
Journal of Machine Learning Research 12 (2011) 1697-1728 Submitted 4/10; Revised 10/10; Published 5/11

Domain Decomposition Approach for Fast Gaussian Process
Regression of Large Spatial Data Sets

Chiwoo Park CHIWOO.PARK@TAMU .EDU

Department of Industrial and Systems Engineering
Texas A&M University
3131 TAMU, College Station, TX 77843-3131, USA

Jianhua Z. Huang JIANHUA@STAT.TAMU .EDU

Department of Statistics
Texas A&M University
3143 TAMU, College Station, TX 77843-3143, USA

Yu Ding YUDING@IEMAIL .TAMU .EDU

Department of Industrial and Systems Engineering
Texas A&M University
3131 TAMU, College Station, TX 77843-3131, USA

Editor: Neil Lawrence

Abstract

Gaussian process regression is a flexible and powerful tool for machine learning, but the high
computational complexity hinders its broader applications. In this paper, we propose a new ap-
proach for fast computation of Gaussian process regressionwith a focus on large spatial data sets.
The approach decomposes the domain of a regression functioninto small subdomains and infers
a local piece of the regression function for each subdomain.We explicitly address the mismatch
problem of the local pieces on the boundaries of neighboringsubdomains by imposing continuity
constraints. The new approach has comparable or better computation complexity as other compet-
ing methods, but it is easier to be parallelized for faster computation. Moreover, the method can be
adaptive to non-stationary features because of its local nature and, in particular, its use of different
hyperparameters of the covariance function for different local regions. We illustrate application of
the method and demonstrate its advantages over existing methods using two synthetic data sets and
two real spatial data sets.

Keywords: domain decomposition, boundary value problem, Gaussian process regression, paral-
lel computation, spatial prediction

1. Introduction

This paper is concerned about fast computation of Gaussian process regression, hereafter called GP
regression. With its origin in geostatistics, well known askriging, the GP regression has recently
developed to be a useful tool in machine learning (Rasmussen and Williams, 2006). A GP regression
provides the best unbiased linear estimator computable by a simple closed formexpression and is
a popular method for interpolation or extrapolation. A major limitation of GP regression is its
computational complexity, scaled byO(N3), whereN is the number of training observations. Many
approximate computation methods have been introduced in the literature to relievethe computation

c©2011 Chiwoo Park, Jianhua Z. Huang and Yu Ding.

PARK , HUANG AND DING

burden. A new computation scheme is developed in this paper with a focus on large spatial data
sets.

Existing approximation methods may be categorized into three schools: matrix approximation,
likelihood approximation and localized regression. The first school is motivated by the observation
that the inversion of a big covariance matrix is the major part of the expensive computation, and
thus, approximating the matrix by a lower rank version will help reduce the computational demand.
Williams and Seeger (2000) approximated the covariance matrix by the Nyström extension of a
smaller covariance matrix evaluated onM training observations (M ≪ N). This helps reduce the
computation cost fromO(N3) to O(NM2), but this method does not guarantee the positivity of the
prediction variance (Quiñonero-Candela and Rasmussen, 2005, page 1954).

The second school approximates the likelihood of training and testing points by assuming condi-
tional independence of training and testing points, givenM artificial points, known as “inducing in-
puts.” Under this assumption, one only needs to invert matrices of rankM for GP predictions rather
than the original big matrix of rankN. Depending on the specific independence assumed, there are
a number of variants to the approach: deterministic training conditional (DTC,Seeger et al., 2003),
full independent conditional (FIC, Snelson and Ghahramani, 2006), partial independent conditional
(PIC, Snelson and Ghahramani, 2007). DTC assumes a deterministic relationbetween the inducing
inputs and the regression function values at training sample locations. An issue in DTC is how to
choose the inducing inputs; a greedy strategy has been used to choose the inducing inputs among the
training data. FIC assumes that each individual training or test point is conditionally independent
of one another once given all the inducing inputs. Under this assumption, FIC enjoys a reduced
computation cost ofO(NM2) for training andO(M2) for testing. However, FIC will have difficulty
in fitting data having abrupt local changes or non-stationary features; see Snelson and Ghahramani
(2007). PIC makes a relaxed conditional independence assumption in order to better reflect local-
ized features. PIC first groups all data points into several blocks and assumes that all the data points
within a block could still be dependent but the data points between blocks areconditional indepen-
dent once given the inducing inputs. Suppose thatB is the number of data points in a block, PIC
entertains a reduced computation cost ofO(N(M+B)2) for training andO((M+B)2) for testing.

The last school is localized regression. It starts from the belief that a pair of observations
far away from each other are almost uncorrelated. As such, predictionat a test location can be
performed by using only a small number, sayB, of neighboring points. One way to implement this
idea, calledlocal kriging, is to decompose the entire domain into smaller subdomains and to predict
at a test site using the training points only in the subdomain which the test site belongs to. It is
well known that local kriging suffers from having discontinuities in prediction on the boundaries
of subdomains. On the other hand, the local kriging enjoys many advantages, such as adaptivity to
non-stationary changes, efficient computation withO(NB2) operations for training andO(B2) for
testing, and easiness of being parallelized for faster computation.

Another way for localized regression is to build multiple local predictors and tocombine them
by taking a weighted average of the local predictions. Differing in the weighting schemes used, sev-
eral methods have been proposed in the literature, including Bayesian committee machine (BCM,
Tresp, 2000; Schwaighofer et al., 2003), local probabilistic regression (LPR, Urtasun and Darrell,
2008), mixture of Gaussian process experts (MGP, Rasmussen and Ghahramani, 2002), and treed
Gaussian process model (TGP, Gramacy and Lee, 2008). Because ofthe averaging mechanism, all
these methods avoid the discontinuity problem of local kriging. However, thetesting time complex-
ities of all these methods are significantly higher than local kriging, making themless competitive

1698

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

when the number of test locations is large. In particular, BCM is transductive and it requires in-
version of a matrix whose size is the same as the number of test locations, and assuch, it is very
slow when the number of test locations is large. Mixture models such as MGP and TGP involve
complicated integrations which in turn are approximated by sampling or Monte Carlo simulation.
The use of Monte Carlo simulation makes these methods less effective for large data sets.

Being aware of the advantages and disadvantages of the local kriging along with computational
limitations of the averaging-based localized regression, we propose a newlocal kriging approach
that explicitly addresses the problem of discontinuity in prediction on the boundaries of subdomains.
The basic idea is to formulate the GP regression as an optimization problem and todecompose the
optimization problem into smaller local optimization problems that provide local predictions. By
imposing continuity constraints on the local predictions at the boundaries, weare able to produce
a continuous global prediction for 1-d data and significantly control the degrees of discontinuities
for 2-d data. Our new local kriging approach is motivated by the domain decomposition method
widely used for solving partial differential equations (PDE, Quarteroniand Valli, 1999). To obtain a
numerical solution of a PDE, the finite element method discretizes the problem and approximates the
PDE by a big linear system whose computation cost grows with the number of discretizing points
over the big domain. In order to attain an efficient solution, the domain decomposition method
decomposes the domain of the PDE solution into small pieces, solves small linear systems for
local approximations of the PDE solution, and smoothly connects the local approximations through
imposing continuity and smoothness conditions on boundaries.

Our method has, in a regular (sequential) computing environment, at least similar computational
complexity as the most efficient existing methods such as FIC, PIC, BCM, andLPR, but it can be
parallelized easily for faster computation, resulting a much reduced computational cost ofO(B3).
Furthermore, each local predictor in our approach is allowed to use a different hyperparameter for
the covariance function and thus the method is adaptive to non-stationary changes in the data, a
feature not enjoyed by FIC and PIC. The averaging-based localized regressions also allow local
hyperparameters, but our method is computationally more attractive for largetest data sets. Overall,
our approach achieves a good balance of computational speed and accuracy, as demonstrated empir-
ically using synthetic and real spatial data sets (Section 6). Methods applying a compactly supported
covariance function (Gneiting, 2002; Furrer et al., 2006) can be considered as a variant of localized
regression, which essentially usesmoving boundariesto define neighborhoods. These methods can
produce continuous predictions but cannot be easily modified to adapt to non-stationarity.

The rest of the paper is organized as follows. In Sections 2 and 3, we formulate the new local
kriging as a constrained optimization problem and provide solution approaches for the optimization
problem. Section 4 presents the numerical algorithm of our method. Section 5 discusses the hy-
perparameter learning issue. Section 6 provides numerical comparisons of our method with several
existing methods, including local kriging, FIC, PIC, BCM, and LPR, using two synthetic data sets
(1-d and 2-d) and two real data sets (both 2-d). Finally Section 7 concludes the paper, followed by
additional discussions on possible improvement of the proposed method.

2. GP Regression as an Optimization Problem

Before formulating the problem, we define notational convention. Boldfacecapital letters represent
matrices and boldface lowercase letters represent vectors. One exception is a notation for spatial

1699

PARK , HUANG AND DING

locations. A spatial location is a two-dimensional vector, but for notational simplicity, we do not
use boldface for it. Instead, we use boldface lowercase to representa set of spatial locations.

A spatial GP regression is usually formulated as follows: given a training data setD = {(xi ,yi), i =
1, . . . ,N} of n pairs of locationsxi and noisy observationsyi , obtain the predictive distribution for
the realization of a latent function at a test locationx∗, denoted byf∗ = f (x∗). We assume that the
latent function comes from a zero-mean Gaussian random field with a covariance functionk(·, ·) on
a domainΩ⊂ R d and the noisy observationsyi are given by

yi = f (xi)+ εi , i = 1, . . . ,N,

whereεi ∼ N (0,σ2) are white noises independent off (xi). Denotex = [x1,x2, ..,xN]
t andy =

[y1,y2, ..,yN]
t . The joint distribution of(f∗,y) is

P(f∗,y) =N

(
0,

[
k∗∗ kt

x∗
kx∗ σ2I+Kxx

])
,

wherek∗∗ = k(x∗,x∗), kx∗ = (k(x1,x∗), . . . ,k(xN,x∗))t andKxx is anN×N matrix with(i, j)th entity
k(xi ,x j). The subscripts ofk∗∗,kx∗ andKxx represent two sets of the locations between which the
covariance is computed, andx∗ is abbreviated as∗. By the conditional distribution for Gaussian
variables, the predictive distribution off∗ giveny is

P(f∗|y) =N (kt
x∗(σ

2I+Kxx)
−1y,k∗∗−kt

x∗(σ
2I+Kxx)

−1kx∗). (1)

The predictive meankt
x∗(σ2I +Kxx)

−1y gives the point prediction off (x) at locationx∗, whose
uncertainty is measured by the predictive variancek∗∗−kt

x∗(σ2I+Kxx)
−1kx∗.

