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Abstract
A logistic stick-breaking process (LSBP) is proposed for non-parametric clustering of general
spatially- or temporally-dependent data, imposing the belief that proximate data are more likely
to be clustered together. The sticks in the LSBP are realizedvia multiple logistic regression func-
tions, with shrinkage priors employed to favor contiguous and spatially localized segments. The
LSBP is also extended for the simultaneous processing of multiple data sets, yielding a hierarchical
logistic stick-breaking process (H-LSBP). The model parameters (atoms) within the H-LSBP are
shared across the multiple learning tasks. Efficient variational Bayesian inference is derived, and
comparisons are made to related techniques in the literature. Experimental analysis is performed for
audio waveforms and images, and it is demonstrated that for segmentation applications the LSBP
yields generally homogeneous segments with sharp boundaries.
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1. Introduction

One is often interested in clustering data that have associated spatial or temporal coordinates. This
problem is relevant in a diverse set of applications, such as climatology, ecology, environmental
health, real estate marketing, and image analysis (Banerjee et al., 2003). The available spatial or
temporal information may be exploited to help infer patterns, clusters or segments in the data. To
simplify the exposition, in the following discussion we focus on exploitingspatial information,
although when presenting results we also considertemporaldata (Fox et al., 2008).

There have been numerous techniques developed to cluster data, although most of these do
not explicitly exploit appended spatial information. One class of state-of-the-art methods employs
graphical techniques, such as normalized cuts (Shi and Malik, 2000; Felzenszwalb and Hutten-
locher, 2004) and extensions (Zabih and Kolmogorov, 2004). These approaches regard the two-
dimensional (2D) data as an undirected weighted graph, and the segmentation is equivalent to find-
ing the minimum cut of the graph, minimizing the between-group disassociation whilemaximizing
the within-group association (Shi and Malik, 2000). Such graph-theoretic methods have attractive
computational speed, but do not provide a statistical inference (measureof confidence), and of-
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ten one must pre-define the total number of segments/clusters. Further, such graphical techniques
are not readily extended to the joint analysis of multiple spatially dependent data sets, with this of
interest for the simultaneous analysis of multiple images.

To consider clustering in a nonparametric Bayesian manner, the Dirichlet process (DP) (Black-
well and MacQueen, 1973) has been employed widely (Antoniak, 1974; Escobar and West, 1995;
Rasmussen, 2000; Beal et al., 2002). Assume we are givenN data points,{yn}

N
n=1, with yn repre-

senting a feature vector; each feature vector is assumed drawn from a parametric distributionF(θn).
For eachyn, the DP mixture model is represented as

yn|θn ∼ F(θn), θn|G
iid
∼ G, G|α0,G0 ∼ DP(α0G0),

whereα0 is a non-negative precision parameter andG0 is the base probability measure. Sethuraman
(1994) developed an explicit method for constructing a drawG from a DP:

G=
∞

∑
k=1

πkδθ∗
k
, πk =Vk

k−1

∏
k′=1

(1−Vk′), Vk
iid
∼ Beta(1,α0), θ∗

k
iid
∼ G0. (1)

The precision parameterα0 controls the number of sticks that have appreciable weights, with these
weights defining the probability that differentθn share the same “atoms”θ∗

k. Sinceα0 plays an
important role in defining the number of significant stick weightsπk, we typically place a gamma
prior onα0 to allow the data to inform about its value.

The assumption within the DP that the data are exchangeable is generally inappropriate when
one wishes to impose knowledge of spatial information (in which eachyn has an associated spatial
location). For example, the data may be represented as{yn,sn}

N
n=1, in whichyn is again the feature

vector andsn represents the spatial location ofyn. Provided with such spatial information, one may
wish to explicitly impose the belief that proximate data are more likely to be clustered together.

