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Abstract
We study graph estimation and density estimation in high dimensions, using a family of density
estimators based on forest structured undirected graphical models. For density estimation, we do
not assume the true distribution corresponds to a forest; rather, we form kernel density estimates of
the bivariate and univariate marginals, and apply Kruskal’s algorithm to estimate the optimal forest
on held out data. We prove an oracle inequality on the excess risk of the resulting estimator relative
to the risk of the best forest. For graph estimation, we consider the problem of estimating forests
with restricted tree sizes. We prove that finding a maximum weight spanning forest with restricted
tree size is NP-hard, and develop an approximation algorithm for this problem. Viewing the tree
size as a complexity parameter, we then select a forest usingdata splitting, and prove bounds on ex-
cess risk and structure selection consistency of the procedure. Experiments with simulated data and
microarray data indicate that the methods are a practical alternative to Gaussian graphical models.

Keywords: kernel density estimation, forest structured Markov network, high dimensional infer-
ence, risk consistency, structure selection consistency

1. Introduction

One way to explore the structure of a high dimensional distributionP for a random vectorX =
(X1, . . . ,Xd) is to estimate its undirected graph. The undirected graphG associated withP hasd
vertices corresponding to the variablesX1, . . . ,Xd, and omits an edge between two nodesXi and
Xj if and only if Xi andXj are conditionally independent given the other variables. Currently, the
most popular methods for estimatingG assume that the distributionP is Gaussian. Finding the
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graphical structure in this case amounts to estimating the inverse covariance matrix Ω; the edge
betweenXj andXk is missing if and only ifΩ jk = 0. Algorithms for optimizing theℓ1-regularized
log-likelihood have recently been proposed that efficiently produce sparse estimates of the inverse
covariance matrix and the underlying graph (Banerjee et al., 2008; Friedman et al., 2007).

In this paper our goal is to relax the Gaussian assumption and to develop nonparametric methods
for estimating the graph of a distribution. Of course, estimating a high dimensional distribution is
impossible without making any assumptions. The approach we take here is to force the graphical
structure to be a forest, where each pair of vertices is connected by at most one path. Thus, we relax
the distributional assumption of normality but we restrict the family of undirectedgraphs that are
allowed.

If the graph forP is a forest, then a simple conditioning argument shows that its densityp can
be written as

p(x) = ∏
(i, j)∈E

p(xi ,x j)

p(xi)p(x j)

d

∏
k=1

p(xk)

whereE is the set of edges in the forest (Lauritzen, 1996). Herep(xi ,x j) is the bivariate marginal
density of variablesXi andXj , andp(xk) is the univariate marginal density of the variableXk. With
this factorization, we see that it is only necessary to estimate the bivariate andunivariate marginals.
Given any distributionP with densityp, there is a treeT and a densitypT whose graph isT and
which is closest in Kullback-Leibler divergence top. WhenP is known, then the best fitting tree
distribution can be obtained by Kruskal’s algorithm (Kruskal, 1956), or other algorithms for finding
a maximum weight spanning tree. In the discrete case, the algorithm can be applied to the estimated
probability mass function, resulting in a procedure originally proposed by Chow. and Liu (1968).
Here we are concerned with continuous random variables, and we estimatethe bivariate marginals
with nonparametric kernel density estimators.

In high dimensions, fitting a fully connected spanning tree can be expected tooverfit. We
regulate the complexity of the forest by selecting the edges to include using a data splitting scheme,
a simple form of cross validation. In particular, we consider the family of forest structured densities
that use the marginal kernel density estimates constructed on the first partition of the data, and
estimate the risk of the resulting densities over a second, held out partition. The optimal forest in
terms of the held out risk is then obtained by finding a maximum weight spanning forest for an
appropriate set of edge weights.

A closely related approach is proposed by Bach and Jordan (2003), where a tree is estimated
for the random vectorY =WX instead ofX, whereW is a linear transformation, using an algorithm
that alternates between estimatingW and estimating the treeT. Kernel density estimators are used,
and a regularization term that is a function of the number of edges in the tree isincluded to bias
the optimization toward smaller trees. We omit the transformationW, and we use a data splitting
method rather than penalization to choose the complexity of the forest.

While tree and forest structured density estimation has been long recognized as a useful tool,
there has been little theoretical analysis of the statistical properties of such density estimators. The
main contribution of this paper is an analysis of the asymptotic properties of forest density estima-
tion in high dimensions. We allow both the sample sizen and dimensiond to increase, and prove
oracle results on the risk of the method. In particular, we assume that the univariate and bivariate
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marginal densities lie in a Ḧolder class with exponentβ (see Section 4 for details), and show that

R(p̂F̂)−min
F

R(p̂F) = OP

(
√

log(nd)

(
k∗+ k̂

nβ/(2+2β) +
d

nβ/(1+2β)

))

whereR denotes the risk, the expected negative log-likelihood,k̂ is the number of edges in the
estimated forest̂F , andk∗ is the number of edges in the optimal forestF∗ that can be constructed in
terms of the kernel density estimatesp̂.

In addition to the above results on risk consistency, we establish conditions under which

P

(
F̂(k)

d = F∗(k)d

)
→ 1

asn→∞, whereF∗(k)d is theoracle forest—the best forest withk edges; this result allows the dimen-
sionalityd to increase as fast aso

(
exp(nβ/(1+β))

)
, while still having consistency in the selection of

the oracle forest.
Among the only other previous work analyzing tree structured graphical models is Tan et al.

(2011) and Chechetka and Guestrin (2007). Tan et al. (2011) analyze the error exponent in the
rate of decay of the error probability for estimating the tree, in the fixed dimension setting, and
Chechetka and Guestrin (2007) give a PAC analysis. An extension to the Gaussian case is given by
Tan et al. (2010).

We also study the problem of estimating forests with restricted tree sizes. In many applications,
one is interested in obtaining a graphical representation of a high dimensional distribution to aid in
interpretation. For instance, a biologist studying gene interaction networksmight be interested in a
visualization that groups together genes in small sets. Such a clustering approach through density
estimation is problematic if the graph is allowed to have cycles, as this can requiremarginal densities
to be estimated with many interacting variables. Restricting the graph to be a forest circumvents the
curse of dimensionality by requiring only univariate and bivariate marginaldensities. The problem
of clustering the variables into small interacting sets, each supported by a tree-structured density,
becomes the problem of estimating a maximum weight spanning forest with a restriction on the size
of each component tree. As we demonstrate, estimating restricted tree size forests can also be useful
in model selection for the purpose of risk minimization. Limiting the tree size gives another way
of regulating tree complexity that provides larger family of forest to select from in the data splitting
procedure.

While the problem of finding a maximum weight forest with restricted tree size maybe natural,
it appears not to have been studied previously. We prove that the problem is NP-hard through a re-
duction from the problem of Exact 3-Cover (Garey and Johnson, 1979), where we are given a setX
and a familyS of 3-element subsets ofX, and must choose a subfamily of disjoint 3-element subsets
to coverX. While finding the exact optimum is hard, we give a practical 4-approximationalgorithm
for finding the optimal tree restricted forest; that is, our algorithm outputs a forest whose weight is
guaranteed to be at least1

4w(F∗), wherew(F∗) is the weight of the optimal forest. This approx-
imation guarantee translates into excess risk bounds on the constructed forest using our previous
analysis. Our experimental results with this approximation algorithm show that itcan be effective
in practice for forest density estimation.

In Section 2 we review some background and notation. In Section 3 we present a two-stage al-
gorithm for estimating high dimensional densities supported by forests, and we provide a theoretical
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analysis of the algorithm in Section 4, with the detailed proofs collected in an appendix. In Section
5, we explain how to estimate maximum weight forests with restricted tree size. In Section 6 we
present experiments with both simulated data and gene microarray data sets, where the problem is
to estimate the gene-gene association graphs.

2. Preliminaries and Notation

Let p∗(x) be a probability density with respect to Lebesgue measureµ(·) onRd and letX(1), . . . ,X(n)

ben independent identically distributedRd-valued data vectors sampled fromp∗(x) whereX(i) =

(X(i)
1 , . . . ,X(i)

d ). LetX j denote the range ofX(i)
j and letX = X1×·· ·×Xd. For simplicity we assume

thatX j = [0,1].
A graph is a forest if it is acyclic. IfF is a d-node undirected forest with vertex setVF =

{1, . . . ,d} and edge setE(F) ⊂ {1, . . . ,d}×{1, . . . ,d}, the number of edges satisfies|E(F)| < d,
noting that we do not restrict the graph to be connected. We say that a probability density function
p(x) is supported by a forest Fif the density can be written as

pF(x) = ∏
(i, j)∈E(F)

p(xi ,x j)

p(xi) p(x j)
∏

k∈VF

p(xk), (1)

where eachp(xi ,x j) is a bivariate density onXi ×X j , and eachp(xk) is a univariate density onXk.
More details can be found in Lauritzen (1996).

LetFd be the family of forests withd nodes, and letPd be the corresponding family of densities:

Pd =

{
p≥ 0 :

∫
X

p(x)dµ(x) = 1, andp(x) satisfies (1) for someF ∈ Fd

}
. (2)

To bound the number of labeled spanning forests ond nodes, note that each such forest can be
obtained by forming a labeled tree ond+1 nodes, and then removing noded+1. From Cayley’s
formula (Cayley, 1889; Aigner and Ziegler, 1998), we then obtain the following.

Proposition 1 The size of the collectionFd of labeled forests on d nodes satisfies

|Fd|< (d+1)d−1.

Define the oracle forest density

q∗ = arg min
q∈Pd

D(p∗‖q) (3)

where the Kullback-Leibler divergenceD(p‖q) between two densitiesp andq is

D(p‖q) =
∫
X

p(x) log
p(x)
q(x)

dx,

under the convention that 0 log(0/q) = 0, andplog(p/0) = ∞ for p, 0. The following is proved by
Bach and Jordan (2003).
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Proposition 2 Let q∗ be defined as in(3). There exists a forest F∗ ∈ Fd, such that

q∗ = p∗F∗ = ∏
(i, j)∈E(F∗)

p∗(xi ,x j)

p∗(xi) p∗(x j)
∏

k∈VF∗

p∗(xk) (4)

where p∗(xi ,x j) and p∗(xi) are the bivariate and univariate marginal densities of p∗.

For any densityq(x), the negative log-likelihood riskR(q) is defined as

R(q) =−E logq(X) =−
∫
X

p∗(x) logq(x)dx

where the expectation is defined with respect to the distribution ofX.
It is straightforward to see that the densityq∗ defined in (3) also minimizes the negative log-

likelihood loss:
q∗ = arg min

q∈Pd

D(p∗‖q) = arg min
q∈Pd

R(q).

Let p̂(x) be the kernel density estimate, we also define

R̂(q) =−
∫
X

p̂(x) logq(x)dx.

We thus define the oracle risk asR∗ = R(q∗). Using Proposition 2 and Equation (1), we have

R∗ = R(q∗) = R(p∗F∗)

= −
∫
X

p∗(x)

(
∑

(i, j)∈E(F∗)

log
p∗(xi ,x j)

p∗(xi)p∗(x j)
+ ∑

k∈VF∗

log(p∗(xk))

)
dx

= − ∑
(i, j)∈E(F∗)

∫
Xi×X j

p∗(xi ,x j) log
p∗(xi ,x j)

p∗(xi)p∗(x j)
dxidxj − ∑

k∈VF∗

∫
Xk

p∗(xk) logp∗(xk)dxk

= − ∑
(i, j)∈E(F∗)

I(Xi ;Xj)+ ∑
k∈VF∗

H(Xk), (5)

where

I(Xi ;Xj) =
∫
Xi×X j

p∗(xi ,x j) log
p∗(xi ,x j)

p∗(xi) p∗(x j)
dxidxj

is the mutual information between the pair of variablesXi , Xj and

H(Xk) =−
∫
Xk

p∗(xk) logp∗(xk)dxk

is the entropy. While the best forest will in fact be a spanning tree, the densities p∗(xi ,x j) are
in practice not known. We estimate the marginals using finite data, in terms of a kernel density
estimateŝpn1(xi ,x j) over a training set of sizen1. With these estimated marginals, we consider all
forest density estimates of the form

p̂F(x) = ∏
(i, j)∈E(F)

p̂n1(xi ,x j)

p̂n1(xi) p̂n1(x j)
∏

k∈VF

p̂n1(xk).
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Within this family, the best density estimate may not be supported on a full spanning tree, since a
full tree will in general be subject to overfitting. Analogously, in high dimensional linear regression,
the optimal regression model will generally be a fulld-dimensional fit, with a nonzero parameter
for each variable. However, when estimated on finite data the variance of afull model will dominate
the squared bias, resulting in overfitting. In our setting of density estimation wewill regulate the
complexity of the forest by cross validating over a held out set.