The point prediction given above is the best linear unbiased predictor (BLUP) in the following
sense. Consider all linear predictors

µ(x∗) = u(x∗)
ty,

satisfying the unbiasedness requirementE[µ(x∗)] = 0. We want to find the vectoru(x∗) that min-
imizes the mean squared prediction errorE[µ(x∗)− f (x∗)]2. SinceE[µ(x∗)] = 0 andE[f (x∗)] = 0,
the mean squared prediction error equals the error variance var[µ(x∗)− f (x∗)] and can be expressed
as

σ(x∗) = u(x∗)
tE(yyt)u(x∗)−2u(x∗)

tE(y f∗)+E(f 2
∗)

= u(x∗)
t(σ2I+Kxx)u(x∗)−2u(x∗)

tkx∗+k∗∗,
(2)

which is a quadratic form inu(x∗). It is easy to seeσ(x∗) is minimized if and only ifu(x∗) is chosen
to be(σ2I+Kxx)

−1kx∗.
Based on the above discussion, the mean of the predictive distribution in (1) or the best linear

unbiased predictor can be obtained by solving the following minimization problem:for x∗ ∈Ω,

Minimize
u(x∗)∈RN

z[u(x∗)] := u(x∗)
t(σ2I+Kxx)u(x∗)−2u(x∗)

tkx∗, (3)

where the constant termk∗∗ in σ(x∗) is dropped from the objective function. Given the solution
u(x∗) = (σ2I+Kxx)

−1kx∗, the predictive mean is given byu(x∗)ty and the predictive variance is
z[u(x∗)]+k∗∗, the optimal objective value plus the variance off∗ at the locationx∗.

1700

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

The optimization problem (3) and its solution depends on the special locationx∗ that we seek
prediction. However, we are usually interested in predicting at multiple test locations. This mo-
tivates us to define another class of optimization problem whose solutions areindependent of the
location. Note that the optimal solution of (3) has the form ofAkx∗ for anN×N matrixA and thus,
we can restrict the feasible region foru(x∗) toV= {Akx∗;A ∈RN×N}. This leads to the following
optimization problem: forx∗ ∈Ω,

Minimize
A∈RN×N

z[A] := kt
x∗A

t(σ2I+Kxx)Akx∗−2kt
x∗A

tkx∗. (4)

The first order necessary condition (FONC) for solving (4) is

dz[A]

dA
= 2(σ2I+Kxx)Akx∗k

t
x∗−2kx∗k

t
x∗ = 0. (5)

To obtainA, we needN×N equations with respect toA. However, the FONC only providesN
equations sincekx∗k

t
x∗ is a rank one matrix, and thus it cannot uniquely determine the optimalA.

In fact,A = (σ2I+Kxx)
−1(I+B), whereB is any matrix satisfyingBkx∗ = 0, all satisfies the

FONC in (5).
Recall that our intention of the reformulation is to produce location-independent solutions. Yet

thoseA’s satisfying the FONC as mentioned above are still dependent onx∗, except forÂ= (σ2I+
Kxx)

−1, which becomes the one we propose to choose as the solution to the FONC. Itis also easy
to verify thatÂ= (σ2I+Kxx)

−1 is indeed the optimal solution to (4). The formulation (4) and the
above-mentioned rationale for choosing its solution will serve as the basis for the development of
local kriging in the next section.

3. Domain Decomposition: Globally Connected Local Kriging

The reformulation of the GP regression as the optimization problem in (4) doesnot reduce the
computational complexity. We still need to compute the matrix inversion inÂ which requiresO(N3)
computations. To ease the computational burden, our strategy is to approximate the optimization
problem (4) by a collection of local optimization problems, each of which is computationally cheap
to solve. The local optimization problems are connected in a way ensuring thatthe spatial prediction
function is globally continuous. We present the basic idea in this section and derive the numerical
algorithm in the next section.

We decompose the domainΩ into m disjoint subdomains{Ω j} j=1,...,m. Let x j be the subset
of locations of observed data that belong toΩ j and lety j denote the corresponding values of the
response variable. Denote byn j the number of data points inΩ j . Consider an initial local problem
as follows: forx∗ ∈Ω j ,

Minimize
A j∈R

nj×nj
kt

x j∗A
t
j(σ

2
jI+Kx j x j)A jkx j∗−2kt

x j∗A
t
jkx j∗, (6)

where we introduced the subdomain-dependent noise varianceσ2
j . The minimizerA j = (σ2

jI +

Kx j x j)
−1 provides a local predictor,µj(x∗) = kt

x j∗A
t
jy j , for x∗ ∈Ω j . Computing the local predictor

requires onlyO(n3
j) operations for eachj. By makingn j ≪ N, the saving in computation could be

substantial.
As we mentioned in the introduction, the above local kriging will suffer from discontinuities in

prediction on boundaries of subdomains. While the prediction on the interior of each subdomain is

1701

PARK , HUANG AND DING

independently governed by the corresponding local predictor, the prediction on a boundary comes
from the local predictors of at least two subdomains that intersect on the boundary, which provide
different predictions. For simplicity, in this paper, we suppose that a boundary is shared by at most
two subdomains. In the language of finite element analysis, our subdomains{Ω j} j=1,...,m form a
‘conforming’ mesh of the domainΩ (Ern and Guermond, 2004). Suppose that two neighboring
subdomainsΩ j andΩk have a common boundaryΓ jk := Ω j ∩Ωk, whereΩ j means the closure of
Ω j . Usingkx j◦ as the abbreviation ofkx jx◦ , we have discontinuities onΓ jk, that is,

kt
x j◦A

t
jy j 6= kt

xk◦
At

kyk for x◦ ∈ Γ jk.

The discontinuity problem of local kriging has been well documented in the literature; see Snelson
and Ghahramani (2007, Figure 1).

To fix the problem, we impose continuity constraints on subdomain boundaries when combining
the local predictors. Specifically, we impose

(Continuity) kt
x j◦A

t
jy j = kt

xk◦
At

kyk for x◦ ∈ Γ jk.

This continuity requirement implies that two mean predictions obtained from localpredictors of
two neighboring subdomains are the same on the common subdomain boundary.According to (2),
the predictive variance is in a quadratic form of the predictive mean. Thus, the continuity of the
predictive mean across boundary imply the continuity of the predictive variance.

To incorporate the continuity condition to the local kriging problems, definer jk(x◦) as a con-
sistent prediction atx◦ on Γ jk. The continuity condition is converted to the following two separate
conditions:

kt
x j◦A

t
jy j = r jk(x◦) andkt

xk◦
At

kyk = r jk(x◦) for x◦ ∈ Γ jk.

Adding these conditions as constraints, we revise the initial local problem (6) to the following
constrained local problem: forx∗ ∈Ω j

LP(j) : Minimize
A j∈R

nj×nj
kt

x j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗−2kt

x j∗A
t
jkx j∗

s. t. kt
x j◦A

t
jy j = r jk(x◦) for x◦ ∈ Γ jk andk∈ N(j),

(7)

whereN(j) := {k : Ωk is next toΩ j}. Note thatr jk(x◦) is a function ofx◦ and is referred to as a
boundary value functionon Γ jk. We ensure the continuity of the prediction across the boundary
Γ jk by using a common boundary value functionr jk for two neighboring subdomainsΩ j andΩk.
Solving of the constrained local problemLP(j) will be discussed in the subsequent section. Since
the solution depends on a set ofr jk’s, denoted collectively asr j = {r jk;k ∈ N(j)}, we denote the
solution of (7) asA j(r j). Note that, ifr j is given, we can solve the constrained local problemLP(j)
for each subdomain independently. In reality,r j is unknown unless additional conditions are used.

To obtain the boundary value functions, we propose to minimize the predictivevariances on the
subdomain boundaries. The predictive variance at a boundary pointx◦ is given by the objective
function of (7), which depends onr j and can be written as

kt
x j◦A j(r j)

t(σ2
jI+Kx jx j)A j(r j)kx j◦−2kt

x j◦A j(r j)
tkx j◦.

To obtain the collection of all boundary value functions,{r j}
m
j=1, we solve the following optimiza-

tion problem

Minimize
{r j}

m
j=1

m

∑
j=1

∑
k∈N(j)

∑
x◦∈Γ jk

kt
x j◦A j(r j)

t(σ2
jI+Kx jx j)A j(r j)kx j◦−2kt

x j◦A j(r j)
tkx j◦. (8)

1702

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

Note that we cannot solve optimization over eachr j separately sincer jk in r j is equivalent tork j

in rk so the optimization overr j is essentially linked to the optimization overrk. In other words,
the equations for obtaining the optimizedr j ’s are entangled. We call (8) aninterface equation,
since it solves the boundary values on the interfaces between subdomains. Details of solving these
equations will be given in the next section.

To summarize, we reformulate the spatial prediction problem as a collection of local prediction
optimization problems, and impose continuity restrictions to these local problems. Our solution
strategy is to first solve the interface equations to obtain the boundary valuefunctions, and then to
solve the constrained local problems to build the globally connected local predictors. The imple-
mentation of this basic idea is given in the next section.

4. Numerical Algorithm Based on Domain Decomposition

To solve (7) and (8) numerically, we make one simplification that restricts the boundary value
functionsr jk’s to be polynomials of a certain degree. Since we want our predictions to becontinuous
and smooth, and polynomials are dense in the space of continuous functions, such restriction to
polynomials does not sacrifice much accuracy. To facilitate computation, we use Lagrange basis
polynomials as the basis functions to represent the boundary value functions.