The spatial locationsn may be readily considered as anappendedfeature, and the modified fea-
ture vectors (data) may then be analyzed via traditional clustering algorithms,like those discussed
above. For example, the spatial coordinate has been considered explicitlyin recent topic models
(Cao and Li, 2007; Wang and Grimson, 2007; Gomes et al., 2008) when applied in image analysis.
These previous studies seek to cluster visual words, with such clusteringencouraged if the features
are spatially proximate. However, these methods may produce spurious clusters that are introduced
to better characterize the spatial data likelihood instead of the likelihood of the features condition-
ally on spatial location (Park and Dunson, 2009). In addition, such approaches require a model
for the spatial locations, which is not statistically coherent as these locationsare typically fixed by
design, and there may be additional computational burden for this extra component.

To address these challenges, and impose spatial information more explicitly, researchers have
recently modified the DP construction to manifest spatial-location dependent stick weights. The
work of Duan et al. (2007) recently introduced a framework in terms of a hierarchy of Gaussian
processes, in which the spatially dependent construction is obtained by thresholdingK latent Gaus-
sian processes (GPs); while this is a powerful construction, the use of GPs presents computational
challenges (Sudderth and Jordan, 2008). To simplify the model structure, the Dirichlet labeling
process (Petrone et al., 2009) has been proposed, in which one thresholds only one latent Gaus-
sian process to regulate spatial dependence. However, the model inference, performed with Markov
chain Monte Carlo (MCMC), is inefficient for many large-scale applications.Similar issues are also
true for work that has combined the Dirichlet process with a Markov random field (MRF) constraint
(Orbanz and Buhmann, 2008).
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As an alternative to the above approaches, a kernel stick-breaking process (KSBP) has been
proposed (Dunson and Park, 2007), imposing that clustering is more probable if two feature vectors
are close in a prescribed (general) space, which may be associated explicitly with spatial position for
image processing applications (An et al., 2008). With the KSBP, rather than assuming exchangeable
data, theG in (1) becomes a function of spatial location:

Gs =
∞

∑
k=1

πk(s;Vk,Γk,ψ)δθ∗
k
,

πk(s;Vk,Γk,ψ) =VkK(s,Γk;ψ)
k−1

∏
k′=1

[

1−Vk′K(s,Γk′ ;ψ)
]

,

Vk ∼ Beta(1,α0), θ∗
k ∼ G0, Γk ∼ H0,

(2)

whereK(s,Γk;ψ) represents a kernel distance between the feature-vector spatial coordinates and a
local basis locationΓk associated with thekth stick. As demonstrated when presenting results, the
KSBP generally does not yield smooth segments with sharp boundaries.

Instead of thresholdingK latent Gaussian processes (Duan et al., 2007) to assign a feature vector
to a particular parameter, we introduce a novel non-parametric spatially dependent prior, called the
logistic stick-breaking process (LSBP), to impose that it is probable that proximate feature vectors
are assigned to the same parameter. The new model is constructed based ona hierarchy of spa-
tial logistic regressions, with sparseness-promoting priors on the regression coefficients. With this
relatively simple model form, inference is performed efficiently with variational Bayesian analysis
(Beal, 2003), allowing consideration of large-scale problems. Further,for reasons discussed below,
this model favors contiguous segments with sharp boundaries, of interestin many applications. The
model developed in the paper (Chung and Dunson, 2009), based on aprobit stick-breaking process,
is most closely related to the proposed framework; the relationships betweenLSBP and the model
(Chung and Dunson, 2009) are discussed in detail below.

In addition to exploiting spatial information when performing clustering, there has also been
recent research on the simultaneous analysis ofmultiple tasks. This is motivated by the idea that
multiple related tasks are likely to share the same or similar attributes (Caruana, 1997; An et al.,
2008; Pantofaru et al., 2008). Exploiting the information contained in multiple datasets (“tasks”),
model-parameter estimation may be improved (Teh et al., 2005; Pantofaru et al.,2008; Sudderth and
Jordan, 2008). Therefore, it is desirable to employ multi-task learning when processing multiple
spatially-dependent data (e.g., images), this representing a second focus of this paper.