There are several different ways to judge the quality of a forest structured density estimator. In
this paper we concern ourselves with prediction and structure estimation.

Definition 3 ((Risk consistency))For an estimator̂qn∈Pd, the excess risk is defined as R(q̂n)−R∗.
The estimator̂qn is risk consistent with convergence rateδn if

lim
M→∞

limsup
n→∞

P(R(q̂n)−R∗ ≥Mδn) = 0.

In this case we write R(q̂n)−R∗ = OP(δn).

Definition 4 ((Estimation consistency))An estimator̂qn ∈ Pd is estimation consistent with con-
vergence rateδn, with respect to the Kullback-Leibler divergence, if

lim
M→∞

limsup
n→∞

P(D(p∗F∗‖ q̂n)≥Mδn) = 0.

Definition 5 ((Structure selection consistency))An estimator̂qn ∈ Pd supported by a forest̂Fn is
structure selection consistent if

P

(
E(F̂n) , E(F∗)

)
→ 0,

as n goes to infinity, where F∗ is defined in(4).

Later we will show that estimation consistency is almost equivalent to risk consistency. If the
true density is given, these two criteria are exactly the same; otherwise, estimation consistency
requires stronger conditions than risk consistency.

It is important to note that risk consistency is an oracle property, in the sense that the true
densityp∗(x) is not restricted to be supported by a forest; rather, the property assesses how well a
given estimator̂q approximates the best forest density (the oracle) within a class.

3. Kernel Density Estimation For Forests

If the true densityp∗(x) were known, by Proposition 2, the density estimation problem would be
reduced to finding the best forest structureF∗d , satisfying

F∗d = arg min
F∈Fd

R(p∗F) = arg min
F∈Fd

D(p∗‖ p∗F).

The optimal forestF∗d can be found by minimizing the right hand side of (5). Since the entropy
term H(X) = ∑k H(Xk) is constant across all forests, this can be recast as the problem of finding
the maximum weight spanning forest for a weighted graph, where the weight w(i, j) of the edge
connecting nodesi and j is I(Xi ;Xj). Kruskal’s algorithm (Kruskal, 1956) is a greedy algorithm
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that is guaranteed to find a maximum weight spanning tree of a weighted graph. In the setting of
density estimation, this procedure was proposed by Chow. and Liu (1968)as a way of constructing
a tree approximation to a distribution. At each stage the algorithm adds an edgeconnecting that pair
of variables with maximum mutual information among all pairs not yet visited by the algorithm, if
doing so does not form a cycle. When stopped early, afterk< d−1 edges have been added, it yields
the bestk-edge weighted forest.

Of course, the above procedure is not practical since the true densityp∗(x) is unknown. We
replace the population mutual informationI(Xi ;Xj) in (5) by the plug-in estimatêIn(Xi ,Xj), defined
as

În(Xi ,Xj) =
∫
Xi×X j

p̂n(xi ,x j) log
p̂n(xi ,x j)

p̂n(xi) p̂n(x j)
dxidxj

where p̂n(xi ,x j) and p̂n(xi) are bivariate and univariate kernel density estimates. Given this esti-

mated mutual information matrix̂Mn =
[
În(Xi ,Xj)

]
, we can then apply Kruskal’s algorithm (equiv-

alently, the Chow-Liu algorithm) to find the best forest structureF̂n.
Since the number of edges ofF̂n controls the number of degrees of freedom in the final density

estimator, we need an automatic data-dependent way to choose it. We adopt the following two-stage
procedure. First, randomly partition the data into two setsD1 andD2 of sizesn1 andn2; then, apply
the following steps:

1. UsingD1, construct kernel density estimates of the univariate and bivariate marginals and
calculateÎn1(Xi ,Xj) for i, j ∈ {1, . . . ,d} with i , j. Construct a full treêF(d−1)

n1 with d− 1
edges, using the Chow-Liu algorithm.

2. UsingD2, prune the treêF(d−1)
n1 to find a forest̂F(k̂)

n1 with k̂ edges, for 0≤ k̂≤ d−1.

OnceF̂(k̂)
n1 is obtained in Step 2, we can calculatep̂

F̂(k̂)
n1

according to (1), using the kernel density

estimates constructed in Step 1.

3.1 Step 1: Estimating the Marginals

Step 1 is carried out on the data setD1. Let K(·) be a univariate kernel function. Given an eval-
uation point(xi ,x j), the bivariate kernel density estimate for(Xi ,Xj) based on the observations

{X(s)
i ,X(s)

j }s∈D1 is defined as

p̂n1(xi ,x j) =
1
n1

∑
s∈D1

1

h2
2

K

(
X(s)

i −xi

h2

)
K

(
X(s)

j −x j

h2

)
, (6)

where we use a product kernel withh2 > 0 be the bandwidth parameter. The univariate kernel
density estimatêpn1(xk) for Xk is

p̂n1(xk) =
1
n1

∑
s∈D1

1
h1

K

(
X(s)

k −xk

h1

)
, (7)
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Algorithm 1 Chow-Liu (Kruskal)

1: Input dataD1 = {X(1), . . . ,X(n1)}.

2: CalculateM̂n1, according to (6), (7), and (8).

3: Initialize E(0) = /0

4: for k= 1, . . . ,d−1 do

5: (i(k), j(k))← arg max(i, j) M̂n1(i, j) such thatE(k−1)∪{(i(k), j(k))} does not contain a cycle

6: E(k)← E(k−1)∪{(i(k), j(k))}

7: Output treeF̂(d−1)
n1 with edge setE(d−1).

whereh1 > 0 is the univariate bandwidth. Detailed specifications forK(·) andh1, h2 will be dis-
cussed in the next section.

We assume that the data lie in ad-dimensional unit cubeX = [0,1]d. To calculate the empirical
mutual information̂In1(Xi ,Xj), we need to numerically evaluate a two-dimensional integral. To do
so, we calculate the kernel density estimates on a grid of points. We choosem evaluation points on
each dimension,x1i < x2i < · · ·< xmi for the ith variable. The mutual information̂In1(Xi ,Xj) is then
approximated as

În1(Xi ,Xj) =
1

m2

m

∑
k=1

m

∑
ℓ=1

p̂n1(xki,xℓ j) log
p̂n1(xki,xℓ j)

p̂n1(xki) p̂n1(xℓ j)
. (8)

The approximation error can be made arbitrarily small by choosingm sufficiently large. As a prac-
tical concern, care needs to be taken that the factorsp̂n1(xki) and p̂n1(xℓ j) in the denominator are
not too small; a truncation procedure can be used to ensure this. Once thed×d mutual information

matrix M̂n1 =
[
În1(Xi ,Xj)

]
is obtained, we can apply the Chow-Liu (Kruskal) algorithm to find a

maximum weight spanning tree.

3.2 Step 2: Optimizing the Forest

The full treeF̂(d−1)
n1 obtained in Step 1 might have high variance when the dimensiond is large,

leading to overfitting in the density estimate. In order to reduce the variance, we prune the tree; that
is, we choose forest withk≤ d−1 edges. The number of edgesk is a tuning parameter that induces
a bias-variance tradeoff.

In order to choosek, note that in stagek of the Chow-Liu algorithm we have an edge setE(k) (in
the notation of the Algorithm 1) which corresponds to a forestF̂(k)

n1 with k edges, wherêF(0)
n1 is the

union ofd disconnected nodes. To selectk, we choose among thed treesF̂(0)
n1 , F̂(1)

n1 , . . . , F̂(d−1)
n1 .

Let p̂n2(xi ,x j) and p̂n2(xk) be defined as in (6) and (7), but now evaluated solely based on the
held-out data inD2. For a densitypF that is supported by a forestF , we define the held-out negative
log-likelihood risk as

R̂n2(pF) (9)

= − ∑
(i, j)∈EF

∫
Xi×X j

p̂n2(xi ,x j) log
p(xi ,x j)

p(xi) p(x j)
dxidxj − ∑

k∈VF

∫
Xk

p̂n2(xk) logp(xk)dxk.
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The selected forest is then̂F(k̂)
n1 where

k̂= arg min
k∈{0,...,d−1}

R̂n2

(
p̂

F̂(k)
n1

)

and wherêp
F̂(k)

n1
is computed using the density estimatep̂n1 constructed onD1.

For computational simplicity, we can also estimatek̂ as

k̂ = arg max
k∈{0,...,d−1}

1
n2

∑
s∈D2

log


 ∏

(i, j)∈E(k)

p̂n1(X
(s)
i ,X(s)

j )

p̂n1(X
(s)
i ) p̂n1(X

(s)
j )

∏
k∈V

F̂
(k)
n1

p̂n1(X
(s)
k )




= arg max
k∈{0,...,d−1}

1
n2

∑
s∈D2

log


 ∏

(i, j)∈E(k)

p̂n1(X
(s)
i ,X(s)

j )

p̂n1(X
(s)
i ) p̂n1(X

(s)
j )


 .

This minimization can be efficiently carried out by iterating over thed−1 edges in̂F(d−1)
n1 .

Oncek̂ is obtained, the final forest density estimate is given by

p̂n(x) = ∏
(i, j)∈E(k̂)

p̂n1(xi ,x j)

p̂n1(xi) p̂n1(x j)
∏

k

p̂n1(xk).

Remark 6 For computational efficiency, Step 1 can be carried out simultaneously with Step 2. In
particular, during the Chow-Liu iteration, whenever an edge is added to E(k), the log-likelihood of
the resulting density estimator onD2 can be immediately computed. A more efficient algorithm to
speed up the computation of the mutual information matrix is discussed in Appendix B.

3.3 Building a Forest on Held-out Data

Another approach to estimating the forest structure is to estimate the marginal densities on the
training set, but only build graphs on the held-out data. To do so, we firstestimate the univariate and
bivariate kernel density estimates usingD1, denoted bŷpn1(xi) and p̂n1(xi ,x j). We also construct
a new set of univariate and bivariate kernel density estimates usingD2, p̂n2(xi) and p̂n2(xi ,x j). We
then estimate the “cross-entropies” of the kernel density estimatesp̂n1 for each pair of variables by
computing

În2,n1(Xi ,Xj) =
∫

p̂n2(xi ,x j) log
p̂n1(xi ,x j)

p̂n1(xi)p̂n1(x j)
dxi dxj

≈
1

m2

m

∑
k=1

m

∑
ℓ=1

p̂n2(xki,xℓ j) log
p̂n1(xki,xℓ j)

p̂n1(xki) p̂n1(xℓ j)
. (10)

Our method is to usêIn2,n1(Xi ,Xj) as edge weights on a full graph and run Kruskal’s algorithm until
we encounter edges with negative weight. LetF be the set of all forests and̂wn2(i, j) = În2,n1(Xi ,Xj).
The final forest is then

F̂n2 = arg max
F∈F

ŵn2(F) = arg min
F∈F

R̂n2(p̂F)

By building a forest on held-out data, we directly cross-validate overall forests.
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4. Statistical Properties

In this section we present our theoretical results on risk consistency, structure selection consistency,
and estimation consistency of the forest density estimatep̂n = p̂

F̂(k̂)
d

.

To establish some notation, we writean = Ω(bn) if there exists a constantc such thatan ≥ cbn

for sufficiently largen. We also writean ≍ bn if there exists a constantc such thatan ≤ cbn and
bn≤ can for sufficiently largen. Given ad-dimensional functionf on the domainX , we denote its
L2(P)-norm and sup-norm as

‖ f‖L2(P) =

√∫
X

f 2(x)dPX(x), ‖ f‖∞ = sup
x∈X
| f (x)|

wherePX is the probability measure induced byX. Throughout this section, all constants are treated
as generic values, and as a result they can change from line to line.

