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Abstract
Motivated by the problem of effectively executing clustering algorithms on very large data sets,
we address a model for large scale distributed clustering methods. To this end, we briefly recall
some standards on the quantization problem and some resultson the almost sure convergence of the
competitive learning vector quantization (CLVQ) procedure. A general model for linear distributed
asynchronous algorithms well adapted to several parallel computing architectures is also discussed.
Our approach brings together this scalable model and the CLVQ algorithm, and we call the resulting
technique the distributed asynchronous learning vector quantization algorithm (DALVQ). An in-
depth analysis of the almost sure convergence of the DALVQ algorithm is performed. A striking
result is that we prove that the multiple versions of the quantizers distributed among the processors
in the parallel architecture asymptotically reach a consensus almost surely. Furthermore, we also
show that these versions converge almost surely towards thesame nearly optimal value for the
quantization criterion.
Keywords: k-means, vector quantization, distributed, asynchronous,stochastic optimization, scal-
ability, distributed consensus

1. Introduction

Distributed algorithms arise in a wide range of applications, including telecommunications, dis-
tributed information processing, scientific computing, real time process control and many others.
Parallelization is one of the most promising ways to harness greater computing resources, whereas
building faster serial computers is increasingly expensive and also faces some physical limits such
as transmission speeds and miniaturization. One of the challenges proposedfor machine learning
is to build scalable applications that quickly process large amounts of data in sophisticated ways.
Building such large scale algorithms attacks several problems in a distributed framework, such as
communication delays in the network or numerous problems caused by the lack of shared memory.

Clustering algorithms are one of the primary tools of unsupervised learning.From a practical
perspective, clustering plays an outstanding role in data mining applications such as text mining,
web analysis, marketing, medical diagnostics, computational biology and manyothers. Clustering
is a separation of data into groups of similar objects. As clustering represents the data with fewer
clusters, there is a necessary loss of certain fine details, but simplification isachieved. The popular
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competitive learning vector quantization (CLVQ) algorithm (see Gersho andGray, 1992) provides a
technique for building reliable clusters characterized by their prototypes.As pointed out by Bottou
and Bengio (1995), the CLVQ algorithm can also be viewed as the on-line version of the widespread
Lloyd’s method (see Lloyd 2003, for the definition) which is referred to asbatchk-means in Bottou
and Bengio (1995). The CLVQ also belongs to the class of stochastic gradient descent algorithms
(for more information on stochastic gradient descent procedures we refer the reader to Benveniste
et al. 1990).

The analysis of parallel stochastic gradient procedures in a machine learning context has re-
cently received a great deal of attention (see for instance Zinkevich etal. 2009 and McDonald et al.
2010). In the present paper, we go further by introducing a model thatbrings together the original
CLVQ algorithm and the comprehensive theory of asynchronous parallel linear algorithms devel-
oped by Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tsitsiklis (1989). The resulting
model will be called distributed asynchronous learning vector quantization (DALVQ for short). At a
high level, the DALVQ algorithm parallelizes several executions of the CLVQmethod concurrently
on different processors while the results of these algorithms are broadcast through the distributed
framework asynchronously and efficiently. Here, the term processorrefers to any computing in-
stance in a distributed architecture (see Bullo et al. 2009, chap. 1, for moredetails). Let us remark
that there is a series of publications similar in spirit to this paper. Indeed in Frasca et al. (2009)
and in Durham et al. (2009), a coverage control problem is formulated as an optimization problem
where the functional cost to be minimized is the same of the quantization problem stated in this
manuscript.

Let us provide a brief mathematical introduction to the CLVQ technique and DALVQ algo-
rithms. The first technique computes quantization scheme ford dimensional samplesz1,z2, . . .
using the following iterations on a

(
R

d
)κ

vector,

w(t +1) = w(t)− εt+1H (zt+1,w(t)) , t ≥ 0.

In the equation above,w(0)∈
(
R

d
)κ

and theεt are positive reals. The vectorH(z,w) is the opposite
of the difference between the samplez and its nearest component inw. Assume that there are
M computing entities, the data are split among the memory of these machines:zi

1,z
i
2, . . ., where

i ∈ {1, . . . ,M}. Therefore, the DALVQ algorithms are defined by theM iterations{wi(t)}∞
t=0, called

versions, satisfying (with slight simplifications)

wi(t +1) =
M

∑
j=1

ai, j(t)w j(τi, j(t))− εi
t+1H

(
zi

t+1,w
i(t)
)
, i ∈ {1, . . . ,M} andt ≥ 0.

The time instantsτi, j(t) ≥ 0 are deterministic but unknown and the delays satisfy the inequality
t − τi, j(t)≥ 0. The families{ai, j(t)}M

j=1 define the weights of convex combinations.
As a striking result, we prove that multiple versions of the quantizers, distributed among the

processors in a parallel architecture, asymptotically reach a consensusalmost surely. Using the
materials introduced above, it writes

wi(t)−w j(t)−−→
t→∞

0, (i, j) ∈ {1, . . . ,M}2, almost surely (a.s.).

Furthermore, we also show that these versions converge almost surely towards (the same) nearly
optimal value for the quantization criterion. These convergence results are similar in spirit to the
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most satisfactory almost sure convergence theorem for the CLVQ algorithm obtained by Pag̀es
(1997).

For a given time span, our parallel DALVQ algorithm is able to process much more data than a
single processor execution of the CLVQ procedure. Moreover, DALVQ is also asynchronous. This
means that local algorithms do not have to wait at preset points for messages to become available.
This allows some processors to compute faster and execute more iterations than others, and it also
allows communication delays to be substantial and unpredictable. The communication channels are
also allowed to deliver messages out of order, that is, in a different order than the one in which
they were transmitted. Asynchronism can provide two major advantages. First, a reduction of the
synchronization penalty, which could bring a speed advantage over a synchronous execution. Sec-
ond, for potential industrialization, asynchronism has greater implementationflexibility. Tolerance
to system failures and uncertainty can also be increased. As in the case withany on-line algorithm,
DALVQ also deals with variable data loads over time. In fact, on-line algorithms avoid tremendous
and non scalable batch requests on all data sets. Moreover, with an on-line algorithm, new data may
enter the system and be taken into account while the algorithm is already running.

The paper is organized as follows. In Section 2 we review some standard facts on the clustering
problem. We extract the relevant material from Pagès (1997) without proof, thus making our ex-
position self-contained. In Section 3 we give a brief exposition of the mathematical framework for
parallel asynchronous gradient methods introduced by Tsitsiklis (1984), Tsitsiklis et al. (1986) and
Bertsekas and Tsitsiklis (1989). The results of Blondel et al. (2005) onthe asymptotic consensus
in asynchronous parallel averaging problems are also recalled. In Section 4, our main results are
stated and proved.

2. Quantization and CLVQ Algorithm

In this section, we describe the mathematical quantization problem and the CLVQalgorithm. We
also recall some convergence results for this technique found by Pagès (1997).

2.1 Overview

Let µ be a probability measure onRd with finite second-order moment. The quantization prob-
lem consists in finding a “good approximation” ofµ by a set ofκ vectors ofRd called quantizer.
Throughout the document theκ quantization points (or prototypes) will be seen as the components
of a

(
R

d
)κ

-dimensional vectorw = (w1, . . . ,wκ). To measure the correctness of a quantization
scheme given byw, one introduces a cost function called distortion, defined by

Cµ(w) =
1
2

∫
Rd

min
1≤ℓ≤κ

‖z−wℓ‖2dµ(z).

Under some minimal assumptions, the existence of an optimal
(
R

d
)κ

-valued quantizer vectorw◦ ∈
argminw∈(Rd)

κ Cµ(w) has been established by Pollard (1981) (see also Sabin and Gray 1986,Ap-

pendix 2).

In a statistical context, the distributionµ is only known throughn independent random observa-
tions z1, . . . ,zn drawn according toµ. Denote byµn the empirical distribution based onz1, . . . ,zn,
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that is, for every Borel subsetA of Rd

µn(A) =
1
n

n

∑
i=1

1{zi∈A}.

Much attention has been devoted to the convergence study of the quantization scheme provided by
the empirical minimizers

w◦
n ∈ argmin

w∈(Rd)
κ
Cµn(w).

The almost sure convergence ofCµ(w◦
n) towards minw∈(Rd)

κ Cµ(w) was proved by Pollard (1981,

1982a) and Abaya and Wise (1984). Rates of convergence and nonasymptotic performance bounds
have been considered by Pollard (1982b), Chou (1994), Linder et al. (1994), Bartlett et al. (1998),
Linder (2001, 2000), Antos (2005) and Antos et al. (2005). Convergence results have been estab-
lished by Biau et al. (2008) whereµ is a measure on a Hilbert space. It turns out that the mini-
mization of the empirical distortion is a computationally hard problem. As shown by Inaba et al.
(1994), the computational complexity of this minimization problem is exponential in the number
of quantizersκ and the dimension of the datad. Therefore, exact computations are intractable for
most of the practical applications.

Based on this, our goal in this document is to investigate effective methods thatproduce accurate
quantizations with data samples. One of the most popular procedure is Lloyd’s algorithm (see
Lloyd, 2003) sometimes refereed to as batchk-means. A convergence theorem for this algorithm is
provided by Sabin and Gray (1986). Another celebrated quantization algorithm is the competitive
learning vector quantization (CLVQ), also called on-linek-means. The latter acronym outlines
the fact that data arrive over time while the execution of the algorithm and theircharacteristics
are unknown until their arrival times. The main difference between the CLVQ and the Lloyd’s
algorithm is that the latter run in batch training mode. This means that the whole training set is
presented before performing an update, whereas the CLVQ algorithm uses each item of the training
sequence at each update.

The CLVQ procedure can be seen as a stochastic gradient descent algorithm. In the more general
context of gradient descent methods, one cannot hope for the convergence of the procedure towards
global minimizers with a non convex objective function (see for instance Benveniste et al. 1990). In
our quantization context, the distortion mappingCµ is not convex (see for instance Graf and Luschgy
2000). Thus, just as in Lloyd’s method, the iterations provided by the CLVQalgorithm converge
towards local minima ofCµ.