Motivated by previous multi-task research (Teh et al., 2005; An et al., 2008), we consider the
problem of simultaneously processing multiple spatially-dependent data sets.A separate LSBP
prior is employed for each of the tasks, and all LSBPs share the same basemeasure, which is
drawn from a DP. Hence, a “library” of model parameters—atoms—is shared across all tasks. This
construction is related to the hierarchical Dirichlet process (HDP) (Teh et al., 2005), and is referred
to here as a hierarchical logistic stick-breaking process (H-LSBP).

We present example results on two distinct problem classes, underscoring the general utility of
the proposed approach. In the first example we consider segmentation ofmulti-person spoken audio
data. In the second application we employ the H-LSBP to simultaneously segmentmultiple images.
In addition to inferring a segmentation of each image, the framework allows sorting and searching
among the images.

205



REN, DU, CARIN AND DUNSON

The remainder of the paper is organized as follows. In Section 2 we introduce the logistic stick-
breaking process (LSBP) and discuss its connections with other models. We extend the model to the
hierarchical LSBP (H-LSBP) in Section 3. For both the LSBP and H-LSBP, inference is performed
via variational Bayesian analysis, as discussed in Section 4. Experimentalresults are presented in
Section 5, with conclusions and future work discussed in Section 6.

2. Logistic Stick-breaking Process (LSBP)

We first consider spatially constrained clustering for a single data set (task). AssumeN sample
points{Dn}n=1,N, whereDn = (yn,sn), with yn representing thenth feature vector andsn its as-
sociated spatial location. We draw a set of candidate model parameters, and the probability that
a particular space-dependent data sample employs a particular model parameter is defined by a
spatially-dependent stick-breaking process, represented by a kernel-based logistic-regression.

2.1 Model Specifications

Assume an infinite set of model parameters{θ∗
k}

∞
k=1. Each observationyn is drawn from a para-

metric distributionF(θn), with θn ∈ {θ∗
k}

∞
k=1. To indicate which parameter in{θ∗

k}
∞
k=1 is associated

with the nth sample, a set of indicator variablesZn = {zn1,zn2, . . . ,zn∞} are introduced for each
Dn, and all the indicator variables are equal to zero or one. GivenZn, dataDn is associated with
parameterθ∗

k if znk = 1 andznk̂ = 0 for k̂< k.
TheZn are drawn from a spatially dependent density function, encouraging that proximateDn

will have similarZn, thereby encouraging spatial contiguity. This may be viewed in terms of a
spatially dependent stick-breaking process. Specifically, letpk(sn) define the probability thatznk =
1, with 1− pk(sn) representing the probability thatznk = 0; the spatial dependence of these density
functions is made explicit viasn. The probability that thekth parameter is selected in the above
model isπk(sn) = pk(sn)∏k−1

k̂=1
[1− pk̂(sn)], which is of the same form as a stick-breaking process

(Ishwaran and James, 2001) but extends to a spatially dependent mixturemodel, represented as

Gsn =
∞

∑
k=1

πk(sn)δθ∗
k
, πk(sn) = pk(sn)

k−1

∏̂
k=1

[1− pk̂(sn)].

Here eachpk(sn) is defined in terms of a logistic link function (other link functions may also be
employed, such as a probit). Specifically, we considerNc discrete spatial locations{ŝi}

Nc
i=1 within

the domain of the data (e.g., the locations of the samples inDn). To allow the weights of the different
mixture components to vary flexibly with spatial location, we propose a kernellogistic regression
for each break of the stick, with

log

(

pk(sn)

1− pk(sn)

)

= gk(sn) =
Nc

∑
i=1

wkiK(sn, ŝi ;ψk)+wk0, (3)

wheregk(sn) is the linear predictor in the logistic regression model for thekth break and position
sn, and