In our use of a data splitting scheme, we always adopt equally sized splits for simplicity, so that
n1 = n2 = n/2, noting that this does not affect the final rate of convergence.

4.1 Assumptions on the Density

Fix β > 0. For anyd-tupleα = (α1, . . . ,αd)∈N
d andx= (x1, . . . ,xd)∈ X , we definexα = ∏d

j=1x
α j
j .

Let Dα denote the differential operator

Dα =
∂α1+···+αd

∂xα1
1 · · ·∂xαd

d

.

For any real-valuedd-dimensional functionf onX that is⌊β⌋-times continuously differentiable at

pointx0 ∈ X , let P(β)
f ,x0

(x) be its Taylor polynomial of degree⌊β⌋ at pointx0:

P(β)
f ,x0

(x) = ∑
α1+···+αd≤⌊β⌋

(x−x0)
α

α1! · · ·αd!
Dα f (x0).

Fix L > 0, and denote byΣ(β,L, r,x0) the set of functionsf : X →R that are⌊β⌋-times continuously
differentiable atx0 and satisfy

∣∣∣ f (x)−P(β)
f ,x0

(x)
∣∣∣≤ L‖x−x0‖

β
2, ∀x∈ B(x0, r)

whereB(x0, r) = {x : ‖x−x0‖2≤ r} is theL2-ball of radiusr centered atx0. The setΣ(β,L, r,x0) is
called the(β,L, r,x0)-locally Hölder class of functions. Given a setA, we define

Σ(β,L, r,A) = ∩x0∈AΣ(β,L, r,x0).

The following are the regularity assumptions we make on the true density function p∗(x).

Assumption 1 For any1≤ i < j ≤ d, we assume

(D1) there exist L1 > 0 and L2 > 0 such that for any c> 0 the true bivariate and univariate densities
satisfy

p∗(xi ,x j) ∈ Σ
(

β,L2,c(logn/n)
1

2β+2 ,Xi×X j

)

and
p∗(xi) ∈ Σ

(
β,L1,c(logn/n)

1
2β+1 ,Xi

)
;
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(D2) there exists two constants c1 and c2 such that

c1≤ inf
xi ,x j∈Xi×X j

p∗(xi ,x j)≤ sup
xi ,x j∈Xi×X j

p∗(xi ,x j)≤ c2

µ-almost surely.

These assumptions are mild, in the sense that instead of adding constraints onthe joint density
p∗(x), we only add regularity conditions on the bivariate and univariate marginals.

4.2 Assumptions on the Kernel

An important ingredient in our analysis is an exponential concentration result for the kernel density
estimate, due to Gińe and Guillou (2002). We first specify the requirements on the kernel function
K(·).

Let (Ω,A) be a measurable space and letF be a uniformly bounded collection of measurable
functions.

Definition 7 F is a bounded measurable VC class of functions with characteristics A and v ifit is
separable and for every probability measure P on(Ω,A) and any0< ε < 1,

N
(
ε‖F‖L2(P),F ,‖ · ‖L2(P)

)
≤

(
A
ε

)v

,

where F(x) = supf∈F | f (x)| and N(ε,F ,‖ · ‖L2(P)) denotes theε-covering number of the metric
space(Ω,‖ · ‖L2(P)); that is, the smallest number of balls of radius no larger thanε (in the norm
‖ · ‖L2(P)) needed to coverF .

The one-dimensional density estimates are constructed using a kernelK, and the two-dimensional
estimates are constructed using the product kernel

K2(x,y) = K(x) ·K(y).

Assumption 2 The kernel K satisfies the following properties.

(K1)
∫

K(u)du= 1,
∫ ∞

−∞
K2(u)du< ∞ andsup

u∈R
K(u)≤ c for some constant c.

(K2) K is a finite linear combination of functions g whose epigraphs epi(g) = {(s,u) : g(s) ≥ u},
can be represented as a finite number of Boolean operations (union andintersection) among
sets of the form{(s,u) : Q(s,u) ≥ φ(u)}, where Q is a polynomial onR×R and φ is an
arbitrary real function.

(K3) K has a compact support and for anyℓ≥ 1 and1≤ ℓ′ ≤ ⌊β⌋
∫
|t|β |K(t)|dt < ∞, and

∫
|K(t)|ℓdt < ∞,

∫
tℓ
′
K(t)dt = 0.
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Assumptions (K1), (K2) and (K3) are mild. As pointed out by Nolan and Pollard (1987), both
the pyramid (truncated or not) kernel and the boxcar kernel satisfy them.It follows from (K2) that
the classes of functions

F1 =

{
1
h1

K

(
u−·
h1

)
: u∈ R, h1 > 0

}

F2 =

{
1

h2
2

K

(
u−·
h2

)
K

(
t−·
h2

)
: u, t ∈ R, h2 > 0

}
(11)

are bounded VC classes, in the sense of Definition 7. Assumption (K3) essentially says that the
kernelK(·) should beβ-valid; see Tsybakov (2008) and Definition 6.1 in Rigollet and Vert (2009)
for further details about this assumption. Kernels satisfying (K2) include finite linear combinations
of functions of the formφ(p(x)) wherep is a polynomial andφ is a bounded function of bounded
variation (Gińe and Guillou, 2002; Nolan and Pollard, 1987). Therefore, the kernelsconstructed in
terms of Legendre polynomials as in Riggolet and Vert (2009) and Tsybakov (2008), satisfy (K2)
and (K3).

We choose the bandwidthsh1 andh2 used in the one-dimensional and two-dimensional kernel
density estimates to satisfy

h1 ≍

(
logn

n

) 1
1+2β

(12)

h2 ≍

(
logn

n

) 1
2+2β

. (13)

This choice of bandwidths ensures the optimal rate of convergence.

4.3 Risk Consistency

Given the above assumptions, we first present a key lemma that establishesthe rates of convergence
of bivariate and univariate kernel density estimates in the sup norm. The proof of this and our other
technical results are provided in Appendix A.

Lemma 8 Under Assumptions 1 and 2, and choosing bandwidths satisfying(12) and (13), the
bivariate and univariate kernel density estimatesp̂(xi ,x j) and p̂(xk) in (6) and (7) satisfy

P

(
max

(i, j)∈{1,...,d}×{1,...,d}
sup

(xi ,x j )∈Xi×X j

|p̂(xi ,x j)− p∗(xi ,x j)| ≥ ε

)

≤ c2d2exp

(
−c3n

β
1+β (logn)

1
1+β ε2

)

for ε≥ 4c4hβ
2. Hence, choosing

ε = Ω

(
4c4

√
logn+ logd

nβ/(1+β)

)
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we have that

max
(i, j)∈{1,...,d}×{1,...,d}

sup
(xi ,x j )∈Xi×X j

|p̂(xi ,x j)− p∗(xi ,x j)|= OP

(√
logn+ logd

nβ/(1+β)

)
. (14)

Similarly,

P

(
max

i∈{1,...,d}
sup
xi∈Xi

|p̂(xi)− p∗(xi)| ≥ ε

)
≤ c5dexp

(
−c6n

2β
1+2β (logn)

1
1+2β ε2

)

and

max
k∈{1,...,d}

sup
xk∈Xk

|p̂(xk)− p∗(xk)|= OP

(√
logn+ logd

n2β/(1+2β)

)
. (15)

To describe the risk consistency result, letP
(d−1)
d = Pd be the family of densities that are sup-

ported by forests with at mostd−1 edges, as already defined in (2). For 0≤ k≤ d−1, we define
P

(k)
d as the family ofd-dimensional densities that are supported by forests with at mostk edges.

Then
P

(0)
d ⊂ P

(1)
d ⊂ ·· · ⊂ P

(d−1)
d . (16)

Now, due to the nesting property (16), we have

inf
qF∈P

(0)
d

R(qF)≥ inf
qF∈P

(1)
d

R(qF)≥ ·· · ≥ inf
qF∈P

(d−1)
d

R(qF).

We first analyze the forest density estimator obtained using a fixed number of edgesk < d;
specifically, consider stopping the Chow-Liu algorithm in Stage 1 afterk iterations. This is in
contrast to the algorithm described in 3.2, where the pruned tree size is automatically determined
on the held out data. While this is not very realistic in applications, since the tuning parameterk is
generally hard to choose, the analysis in this case is simpler, and can be directly exploited to analyze
the more complicated data-dependent method.

Theorem 9 (Risk consistency)Let p̂
F̂(k)

d
be the forest density estimate with|E(F̂(k)

d )|= k, obtained

after the first k iterations of the Chow-Liu algorithm, for some k∈ {0, . . . ,d−1}. Under Assump-
tions 1 and 2, we have

R(p̂
F̂(k)

d
)− inf

qF∈P
(k)
d

R(qF) = OP

(
k

√
logn+ logd

nβ/(1+β) +d

√
logn+ logd

n2β/(1+2β)

)
.

Note that this result allows the dimensiond to increase at a rateo
(√

n2β/(1+2β)/ logn
)

and the

number of edgesk to increase at a rateo
(√

nβ/(1+β)/ logn
)

, with the excess risk still decreasing

to zero asymptotically.
The above results can be used to prove a risk consistency result for thedata-dependent pruning

method using the data-splitting scheme described in Section 3.2.
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Theorem 10 Let p̂
F̂(k̂)

d

be the forest density estimate using the data-dependent pruning method in

Section 3.2, and let̂p
F̂(k)

d
be the estimate with|E(F̂(k)

d )|= k obtained after the first k iterations of the

Chow-Liu algorithm. Under Assumptions 1 and 2, we have

R(p̂
F̂(k̂)

d

)− min
0≤k≤d−1

R(p̂
F̂(k)

d
) = OP

(
(k∗+ k̂)

√
logn+ logd

nβ/(1+β) +d

√
logn+ logd

n2β/(1+2β)

)

where k∗ = arg min0≤k≤d−1R(p̂
F̂(k)

d
).

The proof of this theorem is given in the appendix. A parallel result can be obtained for the
method described in Section 3.3, which builds the forest by running Kruskal’s algorithm on the
heldout data.

Theorem 11 Let F̂n2 be the forest obtained using Kruskal’s algorithm on held-out data, and let
k̂= |F̂n2| be the number of edges in̂Fn2. Then

R(p̂F̂n2
)−min

F∈F
R(p̂F) = OP

(
(k∗+ k̂)

√
logn+ logd

nβ/(1+β) +d

√
logn+ logd

n2β/(1+2β)

)

where k∗ = |F∗| is the number of edges in the optimal forest F∗ = arg minF∈F R(p̂F).

4.4 Structure Selection Consistency

In this section, we provide conditions guaranteeing that the procedure is structure selection con-
sistent. Again, we do not assume the true densityp∗(x) is consistent with a forest; rather, we are
interested in comparing the estimated forest structure to the oracle forest which minimizes the risk.
In this way our result differs from that in Tan et al. (2011), although there are similarities in the
analysis.

By Proposition 2, we can define

p∗
F(k)

d

= arg min
qF∈P

(k)
d

R(qF).

ThusF(k)
d is the optimal forest withinP (k)

d that minimizes the negative log-likelihood loss. LetF̂(k)
d

be the estimated forest structure, fixing the number of edges atk; we want to study conditions under
which

P

(
F̂(k)

d = F(k)
d

)
→ 1.

Let us first consider the population version of the algorithm—if the algorithm cannot recover
the best forestF(k)

d in this ideal case, there is no hope for stable recovery in the data version.The
key observation is that the graph selected by the Chow-Liu algorithm only depends on the relative
order of the edges with respect to mutual information, not on the specific mutual information values.
Let

E =

{
{(i, j),(k, ℓ)} : i < j andk< ℓ, j , ℓ andi, j,k, ℓ ∈ {1, . . . ,d}

}
.