Assuming that the distributionµhas a compact support and a bounded density with respect to the
Lebesgue measure, Pagès (1997) states a result regarding the almost sure consistency of the CLVQ
algorithm towards critical points of the distortionCµ. The author shows that the set of critical points
necessarily contains the global and local optimal quantizers. The main difficulties in the proof arise
from the fact that the gradient of the distortion is singular onκ-tuples having equal components and
the distortion functionCµ is not convex. This explains why standard theories for stochastic gradient
algorithm do not apply in this context.

2.2 The Quantization Problem, Basic Properties

In the sequel, we denote byG the closed convex hull of supp(µ), where supp(µ) stands for the
support of the distribution. Observe that, with this notation, the distortion mapping is the function
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C :
(
R

d
)κ −→ [0,∞) defined by

C(w),
1
2

∫
G

min
1≤ℓ≤κ

‖z−wℓ‖2dµ(z), w= (w1, . . . ,wκ) ∈
(
R

d
)κ

.

Throughout the document, with a slight abuse of notation,‖.‖ means both the Euclidean norm of
R

d or
(
R

d
)κ

. In addition, the notationDκ
∗ stands for the set of all vector of

(
R

d
)κ

with pairwise
distinct components, that is,

Dκ
∗ ,

{
w∈

(
R

d
)κ

| wℓ 6= wk if and only if ℓ 6= k
}
.

Under some extra assumptions onµ, the distortion function can be rewritten using space partition
set called Voronöı tessellation.

Definition 1 Let w∈
(
R

d
)κ

, the Voronöı tessellation ofG related to w is the family of open sets
{Wℓ(w)}1≤ℓ≤κ defined as follows:

• If w ∈Dκ
∗ , for all 1≤ ℓ≤ κ,

Wℓ(w) =

{
v∈ G

∣∣∣∣ ‖wℓ−v‖< min
k6=ℓ

‖wk−v‖
}
.

• If w ∈
(
R

d
)κ \Dκ

∗ , for all 1≤ ℓ≤ κ,

– if ℓ= min{k | wk = wℓ},

Wℓ(w) =

{
v∈ G

∣∣∣∣ ‖wℓ−v‖< min
wk 6=wℓ

‖wk−v‖
}

– otherwise, Wℓ(w) = /0.

As an illustration, Figure 1 shows Voronoı̈ tessellations associated to a vectorw lying in ([0,1]×
[0,1])50 whose components have been drawn independently and uniformly. This figure also high-
lights a remarkable property of the cell borders, which are portions of hyperplanes (see Graf and
Luschgy, 2000).

Observe that ifµ(H) is zero for any hyperplaneH of Rd (a property which is sometimes referred
to as strong continuity) then using Definition 1, it is easy to see that the distortiontakes the form:

C(w) =
1
2

κ

∑
ℓ=1

∫
Wℓ(w)

‖z−wℓ‖2dµ(z), w∈
(
R

d
)κ

.

The following assumption will be needed throughout the paper. This assumption is similar to
the peak power constraint (see Chou 1994 and Linder 2000). Note thatmost of the results of this
subsection are still valid ifµ satisfies the weaker strong continuity property.

Assumption 1 (Compact supported density)The probability measure µ has a bounded density
with respect to the Lebesgue measure onR

d. Moreover, the support of µ is equal to its convex hull
G , which in turn, is compact.
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Figure 1: Voronöı tessellation of 50 points ofR2 drawn uniformly in a square.

The next proposition states the differentiability of the distortionC, and provides an explicit
formula for the gradient∇C whenever the distortion is differentiable.

Proposition 1 (Pag̀es 1997)Under Assumption 1, the distortion C is continuously differentiable at
every w= (w1, . . . ,wκ) ∈Dκ

∗ . Furthermore, for all1≤ ℓ≤ κ,

∇ℓC(w) =
∫

Wℓ(w)
(wℓ−z)dµ(z).

Some necessary conditions on the location of the minimizers ofC can be derived from its dif-
ferentiability properties. Therefore, Proposition 2 below states that the minimizers ofC have parted
components and that they are contained in the support of the density. Thus, the gradient is well
defined and these minimizers are necessarily some zeroes of∇C. For the sequel it is convenient to

let
◦
A be the interior of any subsetA of

(
R

d
)κ

.

Proposition 2 (Pag̀es 1997)Under Assumption 1, we have

argmin
w∈(Rd)

κ
C(w)⊂ argminloc

w∈Gκ
C(w)⊂

◦
Gκ ∩{∇C= 0}∩Dκ

∗ ,

whereargminlocw∈Gκ C(w) stands for the set of local minimizers of C overGκ.

For anyz∈ R
d andw∈

(
R

d
)κ

, let us define the following vector of
(
R

d
)κ

H(z,w),
(
(wℓ−z)1{z∈Wℓ(w)}

)
1≤ℓ≤κ . (1)
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OnDκ
∗ , the functionH may be interpreted as an observation of the gradient. With this notation,

Proposition 1 states that

∇C(w) =
∫
G

H(z,w)dµ(z), w∈Dκ
∗ .

Let ∁A stands for the complementary in
(
R

d
)κ

of a subsetA⊂
(
R

d
)κ

. Clearly, for allw∈ ∁Dκ
∗ ,

the mappingH(.,w) is integrable. Therefore,∇C can be extended on
(
R

d
)κ

via the formula

h(w),
∫
G

H(z,w)dµ(z), w∈
(
R

d
)κ
. (2)

Note however that the functionh, which is sometimes called the average function of the algorithm,
is not continuous.

Remark 1 Under Assumption 1, a computation for all w∈Dκ
∗ of the Hessian matrix∇2C(w) can

be deduced from Theorem 4 of (Fort and Pagès, 1995). In fact, the formula established in this
theorem is valid for cost functions which are more complex than C (they are associated to Kohonen
Self Organizing Maps, see Kohonen 1982 for more details). In Theorem4, lettingσ(k) = 1{k=0},
provides the result for our distortion C. The resulting formula shows that h issingular on∁Dκ

∗ and,
consequently, that this function cannot be Lipschitz onGκ.

2.3 Convergence of the CLVQ Algorithm

The problem of finding a reliable clustering scheme for a data set is equivalent to find optimal
(or at least nearly optimal) minimizers for the mappingC. A minimization procedure by a usual
gradient descent method cannot be implemented as long as∇C is unknown. Thus, the gradient is
approximated by a single example extracted from the data. This leads to the following stochastic
gradient descent procedure

w(t +1) = w(t)− εt+1H (zt+1,w(t)) , t ≥ 0, (3)

wherew(0) ∈
◦
Gκ ∩ Dκ

∗ andz1,z2 . . . are independent observations distributed according to the
probability measureµ.

The algorithm defined by the iterations (3) is known as the CLVQ algorithm in thedata analysis
community. It is also called the Kohonen Self Organizing Map algorithm with 0 neighbor (see for
instance Kohonen 1982) or the on-linek-means procedure (see MacQueen 1967 and Bottou 1998)
in various fields related to statistics. As outlined by Pagès in Pag̀es (1997), this algorithm belongs
to the class of stochastic gradient descent methods. However, the almost sure convergence of this
type of algorithm cannot be obtained by general tools such as Robbins-Monro method (see Robbins
and Monro, 1951) or the Kushner-Clark’s Theorem (see Kushner and Clark, 1978). Indeed, the
main difficulty essentially arises from the non convexity of the functionC, its non coercivity and
the singularity ofh at∁Dκ

∗ (we refer the reader to Pagès 1997, Section 6, for more details).
The following assumption set is standard in a gradient descent context. Itbasically upraises

constraints on the decreasing speed of the sequence of steps{εt}∞
t=0.

Assumption 2 (Decreasing steps)The (0,1)-valued sequence{εt}∞
t=0 satisfies the following two

constraints:
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1. ∑∞
t=0 εt = ∞.

2. ∑∞
t=0 ε2

t < ∞.

An examination of identities (3) and (1) reveals that ifzt+1 ∈ Wℓ0 (w(t)), where the integer
ℓ0 ∈ {1, . . . ,M} then

wℓ0(t +1) = (1− εt+1)wℓ0(t)+ εt+1zt+1.

The componentwℓ0(t +1) can be viewed as the image ofwℓ0(t) by azt+1-centered homothety with
ratio 1− εt+1 (Figure 2 provides an illustration of this fact). Thus, under Assumptions 1 and 2, the

trajectories of{w(t)}∞
t=0 stay in

◦
Gκ ∩Dκ

∗ . More precisely, if

w(0) ∈
◦
Gκ ∩Dκ

∗

then

w(t) ∈
◦
Gκ ∩Dκ

∗ , t ≥ 0, a.s.

Figure 2: Drawing of a portion of a 2-dimensional Voronoı̈ tessellation. Fort ≥ 0, if the vector
zt+1 ∈Wℓ0 (w(t)) thenwℓ(t +1) = wℓ(t) for all ℓ 6= ℓ0 andwℓ0(t +1) lies in the segment
[wℓ0(t),zt+1]. The update of the vectorwℓ0(t) can also be viewed as azt+1-centered
homothety with ratio 1− εt+1.

Although ∇C is not continuous some regularity can be obtained. To this end, we need to in-
troduce the following materials. For anyδ > 0 and any compact setL ⊂ R

d, let the compact set
Lκ

δ ⊂
(
R

d
)κ

be defined as

Lκ
δ ,

{
w∈ Lκ | min

k6=ℓ
‖wℓ−wk‖ ≥ δ

}
. (4)

The next lemma that states on the regularity of∇C will prove to be extremely useful in the proof of
Theorem 4 and throughout Section 4.
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Lemma 2 (Pag̀es 1997)Assume that µ satisfies Assumption 1 and let L be a compact set ofR
d.

