ lauer/MSVMpack/ and provides two command-line tools with a
C application programming interface without dependencies beside a linear programming solver.

2. Multi-Class Support Vector Machines

We considerQ-category classification problems whereX is the description space and the setY of
the categories can be identified with[[1,Q]]. Let κ be a real-valued positive type function (Berlinet
and Thomas-Agnan, 2004) onX 2 and let(Hκ,〈·, ·〉Hκ) be the corresponding reproducing kernel
Hilbert space. LetH̄ = HQ

κ andH = (Hκ +{1})Q. H is the class of functionsh= (hk)16k6Q from

X toR
Q that can be written ash(·) = h̄(·)+b=

(

h̄k (·)+bk
)

16k6Q, whereh̄=
(

h̄k
)

16k6Q ∈ H̄ and

b= (bk)16k6Q ∈ R
Q. A functionh assigns the categoryy to x if and only if y= argmax16k6Qhk(x)

(cases of ex æquo are dealt with by introducing a dummy category).H̄ is endowed with the norm

c©2011 Fabien Lauer and Yann Guermeur.

LAUER AND GUERMEUR

Reference M-SVM type M p K1 K2 K3

Weston and Watkins (1998) WW IQm 1 1 1 0
Crammer and Singer (2001) CS 1

Q−1IQm 1 1 1 1

Lee et al. (2004) LLW IQm 1 0 1
Q−1 0

Guermeur and Monfrini (2011) MSVM2 M(2) 2 0 1
Q−1 0

Table 1: Specifications of the M-SVMs with their type as used by theMSVMpack interface.

‖·‖
H̄

given by:

∀h̄∈ H̄ ,
∥

∥h̄
∥

∥

H̄
=

√

√

√

√

Q

∑
k=1

〈h̄k, h̄k〉Hκ =

∥

∥

∥

∥

(

∥

∥h̄k
∥

∥

Hκ

)

16k6Q

∥

∥

∥

∥

2
.

With these definitions at hand, our generic definition of aQ-category M-SVM is:

Definition 1 (Generic model of M-SVM, Definition 4 in Guermeur, forthcoming) Let
((xi ,yi))16i6m ∈ (X × [[1,Q]])m andλ ∈ R

∗
+. Letξ ∈ R

Qm be a vector such that for(i,k) ∈ [[1,m]]×
[[1,Q]], ξik is its component of index(i −1)Q+k, with(ξiyi)16i6m = 0m. A Q-category M-SVMis a
classifier obtained by solving a convex quadratic programming (QP) problem of the form

min
h,ξ

J(h,ξ) = ‖Mξ‖p
p+λ

∥

∥h̄
∥

∥

2
H̄

s.t.























∀i ∈ [[1,m]] , ∀k∈ [[1,Q]]\{yi} , K1hyi (xi)−hk(xi)> K2−ξik

∀i ∈ [[1,m]] , ∀(k, l) ∈ ([[1,Q]]\{yi})2 , K3(ξik −ξil) = 0

∀i ∈ [[1,m]] , ∀k∈ [[1,Q]]\{yi} , (2− p)ξik > 0

(1−K1)∑Q
k=1hk = 0,

where p∈ {1,2}, (K1,K3) ∈ {0,1}2, K2 ∈ R
∗
+ and the matrix M is such that‖Mξ‖p is a norm ofξ.

Extending to matrices the notation used to designate the components ofξ and usingδ to denote the
Kronecker symbol, let us define the general term ofM(2) ∈MQm,Qm(R) as:

m(2)
ik, jl = (1−δyi ,k)

(

1−δy j ,l
)

δi, j

(

δk,l +

√
Q−1

Q−1

)

.

This allows us to summarize the characteristics of the four M-SVMs in Table 1. The potential of
the generic model is discussed in Guermeur (forthcoming).

3. The Software Package

MSVMpack includes a C application programming interface (API) and two command-line tools:
one for training an M-SVM and one for making predictions with a trained M-SVM. The following
discusses some algorithmic issues before presenting these tools and the API.

2294

MSVMPACK: A M ULTI -CLASS SUPPORTVECTORMACHINE PACKAGE

3.1 Training Algorithm

As in the bi-class case, an M-SVM is trained by solving the Wolfe dual of its instantiation of the QP
problem in Definition 1. The corresponding dual variablesαik are the Lagrange multipliers of the
constraints of correct classification. The implemented QP algorithm is based on the Frank-Wolfe
method (Frank and Wolfe, 1956), in which each step of the descent is obtained as the solution of a
linear program (LP). The LP solver included inMSVMpack is lp solve (Berkelaar et al., 2009). In
order to make it possible to process large data sets, a decomposition method is applied and only a
small subset of the data is considered in each iteration.