Suppose that we usep Lagrange basis polynomials defined atp interpolation points that are
uniformly spaced onΓ jk. We refer top as thedegrees of freedom. Let r jk be ap×1 vector that
denotes the boundary functionr jk evaluated at thep interpolation points. Thenr jk(x◦) can be written
as a linear combination

r jk(x◦) = T jk(x◦)
tr jk, (9)

whereT jk(x◦) is ap×1 vector with the values ofp Lagrange basis polynomials atx◦ as its elements.
Plugging (9) into (7), the local prediction problem becomes forx∗ ∈Ω j ,

LP(j) : Minimize
A j∈R

nj×nj
kt

x j∗A
t
j(σ

2
jI+Kx jx j)A jkx j∗−2kt

x j∗A
t
jkx j∗

s. t. kt
x j◦A

t
jy j = T jk(x◦)

tr jk for x◦ ∈ Γ jk andk∈ N(j).
(10)

Since the constraint in (10) must hold for all points onΓ jk, there are infinite number of con-
straints to check. One way to handle these constraints is to merge the infinitely many constraints
into one constraint by considering the following integral equation:

∫
Γ jk

[kt
x j◦A

t
jy j −T jk(x◦)

tr jk]
2dx◦ = 0.

The integral depends on the covariance function used and is usually intractable for general covari-
ance functions. Even when the integral has a closed form expression,the expression can be too
complicated to ensure a simple solution to the constrained optimization. Consider, for example,
the covariance function is a squared exponential covariance function.In this case, the integration
can be written as a combination of Gaussian error functions, but still we could not easily have the
first order optimal solution forA with the integral constraint. We thus adopt another simplification,
which is to check the constraint only atq uniformly spaced points onΓ jk; these constraint-checking
points on a boundary are referred to ascontrol points. Although this approach does not guarantee
that the continuity constraint is met at all points onΓ jk, we find that the difference ofkt

x j◦A
t
jy j and

1703

PARK , HUANG AND DING

r jk(x◦) is small for allx◦ on Γ jk whenq is chosen to be reasonably large; see Section 6.2 for some
empirical evidence.

Specifically, letxb
jk denote theq uniformly spaced points onΓ jk. Evaluatekx j◦ andT jk(x◦)

whenx◦ is taken to be an element ofxb
jk and denote the results collectively as then j × q matrix

Kx j xb
jk

and theq× p matrix T jk, respectively. Then, the continuity constraints at theq points are

expressed as follows: forx∗ ∈Ω j ,

Kt
x j xb

jk
At

jy j = T t
jkr jk.

Consequently, the optimization problem (10) can be rewritten as: forx∗ ∈Ω j ,

LP(j) ′ : Minimize
A j∈R

nj×nj
kt

x j∗A
t
j(σ

2
jI+Kx j x j)A jkx j∗−2kt

x j∗A
t
jkx j∗

s. t. Kt
x j xb

jk
At

jy j = T t
jkr jk for k∈ N(j).

(11)

Introducing Lagrange multipliersλ jk(x∗) (a q× 1 vector), the problem becomes an uncon-
strained problem to minimize the Lagrangian: forx∗ ∈Ω j ,

L(A j ,λ jk(x∗)) := kt
x j∗A

t
j(σ

2
jI+Kx j x j)A jkx j∗−2kt

x j∗A
t
jkx j∗

− ∑
k∈N(j)

λ jk(x∗)
t [Kt

x jxb
jk
At

jy j −T t
jkr jk].

(12)

Let λ j(x∗) denote aq j × 1 vector formed by stacking thoseλ jk(x∗)’s for k ∈ N(j) whereq j :=
q|N(j)|. Let xb

j denote the collection ofxb
jk for all k∈N(j). We formKx j xb

j
by columnwise binding

Kx j xb
jk

and formT t
j r j by row-wise bindingT t

jkr jk. The Lagrangian becomes: forx∗ ∈Ω j ,

L(A j ,λ jk(x∗)) := kt
x j∗A

t
j(σ

2
jI+Kx jx j)A jkx j∗−2kt

x j∗A
t
jkx j∗

−λ j(x∗)
t [Kt

x jxb
j
At

jy j −T t
j r j].

The first order necessary conditions (FONC) for local optima are: forx∗ ∈Ω j ,

d
dA j

L(A j ,λ jk) = 2(σ2
jI+Kx jx j)A jkx j∗k

t
x j∗−2kx j∗k

t
x j∗−y jλ

t
j(x∗)K

t
x jxb

j
= 0, (13)

d
dλ j

L(A j ,λ j) =Kt
x j xb

j
At

jy j −T t
j r j = 0. (14)

As in the unconstrained optimization case, that is, (4) and (5), the FONC (13) provides insuf-
ficient number of equations to uniquely determine the optimalA j andλ j(x∗). To see this, note
that we haven j × n j unknowns fromA j andq j unknowns fromλ j(x∗). Equation (13) provides
only n j distinguishable equations due to the matrix of rank one,kx j∗k

t
x j∗, and Equation (14) addsq j

(= q|N(j)|) linear equations. Thus, in order to find a sensible solution, we will follow our solution-
choosing rationale stated in Section 2, which is to look for the location-independent solution.

To proceed, first, we change our target of obtaining the optimalA j to an easier task of obtain-
ing u(x∗) = A jkx j∗, which is the quantity directly needed for the local predictoru(x∗)ty j . From
Equation (13), we have that

A jkx j∗ = (σ2
jI+Kx jx j)

−1
(
kx j∗+

1
2
y jλ j(x∗)

tKt
x j xb

j
(kt

x j∗kx j∗)
−1kx j∗

)
. (15)

1704

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

From here, the only thing that needs to be determined is theq j ×1 vectorλ j(x∗), which comes
out from the Lagrangian (12). We haveq j equations from (14) to determineλ j(x∗), so we restrict
the solution space forλ j(x∗) to a space fully specified byq j unknowns. Specifically, we letλ j(x∗)
be proportional tokxb

j ∗
, which is inversely related to the distance ofx∗ from the boundary points in

xb
j . More precisely, we setλ j(x∗) =Λ j(k

t
xb

j ∗
kxb

j ∗
)−1/2kxb

j ∗
, where(kt

xb
j ∗
kxb

j ∗
)−1/2 is a scaling factor

to normalize the vectorkxb
j ∗

to unit length, andΛj is a q j × q j unknown diagonal matrix whose

diagonal elements are collectively denoted as a column vectorλ j . Note that the newly definedλ j

no longer depends on locations.
The optimalλ j is obtained by using (15) to evaluateA jkx j∗ at theq j pointsxb

jk (k∈ N(j)) on
the boundaries and then solving (14). The optimal solution is (derivation in Appendix A)

A jkx j∗ = (σ2
jI+Kx jx j)

−1 (16)
(
kx j∗+

1
2
y jλ

t
j [(k

t
xb

j ∗
kxb

j ∗
)−1/2kxb

j ∗
]◦ [Kt

x jxb
j
kx j∗(k

t
x j∗kx j∗)

−1]

)
,

λ j = 2G j

T t
j r j −Kt

x jxb
j
(σ2

jI+Kx j x j)
−1y j

yt
j(σ2

jI+Kx jx j)
−1y j

,

G−1
j = {diag1/2[(K

t
xb

j x
b
j
Kxb

j x
b
j
)−1]Kxb

j x
b
j
}◦{Kt

x j xb
j
Kx j xb

j
diag[(Kt

x jxb
j
Kx j xb

j
)−1]},

whereA ◦B is a Hadamard product of matrixA andB, diag1/2[A] is a diagonal matrix with its
diagonal elements the same as the square root of the diagonal elements ofA, and note thatG−1

j is
symmetric. To simplify the expression, we define

h j := (σ2
jI+Kx jx j)

−1y j andk̄xb
j ∗

:= [(kt
xb

j ∗
kxb

j ∗
)−1/2kxb

j ∗
]◦ [Kt

x jxb
j
kx j∗(k

t
x j∗kx j∗)

−1].

The optimal solution becomes

A jkx j∗ = (σ2
jI+Kx j x j)

−1

kx j∗+

y j(T
t
j r j −Kt

x jxb
j
h j)

tG j

yt
jh j

k̄xb
j ∗

 . (17)

It follows from (17) that the local mean predictor is

p̂ j(x∗;r j) := kt
x j∗A

t
jy j = kt

x j∗h j + k̄t
xb

j ∗
G j(T

t
j r j −Kt

x jxb
j
h j), (18)

for x∗ ∈Ω j . The local mean predictor is the sum of two terms: the first term,kt
x j∗h j , is the standard

local kriging predictor without any boundary constraints; the second term is a scaled version of
T t

j r j−Kt
x jxb

j
h j , that is, the mismatches between the boundary value function and the unconstrained

local kriging prediction. Ifx∗ is one of the control points, then the local mean predictor given in
(18) matches exactly the value given by the boundary value function.

The use of the local mean predictor in (18) relies on the knowledge of vector r j which identifies
|N(j)| boundary value functions defined on|N(j)| boundaries surroundingΩ j . Ther j is equivalent
to mean prediction (18) atxb

j . We choose the solution ofr j such that it minimizes the predictive

1705

PARK , HUANG AND DING

variance atxb
j . The local predictive variance is computed by

σ̂ j(x∗;r j) = k∗∗+kt
x j∗A

t
j(σ

2
jI+Kx j x j)A jkx j∗−2kt

x j∗A
t
jkx j∗

= k∗∗−kt
x j∗(σ

2
jI+Kx jx j)

−1kx j∗

+
k̄t

xb
j ∗
G j(T

t
j r j −Kt

x j xb
j
h j)(T

t
j r j −Kt

x j xb
j
h j)

tG j k̄xb
j ∗

ht
jy j

.

(19)

The second equality of (19) is obtained by plugging (17) into the first equality of (19). Since
evaluatinḡkxb

j ∗
at each point inxb

j and combining them in columnwise results inG−1
j , the predictive

variances atxb
j can be simplified as

σ̂ j(xb
j ;r j) = diagc[(T

t
j r j −Kt

x jxb
j
h j)(T

t
j r j −Kt

x jxb
j
h j)

t]/(ht
jy j)+constant,

where diagc[A] is a column vector of the diagonal elements of matrixA. Omitting a constant, the
summation of the predictive variances atxb

j is

Sj(r j) = 1
tdiagc[(T

t
j r j −Kt

x jxb
j
h j)(T

t
j r j −Kt

x jxb
j
h j)

t]/(ht
jy j)

= trace[(T t
j r j −Kt

x jxb
j
h j)(T

t
j r j −Kt

x j xb
j
h j)

t]/(ht
jy j)

= (T t
j r j −Kt

x jxb
j
h j)

t(T t
j r j −Kt

x jxb
j
h j)/(h

t
jy j).