Then, there is some constant Pδ such that for all w and v in Lκδ with [w,v]⊂Dκ
∗ ,

‖∇C(w)−∇C(v)‖ ≤ Pδ ‖w−v‖ .

The following lemma, called G-lemma in Pagès (1997) is an easy-to-apply convergence results
on stochastic algorithms. It is particularly adapted to the present situation of the CLVQ algorithm
where the average function of the algorithmh is singular.

Theorem 3 (G-lemma, Fort and Pag̀es 1996)Assume that the iterations (3) of the CLVQ algo-
rithm satisfy the following conditions:

1. ∑∞
t=1 εt = ∞ andεt −−→

t→∞
0.

2. The sequences{w(t)}∞
t=0 and{h(w(t))}∞

t=0 are bounded a.s.

3. The series∑∞
t=0 εt+1(H(zt+1,w(t))−h(w(t))) converge a.s. in

(
R

d
)κ

.

4. There exists a lower semi-continuous function G:
(
R

d
)κ −→ [0,∞) such that

∞

∑
t=0

εt+1G(w(t))< ∞, a.s.

Then, there exists a random connected componentΞ of {G= 0} such that

dist(w(t),Ξ)−−→
t→∞

0, a.s.,

where the symboldist denotes the usual distance function between a vector and a subset of
(
R

d
)κ

.
Note also that if the connected components of{G= 0} are singletons then there existsξ ∈ {G= 0}
such that w(t)−−→

t→∞
ξ a.s.

For a definition of the topological concept of connected component, we refer the reader to Choquet
(1966). The interest of the G-lemma depends upon the choice ofG. In our context, a suitable lower
semi-continuous function iŝG defined by

Ĝ(w), liminf
v∈Gκ∩Dκ∗ , v→w

‖∇C(v)‖2 , w∈ Gκ. (5)

The next theorem is, as far as we know, the first almost sure convergence theorem for the
stochastic algorithm CLVQ.

Theorem 4 (Pag̀es 1997)Under Assumptions 1 and 2, conditioned on the event
{

liminf
t→∞

dist
(
w(t),∁Dκ

∗
)
> 0
}
, one has

dist(w(t),Ξ∞)−−→
t→∞

0, a.s.,

whereΞ∞ is some random connected component of{∇C= 0}.
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The proof is an application of the above G-lemma with the mappingĜ defined by Equation (5).
Theorem 4 states that the iterations of the CLVQ necessarily converge towards some critical points
(zeroes of∇C). From Proposition 2 we deduce that the set of critical points necessarilycontains

optimal quantizers. Recall that without more assumption thanw(0) ∈
◦
Gκ ∩ Dκ

∗ , we have already
discussed the fact that the components ofw(t) are almost surely parted for allt ≥ 0. Thus, it is
easily seen that the two following events only differ on a set of zero probability

{
liminf

t→∞
dist
(
w(t),∁Dκ

∗
)
> 0
}

and {
inf
t≥0

dist
(
w(t),∁Dκ

∗
)
> 0

}
.

Some results are provided by Pagès (1997) for asymptotically stuck components but, as pointed out
by the author, they are less satisfactory.

3. General Distributed Asynchronous Algorithm

We present in this section some materials and results of the asynchronous parallel linear algorithms
theory.

3.1 Model Description

Let s(t) be any
(
R

d
)κ

-valued vector and consider the following iterations

w(t +1) = w(t)+s(t), t ≥ 0. (6)

Here, the model of discrete time described by iterations (6) can only be performed by a single
computing entity. Therefore, if the computations of the vectorss(t) are relatively time consuming
then not many iterations can be achieved for a given time span. Consequently, a parallelization
of this computing scheme should be investigated. The aim of this section is to discuss a precise
mathematical description of a distributed asynchronous model for the iterations (6). This model
for distributed computing was originally proposed by Tsitsiklis et al. (1986) and was revisited in
Bertsekas and Tsitsiklis (1989, Section 7.7).

Assume that we dispose of a distributed architecture withM computing entities called processors
(or agents, see for instance Bullo et al. 2009). Each processor is labeled, for simplicity of notation,
by a natural numberi ∈ {1, . . . ,M}. Throughout the paper, we will add the superscripti on the
variables possessed by the processori. In the model we have in mind, each processor has a buffer
where its current version of the iterated vector is kept, that is, local memory.Thus, for agenti such
iterations are represented by the

(
R

d
)κ

-valued sequence
{

wi(t)
}∞

t=0.

Let t ≥ 0 denote the current time. For any pair of processors(i, j) ∈ {1, . . . ,M}2, the value
kept by agentj and available for agenti at time t is not necessarily the most recent one,w j(t),
but more probably and outdated one,w j(τi, j(t)), where the deterministic time instantτi, j(t) satisfy
0 ≤ τi, j(t) ≤ t. Thus, the differencet − τi, j(t) can be seen as a communication delay. This is a
modeling of some aspects of the network: latency and bandwidth finiteness.

We insist on the fact that there is a distinction between “global” and “local” time.The time
variable we refer above to ast corresponds to a global clock. Such a global clock is needed only for

3440



CONVERGENCE OFDISTRIBUTED ASYNCHRONOUSLEARNING VECTORQUANTIZATION ALGORITHMS

analysis purposes. The processors work without knowledge of this global clock. They have access
to a local clock or to no clock at all.

The algorithm is initialized att = 0, where each processori ∈ {1, . . . ,M} has an initial ver-
sionwi(0) ∈

(
R

d
)κ

in its buffer. We define the general distributed asynchronous algorithm by the
following iterations

wi(t +1) =
M

∑
j=1

ai, j(t)w j(τi, j(t))+si(t), i ∈ {1, . . . ,M} andt ≥ 0. (7)

The model can be interpreted as follows: at timet ≥ 0, processori receives messages from other
processors containingw j(τi, j(t)). Processori incorporates these new vectors by forming a convex
combination and incorporates the vectorsi(t) resulting from its own “local” computations. The
coefficientsai, j(t) are nonnegative numbers which satisfy the constraint

M

∑
j=1

ai, j(t) = 1, i ∈ {1, . . . ,M} andt ≥ 0. (8)

As the combining coefficientsai, j(t) depend ont, the network communication topology is some-
times referred to as time-varying. The sequences

{
τi, j(t)

}∞
t=0 need not to be known in advance by

any processor. In fact, their knowledge is not required to execute iterations defined by Equation
(7). Thus, we do not necessary dispose of a shared global clock orsynchronized local clocks at the
processors.

As for now the descent terms
{

si(t)
}∞

t=0 will be arbitrary
(
R

d
)κ

-valued sequences. In Section 4,
when we define the distributed asynchronous learning vector quantization(DALVQ), the definition
of the descent terms will be made more explicit.

3.2 The Agreement Algorithm

This subsection is devoted to a short survey of the results, found by Blondel et al. (2005), for a
natural simplification of the general distributed asynchronous algorithm (7). This simplification is
called agreement algorithm by Blondel et al. and is defined by

xi(t +1) =
M

∑
j=1

ai, j(t)x j(τi, j(t)), i ∈ {1, . . . ,M} andt ≥ 0. (9)

wherexi(0) ∈
(
R

d
)κ

. An observation of these equations reveals that they are similar to iterations
(7), the only difference being that all descent terms equal 0.

In order to analyse the convergence of the agreement algorithm (9), Blondel et al. (2005) define
two sets of assumptions that enforce some weak properties on the communication delays and the
network topology. As shown in Blondel et al. (2005), if the assumptions contained in one of these
two set hold, then the distributed versions of the agreement algorithm, namely the xi , reach an
asymptotical consensus. This latter statement means that there exists a vectorx⋆ (independent ofi)
such that

xi(t)−−→
t→∞

x⋆, i ∈ {1, . . . ,M}.

The agreement algorithm (9) is essentially driven by the communication timesτi, j(t) assumed to
be deterministic but do not need to be knowna priori by the processors. The following Assumption
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Figure 3: Illustration of the time delays introduced in the general distributed asynchronous algo-
rithm. Here, there areM = 4 different processors with their own computations of the
vectorsw(i), i ∈ {1,2,3,4}. Three arbitrary values of the global timet are represented (t1,
t2 andt3), with τi,i(tk) = tk for all i ∈ {1,2,3,4} and 1≤ k ≤ 3. The dashed arrows head
towards the versions available at timetk for an agenti ∈ {1,2,3,4} represented by the tail
of the arrow.

3 essentially ensures, in its third statement, that the communication delayst − τi, j(t) are bounded.
This assumption prevents some processor from taking into account some arbitrarily old values com-
puted by others processors. Assumption 3 1. is just a convention: whenai, j(t) = 0 the valueτi, j(t)
has no effect on the update. Assumption 3 2. is rather natural because processors have access to
their own most recent value.

Assumption 3 (Bounded communication delays)

1. If ai, j(t) = 0 then one hasτi, j(t) = t, (i, j) ∈ {1, . . . ,M}2 and t≥ 0,

2. τi,i(t) = t, i ∈ {1, . . . ,M} and t≥ 0.

3. There exists a positive integer B1 such that

t −B1 < τi, j(t)≤ t, (i, j) ∈ {1, . . . ,M}2 and t≥ 0.

The next Assumption 4 states that the value possessed by agenti at timet +1, namelyxi(t +1),
is a weighted average of its own value and the values that it has just received from other agents.
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Assumption 4 (Convex combination and threshold)There exists a positive constantα > 0 such
that the following three properties hold:

1. ai,i(t)≥ α, i ∈ {1, . . . ,M} and t≥ 0.

2. ai, j(t) ∈ {0}∪ [α,1], (i, j) ∈ {1, . . . ,M}2 and t≥ 0.

3. ∑M
j=1ai, j(t) = 1, i ∈ {1, . . . ,M} and t≥ 0.