Let Jd be the dual objective function and letα = (αik) be a (feasible) solution of the dual
problem obtained at some point of the training procedure. The quality ofα is measured thanks
to the computation of an upper boundU(α) on the optimumJ(h∗,ξ∗) = Jd (α∗) that goes to this
optimum. The stopping criterion is defined as a large enough value forJd(α)/U(α). In MSVMpack,
the boundU(α) is obtained by solving the primal problem with̄h being the function associated
with the currentα. This partial optimization requires little computation except in the case of the
M-SVM2, for which another QP problem has to be solved. However, the computational burden may
increase for a large number of classes (e.g.,Q> 20).

3.2 Practical Use and Experiments

In its most simple form, the command line ’trainmsvm trainingdata -m WW ’ is used to train an
M-SVM, where the-m flag allows one to choose the type of M-SVM model according to Table 1.
Then, this model can be applied to a test set by using ’predmsvm testdata ’. The complete list of
options and parameters for these command-line tools can be found in the documentation or simply
obtained by calling them without argument.

Table 2 shows a comparison ofMSVMpack with other implementations of M-SVMs on a subset
of the USPS database with 500 instances from 10 classes and the whole CB513 data set with 84119
instances from 3 classes. For the latter, the numbers reflect the averageerror and total times over a
5-fold cross validation, and the implementations that failed due to a lack of memoryare not included
in the Table. We refer the reader to the documentation for the details of the experimental setup and
additional comparisons on other data sets.

3.3 Calling the Library from Other Programs

The “Developer’s guide” section of the documentation presents the API reference and an example
program includingMSVMpack functionalities through this API. The library defines specific data
structures for M-SVM models and data sets. It also provides wrapper functions, which act according
to the M-SVM model type, for example, call the corresponding training function. The standard
workflow for a train-and-test sequence is: callMSVMmake model() to initialize the model; call
MSVMmake dataset() for each data set to load; callMSVMtrain() to train the model; and call
MSVMclassify set() to test the trained classifier.

4. Ongoing and Future Developments

MSVMpack implements the four M-SVMs proposed in the literature. Current work focuses on the
explicit implementation of our generic model of M-SVM, which will make it possibleto study new
machines thanks to a simple choice of the values of the hyperparametersM, p, and(Kt)16t63. Future

2295

LAUER AND GUERMEUR

Data set M-SVM Software Test error Training time Testing time

USPS500 WW Spider (Matlab) 10.20 % 4m 19s 0.2s
Q= 10 BSVM (C++) 10.00 % 0.2s 0.1s
m= 500 MSVMpack (C) 10.40 % 2.5s 0.1s
X ⊂ R

256 CS MCSVM (C) 9.80 % 0.5s 0.3s
test set: MSVMpack 9.80 % 30s 0.1s
m= 500 LLW SMSVM (R) 12.00 % 5m 58s 0.1s

MSVMpack 11.40 % 1m 22s 0.1s
MSVM2 MSVMpack 12.00 % 22s 0.1s

CB513 WW BSVM 23.96 % 9h 48m 40s 46m 29s
Q= 3 MSVMpack 23.72 % 1h 05m 11s 1m 51s
m= 84119 CS MCSVM 23.55 % 22h 52m 10s 2h 08m 33s
X ⊂ Z

260 MSVMpack 23.63 % 1h 00m 36s 2m 06s
test: LLW MSVMpack 25.65 % 1h 14m 21s 2m 33s
5-fold CV MSVM2 MSVMpack 23.47 % 6h 44m 50s 2m 49s

Table 2: Relative performance of different M-SVM implementations on two data sets.

work will consider including automatic tuning procedures for the regularization parameterλ, and
relaxing the hypothesis on the norm of the penalizer.

References

M. Berkelaar, K. Eikland, and P. Notebaert.An Open Source (Mixed-Integer) Linear Programming
System, 2009. Software available athttp://lpsolve.sourceforge.net/ .

A. Berlinet and C. Thomas-Agnan.Reproducing Kernel Hilbert Spaces in Probability and Statistics.
Kluwer Academic Publishers, Boston, 2004.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-based vector
machines.Journal of Machine Learning Research, 2:265–292, 2001.

M. Frank and P. Wolfe. An algorithm for quadratic programming.Naval Research Logistics Quar-
terly, 3(1–2):95–110, 1956.

Y. Guermeur. A generic model of multi-class support vector machine.International Journal of
Intelligent Information and Database Systems, forthcoming.

Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-margin bound
applies.Informatica, 22(1):73–96, 2011.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and application to the
classification of microarray data and satellite radiance data.Journal of the American Statistical
Association, 99(465):67–81, 2004.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report CSD-TR-98-04,
Royal Holloway, University of London, Department of Computer Science, 1998.

2296