K(sn, ŝi ;ψk) = exp
[

−
‖sn− ŝi‖

2

ψk

]

is a Gaussian kernel measuring closeness of locationssn andŝi , as in a radial basis function model
(alternative kernel functions may be defined). The kernel basis coefficients are represented asWk =
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[wk0,wk1, . . . ,wkNc]
′. A sparseness-promoting prior is chosen for the components ofWk, such that

only a relatively small set ofwki will have non-zero (or significant) amplitudes; those spatial regions
for which the associated amplitudes are non-zero correspond to regionsfor which a particular model
parameter is expected to dominate in the segmentation (this is similar to the KSBP in (2),which
also has spatially localized kernels). The indicator variables controlling allocation to components
are then drawn from

znk ∼ Bernoulli[σ
(

gk(sn)
)

],

whereσ(g) = 1/[1+exp(−g)] is the inverse of the logit link in (3).
There are many ways that such sparseness promotion may be constituted, and we have consid-

ered two. As one choice, one may employ a hierarchical Student-t prior asapplied in the relevance
vector machine (Tipping, 2001; Bishop and Tipping, 2000; Bishop and Svenśen, 2003):

wki ∼ N(wki|0,λ−1
ki )Gamma(λki|a0,b0),

where shrinkage is encouraged witha0 = b0 = 10−6 (Tipping, 2001). Alternatively, one may con-
sider a “spike-and-slab” prior (Ishwaran and Rao, 2005). Specifically,

wki ∼ νkN (0,λ−1
k )+(1−νk)δ0, νk ∼ Beta(νk|c0,d0).

The expressionδ0 represents a unit point measure concentrated at zero. The parameters(c0,d0)
are set such thatνk is encouraged to be close to zero (or we simply fixνk = c0

c0+d0
), enforcing

sparseness inwk; the parameterλk is again drawn from a gamma prior, with hyperparameters set to
allow a possibly large range in the non-zero values ofwki, and therefore these arenot set as in the
Student-t representation. The advantage of the latter model is that it explicitlyimposes that many of
the components ofwk are exactly zero, while the Student-t construction imposes that many of the
coefficients are close to zero. In our numerical experiments on waveform and image segmentation,
we have employed the Student-t construction.

Note that parameterθ∗
k is associated with ans-dependent functiongk(s), and there areK −1

such functions. The model is constructed such that within a contiguous spatial/temporal region, a
particular parameterθ∗

k is selected, with these model parameters used to generate the observed data.
There are two key components of the LSBP construction: (i) sparseness promotion on thewki,

and (ii ) the use of a logistic link function to define space-dependent stick weights.As discussed fur-
ther in Section 2.2, these concepts are motivated by the idea of making a particular space-dependent
LSBP stick weightπk(s) = σ(gk(s))∏k′<k[1−g′k(s)] near one within a localized region in space
(motivating the sparseness prior on the weights), while also yielding contiguous segments with
sharp boundaries (manifested via the logistic).

It is desirable to allow flexibility in the kernel parameterψ, as this will influence the size of
segments that are encouraged (discussed further below). Hence, for eachk we draw

ψk = ψ∗
rk
, rk ∼ Mult(1/τ, . . . ,1/τ),

with Ψ
∗ = {ψ∗

j}
τ
j=1 a library of possible kernel-size parameters;rk is an index for the one non-zero

component of asingledraw from Mult(1/τ, . . . ,1/τ). We employ a discrete dictionary of kernel
sizesΨ∗ because there is not a conjugate prior for imposition of a continuous distribution of kernel
parameters (this is discussed further in Section 4). A draw from this hierarchical prior is denoted
concisely asGs∼ LSBP(H,a0,b0,Ψ

∗), where it is assumed that we are using the Student-t prior for
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weights{wk}k=1,K−1, with a similar representation used for a spike-and-slab prior; note thatGs is
defined simultaneously forall spatial locations. The model parameters{θ∗

k}
∞
k=1 are assumed drawn

from the measureH.
In practice we usually truncate the LSBP toK sticks, as in a truncated stick-breaking process

(Ishwaran and James, 2001). With a truncation levelK specified, ifznk = 0 for all k= 1, . . . ,K −1,
thenznK = 1 so thatθn = θ∗

K . The VB analysis yields an approximation to the marginal likelihood
of the observed data, which can be used to evaluate the effect ofK on the model performance. When
presenting results we consider simply settingK to a large value, and also test the model performance
with K initialized to different values.