Let us mention one particular relevant case for the choice of the combining coefficientsai, j(t).
Let i ∈ {1, . . . ,M} andt ≥ 0, the set

Ni(t),
{

j ∈ {1, . . . ,M} ∈ {1, . . . ,M} | ai, j(t) 6= 0
}

corresponds to the set of agents whose version is taken into account byprocessori at timet. For all
(i, j) ∈ {1, . . . ,M}2 andt ≥ 0, the weightsai, j(t) are defined by

ai, j(t) =

{
1/#Ni(t) if j ∈ Ni(t);

0 otherwise;

where #A denotes the cardinal of any finite setA. The above definition on the combining coefficients
appears to be relevant for practical implementations of the model DALVQ introduced in Section 4.
For a discussion on others special interest cases regarding the choices of the coefficientsai, j(t) we
refer the reader to Blondel et al. (2005).

The communication patterns, sometimes refereed to as the network communication topology,
can be expressed in terms of directed graph. For a thorough introductionto graph theory, (see
Jungnickel, 1999).

Definition 5 (Communication graph) Let us fix t≥ 0, the communication graph at time t,(V ,E(t)),
is defined by

• the set of verticesV is formed by the set of processorsV = {1, . . . ,M},

• the set of edges E(t) is defined via the relationship

( j, i) ∈ E(t) if and only if ai, j(t)> 0.

Assumption 5 is a minimal condition required for a consensus among the processors. More pre-
cisely, it states that for any pair of agents(i, j)∈ {1, . . . ,M}2 there is a sequence of communications
where the values computed by agenti will influence (directly or indirectly) the future values kept
by agentj.

Assumption 5 (Graph connectivity) The graph(V ,∪s≥tE(s)) is strongly connected for all t≥ 0.

Finally, we define two supplementary assumptions. The combination of one of the two following
assumptions with the three previous ones will ensure the convergence of the agreement algorithm.
As mentioned above, if Assumption 5 holds then there is a communication path between any pair
of agents. Assumption 6 below expresses the fact that there is a finite upper bound for the length of
such paths.
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Assumption 6 (Bounded communication intervals)If i communicates with j an infinite number
of times then there is a positive integer B2 such that

(i, j) ∈ E(t)∪E(t +1)∪ . . .∪E(t +B2−1), t ≥ 0.

Assumption 7 is a symmetry condition: if agenti ∈ {1, . . . ,M} communicates with agentj ∈
{1, . . . ,M} then j has communicated or will communicate withi during the time interval(t−B3, t+
B3) whereB3 > 0.

Assumption 7 (Symmetry) There exists some B3 > 0 such that whenever the pair(i, j) ∈ E(t),
there exists someτ that satisfies|t − τ|< B3 and( j, i) ∈ E(τ).

To shorten the notation, we set

(AsY)1 ≡





Assumption 3;

Assumption 4;

Assumption 5;

Assumption 6.

(AsY)2 ≡





Assumption 3;

Assumption 4;

Assumption 5;

Assumption 7;
We are now in a position to state the main result of this section. The Theorem 6 expresses the

fact that, for the agreement algorithm, a consensus is asymptotically reachedby the agents.

Theorem 6 (Blondel et al. 2005)Under the set of Assumptions(AsY)1 or (AsY)2, there is a con-
sensus vector x⋆ ∈

(
R

d
)κ

(independent of i) such that

lim
t→∞

∥∥xi(t)−x⋆
∥∥= 0, i ∈ {1, . . . ,M}.

Besides, there existρ ∈ [0,1) and L> 0 such that
∥∥xi(t)−xi(τ)

∥∥≤ Lρt−τ, i ∈ {1, . . . ,M} and t≥ τ ≥ 0.

3.3 Asymptotic Consensus

This subsection is devoted to the analysis of the general distributed asynchronous algorithm (7).
For this purpose, the study of the agreement algorithm defined by Equations (9) will be extremely
fruitful. The following lemma states that the version possessed by agenti ∈ {1, . . . ,M} at time
t ≥ 0, namelywi(t), depends linearly on the others initialization vectorsw j(0) and the descent

subsequences
{

sj(τ)
}t−1

τ=−1, where j ∈ {1, . . . ,M}.

Lemma 7 (Tsitsiklis 1984) For all (i, j) ∈ {1, . . . ,M}2 and t≥ 0, there exists a real-valued se-

quence
{

φi, j (t,τ)
}t−1

τ=−1 such that

wi(t) =
M

∑
j=1

φi, j (t,−1)w j(0)+
t−1

∑
τ=0

M

∑
j=1

φi, j (t,τ)sj(τ).

For all (i, j) ∈ {1, . . . ,M}2 andt ≥ 0, the real-valued sequences
{

φi, j (t,τ)
}t−1

τ=−1 do not depend
on the value taken by the descent termssi(t). The real numbersφi, j (t,τ) are determined by the
sequences

{
τi, j(τ)

}t
τ=0 and

{
ai, j(τ)

}t
τ=0 which do not depend onw. These last sequences are un-

known in general, but some useful qualitative properties can be derived, as expressed in Lemma 8
below.
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Lemma 8 (Tsitsiklis 1984) For all (i, j) ∈ {1, . . . ,M}2, let
{

φi, j (t,τ)
}t−1

τ=−1 be the sequences de-
fined in Lemma 7.

1. Under Assumption 4,

0≤ φi, j (t,τ)≤ 1, (i, j) ∈ {1, . . . ,M}2 and t> τ ≥−1.

2. Under Assumptions(AsY)1 or (AsY)2, we have:

(a) For all (i, j) ∈ {1, . . . ,M}2 andτ ≥−1, the limit ofφi, j (t,τ) as t tends to infinity exists
and is independent of j. It will be denotedφi(τ).

(b) There exists someη > 0 such that

φi(τ)> η, i ∈ {1, . . . ,M} andτ ≥−1.

(c) There exist a constant A> 0 andρ ∈ (0,1) such that

∣∣φi, j (t,τ)−φi(τ)
∣∣≤ Aρt−τ, (i, j) ∈ {1, . . . ,M}2 and t> τ ≥−1.

Take t ′ ≥ 0 and assume that the agents stop performing update after timet ′, but keep com-
municating and merging the results. This means thatsj(t) = 0 for all t ≥ t ′. Then, Equations (7)
write

wi(t +1) =
M

∑
j=1

ai, j(t)w j (τi, j(t)
)
, i ∈ {1, . . . ,M} andt ≥ t ′.

If Assumptions(AsY)1 or (AsY)2 are satisfied then Theorem 6 shows that there is a consensus
vector, depending on the time instantt ′. This vector will be equal tow⋆(t ′) defined below (see
Figure 4). Lemma 8 provides a good way to define the sequence{w⋆(t)}∞

t=0 as shown in Definition
9. Note that this definition does not involve any assumption on the descent terms.

Definition 9 (Agreement vector) Assume that Assumptions(AsY)1 or (AsY)2 are satisfied. The
agreement vector sequence{w⋆(t)}∞

t=0 is defined by

w⋆(t),
M

∑
j=1

φ j (−1)w j(0)+
t−1

∑
τ=0

M

∑
j=1

φ j (τ)sj(τ), t ≥ 0.

It is noteworthy that the agreement vector sequencew⋆ satisfies the following recursion formula

w⋆(t +1) = w⋆(t)+
M

∑
j=1

φ j(t)sj(t), t ≥ 0. (10)

4. Distributed Asynchronous Learning Vector Quantization

This section is devoted to the distributed asynchronous learning vector quantization techniques. We
provide a definition and investigate the almost sure convergence properties of the techniques.
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Figure 4: The agreement vector at timet ′, w⋆(t ′) corresponds to the common value asymptotically
achieved by all processors if computations integrating descent terms havestopped after
t ′, that is,sj(t) = 0 for all t ≥ t ′.

4.1 Introduction, Model Presentation

From now on, and until the end of the paper, we assume that one of the two set of Assumptions
(AsY)1 or (AsY)2 holds, as well as the compact-supported density Assumption 1. In addition, we
will also assume that 0∈ G . For the sake of clarity, all the proofs of the main theorems as well as
the lemmas needed for these proofs have been postponed at the end of thepaper, in Annex.

Tsitsiklis (1984), Tsitsiklis et al. (1986) and Bertsekas and Tsitsiklis (1989) studied distributed
asynchronous stochastic gradient optimization algorithms. In this series of publications, for the
distributed minimization of a cost functionF :

(
R

d
)κ −→ R, the authors considered the general

distributed asynchronous algorithm defined by Equation (7) with specific choices for stochastic
descent termssi . Using the notation of Section 3, the algorithm writes

wi(t +1) =
M

∑
j=1

ai, j(t)w j(τi, j(t))+si(t), i ∈ {1, . . . ,M} andt ≥ 0,

with stochastic descent termssi(t) satisfying

E
{

si(t)
∣∣ sj(τ), j ∈ {1, . . . ,M} andt > τ ≥ 0

}
=−εi

t+1∇F
(
wi(t)

)
,

i ∈ {1, . . . ,M} andt ≥ 0. (11)

where
{

εi
t

}∞
t=0 are decreasing steps sequences. The definition of the descent terms in Bertsekas

and Tsitsiklis (1989) and Tsitsiklis et al. (1986) is more general than the oneappearing in Equation
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(11). We refer the reader to Assumption 3.2 and 3.3 in Tsitsiklis et al. (1986)and Assumption 8.2
in Bertsekas and Tsitsiklis (1989) for the precise definition of the descentterms. As discussed in
Section 2, the CLVQ algorithm is also a stochastic gradient descent procedure. Unfortunately, the
results from Tsitisklis et al. do not apply with our distortion function,C, since the authors assume
that F is continuously differentiable and∇F is Lipschitz. Therefore, the aim of this section is to
extend the results of Tsitsiklis et al. to the context of vector quantization and on-line clustering.