We propose to minimize with respect to{r j}
m
j=1 the summation of predictive variances at all bound-

ary points over all subdomains, that is,

Minimize
{r j}

m
j=1

m

∑
j=1

Sj(r j). (20)

This is the realized version of (8) in our numerical solution procedure. Because this is a quadratic
programming with respect tor j , we can easily see that the optimal boundary valuesr jk at xb

jk are
given by (derivation in Appendix B)

r jk = (T t
jkT jk)

−1T t
jk

[
ht

kyk

ht
jy j +ht

kyk
Kt

x j xb
jk
h j +

ht
jy j

ht
jy j +ht

kyk
Kt

xkxb
jk
hk

]
. (21)

Apparently, the minimizer of (20) is a weighted average of the mean predictionsfrom two standard
local GP predictors of neighboring subdomains.

In summary, we first solve the interface Equation (20) for allΓk j to obtainr j ’s so that its
choice makes local predictors continuous across internal boundaries.Given r j ’s, we solve each
local problemLP(j) ′, whose solution is given by (16) and yields the local mean predictors in (18)
and the local predictive variance in (19). To simplify the expression of local predictive variance, we
define au j as

u j :=G j(T
t
j r j −Kt

x jxb
j
h j),

so that the predictive variance in (19) can be written as

σ̂ j(x∗;r j) = k∗∗−kt
x j∗(σ

2
jI+Kx j x j)

−1kx j∗+ k̄t
xb

j ∗
u ju

t
j k̄xb

j ∗
/(ht

jy j),

A summary of the algorithm (labeled as DDM), including the steps of making the mean prediction
and computing the predictive variance, is given in Algorithm 1.

1706

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

Algorithm 1. Domain Decomposition Method (DDM).
1. Partition domainΩ into subdomainsΩ1, . . . ,Ωm.
2. PrecomputeH j , h j , G j andc j for each subdomainΩ j using

H j ← (σ2
jI+Kx jx j)

−1, h j ←H jy j , c j ← yt
jh j ,

andG j ← ({diag1/2[(K
t
xb

j x
b
j
Kxb

j x
b
j
)−1]Kxb

j x
b
j
}

◦{Kt
x j xb

j
Kx j xb

j
diag[(Kt

x jxb
j
Kx j xb

j
)−1]})−1.

3. Solvethe interface equation forj = 1, . . . ,mandk∈ N(j):

r jk = (T t
jkT jk)

−1T t
jk

[
ck

c j+ck
Kt

x j xb
jk
h j +

c j

c j+ck
Kt

xkxb
jk
hk

]
.

4. Compute the quantities in the local predictor. For eachΩ j ,
i) u j ←G j(T

t
j r j −Kt

x jxb
j
h j).

5. Predict at locationx∗. If x∗ is in Ω j ,
i) k̄xb

j ∗
= [(kt

xb
j ∗
kxb

j ∗
)−1/2kxb

j ∗
]◦ [Kt

x jxb
j
kx j∗(k

t
x j∗kx j∗)

−1].

ii) p̂ j(x∗;r j)← kt
x j∗h j + k̄t

xb
j ∗
u j .

iii) σ̂ j(x∗;r j)← k∗∗−kt
x j∗H jkx j∗+ k̄t

xb
j ∗
u ju

t
j k̄xb

j ∗
/c j .

Remark 1 Analysis of computational complexity. Suppose that nj = B for j = 1, ...,m. The
computational complexity for the precomputation step in Algorithm 1 is O(mB3), or equivalently,
O(NB2). If we denote the number of sharing boundaries by w, the complexity for solving the inter-
face equation is O(wqB+q3), where the inversion in(T t

jkT jk)
−1T t

jk is counted once because the
T jk matrix is essentially the same for all subdomains if we use the same polynomialevaluated at
the same number of equally spaced locations. Since w is no more than dm forrectangle-shaped
subdomains, the computation required to solve the interface equation is dominated by O(dmqB), or
equivalently, O(dqN). Since computingu j ’s requires only O(mq2) operations, the total complexity
for performing Step 1 through 4 is O(NB2+dqN). We call this the ‘training time complexity’. For
small q and d, the complexity can be simplified to O(NB2+N), which is clearly dominated by NB2.
The existence of the dqN term also indicates that it does not help with computational saving to use
too many control points on boundaries. On the other hand, we also observe empirically that using
q greater than eight does not render significant gain in terms of reduction in boundary prediction
mismatches (see Figure 2 and related discussion). Hence, we believe that q should, and could, be
kept at a small value.

The prediction step requires O(B) computation for predictive mean and O(B2) for predictive
variance after pre-computingh j andu j . The complexities for training and prediction is summarized
in Table 1 with a comparison to several other methods including FIC, PIC, BCM, and LPR. Note
that the second row in Table 1 is the computational complexity for a fully parallelized domain
decomposition approach (denoted by P-DDM), which will be explained later in Section 6.7, and
BGP in the sixth row refers to the Bagged Gaussian Process, to be explained inSection 6.

Remark 2 One dimensional case.The derivation in this section simplifies significantly in the one
dimensional case. In fact, all results hold with the simplification p= q= 1. When d= 1, Γ jk has
only one point and there is no need to define a polynomial boundary valuefunction. Denote by rjk

1707

PARK , HUANG AND DING

the prediction at the boundaryΓ jk, the local prediction problemLP(j)′ is simply

Minimize
A∈Rnj×nj

kt
x j∗A

t
j(σ

2
jI+Kx jx j)A jkx j∗−2kt

x j∗A
t
jkx j∗

s. t. Kt
x j kA

t
jy j = r jk for k∈ N(j).

The local mean predictor is straightforwardly obtained from expression(18) by replacingT jk with
1.

5. Hyperparameter Learning

By far, our discussions were made when using fixed hyperparameters.We discuss in this section
how to estimate hyperparameters from data. Inheriting the advantage of local kriging, DDM can
choose different hyperparameters for each subdomain. We refer to such subdomain-specific hyper-
parameters as “local hyperparameters.” Since varying hyperparameters means varying covariance
functions across subdomains, nonstationary variation in the data can be captured by using local
hyperparameters. On the other hand, if one set of hyperparameters is used for the whole domain,
we refer to these hyperparameters as “global hyperparameters.” Using global hyperparameters is
desirable when the data are spatially stationary.

Maximizing a marginal likelihood is a popular approach for hyperparameter learning in like-
lihood approximation based methods (Seeger et al., 2003; Snelson and Ghahramani, 2006, 2007).
Obtaining the optimal hyperparameter values is generally difficult since the likelihood maximization
is usually a non-linear and non-convex optimization problem. The method has nonetheless success-
fully provided reasonable choices for hyperparameters. We proposeto learn local hyperparameters
by maximizing the local marginal likelihood functions. Specifically, the local hyperparameters, de-
noted byθ j associated with eachΩ j , are selected such that they minimize the negative log marginal
likelihood:

ML j(θ j) :=− logp(y j ;θ j) =
n j

2
log(2π)+

1
2

log|σ2
jI+Kx jx j |+

1
2
yt

j(σ
2
jI+Kx jx j)

−1y j , (22)

whereKx j x j depends onθ j . Note that (22) is the marginal likelihood of the standard local kriging
model. One might want to replaceσ2

jI+K−1
x jx j

in (22) by the optimalA j that solves (11). However,
doing so needs to solve forA j , r jk andθ j iteratively, which is computationally more costly. Our
simple strategy above disentangles the hyperparameter learning and the prediction problem, and
works well empirically (see Section 6).

When we want to have the global hyperparameters for the whole domain, wechooseθ such that
it minimizes

ML(θ) =
m

∑
j=1

ML j(θ), (23)

where the summation of the negative log local marginal likelihoods is over all subdomains. The
above treatment assumes that the data from each subdomain are mutually independent. This is cer-
tainly an approximation to solving the otherwise computationally expensive global marginal likeli-
hood.

In the likelihood approximation based methods like FIC, the time complexity to evaluatea
marginal likelihood is the same as their training computation, that is,O(NM2). However, numeri-
cally optimizing the marginal likelihood runs such evaluation a number of iterations, usually, 50–
200 times. For this reason, the total training time (counting the hyperparameter learning as well) is

1708

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

Methods
Hyperparameters

Training
Prediction

Learning Mean Variance
DDM O(LNB2) O(NB2) O(B) O(B2)

P-DDM O(LB3) O(B3) O(B) O(B2)
FIC O(LNM2) O(NM2) O(M) O(M2)
PIC O(LN(M+B)2) O(N(M+B)2) O(M+B) O((M+B)2)

BCM O(LNM2) O(NM2+N3
q) O(NM) O(NM)

BGP O(LKM3) O(KM3) O(KM2) O(KM2)
LPR O(R(LM3+N)) O(KM3+KN) O(KM3+KN)

Table 1: Comparison of computational complexities: we suppose thatL iterations are required for
learning hyperparameters; for DDM, the number of control pointsq on a boundary is kept
to be a small constant as discussed in Remark 1; for BCM,Nq is the number of testing
points; for BGP,K is the number of bootstrap samples,M is the size of each bootstrap
sample; for LPR,R is the number of the subsets of training points used for estimating
local hyperparameters andK is the number of local experts of sizeM.

much slower than expected. The computational complexity of DDM is similar to FIC,as shown in
Table 1. One way that can significantly improve the computation is through parallelization, which
is easier to conduct for DDM because them local predictions can be performed simultaneously. If a
full parallelization can be done, the computational complexity for one iteration using DDM reduces
to O(B3), wheren j = B is assumed for allj ’s. For more comparison results, see Table 1.

6. Experimental Results

In this section, we present some experimental results for evaluating the performance of DDM. First,
we show how DDM works as the tuning parameters of DDM (p, q andm) change, and provide
some guidance on setting the tuning parameters when applying DDM. Then, wecompare DDM
with several competing methods in terms of computation time and prediction accuracy. We also
evaluate how well DDM can solve the problem of prediction mismatch on boundaries.