The cardinality ofE is
|E |= O(d4).
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Let e= (i, j) be an edge; the corresponding mutual information associated withe is denoted as
Ie. If for all (e,e′) ∈ E , we haveIe , Ie′ , the population version of the Chow-Liu algorithm will

always obtain the unique solutionF(k)
d . However, this condition is, in a sense, both too weak and

too strong. It is too weak because the sample estimates of the mutual information values will only
approximate the population values, and could change the relative orderingof some edges. However,
the assumption is too strong because, in fact, the relative order of many edge pairs might be changed
without affecting the graph selected by the algorithm. For instance, whenk≥ 2 andIe andIe′ are
the largest two mutual information values, it is guaranteed thate ande′ will both be included in the
learned forestF(k)

d whetherIe > Ie′ or Ie < Ie′ .
Define thecrucial setJ ⊂E to be a set of pairs of edges(e,e′) such thatIe, Ie′ and flipping the

relative order ofIe andIe′ changes the learned forest structure in the population Chow-Liu algorithm,
with positive probability. Here, we assume that the Chow-Liu algorithm randomly selects an edge
when a tie occurs.

The cardinality|J | of the crucial set is a function of the true densityp∗(x), and we can expect
|J | ≪ |E |. The next assumption provides a sufficient condition for the two-stage procedure to be
structure selection consistent.

Assumption 3 Let the crucial setJ be defined as before. Suppose that

min
((i, j),(k,ℓ))∈J

|I(Xi ;Xj)− I(Xk;Xℓ)| ≥ 2Ln

where Ln = Ω

(√
logn+ logd

nβ/(1+β)

)
.

This assumption is strong, but is satisfied in many cases. For example, in a graph with population
mutual informations differing by a constant, the assumption holds. Assumption 3 istrivially satisfied

if
nβ/(1+β)

logn+ logd
→ ∞.

Theorem 12 (Structure selection consistency)Let F(k)
d be the optimal forest withinP (k)

d that min-

imizes the negative log-likelihood loss. LetF̂(k)
d be the estimated forest with|E

F̂(k)
d
| = k. Under

Assumptions 1, 2, and 3, we have

P

(
F̂(k)

d = F(k)
d

)
→ 1

as n→ ∞.

The proof shows that our method is structure selection consistent as long as the dimension
increases asd = o

(
exp(nβ/(1+β))

)
; in this case the error decreases at the rate

o
(

exp
(

4logd−c(logn)
1

1+β logd
))

.

4.5 Estimation Consistency

Estimation consistency can be easily established using the structure selection consistency result
above. Define the eventMk = {F̂

(k)
d = F(k)

d }. Theorem 12 shows thatP(M c
k )→ 0 asn goes to

infinity.
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Lemma 13 Let p̂
F̂(k)

d
be the forest-based kernel density estimate for some fixed k∈ {0, . . . ,d−1},

and let
p∗

F(k)
d

= arg min
qF∈P

(k)
d

R(qF).

Under the assumptions of Theorem 12,

D(p∗
F(k)

d

‖ p̂
F̂(k)

d
) = R(p̂

F̂(k)
d
)−R(p∗

F(k)
d

)

on the eventMk.

Proof According to Bach and Jordan (2003), for a given forestF and a target distributionp∗(x),

D(p∗‖qF) = D(p∗‖ p∗F)+D(p∗F‖qF) (17)

for all distributionsqF that are supported byF . We further have

D(p∗‖q) =
∫
X

p∗(x) logp∗(x)−
∫
X

p∗(x) logq(x)dx=
∫
X

p∗(x) logp∗(x)dx+R(q) (18)

for any distributionq. Using (17) and (18), and conditioning on the eventMk, we have

D(p∗
F(k)

d

‖ p̂
F̂(k)

d
) = D(p∗‖ p̂

F̂(k)
d
)−D(p∗‖ p∗

F(k)
d

)

=
∫
X

p∗(x) logp∗(x)dx+R(p̂
F̂(k)

d
)−

∫
X

p∗(x) logp∗(x)dx−R(p∗
F(k)

d

)

= R(p̂
F̂(k)

d
)−R(p∗

F(k)
d

),

which gives the desired result.

The above lemma combined with Theorem 9 allows us to obtain the following estimation con-
sistency result, the proof of which is omitted.

Corollary 14 (Estimation consistency) Under Assumptions 1, 2, and 3, we have

D(p∗
F(k)

d

‖ p̂
F̂(k)

d
) = OP

(
k

√
logn+ logd

nβ/(1+β) +d

√
logn+ logd

n2β/(1+2β)

)

conditioned on the eventMk.

5. Tree Restricted Forests

We now turn to the problem of estimating forests with restricted tree sizes. As discussed in the
introduction, clustering problems motivate the goal of constructing forest structured density estima-
tors where each connected component has a restricted number of edges. But estimating restricted
tree size forests can also be useful in model selection for the purpose ofrisk minimization, since the
maximum subtree size can be viewed as an additional complexity parameter.
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Algorithm 2 Approximate Max Weightt-Restricted Forest

1: Input graphG with positive edge weights, and positive integert ≥ 2.

2: Sort edges in decreasing order of weight.

3: Greedily add edges in decreasing order of weight such that

(a) the degree of any node is at mostt +1;

(b) no cycles are formed.

The resulting forest isF ′ = {T1,T2, . . . ,Tm}.

4: Output Ft = ∪ jTreePartition(Tj , t).

Definition 15 A t-restricted forest of a graph G is a subgraph Ft such that

1. Ft is the disjoint union of connected components{T1, ...,Tm}, each of which is a tree;
2. |Ti | ≤ t for each i≤m, where|Ti | denotes the number of edges in the ith component.

Given a weight we assigned to each edge of G, an optimal t-restricted forest F∗
t satisfies

w(F∗t ) = max
F∈Ft(G)

w(F)

where w(F) = ∑e∈F we is the weight of a forest F andFt(G) denotes the collection of all t-restricted
forests of G.

Fort = 1, the problem is maximum weighted matching. However, fort ≥ 7, we show that finding
an optimalt-restricted forest is an NP-hard problem; however, this problem appears not to have been
previously studied. Our reduction is from Exact 3-Cover (X3C), shown to be NP-complete by Garey
and Johnson 1979). In X3C, we are given a setX, a family S of 3-element subsets ofX, and we
must choose a subfamily of disjoint 3-element subsets to coverX. Our reduction constructs a graph
with special tree-shaped subgraphs calledgadgets, such that each gadget corresponds to a 3-element
subset inS . We show that finding a maximum weightt-restricted forest on this graph would allow
us to then recover a solution to X3C by analyzing how the optimal forest must partition each of the
gadgets.

Given the NP-hardness for finding optimalt-restricted forest, it is of interest to study approx-
imation algorithms for the problem. Our first algorithm is Algorithm 2, which runs intwo stages.
In the first stage, a forest is greedily constructed in such a way that each node has degree no larger
thant (a property that is satisfied by allt-restricted forests). However, the trees in the forest may
have more thant edges; hence, in the second stage, each tree in the forest is partitioned inan op-
timal way by removing edges, resulting in a collection of trees, each of which has size at mostt.
The second stage employs a procedure we callTreePartition that takes a tree and returns the
optimalt-restricted subforest.TreePartition is a divide-and-conquer procedure of Lukes (1974)
that finds a carefully chosen set of forest partitions for each child subtree. It then merges these sets
with the parent node one subtree at a time. The details of theTreePartition procedure are given
in Appendix A.
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Theorem 16 Let Ft be the output of Algorithm 2, and let F∗t be the optimal t-restricted forest. Then

w(Ft)≥
1
4

w(F∗t ).

In Appendix A.7, we present a proof of the above result. In that section, we also present an
improved approximation algorithm, one based on solving linear programs, thatfinds at-restricted
forestF ′t such thatw(F ′t )≥

1
2w(F∗t ). Although we cannot guarantee optimality in theory, algorithm 2

performs very well in practice. In Figure 1, we can see that the approximation picks out at-restricted
forest that is close to optimal among the set of allt-restricted forests.

Histogram of Forest Weights
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The solution of 
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Figure 1: Histogram distribution of weights of allt-restricted forests on 11 nodes witht = 7. Edge
weights are the mutual informations computed on the training data.

5.1 Pruning Based ont-Restricted Forests

For a givent, after producing an approximate maximum weightt-restricted forest̂Ft usingD1, we
prune away edges usingD2. To do so, we first construct a new set of univariate and bivariate kernel
density estimates usingD2, as before,̂pn2(xi) and p̂n2(xi ,x j). Recall that we define the “cross-
entropies” of the kernel density estimatesp̂n1 for each pair of variables as

În2,n1(Xi ,Xj) =
∫

p̂n2(xi ,x j) log
p̂n1(xi ,x j)

p̂n1(xi)p̂n1(x j)
dxi dxj

≈
1

m2

m

∑
k=1

m

∑
ℓ=1

p̂n2(xki,xℓ j) log
p̂n1(xki,xℓ j)

p̂n1(xki) p̂n1(xℓ j)
.

We then eliminate all edges(i, j) in F̂t for which În2,n1(Xi ,Xj) ≤ 0. For notational simplicity, we
denote the resulting pruned forest again byF̂t .
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Algorithm 3 t-Restricted Forest Density Estimation

1: Divide data into two halvesD1 andD2.

2: Compute kernel density estimatorsp̂n1 and p̂n2 for all pairs and single variable marginals.

3: For all pairs(i, j) computêIn1(Xi ,Xj) according to (8) and̂In2,n1(Xi ,Xj) according to (10).

4: For t = 0, . . . , tfinal wheretfinal is chosen based on the application

1. Compute or approximate (fort ≥ 2) the optimalt-restricted forest̂Ft using În1 as edge
weights.

2. PruneF̂t to eliminate all edges with negative weightsÎn2,n1.

5: Among all pruned forestŝpF t , select̂t = arg min0≤t≤tfinal
R̂n2(p̂F̂t

).

To estimate the risk, we simply usêRn2(p̂F̂t
) as defined in (9), and select the forestF̂̂t according

to
t̂ = arg min

0≤t≤d−1
R̂n2(p̂F̂t

).

The resulting procedure is summarized in Algorithm 3.
Using the approximation guarantee and our previous analysis, we have that the population

weights of the approximatet-restricted forest and the optimal forest satisfy the following inequality.
We state the result for a generalc-approximation algorithm; for the algorithm given above,c= 4,
but tighter approximations are possible.

Theorem 17 Assume the conditions of Theorem 9. For t≥ 2, let F̂t be the forest constructed using a
c-approximation algorithm, and let F∗t be the optimal forest; both constructed with respect to finite
sample edge weightŝwn1 = În1. Then

w(F̂t)≥
1
c

w(F∗t )+OP

(
(k∗+ k̂)

√
logn+ logd

nβ/(1+β)

)

wherek̂ and k∗ are the number of edges in̂Ft and F∗t , respectively, and w denotes the population
weights, given by the mutual information.

As seen below, although the approximation algorithm has weaker theoreticalguarantees, it out-
performs other approaches in experiments.

6. Experimental Results

In this section, we report numerical results on both synthetic data sets and microarray data. We
mainly compare the forest density estimator with sparse Gaussian graphical models, fitting a multi-
variate Gaussian with a sparse inverse covariance matrix. The sparse Gaussian models are estimated
using the graphical lasso algorithm (glasso) of Friedman et al. (2007), which is a refined version of
an algorithm first derived by Banerjee et al. (2008). Since the glasso typically results in a large pa-
rameter bias as a consequence of theℓ1 regularization, we also compare with a method that we call
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therefit glasso, which is a two-step procedure—in the first step, a sparse inverse covariance matrix
is obtained by the glasso; in the second step, a Gaussian model is refit withoutℓ1 regularization, but
enforcing the sparsity pattern obtained in the first step.

To quantitatively compare the performance of these estimators, we calculate the log-likelihood
of all methods on a held-out data setD2. With µ̂n1 andΩ̂n1 denoting the estimates from the Gaussian
model, the held-out log-likelihood can be explicitly evaluated as

ℓgauss=−
1
n2

∑
s∈D2

{
1
2
(X(s)− µ̂n1)

FΩ̂n1(X
(s)− µ̂n1)+

1
2

log

(
|Ω̂n1|

(2π)d

)}
.