We first introduce the distributed asynchronous learning vector quantization (DALVQ) algo-
rithm. To prove its almost sure consistency, we will need an asynchronousG-lemma, which is in-
spired from the G-lemma, Theorem 3, presented in Section 2. This theorem may be seen as an easy-
to-apply tool for the almost sure consistency of a distributed asynchronous system where the average
function is not necessary regular. Our approach sheds also some newlight on the convergence of
distributed asynchronous stochastic gradient descent algorithms. Precisely, Proposition 8.1 in Tsit-
siklis et al. (1986) claims that the next asymptotic equality holds: liminft→∞

∥∥∇F(wi(t))
∥∥ = 0,

while our main Theorem 12 below states that limt→∞
∥∥∇C(wi(t))

∥∥ = 0. However, there is a price
to pay for this more precise result with the non Lipschitz gradient∇C. Similarly to Pag̀es (1997),
who assumes that the trajectory of the CLVQ algorithm has almost surely asymptotically parted
components (see Theorem 4 in Section 2), we will suppose that the agreement vector sequence has,
almost surely, asymptotically parted component trajectories.

Recall that the goal of the DALVQ is to provide a well designed distributed algorithm that
processes quickly (in term of wall clock time) very large data sets to produce accurate quantization.
The data sets (or streams of data) are distributed among several queues sending data to the different
processors of our distributed framework. Thus, in this context the sequencezi

1,z
i
2, . . . stands for the

data available for processor, wherei ∈ {1, . . . ,M}. The random variables

z1
1,z

1
2, . . . ,z

2
1,z

2
2, . . .

are assumed to be independent and identically distributed according toµ.
In the definition of the CLVQ procedure (3), the termH (zt+1,w(t)) can be seen as an observa-

tion of the gradient∇C(w(t)). Therefore, in our DALVQ algorithm, each processori ∈ {1, . . . ,M}
is able to compute such observations using its own datazi

1,z
i
2, . . .. Thus, the DALVQ procedure is

defined by Equation (7) with the following choice for the descent termsi :

si(t) =

{
−εi

t+1H
(
zi

t+1,w
i(t)
)

if t ∈ T i ;

0 otherwise;
(12)

where
{

εi
t

}∞
t=0 are(0,1)-valued sequences. The setsT i contain the time instants where the version

wi , kept by processori, is updated with the descent terms. This fine grain description of the algo-
rithm allows some processors to be idle for computing descent terms (whent /∈ T i). This reflects
the fact that the computing operations might not take the same time for all processors, which is
precisely the core of asynchronous algorithms analysis. Similarly to time delaysand combining
coefficients, the setsT i are supposed to be deterministic but do not need to be knowna priori for
the execution of the algorithm.

In the DALVQ model, randomness arises from the dataz. Therefore, it is natural to let{Ft}∞
t=0

be the filtration built on theσ-algebras

Ft , σ
(
zi

s, i ∈ {1, . . . ,M} andt ≥ s≥ 0
)
, t ≥ 0.
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An easy verification shows that, for allj ∈ {1, . . . ,M} and t ≥ 0, w⋆(t) and w j(t) areFt-
measurable random variables.

For simplicity, the assumption on the decreasing speed of the sequences
{

εi
t

}∞
t=0 is strengthened

as follows. The notationa∨b stands for the maximum of two realsa andb.

Assumption 8 There exist two real numbers K1 > 0 and K2 ≥ 1 such that

K1

t ∨1
≤ εi

t+1 ≤
K2

t ∨1
, i ∈ {1, . . . ,M} and t≥ 0.

If Assumption 8 holds then the sequences
{

εi
t

}∞
t=0 satisfy the standard Assumption 2 for stochastic

optimization algorithms. Note that the choice of steps proportional to 1/t has been proved to be
a satisfactory learning rate, theoretically speaking and also for practicalimplementations (see for
instance Murata 1998 and Bottou and LeCun 2004).

For practical implementation, the sequences
{

εi
t+1

}∞
t=0 satisfying Assumption 8 can be imple-

mented without a global clock, that is, without assuming that the current value of t is known by the
agents. This assumption is satisfied, for example, by taking the current value of εi

t proportional to
1/ni

t , whereni
t is the number of times that processori as performed an update, that is, the cardinal

of the setT i ∩{0, . . . , t}. For a given processor, if the time span between consecutive updates is
bounded from above and from below, a straightforward examination shows that the sequence of
steps satisfy Assumption 8.

Finally, the next assumption is essentially technical in nature. It enables to avoid time instants
where all processors are idle. It basically requires that, at any timet ≥ 0, there is at least one
processori ∈ {1, . . . ,M} satisfyingsi(t) 6= 0.

Assumption 9 One has∑M
j=11{t∈T j} ≥ 1 for all t ≥ 0.

4.2 The Asynchronous G-lemma

The aim of this subsection is to state a useful theorem similar to Theorem 3, butadapted to our
asynchronous distributed context. The precise Definition 9 of the agreement vector sequence should
not cast aside the intuitive definition. The reader should keep in mind that thevectorw⋆(t) is also the
asymptotical consensus if descent terms are zero after timet. Consequently, even if the agreement
vector{w⋆(t)}∞

t=0 is adapted to the filtration{Ft}∞
t=0, the vectorw⋆(t) cannot be accessible for a

user at timet. Nevertheless, the agreement vectorw⋆(t) can be interpreted as a “probabilistic state”
of the whole distributed quantization scheme at timet. This explains why the agreement vector
is a such convenient tool for the analysis of the DALVQ convergence and will be central in our
adaptation of G-lemma, Theorem 10.

Let us remark that Equation (10), writes for allt ≥ 0,

w⋆(t +1) = w⋆(t)+
M

∑
j=1

φ j(t)sj(t)

= w⋆(t)−
M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1H

(
z j

t+1,w
j(t)
)
.

We recall the reader that the[0,1]-valued functionsφ j ’s are defined in Lemma 7.
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Using the functionh defined by identity (2) and the fact that the random variablesw⋆(t) and
w j(t) areFt-measurable then it holds

h(w⋆(t)) = E{H (z,w⋆(t)) | Ft} , t ≥ 0.

and
h(w j(t)) = E

{
H
(
z,w j(t)

)
| Ft
}
, j ∈ {1, . . . ,M} andt ≥ 0.

wherez is a random variable of lawµ independent ofFt .
For all t ≥ 0, set

ε⋆t+1 ,
M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1. (13)

Clearly, the real numbersε⋆t are nonnegative. Their strictly positiveness will be discussed in
Proposition 3.

Set

∆M(1)
t ,

M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1

(
h(w⋆(t))−h(w j(t))

)
, t ≥ 0, (14)

and

∆M(2)
t ,

M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1

(
h(w j(t))−H

(
z j

t+1,w
j(t)
))

, t ≥ 0. (15)

Note thatE
{

∆M(2)
t

}
= 0 and, consequently, that the random variables∆M(2)

t can be seen as the

increments of a martingale with respect to the filtration{Ft}∞
t=0.

Finally, with this notation, equation (10) takes the form

w⋆(t +1) = w⋆(t)− ε⋆t+1h(w⋆(t))+∆M(1)
t +∆M(2)

t , t ≥ 0. (16)

We are now in a position to state our most useful tool, which is similar in spirit to the G-lemma,
but adapted to the context of distributed asynchronous stochastic gradient descent algorithm.

Theorem 10 (Asynchronous G-lemma)Assume that(AsY)1 or (AsY)2 and Assumption 1 hold
and that the following conditions are satisfied:

1. ∑∞
t=0 ε⋆t = ∞ andε⋆t −−→t→∞

0.

2. The sequences{w⋆(t)}∞
t=0 and{h(w⋆(t))}∞

t=0 are bounded a.s.

3. The series∑∞
t=0 ∆M(1)

t and∑∞
t=0 ∆M(2)

t converge a.s. in
(
R

d
)κ

.

4. There exists a lower semi-continuous function G:
(
R

d
)κ −→ [0,∞) such that

∞

∑
t=0

ε⋆t+1G(w⋆(t))< ∞, a.s.

Then, there exists a random connected componentΞ of {G= 0} such that

dist(w⋆(t),Ξ)−−→
t→∞

0, a.s.
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4.3 Trajectory Analysis

The Pag̀es’s proof in Pag̀es (1997) on the almost sure convergence of the CLVQ procedure required
a careful examination of the trajectories of the process{w(t)}∞

t=0. Thus, in this subsection we
investigate similar properties and introduce the assumptions that will be neededto prove our main
convergence result, Theorem 12.

The next Assumption 10 ensures that, for each processor, the quantizers stay in the support of
the density.

Assumption 10 One has

P
{

w j(t) ∈ Gκ}= 1, j ∈ {1, . . . ,M} and t≥ 0.

Firstly, let us mention that since the setGκ is convex, if Assumption 10 holds then

P{w⋆(t) ∈ Gκ}= 1, t ≥ 0.

Secondly, note that the Assumption 10 is not particularly restrictive. This assumption is satisfied
under the condition: for each processor, no descent term is added while a combining computation
is performed. This writes

ai, j(t) = δi, j andτi,i(t) = t, (i, j) ∈ {1, . . . ,M}2 andt ∈ T i .

This requirement makes sense for practical implementations.
Recall that ift /∈ T i , thensi(t) = 0. Thus, Equation (7) takes the form

wi(t +1) =





wi(t +1) = wi(t)− εi
t+1

(
wi(t)−zi

t+1

)

=
(
1− εi

t+1

)
wi(t)+ εi

t+1zi
t+1

if t ∈ T i ;

wi(t +1) = ∑M
j=1ai, j(t)w j(τi, j(t)) otherwise.

SinceGκ is a convex set, it follows easily that ifw j(0) ∈ Gκ, thenw j(t) ∈ Gκ for all j ∈
{1, . . . ,M} andt ≥ 0 and, consequently, that Assumption 10 holds.

The next Lemma 11 provides a deterministic upper bound on the differencesbetween the dis-
tributed versionswi and the agreement vector. For any subsetA of

(
R

d
)κ

, the notation diam(A)
stands for the usual diameter defined by

diam(A) = sup
x,y∈A

{‖x−y‖} .