Figure 1 shows the graphical form of the model (using a Student-t sparseness prior), in which
Ψ

∗ represents the discrete set of kernel-width candidates,ψk is the kernel width selected for the
kth stick, and the priorH takes on different forms depending upon the application. In Figure 1 the
1/τ emphasizes that the candidate kernel widths are selected with uniform probability over theτ
candidates inΨ∗.

sns

nkz

0a

k

kWk

0a

b

H

*

kny

0b

Figure 1: Graphical representation of the LSBP.

2.2 Discussion of LSBP Properties and Relationship to Other Models

The proposed model is motivated by the work (Sudderth and Jordan, 2008), in which multiple
draws from a Gaussian process (GP) are employed. Candidate model parameters are associated with
each GP draw, and the GP draws serve to constitute a nonparametric gating network, associating
particular model parameters with a given spatial position. In the model (Sudderth and Jordan,
2008) the spatial correlation associated with the GP draws induces spatially contiguous segments (a
highly spatially correlated gating network), and this may be related to a spatially-dependent stick-
breaking process. However, use of the GP produces computational challenges. The proposed LSBP
model also manifests multiple space-dependent functions (heregk(r)), with associated candidate
model parameters{θ∗

k}k=1,K . Further, we constitute a spatially dependent gating network that has a
stick-breaking interpretation. However, a different and relatively simpleprocedure is proposed for
favoring spatially contiguous segments with sharp boundaries.

At each locations we have a stick-breaking process, with the probability of selecting model pa-
rameters θ∗

k defined as πk(s) = σ(gk(s))∏k′<k[1 − σ(gk′(s))]. Recall that
gk(s) = ∑Nc

i=1wkiK(s, ŝi ;ψk) +wk0, with sparseness favored for coefficients{wik}i=0,Nc. Consid-
ering firstg1(s), note that since most{w1i}i=1,Nc are zero or near-zero, the biasw10 controls the
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stick weightπ1(s) for all s sufficiently distant from those locations ˆsi with non-zerow1i . Further, if
w1i ≫ 0, σ(g1(s))≈ 1 for s in the “neighborhood” of the associated location ˆsi ; the neighborhood
sizeis defined byψ1. Hence, those{ŝi}i=1,Nc with associated large{w1i}i=1,Nc define localized re-
gions as a function ofs over which parameterθ∗

1 is highly probable, with locality defined by kernel
scale parameterψ1. For those regions ofs for which π1(s) is not near one, there is appreciable
probability 1−π1(s) that model parameters{θ∗

k}k=2,K may be used.
Continuing the generative process, model parametersθ∗

2 are probable whereπ2(s)=σ(g2(s))[1−
π1(s)]≈ 1. The latter occurs in the vicinity of thoses that are distant from ˆsi with large associated
w1i (i.e., where 1−π1(s) ≈ 1), while also being near ˆsi with largew2i (i.e., whereσ(g2(s)) ≈ 1).
We again underscore thatw20 impactsπ2(s) for all s.

This process continues for increasingk, and therefore it is probable that ask gets large all or
almost alls will be associated with a large stick weight, or a largecumulativesum of stick weights,
such that parametersθ∗

k become improbable for largek and alls.
Key characteristics of this construction are the clipping property of the logistic link function,

and the associated fast rise of the logistic. The former imposes that there are contiguous regions
(segments) over which the same model parameter has near-unity probability of being used. This
encouraging of homogeneous segments is also complemented by sharp segment boundaries, mani-
fested by the fast rise of the logistic. The aforementioned “clipping” property is clearly not distinct
to logistic regression. It would apply as well to other binary response link functions, which can be
any CDF for a continuous random variable. For example, probit links (Chung and Dunson, 2009)
would have the same property, though the logistic has heavier tails than the probit so may have
slightly different clipping properties. We have here selected the logistic link function for computa-
tional simplicity (it is widely used, for example, in the relevance vector machine Tipping 2001, and
we borrow related technology). It is interesting to see how the segmentation realizations differ with
the form of link function, with this to be considered in future research.