For a given tree structurêF , the held-out log-likelihood for the forest density estimator is

ℓfde =
1
n2

∑
s∈D2

log


 ∏

(i, j)∈E(F̂)

p̂n1(X
(s)
i ,X(s)

j )

p̂n1(X
(s)
i )p̂n1(X

(s)
j )

∏
k∈VF̂

p̂n1(X
(s)
k )


 ,

where p̂n1(·) are the corresponding kernel density estimates, using a Gaussian kernel with plug-in
bandwidths.

Since the held-out log-likelihood of the forest density estimator is indexed bythe number of
edges included in the tree, while the held-out log-likelihoods of the glasso and the refit glasso are
indexed by a continuously varying regularization parameter, we need to find a way to calibrate
them. To address this issue, we plot the held-out log-likelihood of the forest density estimator as
a step function indexed by the tree size. We then run the full path of the glasso and discretize it
according to the corresponding sparsity level, that is, how many edges are selected for each value
of the regularization parameter. The size of the forest density estimator andthe sparsity level of the
glasso (and the refit glasso) can then be aligned for a fair comparison.

6.1 Synthetic Data

We use a procedure to generate high dimensional Gaussian and non-Gaussian data which are con-
sistent with an undirected graph. We generate high dimensional graphs that contain cycles, and so
are not forests. In dimensiond = 100, we samplen1 = n2 = 400 data points from a multivariate
Gaussian distribution with mean vectorµ= (0.5, . . . ,0.5) and inverse covariance matrixΩ. The di-
agonal elements ofΩ are all 62. We then randomly generate many connected subgraphs containing
no more than eight nodes each, and set the corresponding non-diagonal elements inΩ at random,
drawing values uniformly from−30 to−10. To obtain non-Gaussian data, we simply transform
each dimension of the data by its empirical distribution function; such a transformation preserves
the graph structure but the joint distribution is no longer Gaussian (see Liu et al., 2009).

To calculate the pairwise mutual information̂I(Xi ;Xj), we need to numerically evaluate two-
dimensional integrals. We first rescale the data into[0,1]d and calculate the kernel density estimates

on a grid of points; we choosem= 128 evaluation pointsx(1)i < x(2)i < · · ·< x(m)
i for each dimension

i, and then evaluate the bivariate and the univariate kernel density estimateson this grid.
There are three different kernel density estimates that we use—the bivariate kde, the univariate

kde, and the marginalized bivariate kde. Specifically, the bivariate kernel density estimate onxi ,x j
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based on the observations{X(s)
i ,X(s)

j }s∈D1 is defined as

p̂(xi ,x j) =
1
n1

∑
s∈D1

1
h2ih2 j

K

(
X(s)

i −xi

h2i

)
K

(
X(s)

j −x j

h2 j

)
,

using a product kernel. The bandwidthsh2i ,h2 j are chosen as

h2k = 1.06·min

{
σ̂k,

q̂k,0.75− q̂k,0.25

1.34

}
·n−1/(2β+2),

whereσ̂k is the sample standard deviation of{X(s)
k }s∈D1 and q̂k,0.75, q̂k,0.25 are the 75% and 25%

sample quantiles of{X(s)
k }s∈D1.

In all the experiments, we setβ = 2, such a choice ofβ and the “plug-in” bandwidthh2k (and
h1k in the following) is a very common practice in nonparametric Statistics. For more details, see
Fan and Gijbels (1996) and Tsybakov (2008).

Given an evaluation pointxk, the univariate kernel density estimatep̂(xk) based on the observa-

tions{X(s)
k }s∈D1 is defined as

p̂(xk) =
1
n1

∑
s∈D1

1
h1k

K

(
X(s)

k −xk

h1k

)
,

whereh1k > 0 is defined as

h1k = 1.06·min

{
σ̂k,

q̂k,0.75− q̂k,0.25

1.34

}
·n−1/(2β+1).

Finally, the marginal univariate kernel density estimatep̂M(xk) based on the observations{X(s)
k }s∈D1

is defined by integrating the irrelevant dimension out of the bivariate kernel density estimates
p̂(x j ,xk) on the unit square[0,1]2. Thus,

p̂M(xk) =
1

m−1

m

∑
ℓ=1

p̂(x(ℓ)j ,xk).

With the above definitions of the bivariate and univariate kernel density estimates, we consider
estimating the mutual informationI(Xi ;Xj) in three different ways, depending on which estimates
for the univariate densities are employed.

Îfast(Xi ,Xj) =
1

(m−1)2

m

∑
k′=1

m

∑
ℓ′=1

p̂(x(k
′)

i ,x(ℓ
′)

j ) log p̂(x(k
′)

i ,x(ℓ
′)

j )

1
m−1

m

∑
k′=1

p̂(x(k
′)

i ) log p̂(x(k
′)

i )−
1

m−1

m

∑
ℓ′=1

p̂(x(ℓ
′)

j ) log p̂(x(ℓ
′)

j )

Îmedium(Xi ,Xj) =
1

(m−1)2

m

∑
k′=1

m

∑
ℓ′=1

p̂(x(k
′)

i ,x(ℓ
′)

j ) log
p̂(x(k

′)
i ,x(ℓ

′)
j )

p̂(x(k
′)

i ) p̂(x(ℓ
′)

j )
.

Îslow(Xi ,Xj) =
1

(m−1)2

m

∑
k′=1

m

∑
ℓ′=1

p̂(x(k
′)

i ,x(ℓ
′)

j ) log p̂(x(k
′)

i ,x(ℓ
′)

j ) −

1
m−1

m

∑
k′=1

p̂M(x(k
′)

i ) log p̂M(x(k
′)

i )−
1

m−1

m

∑
ℓ′=1

p̂M(x(ℓ
′)

j ) log p̂M(x(ℓ
′)

j ).
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The terms “fast,” “medium” and “slow” refer to the theoretical statistical ratesof convergence
of the estimators. The “fast” estimate uses one-dimensional univariate kernel density estimators
wherever possible. The “medium” estimate uses the one-dimensional kerneldensity estimates in
the denominator ofp(xi ,x j)/(p(xi)p(x j), but averages with respect to the bivariate density. Finally,
the “slow” estimate marginalizes the bivariate densities to estimate the univariate densities. While
the rate of convergence is the two-dimensional rate, the “slow” estimate ensures the consistency of
the bivariate and univariate densities.

I.Fast I.Medium I.Slow
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Figure 2: (Gaussian example) Boxplots ofÎfast, Îmedium, and Îslow on three different pairs of vari-
ables. The red-dashed horizontal lines represent the population values.

Figure 2 compareŝIfast, Îmedium, andÎslow on different pairs of variables. The boxplots are based
on 100 trials. Compared to the ground truth, which can be computed exactly in the Gaussian case,
we see that the performance ofÎmedium and Îslow is better than that of̂Ifast. This is due to the fact
that simply replacing the population density with a “plug-in” version can lead to biased estimates;
in fact, Îfast is not even guaranteed to be non-negative. In what follows, we employÎmedium for
all the calculations, due to its ease of computation and good finite sample performance. Figure 3
compares the bivariate fits of the kernel density estimates and the Gaussian models over four edges.
For the Gaussian fits of each edge, we directly calculate the bivariate samplecovariance and sample
mean and plug them into the bivariate Gaussian density function. From the perspective and contour
plots, we see that the bivariate kernel density estimates provide reasonablefits for these bivariate
components.

A typical run showing the held-out log-likelihood and estimated graphs is provided in Figure 4.
We see that for the Gaussian data, the refit glasso has a higher held-outlog-likelihood than the
forest density estimator and the glasso. This is expected, since the Gaussian model is correct. For
very sparse models, however, the performance of the glasso is worse than that of the forest density
estimator, due to the large parameter bias resulting from theℓ1 regularization. We also observe
an efficiency loss in the nonparametric forest density estimator, compared tothe refit glasso. The
graphs are automatically selected using the held-out log-likelihood, and we see that the nonpara-
metric forest-based kernel density estimator tends to select a sparser model,while the parametric
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Figure 3: Perspective and contour plots of the bivariate Gaussian fits vs. the kernel density estimates
for two edges of a Gaussian graphical model.

Gaussian models tend to overselect. This observation is new and is quite typical in our simulations.
Another observation is that the held-out log-likelihood curve of the glassobecomes flat for less
sparse models but never goes down. This suggests that the held-out log-likelihood is not a good
model selection criterion for the glasso. For the non-Gaussian data, eventhough the refit glasso
results in a reasonable graph, the forest density estimator performs much better in terms of held-out
log-likelihood risk and graph estimation accuracy.

To compare witht-restricted forests, we generated additional Gaussian and non-Gaussian syn-
thetic data as before except on a different graph structure. In Figure5, we use 400 training examples
while varying the size of heldout data to compare the log-likelihoods of four different methods; the
log-likelihood is evaluated on a third large data set. In Figure 6, we consideronly non-Gaussian data,
use 400 training data and 400 heldout data, and generate graphs with best heldout log-likelihood
across the four methods. We compute bandwidth, heldout log-likelihood, and mutual information
same as before.

We observe that although creating a maximum spanning tree (MST) on the held-out data is
asymptotically optimal; it can perform quite poorly. Unless there are copious amount of heldout
data, held-out MST overfits on the heldout data and tend to give large graphs; in contrast,t-restricted
forest has the weakest theoretical guarantee but it gives the best log-likelihood and produces sparser
graphs. It is not surprising to note that MST on heldout data improves as heldout data size in-
creases. Somewhat surprisingly though, Training-MST-with-pruning and t-restricted forest appear
to be insensitive to the heldout data size.
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Figure 4: Synthetic data. Top-left Gaussian, and top-right non-Gaussian: Held-out log-likelihood
plots of the forest density estimator (black step function), glasso (red stars), and refit
glasso (blue circles), the vertical dashed red line indicates the size of the true graph.
Bottom plots show the true and estimated graphs for the Gaussian (second row) and non-
Gaussian data (third row).
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Figure 5: Log-likelihood comparison of various methods: (left white) MST on Training Data with
Pruning (gray) MST on Heldout Data (black) t-Restricted Graph (blue) Refit Glasso

6.2 Microarray Data

In this example, we study the empirical performance of the algorithms on a microarry dataset.

6.2.1 ARABIDOPSISTHALIANA DATA

We consider a data set based on Affymetrix GeneChip microarrays for theplantArabidopsis thaliana,
(Wille et al., 2004). The sample size isn = 118. The expression levels for each chip are pre-
processed by a log-transformation and standardization. A subset of 40genes from the isoprenoid
pathway are chosen, and we study the associations among them using the glasso, the refit glasso,
and the forest-based kernel density estimator.

From the held-out log-likelihood curves in Figure 7, we see that the tree-based kernel density
estimator has a better generalization performance than the glasso and the refit glasso. This is not
surprising, given that the true distribution of the data is not Gaussian. Another observation is that
for the tree-based kernel density estimator, the held-out log-likelihood curve achieves a maximum
when there are only 35 edges in the model. In contrast, the held-out log-likelihood curves of the
glasso and refit glasso achieve maxima when there are around 280 edgesand 100 edges respectively,
while their predictive estimates are still inferior to those of the tree-based kernel density estimator.

Figure 7 also shows the estimated graphs for the tree-based kernel density estimator and the
glasso. The graphs are automatically selected based on held-out log-likelihood. The two graphs
are clearly different; it appears that the nonparametric tree-based kernel density estimator has the
potential to provide different biological insights than the parametric Gaussian graphical model.

6.2.2 HAPMAP DATA

This data set comes from Nayak et al. (2009). The data set contains Affymetrics chip measured
expression levels of 4238 genes for 295 normal subjects in theCentre d’Etude du Polymorphisme
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(a) (b)

(c) (d)

(e)

Figure 6: Graphs generated on non-Gaussian Data: (a) True Graph,(b) t-Restricted Forest (c) MST
on Heldout Data (d) MST on Training Data with Pruning (e) Refit Glasso
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Figure 7: Results on microarray data. Top: held-out log-likelihood (left) and its zoom-in (right) of
the tree-based kernel density estimator (black step function), glasso (red stars), and refit
glasso (blue circles). Bottom: estimated graphs using the tree-based estimator(left) and
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Humain(CEPH) and the International HapMap collections. The 295 subjects come from four dif-
ferent groups: 148 unrelated grandparents in the CEPH-Utah pedigrees, 43 Han Chinese in Beijing,
44 Japanese in Tokyo, and 60 Yoruba in Ibadan, Nigeria. Since we want to find common network
patterns across different groups of subjects, we pooled the data together into an= 295 byd = 4238
numerical matrix.