Lemma 11 Assume(AsY)1 or (AsY)2 holds and that Assumptions 1, 8 and 10 are satisfied then

‖w⋆(t)−wi(t)‖ ≤
√

κM diam(G)AK2θt , i ∈ {1, . . . ,M} and t≥ 0, a.s.,

whereθt , ∑t−1
τ=−1

1
τ∨1ρt−τ, A and ρ are the constants introduced in Lemma 8, K2 is defined in

Assumption 8.

The sequence{θt}∞
t=0 defined in Lemma 11 satisfies

θt −−→
t→∞

0 and
∞

∑
t=0

θt

t
< ∞. (17)
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We give some calculations justifying the statements at the end of the Annex.
Thus, under Assumptions 8 and 10, it follows easily that

w⋆(t)−wi(t)−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

and
wi(t)−w j(t)−−→

t→∞
0, (i, j) ∈ {1, . . . ,M}2, a.s. (18)

This shows that the trajectories of the distributed versions of the quantizersreach asymptotically
a consensus with probability 1. In other words, if one of the sequences

{
wi(t)

}∞
t=0 converges then

they all converge towards the same value. The rest of the paper is devoted to prove that this common
value is in fact a zero of∇C, that is, a critical point.

To prove the result mentioned above, we will need the following assumption, which basically
states that the components ofw⋆ are parted, for every timet but also asymptotically. This assumption
is similar in spirit to the main requirement of Theorem 4.

Assumption 11 One has

1. P{w⋆(t) ∈Dκ
∗ }= 1, t ≥ 0.

2. P
{

liminf t→∞ dist
(
w⋆(t),∁Dκ

∗
)
> 0
}
= 1, t ≥ 0.

4.4 Consistency of the DALVQ

In this subsection we state our main theorem on the consistency of the DALVQ.Its proof is based
on the asynchronous G-lemma, Theorem 10. The goal of the next proposition is to ensure that the
first assumption of Theorem 10 holds.

Proposition 3 Assume(AsY)1 or (AsY)2 holds and that Assumptions 1, 8 and 9 are satisfied then
ε⋆t > 0, t ≥ 0, ε⋆t −−→t→∞

0 and∑∞
t=0 ε⋆t = ∞.

The second condition required in Theorem 10 deals with the convergenceof the two series
defined by Equations (14) and (15). The next Proposition 4 provides sufficient condition for the
almost sure convergence of these series.

Proposition 4 Assume(AsY)1 or (AsY)2 holds and that Assumptions 1, 8, 10 and 11 are satisfied

then the series∑∞
t=0 ∆M(1)

t and∑∞
t=0 ∆M(2)

t converge almost surely in
(
R

d
)κ

.

This next proposition may be considered has the most important step in the proof of the conver-
gence of the DALVQ. It establishes the convergence of a series of the form ∑∞

t=0 εt+1‖∇C(w(t))‖2.
The analysis of the convergence of this type of series is standard for theanalysis of stochastic gra-
dient method (see for instance Benveniste et al. 1990 and Bottou 1991). In our context, we pursue
the fruitful use of the agreement vector sequence,{w⋆(t)}∞

t=0, and its related “steps”,{ε⋆t }∞
t=0.

Note that under Assumption 11, we haveh(w⋆(t)) = ∇C(w⋆(t)) for all t ≥ 0, almost surely,
therefore the sequence{∇C(w⋆(t))}∞

t=0 below is well defined.

Proposition 5 Assume(AsY)1 or (AsY)2 holds and that Assumptions 1, 8, 10 and 11 are satisfied
then
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1. C(w⋆(t))−−→
t→∞

C∞, a.s.,

where C∞ is a [0,∞)-valued random variable,

2.
∞

∑
t=0

ε⋆t+1‖∇C(w⋆(t))‖2 < ∞, a.s. (19)

Remark that from the convergence of the series given by Equation (19)one can only deduce that
liminf t→∞ ‖∇C(w⋆(t))‖= 0.

We are now in a position to state the main theorem of this paper, which expresses the conver-
gence of the distributed version towards some zero of the gradient of the distortion. In addition, the
convergence results (18) imply that if a version converges then all the versions converge towards
this value.

Theorem 12 (Asynchronous theorem)Assume(AsY)1 or (AsY)2 holds and that Assumptions 1,
8, 9, 10 and 11 are satisfied then

1. w∗(t)−wi(t)−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

2. wi(t)−w j(t)−−→
t→∞

0, (i, j) ∈ {1, . . . ,M}2, a.s.,

3. dist(w⋆(t),Ξ∞)−−→
t→∞

0, a.s.,

4. dist
(
wi ,Ξ∞

)
−−→
t→∞

0, i ∈ {1, . . . ,M}, a.s.,

whereΞ∞ is some random connected component of the set{∇C= 0}∩Gκ.

4.5 Annex

Sketch of the proof of asynchronous G-lemma 10.The proof is an adaptation of the one found by
Fort and Pag̀es, Theorem 4 in Fort and Pagès (1996). The recursive equation (16) satisfied by the
sequence{w⋆(t)}∞

t=0 is similar to the iterations (2) in Fort and Pagès (1996), with the notation of
this paper:

Xt+1 = Xt − εt+1h
(
Xt)+ εt+1

(
∆Mt+1+ηt+1) , t ≥ 0.

Thus, similarly, we define a family of continuous time stepwise function{u 7→ w̌(t,u)}∞
t=1.

w̌⋆ (0,u), w⋆(s), if u∈ [ε⋆1+ . . .+ ε⋆s,ε
⋆
1+ . . .+ ε⋆s+1), u∈ [0,∞).

and ifu< ε⋆1, w̌⋆ (0,u) = w⋆(0).

w̌⋆ (t,u), w̌⋆ (0,ε⋆1+ . . .+ ε⋆t +u) , t ≥ 1 andu∈ [0,∞).

Hence, for everyt ∈ N,

w̌⋆(t,u) = w̌⋆(0, t)−
∫ u

0
h(w̌⋆(t,v))dv+Ru(t), u∈ [0,∞),
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where, for everyt ≥ 1 andu∈ [ε⋆1+ . . .+ ε⋆t+t ′ ,ε
⋆
1+ . . .+ ε⋆t+t ′+1),

Ru(t),
∫ ε⋆1+...+ε⋆t +u

ε⋆t +...+ε⋆
t+t′

w̌⋆(0,v)dv+
t+t ′

∑
s=t+1

(
∆M(1)

s +∆M(2)
s

)
.

The only difference between the families of continuous time functions{w̌(t,u)}∞
t=1 and

{
X(t)
}∞

t=1
defined in Fort and Pagès (1996) is the remainder termRu(t). The convergence

sup
u∈[0,T]

‖Ru(t)‖ −−→
t→∞

0, T > 0.

follows easily from the third assumption of Theorem 10. The rest of the proof follows similarly as
in Fort and Pag̀es (1996, Theorem 4).

Proof of Lemma 11For all i ∈ {1, . . . ,M}, and allt ≥ 0, and all 1≤ ℓ≤ κ, we may write

∥∥wi
ℓ(t)−w⋆

ℓ(t)
∥∥

=

∥∥∥∥∥
M

∑
j=1

(
(
φi, j(t,−1)−φ j(−1)

)
w j
ℓ(0)+

t−1

∑
τ=0

(
φi, j(t,τ)−φ j(t)

)
sj
ℓ(τ)

)∥∥∥∥∥

(by Definition 9 and Lemma 7)

≤
M

∑
j=1

∣∣φi, j(t,−1)−φ j(−1)
∣∣
∥∥∥w j

ℓ(0)
∥∥∥+

t−1

∑
τ=0

M

∑
j=1

∣∣φi, j(t,τ)−φ j(t)
∣∣
∥∥∥sj

ℓ(τ)
∥∥∥

≤ Aρt+1
M

∑
j=1

∥∥∥w j
ℓ(0)

∥∥∥+A
t−1

∑
τ=0

M

∑
j=1

ρt−τ
∥∥∥sj

ℓ(τ)
∥∥∥

(by Lemma 8).

Thus,

∥∥wi
ℓ(t)−w⋆

ℓ(t)
∥∥

≤ Aρt+1
M

∑
j=1

∥∥∥w j
ℓ(0)

∥∥∥+A
t−1

∑
τ=0

M

∑
j=1

ρt−τε j
τ+11{τ∈T j}

∥∥∥H(z j
τ+1,w

j(τ))ℓ
∥∥∥

(by Equation (12))

≤ Aρt+1
M

∑
j=1

∥∥∥w j
ℓ(0)

∥∥∥

+A
t−1

∑
τ=0

M

∑
j=1

ρt−τε j
τ+11τ∈T j1{z j

τ+1∈Wℓ(w j (τ))}
∥∥∥w j

ℓ(τ)−z j
τ+1

∥∥∥ .
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Therefore,
∥∥wi

ℓ(t)−w⋆
ℓ(t)
∥∥

≤ AMdiam(G)ρt+1+Adiam(G)K2M
t−1

∑
τ=0

1
τ∨1

ρt−τ

(because 0∈ G and by Assumptions 8 and 10)

≤ Adiam(G)K2M
t−1

∑
τ=−1

1
τ∨1

ρt−τ.

Consequently,
∥∥w⋆(t)−wi(t)

∥∥

=

√
κ

∑
ℓ=1

∥∥wi
ℓ(t)−w⋆

ℓ(t)
∥∥2

≤
√

κM diam(G)AK2

t−1

∑
τ=−1

1
τ∨1

ρt−τ.

This proves the desired result.

Let us now introduce the following events: for anyδ > 0 andt ≥ 0,

At
δ ,

{
w⋆(τ) ∈ Gκ

δ , t ≥ τ ≥ 0
}
.

Recall that theGκ
δ is a compact subset ofGκ defined by Equality (4). The next lemma establishes

a detailed analysis of security regions for the parted components of the sequences{w⋆(t)}∞
t=0 and{

w j(t)
}∞

t=0.