To give a more-detailed view of the generative process, we consider a one-dimensional exam-
ple, which in Section 5 will be related to a problem with real data. Specifically, consider a one-
dimensional signal with 488 discrete sample points. In this illustrative exampleNc = 98, defined
by taking every fifth sample point for the underlying signal. We wish to examinethe generative
process of the LSBP prior, in theabsenceof data. For this illustration, it is therefore best to use
the spike-and-slab construction, since without any data the Student-t construction will with high
probability make allwki ≈ 0 (when considering data, and evaluating the posterior, a small fraction
of these coefficients are pulled away from zero, via the likelihood function, such that the model
fits the data; we reconsider this in Section 5). Further, again for illustrativepurposes, we here treat
{wk0}k=1,K as drawn from a separate normal distribution,not from the spike-and-slab prior used
for all other components ofwk. This distinct handling of{wk0}k=1,K has been found unnecessary
when processing data, as the likelihood function again imposes constraints on {wk0}k=1,K . Hence
this form of the spike-and-slab prior onwk is simply employed to illuminate the characteristics of
LSBP, with model implementation simplifying when considering data.

In Figure 2 we plot representative draws forwk, gk(s), σ(gk(s)) and πk(s), for the one-
dimensional signal of interest. In thisillustrative example eachνk is drawn from Beta(1,10) to
encourage sparseness, and those non-zero coefficients are drawn fromN (0,λ), with λ fixed to cor-
respond to a standard deviation of 15 (we could also draw eachλk from a gamma distribution). Each
bias termwk0 is here drawn iid fromN (0,λ). We see from Figure 2 that the LSBP naturally favors
localized segments that have near-unity probability of using the same model parameters. This is a
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Figure 2: Example draw from a one-dimensional LSBP, using a spike-and-slab construction for
model-parameter sparseness. (a)wk , (b) gk(t) , (c) σk(t), (d) πk(t)

typical draw, where we note that fork≥ 4 the probability ofθ∗
k being used is near zero. While Figure

2 represents a typical LSBP draw, one could also envision other less-desirable draws. For example,
if w10 ≫ 0 thenπ1(s) ≈ 1 for all s, implying that the parametersθ∗

1 is used for alls (essentially
no segmentation). Other “pathological” draws may be envisioned. Therefore, we underscore that
the data, via the likelihood function, clearly influences the posterior strongly, and the pathological
draws supported by the prior in the absence of data are given negligible mass in the posterior.

As further examples, now for two-dimensional signals, Figure 3 considers example draws as a
function of the kernel parameterψk. These example draws were manifested via the same process
used for the one-dimensional example in Figure 2, now extendings to two dimensions. Figure
3 also shows the dependence of the size of the segments on the kernel parameterψk, which has
motivated the learning ofψk in a data-dependent manner (based on a finite dictionary of kernel
parametersΨ∗ = {ψ∗

j}
τ
j=1). The draws in Figure 3 are similar to those manifested by the GP-based

construction (Sudderth and Jordan, 2008), motivating the simple model developed here.
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Figure 3: Samples drawn from the spatially dependent LSBP prior, for different (fixed) choices of
kernel parametersψ, applied for eachk within the LSBP. In row 1ψ = 15; in row 2
ψ = 10; and in row 3ψ = 5. In these examples the spike-and-slab prior has been used to
impose sparseness on the coefficients{wk}k=1,K−1.