The competing methods are local GP (i.e., local kriging), FIC (Snelson and Ghahramani, 2006),
PIC (Snelson and Ghahramani, 2006), BCM (Tresp, 2000), and LPR (Urtasun and Darrell, 2008).
We also include in our comparative study the Bagged Gaussian Processes(BGP, Chen and Ren,
2009) as suggested by a referee, because it is another way to providecontinuous prediction sur-
faces by smoothly combining independent GPs. BGP was originally developed for improving the
robustness of GP regression, not for the purpose of faster computation. The prediction by BGP is
an average of the predictions obtained from multiple bootstrap resamples, each of which has the
same size as the training data. Hence, its computational complexity is no better thanthe full GP
regression. But faster computation can be achieved by reducing the bootstrap sample size to a small
numberM≪ N, a strategy used in our comparison.

FIC and PIC does not allow the use of local hyperparameters for reflecting local variations of
data, so we used global hyperparameters for both FIC and PIC, and for DDM as well, for the sake of

1709

PARK , HUANG AND DING

fairness. The remaining methods are designed to allow local hyperparameters, so DDM uses local
hyperparameters for comparison with those.

We did not compare DDM with the the mixture of GP experts such as MGP (Rasmussen and
Ghahramani, 2002) and TGP (Gramacy and Lee, 2008), because their computation times are far
worse than the other compared methods especially for large data sets, due tothe use of computa-
tionally slow sampling methods. For example, according to our simple experiment, ittook more
than two hours for TGP to train its predictor for a data set with 1,000 training points and took more
than three days (79 hours) for a larger data set with 2,000 training points,while other competing
methods took only a few seconds. We did not directly implement and test MGP, but according to
Gramacy and Lee (2008, page 1126), MGP’s computation efficiency is nobetter than TGP. In gen-
eral, the sampling based approaches are not competitive for handling large-scale data sets and thus
are inappropriate for comparison with DDM, even though they may be useful on small to medium-
sized data sets in high dimension.

6.1 Data Sets and Evaluation Criteria

We considered four data sets: two synthetic data sets (one in 1-d and the other in 2-d) and two
real spatial data sets both in 2-d. The synthetic data set in 1-d is packed together with the FIC
implementation by Snelson and Ghahramani (2006). It consists of 200 training points and 301 test
points. We use this synthetic data set to illustrate that PIC still encounters the prediction mismatch
problem at boundaries, while the proposed DDM does solve the problem for 1-d data. The second
synthetic data set in 2-d,synthetic-2d, was generated from a stationary GP with an isotropic
squared exponential function using the R packageRandomFields, where nugget = 4, scale=4, and
variance=8 are set as parameters for the covariance function. It consists of 63,001 sample points.

The first real data set,TCO, contains data collected by NIMBUS-7/TOMS satellite to measure
the total column of ozone over the globe on Oct 1 1988. This set consists of48,331 measurements.
The second real data set,MOD08-CL, was collected by the Moderate Resolution Imaging Spectro-
radiometer (MODIS) on NASA’s Terra satellite that measures the average of cloud fractions over
the globe from January to September in 2009. It has 64,800 measurements.Spatial non-stationarity
presents in both real data sets.

Using the second synthetic data set and the two real spatial data sets, we compare the computa-
tion time and prediction accuracy among the competing methods. We randomly split each data set
into a training set containing 90% of the total observations and a test set containing the remaining
10% of the observations. To compare the computational efficiency of methods, we measure two
computation times, the training time (including the time for hyperparameter learning) and the pre-
diction (or test) time. For comparison of accuracy, we use three measures on the set of the test data,
denoted as{(xt ,yt); t = 1, . . . ,T}, whereT is the total data amount in the test set. The first measure
is the mean squared error (MSE)

MSE=
1
T

T

∑
t=1

(yt −µt)
2,

which measures the accuracy of the mean predictionµt at locationxt . The second one is the negative
log predictive density (NLPD)

NLPD=
1
T

T

∑
t=1

[
(yt −µt)

2

2σ2
t

+
1
2

log(2πσ2
t)

]
,

1710

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

which considers the accuracy of the predictive varianceσt as well as the mean predictionµt . These
two criteria were used broadly in the GP regression literature. The last measure, the mean squared
mismatch (MSM), measures the mismatches of mean prediction on boundaries. Given a set of test
points,{xe;e= 1, . . . ,E}, located on the boundary between subdomainsΩi andΩ j , the MSM is
defined as

MSM =
1
E

E

∑
e=1

(µ(i)e −µ(j)
e)2,

whereµ(i)e andµ(j)
e are mean predictions fromΩi andΩ j , respectively. A smaller value of MSE,

NLPD or MSM indicates a better performance.
Our implementation of DDM was mostly done in MATLAB. When applying DDM to the 2-d

spatial data, one issue is how to partition the whole domain into subdomains, also known asmeshing
in the finite element analysis literature (Ern and Guermond, 2004). A simple ideais just to use a
uniform mesh, where each subdomain has roughly the same size. Howeversimple, this idea works
surprisingly well in many applications, including our three data sets in 2-d. Thus, we used a uniform
mesh with each subdomain shaped rectangularly in our implementation.

For FIC, we used the MATLAB implementation by Snelson and Ghahramani (2006), while for
BCM, the implementation by Schwaighofer et al. (2003) was used. Since the implementations of
the other methods are not available, we wrote our own codes for PIC, LPRand BGP. Throughout the
numerical analysis, we used the anisotropic version of a squared exponential covariance function.
All numerical studies were performed on a computer with two 3.16 GHz quadcore CPUs.

6.2 Mismatch of Predictions on Boundaries

DDM puts continuity constraints on local GP regressors so that predictionsfrom neighboring local
GP regressors are the same on boundaries for 1-d data and are well controlled for 2-d data. In this
section, we show empirically, by using the synthetic 1-d data set and the 2-d (real)TCO data set, the
effectiveness of having the continuity constraints.

For the synthetic data set, we split the whole domain,[−1,7], into four subdomains of equal size.
The same subdomains are used for local GP, PIC and DDM. PIC is also affected by the number and
locations of inducing inputs. To see how the mismatch of prediction is affected by the number
of inducing inputs, we considered two choices, five and ten, as the numberof inducing inputs for
PIC. The locations of inducing inputs along with the hyperparameters are chosen by optimizing the
marginal likelihood. For DDM, the local hyperparameters are obtained foreach subdomain using
the method described in Section 5.

Figure 1 shows for the synthetic data the predictive distributions of the full GP regression, local
GP, PIC withM = 5, PIC withM = 10, and DDM. In the figure, red lines are the predictive means of
the predictive distributions. The mean of local GP and the mean of PIC withM = 5 have substantial
discontinuities atx = 1.5 andx = 4.5, which correspond to the boundary points of subdomains.
As M increases to 10, the discontinuities decrease remarkably but are still visible. In general,
the mismatch in prediction on boundaries is partially resolved in PIC by increasing the number of
inducing inputs at the expense of longer computing time. By contrast, the mean prediction of DDM
is continuous, and close to that of the full GP regression.

Unlike in the 1-d case, DDM cannot perfectly solve the mismatch problem for 2-d data. Our
algorithm chooses to enforce continuity at a finite number of control points.A natural question is
whether continuity uniformly improves as the number of control points (q) increases. This question

1711

PARK , HUANG AND DING

0 2 4 6
−3

−2

−1

0

1

2
(a) full GPR

0 2 4 6
−3

−2

−1

0

1

2
(b) local GPR

0 2 4 6
−3

−2

−1

0

1

2
(c) PIC (M=5)

0 2 4 6
−3

−2

−1

0

1

2
(d) PIC (M=10)

0 2 4 6
−3

−2

−1

0

1

2
(e) DDM

Figure 1: Comparison of predictive distribution in the synthetic data set: circles represent training
points; the red lines are predictive means and the gray bands representdeviation from the
predictive means by±1.5 times of predictive standard deviations; black crosses on the
bottom of plots for PIC show the locations of inducing inputs.

1712

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

0 2 4 6 8 10 12
0

1

2

3

4

5
(a) MSM (p=3)

of control points (q)

0 2 4 6 8 10 12
0

1

2

3

4

5
(c) MSM (p=5)

of control points (q)

0 2 4 6 8 10 12
0

1

2

3

4

5
(e) MSM (p=8)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(b) MSE (p=3)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(d) MSE (p=5)

of control points (q)

0 2 4 6 8 10 12
10

12

14

16

18

20
(f) MSE (p=8)

of control points (q)

Figure 2: Left column: MSM versus the degrees of freedomp and the number of control pointsq;
Right column: MSE versusp andq.

is related to the stability of the algorithm. Another interesting question is whether thedegrees of
freedom (p) affects the continuity or other behaviors of DDM. To answer these questions, we traced
MSE and MSM with the change ofp andq for a fixed regular grid.

1713

PARK , HUANG AND DING

We observe from Figure 2 that for theTCO data set, the magnitude of prediction mismatch,
measured by MSM, decreases as we increase the number of control points. We also observe that
there is no need to use too many control points. For the 2-d data sets at hand, using more than
eight control points does not help much in decreasing the MSM further; and the MSM is close to
zero with eight (or more) control points. On the other hand, if the degreesof freedom (p) is small
but the number of control points is larger, the MSE could increase remarkably (see Figure 2-(b)).
This is not surprising, because the degrees of freedom determines the complexity of a boundary
function, and if we pursue better match with too simple boundary function, we would distort local
predictors a lot, which will in the end hurt the accuracy of the local predictors. If p is large enough
to represent the complexity of boundary functions, the MSE stays roughlyconstant regardless ofq
(see Figure 2-(d) and 2-(f)). To save space, we do not present here the results for another real data
set,MOD08-CL, because they are consistent with those forTCO. Our general recommendation is to
use a reasonably largep and letq= p.

6.3 Choice of Mesh Size for DDM

An important tuning parameter in DDM is the mesh size. In this section, we providea guideline for
an appropriate choice of the mesh size through some designed experiments.The mesh size is defined
by the number of training data points in a subdomain, previously denoted byB. We empirically
measure, using the synthetic-2d,TCO andMOD08-CL data sets, how MSE and training/testing times
change for differentB’s. In order to characterize the goodness ofB, we introduce in the following
a “marginal MSE loss” with respect to the total computation timeTime, that is, training time + test
time, measured in seconds. Given a set of mesh sizesB = {B1,B2,,Br},

marginal(B;B∗) := max

{
0,

MSE(B)−MSE(B∗)
1+Time(B∗)−Time(B)

}
for B∈ B,

whereB∗ =max{B∈B}. The denominator implies how much time saving is obtained for a reduced
B, while the numerator implies how much MSE we lost with the time saving. But marginal(B;B∗)
alone is not a good enough measure because marginal(B;B∗) is always zero atB = B∗. So, we
balanced the loss by adding the change in MSE and computation relative to the smallest mesh size
in B, namely

marginal MSE loss := marginal(B;B∗)+marginal(B;B◦),

whereB◦ = min{B∈ B}. We can interpret the marginal MSE loss as how much MSE is sacrificed
for a unit time saving, so smaller values are better.