We estimate the full 4238 node graph using both the forest density estimator (described in
Section 3.1 and 3.2) and the Meinshausen-Bühlmann neighborhood search method as proposed in
Meinshausen and B̈uhlmann (2006) with regularization parameter chosen to give it about same
number as edges as the forest graph.

To construct the kernel density estimatesp̂(xi ,x j)we use an array of Nvidia graphical processing
units (GPU) to parallelize the computation over the pairs of variablesXi andXj . We discretize the
domain of(Xi ,Xj) into a 128×128 grid, and correspondingly employ 128×128 parallel cells in the
GPU array, taking advantage of shared memory in CUDA. Parallelizing in this way increases the
total performance by approximately a factor of 40, allowing the experiment tocomplete in a day.

The forest density estimated graph reveals one strongly connected component of more than
3000 genes and various isolated genes; this is consistent with the analysis inNayak et al. (2009) and
is realistic for the regulatory system of humans. The Gaussian graph contains similar component
structure, but the set of edges differs significantly. We also ran thet-restricted forest algorithm
for t = 2000 and it successfully separates the giant component into three smaller components. For
visualization purposes, in Figure 8, we show only a 934 gene subgraph of the strongly connected
component among the full 4238 node graphs we estimated. More detailed analysis of the biological
implications of this work will left as a future study.

7. Conclusion

We have studied forest density estimation for high dimensional data. Forestdensity estimation skirts
the curse of dimensionality by restricting to undirected graphs without cycles, while allowing fully
nonparametric marginal densities. The method is computationally simple, and the optimal size of
the forest can be robustly selected by a data-splitting scheme. We have established oracle properties
and rates of convergence for function estimation in this setting. Our experimental results compared
the forest density estimator to the sparse Gaussian graphical model in terms of both predictive
risk and the qualitative properties of the estimated graphs for human gene expression array data.
Together, these results indicate that forest density estimation can be a useful tool for relaxing the
normality assumption in graphical modeling.

Acknowledgments

The research reported here was carried out at Carnegie Mellon University and was supported in part
by NSF grant CCF-0625879, AFOSR contract FA9550-09-1-0373,and a grant from Google.

Appendix A. Proofs

In the following, we present the detailed proofs of all the technical results.
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Figure 8: A 934 gene subgraph of the full estimated 4238 gene network. Left: estimated forest
graph. Right: estimated Gaussian graph. The bold gray edges in the forest graph are
missing from the Gaussian graph and vice versa; the thin black edges are shared by both
graphs. Note that the layout of the genes is the same for both graphs.

A.1 Proof of Lemma 8

We only need to consider the more complicated bivariate case (14); the result in (15) follows from
the same line of proof. First, given the assumptions, the following lemma can be obtained by an
application of Corollary 2.2 of Gińe and Guillou (2002). For a detailed proof, see Rinaldo and
Wasserman (2010).

Lemma 18 (Giné and Guillou, 2002) Let̂p be a bivariate kernel density estimate using a kernel
K(·) for which Assumption 2 holds and suppose that

sup
t∈X 2

sup
h2>0

∫
X 2

K2
2(u)p

∗(t−uh2)du≤ D < ∞. (19)

1. Let the bandwidth h2 be fixed. Then there exit constants L> 0 and C> 0, which depend only
on the VC characteristics ofF2 in (11), such that for any c1 ≥C and0 < ε ≤ c1D/‖K2‖∞,
there exists n0 > 0 which depends onε, D, ‖K2‖∞ and the VC characteristics of K2, such that
for all n≥ n0,

P

(
sup
u∈X 2
|p̂(u)−Ep̂(u)|> 2ε

)
≤ Lexp

{
−

1
L

log(1+c1/(4L))
c1

nh2
2ε2

D

}
. (20)
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2. Let h2→ 0 in such a way that nh22/logh2→ ∞, and letε→ 0 so that

ε = Ω

(√
logrn

nh2
2

)
, (21)

where rn = Ω(h−1
2 ). Then(20)holds for sufficiently large n.

From (D2) in Assumption 1 and(K1) in Assumption 2, it is easy to see that (19) is satisfied.
Also, since

h2≍

(
logn

n

) 1
2+2β

,

it is clear thatnh2
2/logh2→ ∞. Part 2 of Lemma 18 shows that there existc2 andc3 such that

P

(
sup

(xi ,x j )∈Xi×X j

|p̂(xi ,x j)−Ep̂(xi ,x j)| ≥
ε
2

)
≤ c2exp

(
−c3n

β
1+β (logn)

1
1+β ε2

)
(22)

for all ε satisfying (21).
This shows that for anyi, j ∈ {1, . . . ,d} with i , j, the bivariate kernel density estimatep̂(xi ,x j)

is uniformly close toEp̂(xi ,x j). Note thatEp̂(xi ,x j) can be written as

Ep̂(xi ,x j) =
∫

1

h2
2

K

(
ui−xi

h2

)
K

(
v j −x j

h2

)
p∗(ui ,v j)duidvj .

The next lemma, from Rigollet and Vert (2009), provides a uniform deviation bound on the bias
termEp̂(xi ,x j)− p∗(xi ,x j).

Lemma 19 (Rigollet and Vert, 2009) Under(D1) in Assumption 1 and(K3) in Assumption 2, we
have

sup
(xi ,x j )∈Xi×X j

∣∣Ep̂(xi ,x j)− p∗(xi ,x j)
∣∣≤ L1hβ

2

∫
X 2
(u2+v2)β/2K(u)K(v)dudv.

where L is defined in(D1) of Assumption 1.

Let c4 = L1

∫
X 2
(u2 + v2)β/2K(u)K(v)dudv. From the discussion of Example 6.1 in Rigollet

and Vert (2009) and(K1) in Assumption 2, we know thatc4 < ∞ and only depends onK andβ.
Therefore

P

(
sup

(xi ,x j )∈Xi×X j

|p∗(xi ,x j)−Ep̂(xi ,x j)| ≥
ε
2

)
= 0 (23)

for ε≥ 4c4hβ
2.

The desired result in Lemma 8 is an exponential probability inequality showing that p̂(xi ,x j) is
close top∗(xi ,x j). To obtain this, we use a union bound:

P

(
max

(i, j)∈{1,...,d}×{1,...,d}
sup

(xi ,x j )∈Xi×X j

|p̂(xi ,x j)− p∗(xi ,x j)| ≥ ε

)

≤ d2
P

(
sup

(xi ,x j )∈Xi×X j

|p̂(xi ,x j)−Ep̂(xi ,x j)| ≥
ε
2

)

+ d2
P

(
sup

(xi ,x j )∈Xi×X j

|p∗(xi ,x j)−Ep̂(xi ,x j)| ≥
ε
2

)
. (24)
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The first result follows from (22) and (24).
Choosing

ε = Ω

(
4c4

√
logn+ logd

nβ/(1+β)

)
,

the result directly follows by combining (22) and (23)

A.2 Proof of Theorem 9

First, from(D2) in Assumption 1 and Lemma 8, we have for anyi , j,

max
(i, j)∈{1,...,d}×{1,...,d}

sup
(xi ,x j )∈Xi×X j

(
p̂(xi ,x j)

p∗(xi ,x j)
−1

)
= OP

(√
logn+ logd

nβ/(β+1)

)
.

The next lemma bounds the deviation ofR̂(p̂F) from R(p∗F) over different choices ofF ∈ Fd

with |E(F)| ≤ k. In the following, we let

F
(k)

d = {F ∈ Fd : |E(F)| ≤ k}

denote the family ofd-node forests with no more thank edges.

Lemma 20 Under the assumptions of Theorem 9, we have

sup
F∈F (k)

d

|R̂(p̂F)−R(p∗F)|= OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
.

Proof For anyF ∈ F (k)
d , we have

|R̂(p̂F)−R(p∗F)|

≤

∣∣∣∣ ∑
(i, j)∈E(F)

(∫
Xi×X j

p∗(xi ,x j) logp∗(xi ,x j)dxidxj −
∫
Xi×X j

p̂(xi ,x j) log p̂(xi ,x j)dxidxj

)∣∣∣∣
︸                                                                                                                ︷︷                                                                                                                ︸

A1(F)

+

∣∣∣∣∑
k∈V

(degF(k)−1)

(∫
Xk

p∗(xk) logp∗(xk)dxk−
∫
Xk

p̂(xk) log p̂(xk)dxk

)∣∣∣∣
︸                                                                                            ︷︷                                                                                            ︸

A2(F)

where degF(k) is the degree of nodek in F . Let ε≥ 4c4hβ
2 and letΩn be the event that

max
(i, j)∈{1,...,d}×{1,...,d}

sup
(xi ,x j )∈Xi×X j

|p̂(xi ,x j)− p∗(xi ,x j)| ≤ ε.

By Lemma 8,Ωn holds except on a set of probability at most

c2d2exp

(
−c3n

β
1+β (logn)

1
1+β ε2

)
.
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From(D2) in Assumption 1, and from the fact that| log(1+u)| ≤ 2|u| for all smallu, we have that,
on the eventΩn,

sup
F∈F (k)

d

A1(F)≤ ckε.

By choosingε = Ω

(
4c4

√
logn+ logd

nβ/(1+β)

)
we conclude that

sup
F∈F (k)

d

A1(F) = OP

(
k

√
logn+ logd

nβ/(β+1)

)
.

By a similar argument and using the fact that∑k |degF(k)−1|= O(d), we have

sup
F∈F (k)

d

A2(F) = OP

(
d

√
logn+ logd

n2β/(1+2β)

)
.

The next auxiliary lemma is also needed to obtain the main result. It shows thatR̂(p̂F) does not

deviate much fromR(p̂F) uniformly over different choices ofF ∈ F (k)
d .

Lemma 21 Under the assumptions of Theorem 9, we have

sup
F∈F (k)

d

|R(p̂F)− R̂(p̂F)|= OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
.

Proof The argument is similar to the proof of Lemma 20.

The proof of the main theorem follows by repeatedly applying the previous two lemmas. As in
Proposition 2, with

p∗
F(k)

d

= arg min
qF∈P

(k)
d

R(qF),
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we have

R(p̂
F̂(k)

d
)−R(p∗

F(k)
d

)

= R(p̂
F̂(k)

d
)− R̂(p̂

F̂(k)
d
)+ R̂(p̂

F̂(k)
d
)−R(p∗

F(k)
d

)

= R̂(p̂
F̂(k)

d
)−R(p∗

F(k)
d

)+OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
(25)

≤ R̂(p̂
F(k)

d
)−R(p∗

F(k)
d

)+OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
(26)

= R(p∗
F(k)

d

)−R(p∗
F(k)

d

)+OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
(27)

= OP

(
k

√
logn+ logd

nβ/(β+1)
+d

√
logn+ logd

n2β/(1+2β)

)
.

where (25) follows from Lemma 21, (26) follows from the fact thatp̂
F̂(k)

d
is the minimizer ofR̂(·),

and (27) follows from Lemma 20.

A.3 Proof of Theorem 10

To simplify notation, we denote

φn(k) = k

√
logn+ logd

nβ/(β+1)

ψn(d) = d

√
logn+ logd

n2β/(1+2β) .

Following the same proof as Lemma 21, we obtain the following.

Lemma 22 Under the assumptions of Theorem 9, we have

sup
F∈F (k)

d

|R(p̂F)− R̂n2(p̂F)|= OP

(
φn(k)+ψn(d)

)
.

whereR̂n2 is the held out risk.