Lemma 13 Let Assumptions 8 and 10 hold. Then,

1. there exists an integer t1
δ ≥ 1 such that

At
δ ⊂ At+1

δ/2, t ≥ t1
δ .

Moreover,
w⋆(t) ∈ Gκ

δ ⇒ [w⋆(t),w⋆(t +1)]⊂ Gκ
δ/2, t ≥ t1

δ .

2. There exists an integer t2
δ ≥ 1 such that

w⋆(t) ∈ Gκ
δ ⇒ [w⋆(t),wi(t)]⊂ Gκ

δ/2, i ∈ {1, . . . ,M} and t≥ t2
δ .

Proof of Lemma 13Proof of statement 1.The proof starts with the observation that under Assump-
tion 10 we havew j(t) ∈ Gκ, for all i ∈ {1, . . . ,M} andt ≥ 0. It follows that, for any 1≤ ℓ≤ κ,

∥∥∥H
(

z j
t+1,w

j(t)
)
ℓ

∥∥∥≤
∥∥∥z j

t+1−w j
ℓ(t)
∥∥∥

≤ diam(G).

3454



CONVERGENCE OFDISTRIBUTED ASYNCHRONOUSLEARNING VECTORQUANTIZATION ALGORITHMS

Let us now provide an upper bound on the norm of the differences between two consecutive
values of the agreement vector sequence. We may write, for allt ≥ 0 and all 1≤ ℓ≤ M,

‖w⋆
ℓ(t +1)−w⋆

ℓ(t)‖

=

∥∥∥∥∥
M

∑
j=1

φ j(t)sj
ℓ(t)

∥∥∥∥∥

≤
M

∑
j=1

φ j(t)
∥∥∥sj

ℓ(t)
∥∥∥

≤
M

∑
j=1

ε j
t+11{t∈T j}

∥∥∥H
(

z j
t+1,w

j(t)
)
ℓ

∥∥∥

(by Equation (12) and statement 1. of Lemma 8)

≤ M diam(G)K2

t ∨1
(20)

(by Assumption 8).

Taket ≥ 4
δM diam(G)K2 and 1≤ k 6= ℓ≤ M. Let α be a real number in the interval[0,1].

If w⋆(t) ∈ Gκ
δ then

‖(1−α)w⋆
ℓ(t)+αw⋆

ℓ(t +1)− (1−α)w⋆
k(t)−αw⋆

k(t +1)‖
= ‖w⋆

ℓ(t)−w⋆
k(t)+α(w⋆

ℓ(t +1)−w⋆
ℓ(t))+α(w⋆

k(t)−w⋆
k(t +1))‖

≥ ‖w⋆
ℓ(t)−w⋆

k(t)‖−‖α(w⋆
ℓ(t +1)−w⋆

ℓ(t))+α(w⋆
k(t)−w⋆

k(t +1))‖
≥ ‖w⋆

ℓ(t)−w⋆
k(t)‖−α‖w⋆

ℓ(t +1)−w⋆
ℓ(t)‖−α‖w⋆

k(t)−w⋆
k(t +1)‖

≥ δ−2α
δ
4

≥ δ/2.

This proves that the whole segment[w⋆(t),w⋆(t +1)] is contained inGκ
δ/2.

Proof of statement 2.Taket ≥ 1 and 1≤ ℓ≤ M. If w⋆(t) ∈ Gκ
δ then by Lemma 11, there exists

t2
δ such that

∥∥w⋆
ℓ(t)−wi

ℓ(t)
∥∥≤ δ

4
, i ∈ {1, . . . ,M} andt ≥ t2

δ .

Let k andℓ two distinct integers between 1 andM. For anyt ≥ t2
δ ,

∥∥αwi
k(t)+(1−α)w⋆

k(t)−αwi
ℓ(t)− (1−α)w⋆

ℓ(t)
∥∥

=
∥∥w⋆

k(t)−w⋆
ℓ(t)+α(wi

k(t)−w⋆
k(t))+α(w⋆

ℓ(t)−wi
ℓ(t))

∥∥

≥ ‖w⋆
k(t)−w⋆

ℓ(t)‖−α
∥∥wi

k(t)−w⋆
k(t)
∥∥−α

∥∥w⋆
ℓ(t)−wi

ℓ(t)
∥∥

≥ δ−2α
δ
4

≥ δ/2.

This implies[w⋆(t),wi(t)]⊂ Gκ
δ/2, as desired.
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Proof of Proposition 3By definitionε⋆t+1 equals∑M
j=11{t∈T j}φ j(t)ε j

t+1, for all t ≥ 0 .
On the one hand, since the real numberφ j(t) belongs to the interval[η,1] (by Lemma 8)ε⋆t+1 is

bounded from above byMK2
t∨1 using the right-hand side inequality of Assumption 8.

On the other hand,ε⋆t+1 is bounded from below by the nonnegative real numberη K1
t∨1 using the

left-hand side inequality of Assumption 8. Note also that as Assumption 9 holds,this real number
is a positive one. Therefore, it follows that

ε⋆t −−→t→∞
0

and
∞

∑
t=0

ε⋆t = ∞.

Proof of Proposition 4 Consistency of∑∞
t=0 ∆M(1)

t . Let δ be a positive real number and lett ≥ t2
δ ,

wheret2
δ is given by Lemma 19. We may write

1At
δ

M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1

∥∥h(w⋆(t))−h
(
w j(t)

)∥∥

≤ 1{
[w⋆(t),w j (t)]⊂Gκ

δ/2

}
M

∑
j=1

φ j(t)ε j
t+1

∥∥∇C(w⋆(t))−∇C
(
w j(t)

)∥∥

(using statement 2. of Lemma 13 and the fact that∇C= h onDκ
∗ )

≤ 1{
[w⋆(t),w j (t)]⊂Gκ

δ/2

}Pδ/2

M

∑
j=1

ε j
t+1

∥∥w⋆(t)−w j(t)
∥∥

(by Lemma 2)

≤
√

κdiam(G)AK2
2Pδ/2M2 θt

t
(by Lemma 11).

Thus, since∑∞
t=0

θt
t < ∞, the series

∞

∑
t=0

1At
δ

M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1

∥∥h(w⋆(t))−h
(
w j(t)

)∥∥

is almost surely convergent. Under Assumption 11, we have

P

{⋃
δ>0

⋂
t≥0

At
δ

}
= 1.

It follows that the series∑∞
t=0 ∆M(1)

t converges almost surely in
(
R

d
)κ

.
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Consistency of∑∞
t=0 ∆M(2)

t . The sequence of random variablesM(2)
t defined, for allt ≥ 0, by

M(2)
t ,

t

∑
τ=0

∆M(2)
τ

=
t

∑
τ=0

M

∑
j=1

1{τ∈T j}ε j
τ+1φ j(τ)

(
h
(
w j(τ)

)
−H

(
z j

τ+1,w
j(τ)
))

.

is a vector valued martingale with respect to the filtration{Ft}∞
t=0. It turns out that this martin-

gale has square integrable increments. Precisely,

∞

∑
t=0

E

{∥∥∥M(2)
t+1−M(2)

t

∥∥∥
2 ∣∣∣ Ft

}
=

∞

∑
t=1

E

{∥∥∥∆M(2)
t

∥∥∥
2 ∣∣∣ Ft

}
< ∞.

Indeed, for allj ∈ {1, . . . ,M} andt ≥ 1,

t

∑
τ=1

E

{∥∥∥1{τ∈T j}ε j
τ+1

(
h
(
w j(τ)

)
−H

(
z j

τ+1(τ),w
j(τ)
))∥∥∥

2 ∣∣ Fτ

}

≤
t

∑
τ=1

(
ε j

τ+1

)2
E

{∥∥∥h
(
w j(τ)

)
−H

(
z j

τ+1(τ),w
j(τ)
)∥∥∥

2 ∣∣ Fτ

}

≤ 2
t

∑
τ=1

(
ε j

τ+1

)2
E

{∥∥h
(
w j(τ)

)∥∥2
+
∥∥∥H
(

z j
τ+1(τ),w

j(τ)
)∥∥∥

2 ∣∣ Fτ

}

≤ 4κdiam(G)2
t

∑
τ=1

(
ε j

τ+1

)2

(using Assumption 10)

≤ 4κdiam(G)2K2
2

t

∑
τ=1

1
τ2 .

We conclude that the series∑t≥1 ∆M(2)
t is almost surely convergent.

Proof of Proposition 5 Denote by〈x,y〉 the canonical inner product of two vectorsx,y ∈ R
d and

also, with a slight abuse of notation, the canonical inner product of two vectorsx,y∈
(
R

d
)κ

. Let δ
be a positive real number. Take anyt ≥ max

{
t1
δ , t

2
δ
}

, wheret1
δ andt2

δ are defined as in Lemma 13.
One has,

1At+1
δ

C(w⋆(t +1))≤ 1At
δ
C(w⋆(t +1)) .

(by definitionAt+1
δ ⊂ At

δ)
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Consequently,

1At+1
δ

C(w⋆(t +1))

≤ 1At
δ
C(w⋆(t))+1At

δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

+1{
[w⋆(t),w⋆(t+1)]⊂Gκ

δ/2

}

×
[

sup
z∈[w⋆(t),w⋆(t+1)]

{‖∇C(z)−∇C(w⋆(t))‖}‖w⋆(t +1)−w⋆(t)‖
]

≤ 1At
δ
C(w⋆(t))+1At

δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

+Pδ/2‖w⋆(t +1)−w⋆(t)‖2

(using Lemma 2.)

The first inequality above holds since the bounded increment formula above is valid by statement 1
of Lemma 13. Let us now bound separately the right hand side members of thesecond inequality.

Firstly, the next inequality holds by Inequality (20) provided in the proof ofLemma 13,

Pδ/2‖w⋆(t +1)−w⋆(t)‖2 ≤ κPδ/2

(
K2M diam(G)

t

)2

.