Figure 3 shows the marginal MSE loss for the three data sets. For all data sets, aB between
200 and 600 gives smaller marginal MSE loss. Based on this empirical evidence, we recommend
to choose the mesh size so that the number of training data points in a subdomain ranges from 200
to 600. If the number is too large, DDM will spend too much time for small reductionof MSE.
Conversely, if the number is too small, MSE will deteriorate significantly. The latter might be
because DDM has too fewer training data points to learn local hyperparameters.

6.4 DDM Versus Local GP

We compared DDM with local GP for different mesh sizes and in terms of overall prediction accu-
racy and mismatch on boundaries. We considered two versions of DDM, one using global hyperpa-

1714

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

0 200 400 600 800 1000
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

mesh size(B)

(a) TCO. marginal MSE loss.

0 500 1000 1500
−1

0

1

2

3

4

5
x 10

−6

mesh size(B)

(b) MOD08−CL. marginal MSE loss.

0 200 400 600 800 1000
−1

0

1

2

3

4

5

6
x 10

−3

mesh size(B)

(c) synthetic−2d. marginal MSE loss.

Figure 3: Marginal MSE loss versus mesh size(B). For the three data sets, the marginal loss is small
whenB is in between 200 and 600.

rameters (G-DDM) and the other using local hyperparameters (L-DDM).For local GP, we always
used local hyperparameters.

Figure 4 shows the three performance measures as a function of the number of subdomains for
G-DDM, L-DDM and local GP, using theTCO data and the synthetic-2d data, respectively. DDM
adds more computation to local GP for imposing the continuity on boundaries, butthe increased
computation is very small relative to the original computation of local GP. Hence, the comparison
of DDM with local GP as a function of the number of subdomains is almost equivalent to the
comparison in terms of the total time (i.e., training plus test time).

In Figure 4, local GP has bigger MSE and NLPD than the two versions of DDM for both data
sets. The better performance of DDM can be contributed to the better prediction accuracy around
boundaries of subdomains. The comparison results for two versions of DDM are as expected:
In terms of MSE and NLPD, L-DDM is better than G-DDM for theTCO data set, which can be
explained by nonstationarity of the data. On the other hand, for the synthetic-2d data set, G-DDM
is better, which is not surprising since the synthetic-2d data set is generated from a stationary GP so
one would expect that global hyperparameters work well.

The left panels of Figure 5 show the comparison results for the actualMOD08-CL data set. In
terms of MSE and NLPD, L-DDM is appreciably better than local GP when the number of subdo-
mains is small, but the two methods perform comparably when the number of subdomains is large.
This message is somewhat different from what we observed forTCO data set. One explanation is that
TCO data set has several big empty spots with no observation over the subregion, butMOD08-CL data
set does not have such “holes”. Because of the continuity constrains,we believe DDM is able to
borrow information from neighboring subdomains, and consequently, to provide better spatial pre-
dictions. To verify this, we randomly chose twenty locations within the spatial domain ofMOD08-CL
data set and artificially removed small neighborhoods of each randomly chosen location from the
MOD08-CL data set; doing so resulted in a new data set called “MOD08-CL with holes”. The results
of applying three methods on this new data set are shown on the right panelsof Figure 5. L-DDM
is clearly superior over local GP across different choices of the number of subdomains.

This comparison reveals that when there is nonstationary in data, using local parameters (local
GP and L-DDM versus G-DDM) will help adapt to the non-stationary features, and thus, improve

1715

PARK , HUANG AND DING

the prediction accuracy. More importantly, the improvement in prediction can be further enhanced
by a proper effort to smooth out the boundary mismatches in localized methods(L-DDM versus
local GP). In all cases, the MSM associated with DDM method is very small.

6.5 G-DDM Versus FIC and PIC

We compared prediction accuracy of G-DDM with FIC and PIC. We only considered global hyper-
parameters for DDM because FIC and PIC cannot incorporate local hyperparameters. Since each of
the compared methods has different tuning parameters, it is hard to comparethese methods using
prediction accuracy measures (MSE and NLPD) for a fixed set of tunning parameters. Instead, we
considered MSE and NLPD as a function of the total computation time required.To obtain the
prediction accuracy measures for different computation times, we tried several different settings of
experiments and presented the best accuracies of each method for given computation times: for
DDM, we varied the number of equally sized subdomains (m) and the number of control points
q while keeping the degrees of freedomp the same asq; we tested two versions of PIC having
different domain decomposition schemes: k-means clustering (denoted by kPIC) and regular grids
meshing (denoted by rPIC), and for each version, we varied the total number of subdomains (m) and
the number of inducing inputs (M); for FIC, we varied the number of inducing inputs (M). We see
that each of the compared methods has one major tuning parameter mainly affecting their training
and test times; it ism for DDM, or M for FIC and PIC. In order to obtain one point in Figure 6, we
first fixed the major tuning parameter for each method, and then changed theremaining parameters
to get the best accuracy for a given computation time.

In this empirical study, for G-DDM, a set of the global hyperparameters was learned by min-
imizing (23). In FIC, the global hyperparameters, together with the locationsof the inducing in-
puts, were determined by maximizing its marginal likelihood function. For PIC, wetested several
options: learning the hyperparameters and inducing inputs by maximizing the PIC approximated
marginal likelihood; learning the hyperparameters by maximizing the PIC approximated marginal
likelihood, whereas learning the inducing inputs by the FIC approximated likelihood; or learning
the hyperparameters by the FIC approximated marginal likelihood, whereaslearning the inducing
inputs by the PIC approximated marginal likelihood. Theoretically, the first option should be the
best choice. However, as discussed in Section 5, due to the non-linear and non-convex nature of the
likelihood function, an optimization algorithm may converge to a local optimum and thus yields a
suboptimal solution. Consequently, it is not clear which option’s local optimumproduces the best
performance. According to our empirical studies, for theTCO data set, the first option gave the best
result, while for theMOD08-CL data set, the third option was the best. We present the results based
on the empirically best result.

Figure 6 shows MSE and NLPD versus the total computation time. G-DDM exhibitssuperior
performance for the two real data sets. We observe that FIC and PIC need a large number of inducing
inputs, at the cost of much longer computation time, in order to lower its MSE or NLPD to a level
comparable to G-DDM. Depending on specific context, the difference in computation time could
be substantial. For the instance ofTCO data set, G-DDM using 156 subdomains produced MSE =
17.7 and NLPD = 2.94 with training time = 47 seconds. FIC could not obtain a similarresult even
with M = 500 and computation time = 484 seconds, and rPIC could obtain MSE = 25.8 andNLPD
= 3.06 after spending 444 seconds and using 483 subdomains andM = 500. For the synthetic-2d

1716

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

0100200300400500

12

14

16

18

20

22

24

of subdomains

(a) TCO. MSE.

0100200300400500600
4

4.05

4.1

4.15

4.2

4.25

of subdomains

(b) synthetic−2d. MSE.

0100200300400500
2.7

2.75

2.8

2.85

2.9

2.95

3

of subdomains

(c) TCO. NLPD.

0100200300400500600
2.21

2.215

2.22

2.225

of subdomains

(d) synthetic−2d. NLPD.

0100200300400500

0

5

10

15

20

of subdomains

(e) TCO. MSM.

0100200300400500600
−0.1

0

0.1

0.2

0.3

0.4

0.5

of subdomains

(f) synthetic−2d. MSM.

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

Figure 4: Prediction accuracy of DDM and local GP for different mesh sizes. ForTCO, p ranged
from five to eight for G-DDM and L-DDM. For synthetic-2d data set,p ranged from four
to eight.

1717

PARK , HUANG AND DING

0100200300400500600

6

8

10

12

x 10
−4

of subdomains

(a) MOD08−CL. MSE.

0100200300400500600

6

8

10

12

x 10
−4

of subdomains

(b) MOD08−CL with holes. MSE.

0100200300400500600
−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

of subdomains

(c) MOD08−CL. NLPD.

0100200300400500600
−2.5

−2.4

−2.3

−2.2

−2.1

−2

−1.9

−1.8

−1.7

of subdomains

(d) MOD08−CL with holes. NLPD.

0100200300400500600
0

0.5

1

1.5

2

2.5

x 10
−3

of subdomains

(e) MOD08−CL. MSM.

0100200300400500600
0

0.5

1

1.5

2

2.5

x 10
−3

of subdomains

(f) MOD08−CL with holes. MSM.

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

G−DDM
L−DDM
local GP

Figure 5: Prediction accuracy of DDM and local GP for theMOD08-CL data set. The left panel uses
the originalMOD08-CL data, while the right panel uses theMOD08-CL data with observa-
tions removed at a number of locations. For the two data sets,p andq ranged from four
to eight for G-DDM and L-DDM.

1718

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

data set from a stationary GP, G-DDM does not have advantage over FIC and PIC but still performs
reasonably well.

We here used two versions of PIC: kPIC and rPIC, and the differencebetween them is how
the subdomains are created. Since rPIC uses a regular grid meshing to decompose the domain, the
general perception is that rPIC might not perform as well as kPIC, dueto this domain-decomposition
rigidity. It is interesting, however, to see that this perception is not supported by our empirical
studies of using large-size spatial data sets. In Figure 6, kPIC exhibits noappreciable difference with
rPIC in terms of MSE and NLPD. Please note that we actually did not count thetime for conducting
the domain decomposition when we recorded the training time. If we consider thecomputation
complexities of the k-means clustering versus the regular grid meshing, then kPIC would be less
attractive. This is because the time complexity for performing the k-means clustering is O(IkdN),
much more expensive than that for regular grid meshing, which only requiresO(dN) computation,
whereI is the number of iterations required for the convergence of the clustering algorithm,k is the
size of neighborhoods,d is the dimension of data, andN is the number of data points.