To prove Theorem 10, we now have

R(p̂
F̂(k̂)

d

)−R(p̂
F̂(k∗)

d
) = R(p̂

F̂(k̂)
d

)− R̂n2(p̂F̂(k̂)
d

)+ R̂n2(p̂F̂(k̂)
d

)−R(p̂
F̂(k∗)

d
)

= OP(φn(k̂)+ψn(d))+ R̂n2(p̂F̂(k̂)
d

)−R(p̂
F̂(k∗)

d
)

≤ OP(φn(k̂)+ψn(d))+ R̂n2(p̂F̂(k∗)
d

)−R(p̂
F̂(k∗)

d
) (28)

= OP

(
φn(k̂)+φn(k

∗)+ψn(d)
)
.

where (28) follows from the fact that̂k is the minimizer ofR̂n2(·).
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A.4 Proof of Theorem 11

Using the shorthand

φn(k) = k

√
logn+ logd

nβ/(1+β)

ψn(d) = d

√
logn+ logd

n2β/(1+2β)

We have that

R(p̂F̂n2
)−R(p̂F∗) = R(p̂F̂n2

)− R̂n2(p̂F̂n2
)+ R̂n2(p̂F̂n2

)−R(p̂F∗)

= OP(φn(k̂)+ψn(d))+ R̂n2(p̂F̂n2
)−R(p̂F∗)

≤ OP(φn(k̂)+ψn(d))+ R̂n2(p̂F∗)−R(p̂F∗) (29)

= OP(φn(k̂)+φn(k
∗)+ψn(d))

where (29) follows becausêFn2 is the minimizer ofR̂n2(·).

A.5 Proof of Theorem 12

We begin by showing an exponential probability inequality on the differencebetween the empirical
and population mutual informations.

Lemma 23 Under Assumptions 1, 2, there exist generic constants c5 and c6 satisfying

P

(
|I(Xi ;Xj)− Î(Xi ;Xj)|> ε

)
≤ c5exp

(
−c6n

β
1+β (logn)

1
1+β ε2

)
.

for arbitrary i, j ∈ {1, . . . ,d} with i , j, andε→ 0 so that

ε = Ω

(√
logrn

nh2
2

)
,

where rn = Ω(h−1
2 ).

Proof For anyε = Ω

(√
logrn

nh2
2

)
, we have

P

(
|I(Xi ;Xj)− Î(Xi ;Xj)|> ε

)

= P

(
|
∫
Xi×X j

p∗(xi ,x j) log
p∗(xi ,x j)

p∗(xi)p∗(x j)
dxidxj −

∫
Xi×X j

p̂(xi ,x j) log
p̂(xi ,x j)

p̂(xi)p̂(x j)
dxidxj |> ε

)

≤ P

(
|
∫
Xi×X j

(p∗(xi ,x j) logp∗(xi ,x j)− p̂(xi ,x j) log p̂(xi ,x j))dxidxj |>
ε
2

)

+ P

(
|
∫
Xi×X j

(p∗(xi ,x j) logp∗(xi)p
∗(x j)− p̂(xi ,x j) log p̂(xi)p̂(x j))dxidxj |>

ε
2

)
(30)
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Since the second term of (30) only involves univariate kernel density estimates, this term is domi-
nated by the first term, and we only need to analyze

P

(
|
∫
Xi×X j

(p∗(xi ,x j) logp∗(xi ,x j)− p̂(xi ,x j) log p̂(xi ,x j))dxidxj |>
ε
2

)
.

The desired result then follows from the same analysis as in Lemma 20.

Let

Ln = Ω

(√
logn+ logd

nβ/(1+β)

)

be defined as in Assumption 3. To prove the main theorem, we see the eventF̂(k)
d , F(k)

d implies that
there must be at least exist two pairs of edges(i, j) and(k, ℓ), such that

sign
(

I(Xi ,Xj)− I(Xk,Xℓ)
)
, sign

(
Î(Xi ,Xj)− Î(Xk,Xℓ)

)
. (31)

Therefore, we have

P

(
F̂(k)

d , F(k)
d

)

≤ P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0, for some(i, j), (k, ℓ)

)
.

With d nodes, there can be no more thand4/2 pairs of edges; thus, applying a union bound yields

P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0, for some(i, j), (k, ℓ)

)

≤
d4

2
max

((i, j),(k,ℓ))∈J
P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0
)
.

Assumption 3 specifies that

min
((i, j),(k,ℓ))∈J

|I(Xi ,Xj)− I(Xk,Xℓ)|> 2Ln.

Therefore, in order for (31) hold, there must exist an edge(i, j) ∈ J such that

|I(Xi ,Xj)− Î(Xi ,Xj)|> Ln.

Thus, we have

max
((i, j),(k,ℓ))∈J

P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0
)

≤ max
i, j∈{1,...,d},i, j

P

(
|I(Xi ,Xj)− Î(Xi ,Xj)|> Ln

)

≤ c5exp

(
−c6n

β
1+β (logn)

1
1+β L2

n

)
. (32)

where (32) follows from Lemma 23.
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Chaining together the above arguments, we obtain

P

(
F̂(k)

d , F(k)
d

)

≤ P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0, for some(i, j), (k, ℓ)

)

≤
d4

2
max

((i, j),(k,ℓ))∈J
P

((
I(Xi ,Xj)− I(Xk,Xℓ)

)
·
(

Î(Xi ,Xj)− Î(Xk,Xℓ)
)
≤ 0
)

≤ d4 max
i, j∈{1,...,d},i, j

P

(
|I(Xi ,Xj)− Î(Xi ,Xj)|> Ln

)

≤ d4c5exp

(
−c6n

β
1+β (logn)

1
1+β L2

n

)

= o
(

c5exp
(

4logd−c6(logn)
1

1+β logd
))

= o(1).

The conclusion of the theorem now directly follows.

A.6 Proof of NP-hardness oft-Restricted Forest

We will reduce an instance of exact 3-cover (X3C) to an instance of finding a maximum weight
t-restricted forest (t-RF).

Recall that in X3C, we are given a finite setX with |X| = 3q and a family of 3-element subsets
of X, S = {S⊂ X : |S|= 3}. The objective is to find a subfamilyS ′ ⊂ S such that every element of
X occurs in exactly one member ofS ′, or to determine that no such subfamily exists.

Suppose then we are givenX = {x1, . . . ,xn} andS = {S⊂ X : |S| = 3}, with m= |S |. We
construct the graphG in an instance oft-RF as follows, and as illustrated in Figure 9.

For eachx ∈ X, add anelement nodeto G. For eachS∈ S , construct agadget, which is a
subgraph comprised of anexus node, threejunction nodes, and threelure nodes; see Figure 9. We
assign weights to the edges in a gadget in the following manner:

w(element, junction) = 2

w(nexus, lure1) = 5

w(lure1, lure2) = 10

w(lure2, lure3) = 10

w(nexus, junction) = N > 31m.

Note that the weightN is chosen to be strictly greater than the weight all of the non-nexus-junction
edges in the graph combined. To complete the instance oft-RF, lett = 7.

Lemma 24 Suppose G is a graph constructed in the transformation from X3C describedabove.
Then F∗t must contain all the nexus-junction edges.

Proof The set of all nexus-junction edges together form a well-definedt-restricted forest, since
each subtree has a nexus node and 3 junction nodes. Call this forestF . If some forestF ′ is missing
a nexus-junction edge, thenF ′ must have weight strictly less thanF , sinceN is larger than the sum
of all of the non-nexus-junction edges.
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other gadgets

gadget

nexus
node

junction
node

element
node

lures

2 2

2

22

N

N N

5

10

10

Figure 9: Gadget constructed in the reduction from X3C

Lemma 25 Each subtree in F∗t can contain at most one nexus node.

Proof Suppose a subtreeT in F∗t contains two nexus nodes. Then it must contain 6 junction nodes
by Lemma 24. Thus,T contains at least 8 nodes, and therefore violates thet-restriction constraint.

Lemma 26 For each nexus node contained in F∗t , the corresponding three junction nodes are either
connected to all or none of the three neighboring element nodes.

Proof By the previous two Lemmas 24 and 25, each subtree is associated with at mostone gadget,
and hence at most oneS∈ S , and moreover each gadget has as least one associated subtree.

Without loss of generality, we consider a region of the graph local to some arbitrary subtree. By
the size constraint, a subtree cannot contain all the adjacent element nodes and all the lure nodes.

We now perform a case analysis:

1. If a subtree contains no element nodes and all the lure nodes, then it has weight 3N+25. Call
this anOFF configuration.
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2. If a subtree contains two element nodes, and a second subtree of three nodes contains all the
lure nodes, then the total weight of both subtrees is 3N+24. This is suboptimal because we
can convert to anOFF configuration and gain additional weight without affecting any other
subtrees. Hence, such a configuration cannot exist inF∗t .

3. If a subtree contains two element nodes and lure1, and a second subtree contains just lure2

and lure3, then the total weight of the two subtrees is 3N+19. This is again suboptimal.
4. If a subtree contains an element node and both lure1 and lure2, then there cannot be a second

subtree in region local to the gadget. The weight of this one subtree is(3N+2+5+10) =
3N+17, which is suboptimal.

5. If a subtree contains all three element nodes and no lure nodes, and asecond subtree con-
tains all the lure nodes, then the total weight is(3N+6)+ 20= 3N+ 26. Call this anON

configuration.

Thus, we see that each gadget inF∗t must be either anON or anOFF configuration.

Recall that each gadget corresponds to a 3-element subsetS in the family S . Since a gadget
in an ON configuration has greater weight than a gadget in anOFF configuration, an optimalt-RF
will have as many gadgets in theON configuration as possible. Thus, to solve X3C we can find the
optimal t-RF and, to obtain a subcoverS ′, we place allS into S ′ that correspond toON gadgets in
the forest. By Lemma 25 each subtree can contain at most one nexus node,which implies that each
ON gadget is connected to element nodes that are not connected to any otherON gadgets. Thus, this
results in a subcover for which each element ofX appears in at most oneS∈ S ′.

A.7 Proof of Theorem 16

Recall that we want to show that Algorithm 2 returns a forest with weight that is at least a quarter
of the weight of the optimalt-restricted forest. Let us distinguish two types of constraints:

(a) the degree of any node is at mostt;
(b) the graph is acyclic.

Note that the optimalt-restricted forestF∗t satisfies both the constraints above, and hence the max-
imum weight set of edges that satisfy both the constraints above has weightat leastw(F∗t ). Recall
that the first stage of Algorithm 2 greedily adds edges subject to these two constraints—the next
two lemmas show that the resulting forest has weight at least1

2w(F∗t ).

Lemma 27 The family of subgraphs satisfying the constraints (a) and (b) form a 2-independence
family. That is, for any subgraph T satisfying (a) and (b), and for any edge e∈ G, there exist at
most two edges{e1,e2} in T such that T∪{e}−{e1,e2} also satisfies constraints (a) and (b).

Proof Let T be a subgraph satisfying (a) and (b) and suppose we adde= (u,v) in T. Then the
degrees of bothu andv are at mostt +1. If no cycles were created, then we can simply remove
an edge inT containingu (if any) and an edge inT containingv (if any) to satisfy the degree con-
straint (a) as well. If addinge created a cycle of the form{. . . ,(u′,u),(u,v),(v,v′)}, then the edges
(u′,u) and(v,v′) can be removed to satisfy both constraints (a) and (b).
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Lemma 28 Let F1 be the forest output after Step 1 of algorithm 2. Then w(F1)≥
1
2w(F∗t ).

Proof Let F∗∗ be a maximum weight forest that obeys both constraints (a) and (b). Sincethe op-
timal t-restructed forestF∗t obeys both these constraints, we havew(F∗t ) ≤ w(F∗∗). By a theorem
of Hausmann et al. (1980), in ap-independence family the greedy algorithm is a1

p-approximation
to the maximum weightp-independent set. By Lemma 27, we know that the set of all subgraphs
satisfying constraints (a) and (b) is a 2-independent family. Hence,w(F1)≥

1
2w(F∗∗)≥ 1

2w(F∗t ).

We can now turn to the proof of Theorem 16.

Proof Given a graphG, let F1 be the forest output by first step of Algorithm 2, and letFA be the
forest outputted by the second step. We claim thatw(FA)≥

1
2w(F1); combined with Lemma 28, this

will complete the proof of the theorem.