Secondly,

1At
δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

= 1At
δ
〈∇C(w⋆(t)),

M

∑
j=1

φ j(t)sj(t)〉

(by Equation (10))

= 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+1At
δ

M

∑
j=1

〈∇C(w⋆(t))−∇C(w j(t)),φ j(t)sj(t)〉.

3458



CONVERGENCE OFDISTRIBUTED ASYNCHRONOUSLEARNING VECTORQUANTIZATION ALGORITHMS

Thus,

1At
δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

≤ 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+1At
δ

M

∑
j=1

∣∣〈∇C(w⋆(t))−∇C(w j(t)),φ j(t)sj(t)〉
∣∣

≤ 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+
M

∑
j=1

1At
δ

∥∥∇C(w⋆(t))−∇C(w j(t))
∥∥∥∥φ j(t)sj(t)

∥∥

(using Cauchy-Schwarz inequality).

Therefore,

1At
δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

≤ 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+
M

∑
j=1

1{
[w⋆(t),w j (t)]⊂Gκ

δ/2

}∥∥∇C(w⋆(t))−∇C(w j(t))
∥∥∥∥φ j(t)sj(t)

∥∥

(by statement 2 of Lemma 13)

≤ 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+Pδ/2

M

∑
j=1

∥∥w⋆(t)−w j(t)
∥∥∥∥φ j(t)sj(t)

∥∥

(using Lemma 2)

1At
δ
〈∇C(w⋆(t)),w⋆(t +1)−w⋆(t)〉

≤ 1At
δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+Pδ/2AK2
2κM2diam(G)2θt

t
(using Lemma 11 and the upper bound (20)).
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Finally,

1At+1
δ

C(w⋆(t +1))

≤ 1At
δ
C(w⋆(t))+1At

δ

M

∑
j=1

〈∇C(w j(t)),φ j(t)sj(t)〉

+Pδ/2AK2
2κM2diam(G)2θt

t

+κPδ/2

(
K2M diam(G)

t

)2

. (21)

Set

Ω1
δ , Pδ/2AK2

2κM2diam(G)2

and

Ω2
δ , κPδ/2(K2M diam(G))2 .

In the sequel, we shall need the following lemma.

Lemma 14 For all t ≥ max
{

t1
δ , t

2
δ
}

, the quantity Wt below is a nonnegative supermartingale with
respect to the filtration{Ft}∞

t=0:

Wt , 1At
δ
C(w⋆(t))+ηK1

t−1

∑
τ=0

1Aτ
δ

1
τ

M

∑
j=1

1{τ∈T j}
∥∥∇C

(
w j(τ)

)∥∥2

+Ω1
δ

∞

∑
τ=t

θ(τ)
τ

+Ω2
δ

∞

∑
τ=t

1
τ2 , t ≥ 1.
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Proof of Lemma 14Indeed, using the upper bound provided by Equation (21),

E

{
1At+1

δ
C(w⋆(t +1))

∣∣∣ Ft

}

≤ 1At
δ
C(w⋆(t))+1At

δ

M

∑
j=1

E
{
〈∇C(w j(t)),φ j(t)sj(t)〉

∣∣ Ft
}

+Ω1
δ
1
t

θt +Ω2
δ

1
t2

= 1At
δ
C(w⋆(t))

+1At
δ

M

∑
j=1

〈
∇C(w j(t)),E

{
−1{t∈T j}φ j(t)ε j

t+1H(z j
t+1,w

j(t))〉
∣∣∣ Ft

}〉

+Ω1
δ

θt

t
+Ω2

δ
1
t2

= 1At
δ
C(w⋆(t))

−1At
δ

M

∑
j=1

1{t∈T j}φ j(t)ε j
t+1

∥∥∇C(w j(t))
∥∥2

+Ω1
δ

θt

t
+Ω2

δ
1
t2

≤ 1At
δ
C(w⋆(t))

− ηK1

t
1At

δ

M

∑
j=1

1{t∈T j}
∥∥∇C(w j(t))

∥∥2
+Ω1

δ
θt

t
+Ω2

δ
1
t2 .

In the last inequality we used the fact thatφ j(t)≥ η (Lemma 8) andε j
t+1 ≥ K1

t (Assumption 8).
It is straightforward to verify that, we haveWt −E{Wt+1|Ft} ≥ 0 which prove the desired result.

Proof of Proposition 5 (continued)Since{Wt}∞
t=1 is a nonnegative supermartingale (by Lemma

14),Wt converges almost surely ast → ∞ (see for instance Durrett 1990). Then, as∑∞
τ=t

θ(τ)
τ −−→

t→∞
0

and∑∞
τ=t

1
τ2 −−→

t→∞
0, we have

1At
δ
C(w⋆(t))−−→

t→∞
C∞, a.s., (22)

whereC∞ ∈ [0,∞) and, because the origin of the expression is increasing int, the following series
converges

∞

∑
τ=0

1Aτ
δ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C

(
w j(τ)

)∥∥2
< ∞, a.s. (23)

Proof of statement 1.Assumption 11 means that

P

{⋃
δ>0

⋂
t≥0

At
δ

}
= 1.

Statement 1 follows easily from the convergence (22).
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Proof of statement 2.The required convergence (19) is proven as follows. We have
t

∑
τ=0

ε⋆τ+11Aτ
δ
‖∇C(w⋆(τ))‖2

≤
t

∑
τ=0

M

∑
j=1

φ j(τ)1{τ∈T j}1Aτ
δ
ε j

τ+1‖∇C(w⋆(τ))‖2

(using Equality (13))

≤ 2K2

t

∑
τ=0

1Aτ
δ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C

(
w j(τ)

)∥∥2

(using Assumption 9)

+2K2

t

∑
τ=0

1{
[w⋆(τ),w j (τ)]⊂Gκ

δ/2

} 1
τ∨1

M

∑
j=1

∥∥∇C
(
w j(τ)

)
−∇C(w⋆(τ))

∥∥2

(using Assumption 9 and statement 2 of Lemma 13.)

Thus,
t

∑
τ=0

ε⋆τ+11Aτ
δ
‖∇C(w⋆(τ))‖2

≤ 2K2

t

∑
τ=0

1Aτ
δ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C

(
w j(τ)

)∥∥2

+2K2P2
δ/2

t

∑
τ=0

1{
[w⋆(τ),w j (τ)]⊂Gκ

δ/2

} 1
τ∨1

M

∑
j=1

∥∥w j(τ)−w⋆(τ)
∥∥2

(by Lemma 2).

Thus,
t

∑
τ=0

ε⋆τ+11Aτ
δ
‖∇C(w⋆(τ))‖2

≤ 2K2

t

∑
τ=0

1Aτ
δ

1
τ∨1

M

∑
j=1

1{τ∈T j}
∥∥∇C

(
w j(τ)

)∥∥2

+2P2
δ/2K3

2κM3A2diam(G)2
t

∑
τ=1

1
τ∨1

θ2
τ

(by Lemma 11).

Finally, using the convergence (23), one has
∞

∑
τ=0

ε⋆τ+11Aτ
δ
‖∇C(w⋆(τ))‖2 < ∞, a.s.,

and the conclusion follows from the fact that Assumption 11 implies

P

{⋃
δ>0

⋂
t≥0

At
δ

}
= 1.
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Proof of Theorem 12 The proof consists in verifying the assumptions of Theorem 10 with the
functionĜ defined by Equation (5).

It has been outlined that Assumption 10 implies thatw⋆(t) lie in the compact setGκ, almost
surely, for allt ≥ 0. Consequently, in the definition of̂G(w⋆) the liminf symbol can be omitted. For
all z∈G and allt ≥ 0, we have‖H(z,w⋆(t))‖≤

√
κdiam(G), almost surely, whereas{h(w⋆(t))}∞

t=0
satisfies

h(w⋆(t)) = E{H (z,w⋆(t)) | Ft} , t ≥ 0, a.s.

Thus, the sequences{w⋆(t)}∞
t=0 and{h(w⋆(t))}∞

t=0 are bounded almost surely.
Proposition 3, respectively Proposition 4, respectively Proposition 5 show that the first assump-

tion, respectively the third assumption, respectively the fourth assumption of Theorem 10 hold. This
concludes the proof of the theorem.

Justification of the statements (17).Recall that the definition ofθ is provided in Lemma 11. Let
us remark that it is sufficient to analyse the behavior int of the quantity∑t−1

τ=1 ρt−τ/τ. Let ε > 0 then
for all t ≥ ⌊1/ε⌋+1, we have

t−1

∑
τ=1

ρt−τ

τ

=
⌊1/ε⌋

∑
τ=1

ρt−τ

τ
+

t−1

∑
τ=⌊1/ε⌋+1

ρt−τ

τ

≤
⌊1/ε⌋

∑
τ=1

ρt−τ + ε
t−1

∑
τ=⌊1/ε⌋+1

ρt−τ

≤ ρt−⌊1/ε⌋

1−ρ
+

ε
1−ρ

(using the fact thatρ ∈ (0,1)).

Consequently, fort sufficiently large we have

t−1

∑
τ=1

ρt−τ

τ
≤ 2ε

1−ρ

which proves the first claim.
The second claim follows the same technique by letting “ε = 1/

√
t”.

Thus, fort ≥ 1 we have

θt ≤
ρt−⌊

√
t⌋−1

1−ρ
+

1/
√

t
1−ρ

.

Finally, for T ≥ 1, it holds

T

∑
t=1

t−1

∑
τ=1

ρt−τ

τ
≤ 1

1−ρ

(
T

∑
t=1

ρn−⌊√n⌋−1+
T

∑
t=1

1

n3/2

)
.

The two partial sums in the above parenthesis have finite limits which prove the second statement.
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A. Antos, L. Gÿorfi, and A. Gÿorgy. Individual convergence rates in empirical vector quantizer
design.IEEE Transactions on Information Theory, 51(11):4013–4022, 2005.

P. L. Bartlett, T. Linder, and G. Lugosi. The minimax distortion redundancy inempirical quantizer
design.IEEE Transactions on Information Theory, 44(5):1802–1813, 1998.
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