Regarding the mismatch of prediction on boundaries as measured by MSM, G-DDM is multifold
better than that of rPIC; see Figure 7. This is not surprising, since DDM explicitly controls the
mismatch of prediction on boundaries. For kPIC, we could not measure MSMbecause it is difficult
to define boundaries when we use the k-means clustering for the purposeof domain decomposition.
FIC does not have the mismatch problem since it does not use subdomains for prediction.

6.6 L-DDM Versus Local Methods

We compared prediction accuracy of L-DDM with three localized regression methods, BCM, BGP,
and LPR, all of which partition the original data space for fast computation.BGP uses different
hyperparameters for each bootstrap sample, but strictly speaking, thesehyperparameters cannot
be called “local hyperparameters” since each bootstrap sample is from thewhole domain, not a
local region. However, BGP can be converted to have local hyperparameters by making bootstrap
samples to come from local regions in the same way as BCM, that is, via k-meansclustering. We
call the “local version” of BGP as L-BGP, and we present the experimental results of both BGP and
L-BGP (this L-BGP is in fact suggested by one referee). We present the results in the same way as
in the previous section by plotting computation times versus prediction accuracymeasures. Since
the computational complexity comparison here is significantly different for training and testing (or
prediction), the results for training time and test time are presented separately.

To obtain the prediction accuracy measures for different computation times,we tried several
different settings of experiments and presented the best accuracies ofeach method for given com-
putation times: for DDM, we varied the number of equally sized subdomains andthe number of
control pointsq while keeping the degrees of freedomp the same asq; for BGP, the number of
bootstrap samples (K) ranged from 5 to 30 and the number of data points in each model (M) ranged
from 300 to 900; for L-BGP, the number of local regions (K) ranged from for 9 to 64 and the number
of data points in each model (M) ranged from 150 to 1500; for LPR, the number of local experts
(K) ranged from 5 to 20 and the number of data points used for each expert(M) ranged from 50 to
200 while the number of locations chosen for local hyperparameter learning (R) ranged from 500
to 1500; for BCM, the number of local estimators (M) was varied from 100 to 600. Similar to what
we did in Section 6.5, we still use one or two major parameters to determine the computation time
first, and then use the remaining parameters to get the best accuracy for each method. The major

1719

PARK , HUANG AND DING

100 200 300 400

50

100

150

200

250

300

train + test time (sec)

(a) TCO. MSE.

100 200 300 400

3

3.5

4

4.5

5

train + test time (sec)

(b) TCO. NLPD.

100 200 300 400 500
0

0.002

0.004

0.006

0.008

0.01

train + test time (sec)

(c) MOD08−CL. MSE.

100 200 300 400 500

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

train + test time (sec)

(d) MOD08−CL. NLPD.

50 100 150 200 250 300 350
4.02

4.03

4.04

4.05

4.06

4.07

4.08

4.09

train + test time (sec)

(e) synthetic−2d. MSE.

50 100 150 200 250 300 350
2.1

2.15

2.2

2.25

train + test time (sec)

(f) synthetic−2d. NLPD.

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

G−DDM
kPIC
rPIC
FIC

Figure 6: Prediction accuracy versus total computation time. For all three data sets, G-DDM uses
m∈ {36,56,110,156,266,638}; FIC usesM ∈ {50,100,150,200,300,400}; kPIC and
rPIC useM ∈ {50,100,150,200,300,400}.

1720

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

100 200 300 400
0

10

20

30

40

50

60

train + test time (sec)

(a) TCO. MSM.

100 200 300 400 500
0

1

2

3

4

5

6
x 10

−3

train + test time (sec)

(b) MOD08−CL. MSM.

50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

train + test time (sec)

(c) synthetic−2d. MSM.

G−DDM
rPIC

G−DDM
rPIC

G−DDM
rPIC

Figure 7: MSM versus total computation time. For three data sets, G-DDM usesm ∈
{36,56,110,156,266,638}; rPIC usesM ∈ {50,100,150,200,300,400}.

time-determining parameters are:m for DDM; K andM for BGP;K for L-BGP; T andR for LPR;
M for BCM.

The local hyperparameters for the methods in comparison are all learned by minimizing (22).
However, for BCM, when we tried to use local hyperparameters for theTCO data set, the implemen-
tation by Schwaighofer et al. (2003) always returned “NA” (not available) so we could not obtain
valid results with local hyperparameters. Therefore, we applied global hyperparameters to BCM
only for theTCO data set. The global hyperparameters were learned by minimizing (23), which is
equivalent to the implementation of BCM by Schwaighofer et al. (2003). When we ran our imple-
mentation of LPR, we found that the results are sensitive to the setting of its tuning parameters. The
reported results for LPR are based on the set of tuning parameters that gives the best MSE, chosen
from more than thirty different settings.

Figure 8 traces MSEs and NLPDs as a function of training time for the three data sets. ForTCO,
BCM and L-DDM have comparably good accuracy (measured using MSE)with similar training
costs, but the NLPD of L-DDM is much smaller than that of BCM, implying that the goodness
of fit of L-DDM is better. The other methods do not perform as accuratelyas L-DDM with even
much greater training cost. For all of the three data sets, BCM, BGP, L-BGPand LPR have higher,
and sometimes much higher, NLPD than L-DDM. By the definition of NLPD, both abig MSE and
a small predictive variance will lead to a high NLPD. Thus, we can infer that,for the TCO data
set, the differences of NLPD between L-DDM and BCM are mainly caused by too small predictive
variances of BCM (i.e., BCM underestimates the predictive variances considerably), since the MSEs
produced by the two methods are very close. For other data sets, the differences in NLPD come from
both the differences in MSE and differences in predictive variance. For the stationary synthetic
data set, BCM has high MSE and NLPD, suggesting that BCM might not be very competitive for
stationary data sets. Overall, L-DDM outperforms all other methods for bothnon-stationary and
stationary data sets.

Figure 9 shows MSEs and NLPDs as testing times change. One observes that the testing times
are significantly different across methods. In particular, the computation timeneeded to predict at a
new location for BCM and LPR is far longer than that for L-DDM or BGP. This is also supported
by the computational complexity analysis presented in Table 1. One also observes that the curves of

1721

PARK , HUANG AND DING

L-DDM always locate at the lower-left parts of the plots, implying that L-DDMspent much shorter
prediction time but obtained much better prediction accuracy. Note that the x-axis and y-axis of the
plots are log-scaled so the difference in computation times is much bigger than what it looks like
in the plots. For examples, L-DDM spent less than three seconds for all thedata sets for making a
prediction, while BCM’s prediction time ranged from 100 to 1,000 seconds, and LPR spent from
189 to 650 seconds. BCM and LPR do not look competitive when the number of locations to predict
is large, a situation frequently encountered in real spatial prediction problems.

6.7 Benefit of Parallel Processing

As mentioned earlier, one advantage of DDM is that its computation can be parallelized easily.
This advantage comes from its domain decomposition formulation. As soon as a solution of inter-
face Equation (8) is available, (11) can be solved simultaneously for individual subdomains. Once
fully parallelized, the computational complexity of DDM reduces toO(B3) for training, and that for
hyperparameter learning is reduced toO(LB3). Since the computation of hyperparameter learning
usually accounts for the biggest portion of the entire training time, parallelization could provide a re-
markable computational saving. See the second row of Table 1 for a summaryof the computational
complexity for the parallel version of DDM (P-DDM).

While a full parallelization of DDM needs the support from sophisticated software and hard-
ware and is thus not yet available, we implemented a rudimentary version of P-DDM by using the
MATLAB Parallel Processing Toolbox on a computer with two quadcore CPUs. In doing so, we
replaced the regularfor-loop with its parallel versionparfor-loop and examined how much the
training time can be reduced by this simple action.

Denote the training time from the sequential DDM asST, the training time from P-DDM asPT,
and define the “speed-up ratio” asST/PT. We use the speed-up ratio to summarize the increase of
computing power by parallel processing. We varied the mesh size and the number of control points
on the boundaries to examine the effect of parallel computing under different settings.

Speed-up ratios for different setups of mesh size are presented in Figure 10. The speed-up ratio
is roughly proportional to the number of concurrent processes. With a maximum of eight concurrent
processes allowed by the computer, we are able to accelerate training process by a factor of at least
three and half. This result does not appear to depend much on data sets,but it depends on mesh
sizes. Since a smaller mesh size implies that each subdomain (or computing unit) consumes less
time, parallelization works more effectively and the speed-up ratio curve bends less downward as
the number of processes increases.

7. Concluding Remarks and Discussions

We develop a fast computation method for GP regression, which revises thelocal kriging predictor
to provide consistent predictions on the boundaries of subdomains. Our DDM method inherits
many advantages of the local kriging: fast computation, the use of local hyperparameters to fit
spatially nonstationary data sets, and the easiness of parallel computation. Such advantages of the
proposed method over other competing methods are supported by our empirical studies. Mismatch
of predictions on subdomain boundaries is entirely eliminated in the 1-d case and is significantly
controlled in the 2-d cases. Most importantly, DDM shows more accurate prediction using less
training and testing time than other methods. Parallelization of computation for DDM also reveals

1722

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

10
1

10
2

10
3

10
4

10
1

10
2

10
3

train time (sec)

(a) TCO. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

train time (sec)

(b) TCO. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

train time (sec)

(c) MOD08−CL. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

train time (sec)

(d) MOD08−CL. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
0.61

10
0.62

10
0.63

train time (sec)

(e) synthetic−2d. MSE.

L−DDM
BGP
L−BGP
LPR
BCM

10
1

10
2

10
3

10
0

10
1

10
2

10
3

train time (sec)

(f) synthetic−2d. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

Figure 8: Prediction accuracy versus training time. Both of x-axis and y-axis are log-
scaled due to big variations on values from the compared methods. For
the three data sets,m ∈ {36,56,110,156,266,638} in L-DDM; (K,M) ∈
{(5,700),(10,700),(10,900),(20,900),(30,900)} in BGP;K ∈ {9,16,25,36,49,64} in
L-BGP; (K,R) ∈ {5,10,20}⊗ {500,1500} in LPR; M ∈ {100,150,200,250,300,600}
in BCM.

1723

PARK , HUANG AND DING

10
−1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

test time (sec)

(a) TCO. MSE.

10
−1

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

test time (sec)

(b) TCO. NLPD.

10
−1

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

test time (sec)

(c) MOD08−CL. MSE.

10
−1

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

test time (sec)

(d) MOD08−CL. NLPD.