To prove the claim, we first show that given any treeT with edge weights and maximum degree
t ≥ 2, we can obtain a sub-forestF with total weightw(F)≥ 1

2w(T), and where the number of edges
in each tree in the forestF is at mostt−1. Indeed, root the treeT at an arbitrary node of degree-1,
and call an edgee oddor evendepending on the parity of the number of edges in the unique path
betweeneand the root. Note that the set of odd edges and the set of even edges partition T into sub-
forests composed entirely of stars of maximum degreet−1, and one of these sub-forests contains
half the weight ofT, which is what we wanted to show.

Applying this procedure to each treeT in the forestF1, we get the existence of at−1-restricted
subforestF ′1 ⊆ F1 that has weight at least12w(F1). Observe that at − 1-restricted subforest isa
fortiori ak-restricted subforest, and sincew(FA) is the bestt-restricted subforest ofF1, we have

w(FA)≥ w(F ′1)≥
1
2

w(F1)≥
1
4

w(F∗t ),

completing the proof.

A.7.1 AN IMPROVED APPROXIMATION ALGORITHM

We can get an improved approximation algorithm based on a linear programmingapproach. Recall
thatF∗∗ is a maximum weight forest satisfying both (a) and (b). A result of Singh and Lau (2007)
implies that given any graphG with non-negative edge weights, one can find in polynomial time a
forestFSL such that

w(FSL)≥ w(F∗∗)≥ w(F∗t ), (33)

but where the maximum degree inFSL is t + 1. Now applying the procedure from the proof of
Theorem 16, we get at-restricted forestF ′SL whose weight is at least half ofw(FSL). Combining
this with (33) implies thatw(F ′SL) ≥ w(F∗t ), and completes the proof of the claimed improved ap-
proximation algorithm. We remark that the procedure of Singh and Lau (2007) to find the forest
FSL is somewhat computationally intensive, since it requires solving vertex solutions to large linear
programs.
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A.8 Proof of Theorem 17

Proceeding as in the proof of Theorem 10, we have that

∣∣∣R(p̂F̂t
)−R(p̂F∗t )

∣∣∣ ≤ R(p̂F̂t
)− R̂n1(p̂F̂t

)+
∣∣∣R̂n1(p̂F̂t

)−R(p̂F∗t )
∣∣∣

= OP(kφn(d)+dψn(d))+
∣∣∣R̂n1(p̂F̂t

)−R(p̂F∗t )
∣∣∣ .

Now, let Ĥn1 denote the estimated entropyH(X) = ∑k H(Xk), constructed using the kernel den-
sity estimateŝpn1(xk). Since the risk is the negative expected log-likelihood, we have using the
approximation guarantee that

R̂n1(p̂F̂t
)−R(p̂F∗t ) = −ŵn1(F̂t)+ Ĥn1−R(p̂F∗t )

≤ −
1
c

ŵn1(F
∗
t )+ Ĥn1−R(p̂F∗t )

= R̂n1(p̂
∗
Ft
)+

c−1
c

ŵn1(F
∗
t )−R(p̂F∗t )

= OP

(
k∗φn(d)+dψn(d)+

c−1
c

w(F∗t )

)

and the result follows.

A.9 The TreePartition Subroutine

To produce the bestt-restricted subforest of the forestF1, we use a divide-and-conquer forest parti-
tion algorithm described by Lukes (1974), which we now describe in more detail.

To begin, note that finding an optimal subforest is equivalent to finding a partition of the nodes
in the forest, where each disjoint tree in the subforest is a cluster in the partition. Since a forest
contains a disjoint set of trees, it suffices to find the optimalt-restricted partition of each of the
trees.

For every subtreeT, with rootv, we will find a list of partitions v.P= {v.P0,v.P1, ...,v.Pk} such
that

1. for i , 0, v.Pi is a partition whose cluster containing rootv has sizei;
2. v.Pi has the maximum weight among all partitions satisfying the above condition.

We definev.P0 to be arg max{w(v.P1), . . . ,w(v.Pt)}. TheMerge subroutine used inTreePartition
takes two lists of partitions{v.P,ui .P}, wherev is the parent ofui , v.P is a partition of nodev
unioned with subtrees of children{u1, . . . ,ui−1}, andui .P is a partition of the subtree of childui ;
refer to Figure 10.

Since a partition is a list of clusters of nodes, we denote byConcat(v.P2,u.Pk−2) the concate-
nation of clusters of partitionsv.P2,u.Pk−2. Note that the concatenation forms a partition ifv.P2 and
u.Pk−2 are respectively partitions of two disjoint sets of vertices. The weight of apartition is denoted
w(v.P2), that is, the weight of all edges between nodes of the same cluster in the partition v.P2.
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u1 ui−1 ui

v

· · · · · ·

Figure 10: TheTreePartition procedure to merge two subproblems.

Algorithm 4 TreePartition(T, t)

1: Input a treeT, a positive integert

2: Returns an optimal partition into trees of size≤ t.

3: Initialize v.P1 = [{v}] wherev is root ofT, if v has no children, returnv.P1

4: For all children{u1, ...us} of v, recursively callTreePartition(ui , t) to get a collection of lists
of partitions{u1.P,u2.P, ...us.P}

5: For each childui ∈ {u1, ...us} of v
Updatev.P← Merge(ui .P,v.P)

6: Output v.P0

Algorithm 5 Merge(v.P, u.P)

1: Input a list of partitionsv.P andu.P, wherev is a parent ofu.

2: Returns a single list of partitionsv.P′.

3: For i = 1, . . . , t:

1. Let(s∗, t∗) = arg max(s,t):s+t=i w(Concat(v.Ps,u.Pt))

2. Letv.P′i = Concat(v.Ps∗ ,u.Pt∗)

4: Selectv.P′0 = arg maxv.P′i w(v.P′i )

5: Output {v.P′0,v.P
′
1, ...v.P

′
n}
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Appendix B. Computation of the Mutual Information Matrix

In this appendix we explain different methods for computing the mutual information matrix, and
making the tree estimation more efficient. One way to evaluate the empirical mutual information is
to use

Î(Xi ;Xj) =
1
n1

∑
s∈D1

log
p̂n1(X

(s)
i ,X(s)

j )

p̂n1(X
(s)
i ) p̂n1(X

(s)
j )

. (34)

Compared with our proposed method

În1(Xi ,Xj) =
1

m2

m

∑
k=1

m

∑
ℓ=1

p̂n1(xki,xℓ j) log
p̂n1(xki,xℓ j)

p̂n1(xki) p̂n1(xℓ j)
, (35)

(34) is somewhat easier to calculate. However, if the sample size inD1 is small, the approximation
error can be large. A different analysis is needed to provide justificationof the method based on
(34), which would be more difficult sincêpn1(·) is dependent onD1. For these reasons we use the
method in (35).

Also, note that instead of using the grid based method to evaluate the numericalintegral, one
could use sampling. If we can obtainm1 i.i.d. samples from the bivariate densitŷp(Xi ,Xj),

{
(X(s)

i ,X(s)
j )
}m1

s=1

i.i.d.
∼ p̂n1(xi ,x j),

then the empirical mutual information can be evaluated as

Î(Xi ;Xj) =
1

m1

m1

∑
s=1

log
p̂(X(s)

i ,X(s)
j )

p̂(X(s)
i )p̂(X(s)

j )
.

Compared with (34), the main advantage of this approach is that the estimate canbe arbitrarily
close to (8) for large enoughm1 andm. Also, the computation can be easier compared to Algorithm
1. Let p̂n1(Xi ,Xj) be the bivariate kernel density estimator onD1. To sample a point from̂pn1(Xi ,Xj),

we first random draw a sample(X(k′)
i ,X(ℓ′)

j ) from D1, and then sample a point(X,Y) from the
bivariate distribution

(X,Y)∼
1

h2
2

K

(
X(k′)

i −·

h2

)
K


X(ℓ′)

j −·

h2


 .

Though this sampling strategy is superior to Algorithm 1, it requires evaluationof the bivariate
kernel density estimates on many random points, which is time consuming; the grid-based method
is preferred.

In our two-stage procedure, the stage requires calculation of the empirical mutual information
Î(Xi ;Xj) for

(d
2

)
entries. Each requiresO(m2n1) work to evaluate the bivariate and univariate kernel

density estimates on them×mgrid, in a naive implementation. Therefore, the total time to calculate
the empirical mutual information matrixM is O(m2n1d2). In the second stage, the time complexity
of the Chow-Liu algorithm is dominated by the first step. Therefore the total timecomplexity is
O
(
m2n1d2

)
. The first stage requiresO(d2) space to store the matrixM and O(m2n1) space to
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Algorithm 6 More efficient calculation of the mutual information matrixM.

1: Initialize M = 0d×d andH(i) = 0n1×m for i = 1, . . . ,d.

2: % calculate and pre-store the univariate KDE
3: for k= 1, . . . ,d do
4: for k′ = 1, . . . ,mdo

5: p̂(x(k
′)

k )←
1
n1

∑
s∈D1

1
h1

K

(
X(s)

k −x(k
′)

k

h1

)

6: for k′ = 1, . . . ,mdo
7: % calculate the components used for the bivariate KDE
8: for i′ = 1, . . . ,n1 do
9: for i = 1, . . . ,d do

10: H(i)(i′,k′)←
1
h2

K

(
Xi′

i −x(k
′)

i

h2

)

11: % calculate the mutual information matrix
12: for ℓ′ = 1, . . . ,mdo
13: for i = 1, . . . ,d−1 do
14: for j = i+1, . . . ,d do
15: p̂(x(k

′)
i ,x(ℓ

′)
j )← 0

16: for i′ = 1, . . . ,n1 do
17: p̂(x(k

′)
i ,x(ℓ

′)
j )← p̂(x(k

′)
i ,x(ℓ

′)
j )+H(i)(i′,k′) ·H( j)(i′, ℓ′)

18: p̂(x(k
′)

i ,x(ℓ
′)

j )← p̂(x(k
′)

i ,x(ℓ
′)

j )/n1

19: M(i, j)←M(i, j)+ 1
m2 p̂(x(k

′)
i ,x(ℓ

′)
j ) · log

(
p̂(x(k

′)
i ,x(ℓ

′)
j )/(p̂(x(k

′)
i ) · p̂(x(ℓ

′)
j ))

)

evaluate the kernel density estimates onD1. The space complexity for the Chow-Liu algorithm is
O(d2), and thus the total space complexity isO(d2+m2n1).

The quadratic time and space complexity in the number of variablesd is acceptable for many
practical applications but can be prohibitive when the dimensiond is large. The main bottleneck
is to calculate the empirical mutual information matrixM. Due to the use of the kernel density
estimate, the time complexity isO(d2m2n1). The straightforward implementation in Algorithm 1 is
conceptually easy but computationally inefficient, due to many redundant operations. For example,
in the nested for loop, many components of the bivariate and univariate kernel density estimates
are repeatedly evaluated. In Algorithm 6, we suggest an alternative methodwhich can significantly
reduce such redundancy at the price of increased but still affordable space complexity.

The main technique used in Algorithm 6 is to change the order of the multiple nestedfor loops,
combined with some pre-calculation. This algorithm can significantly boost the empirical perfor-
mance, although the worst case time complexity remains the same. An alternative suggested by
Bach and Jordan (2003) is to approximate the mutual information, although this would require fur-
ther analysis and justification.
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estimators.Annales de l’institut Henri Poincaré (B), Probabilit́es et Statistiques, 38:907–921,
2002.

Dirk Hausmann, Bernhard Korte, and Tom Jenkyns. Worst case analysis of greedy type algorithms
for independence systems.Math. Programming Studies, 12:120–131, 1980.

Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem.
Proceedings of the American Mathematical Society, 7(1):48–50, 1956.

Steffen L. Lauritzen.Graphical Models. Clarendon Press, 1996.

Han Liu, John Lafferty, and Larry Wasserman. The nonparanormal: Semiparametric estimation
of high dimensional undirected graphs.Journal of Machine Learning Research, 10:2295–2328,
October 2009.

Joseph A. Lukes. Efficient algorithm for the partitioning of trees.IBM Jour. of Res. and Dev., 18
(3):274, 1974.
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