10
−2

10
0

10
2

10
4

10
0.61

10
0.62

10
0.63

10
0.64

10
0.65

test time (sec)

(e) synthetic−2d. MSE.

10
−2

10
0

10
2

10
4

10
0

10
1

10
2

10
3

test time (sec)

(f) synthetic−2d. NLPD.

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

L−DDM
BGP
L−BGP
LPR
BCM

Figure 9: Prediction accuracy versus test time. Both of x-axis and y-axisare log-
scaled due to big variations on values from the compared methods. For
the three data sets,m ∈ {36,56,110,156,266,638} in L-DDM; (K,M) ∈
{(5,700),(10,700),(10,900),(20,900),(30,900)} in BGP;K ∈ {9,16,25,36,49,64} in
L-BGP; (K,R) ∈ {5,10,20}⊗ {500,1500} in LPR; M ∈ {100,150,200,250,300,600}
in BCM.

1724

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

number of processes

sp
ee

d−
up

 r
at

io

TCO. small mesh
TCO. medium mesh
MOD08−CL. small mesh
MOD08−CL. medium mesh

Figure 10: Speed-up ratios for different settings of parallel processing. Each line traces the training
time of P-DDM when applied to a data set with a given size of meshes and numberof
control points.

clear benefit in time efficiency. The proposed method is specially designed tohandle spatial data
sets. Given the ubiquitous of large spatial data sets, our method should have wide applications.

In the meanwhile, we also acknowledge that more work is needed to fine tune the performance
of the new method, including addressing the issues on meshing, hyperparameter learning, and par-
allelization. While extending the new method by addressing these issues is left for future research,
we do want to present our thoughts regarding a possible improvement on mesh generation, for the
purpose of facilitating further discussions and development.

7.1 Mesh Generation

Since meshing is a classical problem in the finite element analysis, methods in the finite element
analysis literature could be helpful, or even readily applicable. A uniform mesh, as we used in this
paper, works surprisingly well in many applications. However, the uniform mesh applies the equal-
sized subdomains to both the slowly changing regions and the fast changingregions. Doing so may
not be able to effectively adapt to local abrupt changes in the data and may lead to a large prediction
error in fast changing regions. As a remedy, one can consider using the adaptive mesh generation
(Becker and Rannacher, 2001) which adjusts the size of subdomains sothat they are adaptive to
local changes.

The basic idea is to start with a relatively coarse uniform mesh and to split subdomains until
the approximation error is smaller than a prescribed tolerance. In each iteration followed, a certain
percentage of the subdomains having higher local error estimates, for example, the top 20% of

1725

PARK , HUANG AND DING

those, are split. After several iterations, local error estimates will become balanced over all the
subdomains. This strategy of splitting a subdomain is callederror-balancing strategy.

In DDM, we have a natural choice for local error estimator, which is the predictive error variance
given in (19). Thus, it is possible to apply the error-balancing strategy.We can define our local error
estimate using the integrated error variance as follows: forΩ j ,

ηΩ j =
∫

Ω j

σ̂ j(x∗;r j)dx∗.

Since the integral is intractable, we may use the Nyström method to approximate the integral. IfSj

is a set of points uniformly distributed overΩ j , the error estimate is

η̂Ω j = ∑
x∗∈Sj

σ̂ j(x∗;r j).

Given the local error estimate for each subdomain, we define the overall error estimate as the sum-
mation of the local error estimates over all the subdomains, namely thatη̂ = ∑Ω j

η̂Ω j , whereη̂
denotes the overall estimate. Thus the adaptive mesh generation in DDM couldbe performed as
follows: Start with a coarse mesh and continue splitting the subdomains corresponding to the top
100·α% of theη̂Ω j ’s until η̂ is less than a pre-specified tolerance.

Acknowledgments

Yu Ding and Chiwoo Park were supported by the grants from NSF (CMMI-0348150, CMMI-
0926803, CMMI-1000088), Texas Norman Hackerman Advanced Research Program (010366-0024-
2007), and an IAMCS Innovation Award at Texas A&M University; Jianhua Z. Huang was sup-
ported by NCI (CA57030), NSF (DMS-0606580, DMS-0907170, DMS-1007618), and King Ab-
dullah University of Science and Technology (KUS-CI-016-04).

Appendix A. Derivation of (16) for Local Predictor

With λ j(x∗) =Λ j(k
t
xb

j ∗
kxb

j ∗
)−1/2kxb

j ∗
, (15) and (14) can be written as

A jkx j∗ = (σ2
jI+Kx jx j)

−1
(
kx j∗+

1
2
y j(k

t
xb

j ∗
kxb

j ∗
)−1/2kt

xb
j ∗
Λ jK

t
x j xb

j
(kt

x j∗kx j∗)
−1kx j∗

)
, (24)

Kt
x j xb

j
At

jy j −T t
j r j = 0, (25)

whereΛ j is a q j × q j diagonal matrix andλ j is a column vector of its diagonal elements. The
expression (24) can be rewritten as

A jkx j∗ = (σ2
jI+Kx jx j)

−1
(
kx j∗+

1
2
y jλ

t
j [(k

t
xb

j ∗
kxb

j ∗
)−1/2kxb

j ∗
]◦ [Kt

x jxb
j
kx j∗(k

t
x j∗kx j∗)

−1]

)
. (26)

Evaluating (26) atq points uniformly distributed onΓ jk for k∈ N(j) and binding the evaluated
values columnwise, we have

A jKx j xb
j
= (σ2

jI+Kx j x j)
−1

(
Kx j xb

j
+

1
2
y jλ

t
jG
−1
j

)
, (27)

1726

DOMAIN DECOMPOSITION FORFAST GAUSSIAN PROCESSREGRESSION

whereG−1
j is symmetric and given by

G−1
j = {diag1/2[(K

t
xb

j x
b
j
Kxb

j x
b
j
)−1]Kxb

j x
b
j
}◦{Kt

x j xb
j
Kx j xb

j
diag[(Kt

x jxb
j
Kx j xb

j
)−1]}.

Substitute the transpose of (27) into (25) to get
(
Kt

x j xb
j
+

1
2
G−1

j λ jy
t
j

)
(σ2

jI+Kx jx j)
−1y j = T t

j r j .

After some simple algebra, we obtain the optimalλ j value

λ j = 2G j

T t
j r j −Kt

x jxb
j
(σ2

jI+Kx j x j)
−1y j

yt
j(σ2

jI+Kx jx j)
−1y j

.

Appendix B. Derivation of (21) for Interface Equation

Note thatT t
j r j is a rowwise binding ofT t

jkr jk. Ignoring a constant, the objective function to be
minimized can be written as

m

∑
j=1

1
ht

jy j
∑

k∈N(j)

(T t
jkr jk−Kt

x jxb
jk
h j)

t(T t
jkr jk−Kt

x jxb
jk
h j). (28)

To find the optimalr jk, we only need pay attention to the relevant terms in (28). Sincer jk = rk j

andT jk = Tk j, the objective function for finding optimalr jk reduces to

1
ht

jy j
(T t

jkr jk−Kt
x j xb

jk
h j)

t(T t
jkr jk−Kt

x j xb
jk
h j)

+
1

ht
kyk

(T t
k jrk j−Kt

xkxb
k j
hk)

t(T t
k jrk j−Kt

xkxb
k j
hk),

the minimization of which gives (21).

References

Roland Becker and Rolf Rannacher. An optimal control approach to a posteriori error estimation in
finite element methods.Acta Numerica, 10:1–102, 2001.

Tao Chen and Jianghong Ren. Bagging for Gaussian process regression. Neurocomputing, 72(7-9):
1605–1610, 2009.

Alexandre Ern and Jean-Luc Guermond.Theory and Practice of Finite Elements. Springer, 2004.

Reinhard Furrer, Marc G. Genton, and Douglas Nychka. Covariancetapering for interpolation of
large spatial datasets.Journal of Computational and Graphical Statistics, 15(3):502–523, 2006.

Tilmann Gneiting. Compactly supported correlation functions.Journal of Multivariate Analysis,
83(2):493–508, 2002.

1727

PARK , HUANG AND DING

Robert B. Gramacy and Herbert K. H. Lee. Bayesian treed Gaussian process models with an appli-
cation to computer modeling.Journal of the American Statistical Association, 103(483):1119–
1130, 2008.

Alfio Quarteroni and Alberto Valli.Domain Decomposition Methods for Partial Differential Equa-
tions. Oxford University Press, 1999.

Joaquin Quĩnonero-Candela and Carl E. Rasmussen. A unifying view of sparse approximate
Gaussian process regression.Journal of Machine Learning Research, 6:1939–1959, 2005.

Carl E. Rasmussen and Zoubin Ghahramani. Infinite mixtures of Gaussian process experts. In
Advances in Neural Information Processing Systems 14, pages 881–888. MIT Press, 2002.

Carl E. Rasmussen and Christopher K. I. Williams.Gaussian Processes for Machine Learning.
MIT Press, 2006.

Anton Schwaighofer, Marian Grigoras, Volker Tresp, and Clemens Hoffmann. Transductive and
inductive methods for approximate Gaussian process regression. InAdvances in Neural Informa-
tion Processing Systems 16, pages 977–984. MIT Press, 2003.

Matthias Seeger, Christopher K. I. Williams, and Neil D. Lawrence. Fast forward selection to speed
up sparse Gaussian process regression. InInternational Workshop on Artificial Intelligence and
Statistics 9. Society for Artificial Intelligence and Statistics, 2003.

Edward Snelson and Zoubin Ghahramani. Sparse Gaussian processesusing pseudo-inputs. In
Advances in Neural Information Processing Systems 18, pages 1257–1264. MIT Press, 2006.

Edward Snelson and Zoubin Ghahramani. Local and global sparse Gaussian process approxima-
tions. In International Conference on Artifical Intelligence and Statistics 11, pages 524–531.
Society for Artificial Intelligence and Statistics, 2007.

Volker Tresp. A Bayesian committee machine.Neural Computation, 12(11):2719–2741, 2000.

Raquel Urtasun and Trevor Darrell. Sparse probabilistic regression for activity-independent human
pose inference. InIEEE Conference on Computer Vision and Pattern Recognition 2008, pages
1–8. IEEE, 2008.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström method to speed up kernel
machines. InAdvances in Neural Information Processing Systems 12, pages 682–688. MIT Press,
2000.

1728