3. Hierarchical LSBP (H-LSBP)

Multi-task learning (MTL) is an inductive transfer framework (Caruana,1997), with the goal of
improving modeling performance by exploiting related information in multiple data sets. We here
employ MTL for joint analysis of multiple spatially dependent data sets, yielding ahierarchical
logistic stick-breaking process (H-LSBP). This framework models each individual data set (task)
with its own LSBP draw, while sharing the same set of model parameters (atoms)across all tasks,
in a manner analogous to HDP (Teh et al., 2005). The set of shared modelatoms are inferred in the
analysis.

The spatially-dependent probability measure for taskm, Gm, is drawn from a LSBP with base
measureG0, andG0 is shared across allM tasks. Further,G0 is drawn from a Dirichlet process
(Blackwell and MacQueen, 1973), and in this manner each task-dependent LSBP shares the same
set of discrete atoms. The H-LSBP model is represented as

ymn|θmn∼ F(θmn), θmn|Gm ∼ Gm,

Gm|{G0,a0,b0,Ψ
∗} ∼ LSBP(G0,a0,b0,Ψ

∗),

G0|γ,H ∼ DP(γH).

Note that we are assuming a Student-t construction of the sparseness prior within the LSBP, defined
by hyperparametersa0 andb0.

Assume taskm∈ {1, . . . ,M} hasNm observations, defining the data
Dm = {Dm1, . . . ,Dm(Nm)}. We introduce a set of latent indicator variables
tm = {tm1, . . . , tm∞} for each task, with

tmk
iid
∼

∞

∑
l=1

βl δl , k= 1, . . . ,∞, m= 1, . . . ,M, (4)

211



REN, DU, CARIN AND DUNSON

whereβl corresponds to thel th stick weight of the stick-breaking construction of the DP draw
G0 = ∑∞

l=1 βl δθ∗
l
. The indicator variablestmk establish an association between the observations from

each task and the atoms{θ∗
l }

∞
l=1 shared globally; hence the atomθ∗

tmk
is associated with LSBPgk

for taskm. Accordingly, we may write the probability measureGm, for positionsmn, in the form

Gsmn =
∞

∑
k=1

πmk(smn)δθ∗
tmk
.

Note that it is possible that in such a draw we may have the same atom used for two different LSBP
gk. This doesn’t pose a problem in practice, as the same type of segment (atom) may reside in
multiple distinct spatial positions (e.g., of an image), and the differentk with the same atom may
account for these different regions of the data.

A graphical representation of the proposed hierarchical model is depicted in Figure 4. As in the
single-task LSBP discussed in Section 2, a uniform prior is placed on the discrete elements ofΨ∗,
and the precision parameterγ for the Dirichlet process is assumed drawn from a gamma distribution
Ga(e0, f0). In practice we truncate the number of sticks used to representG0, employingL− 1
draws from the beta distribution, and the length of theLth stick isβL = 1−∑L−1

l=1 βl (Ishwaran and
James, 2001). We also set a truncation levelK for eachGm, analogous to truncation of a traditional
stick-breaking process.

We note that one may suggest drawingL atomsθ∗
l ∼ H, for l = 1, . . . ,L, and then simply as-

signing each of these atoms in the same way to each ofK = L gk in theM LSBPs associated with
theM images under test. Although there areK functionsgk in the LSBP, as a consequence of the
stick-breaking construction, those with small indexk are more probable to be used in the generative
process. Therefore, the process reflected by (4) serves to re-order the atoms in an task-dependent
manner, such that the important atoms for a given task occur with small indexk. In our experi-
ments, we makeK < L, since the number of different segments/atoms anticipated for any given task
is expected to be small relative to the library of possible atoms{θ∗

l }
L
l=1 available across all tasks.

mk mns
H

mnkzmkw *

lmk
0a

b

mkt
0e

mny
0b

mN

l

M 0f

Figure 4: Graphical representation of H-LSBP.

One may view the H-LSBP model as a hierarchy of multiple layers, in terms of a hierarchical
tree structure as depicted in Figure 5. In this figureGm1, . . . ,Gm(K−1) represent theK −1 “gating
nodes” within themth task, and each gating node controls how the data are assigned to theK layers.
Thus, the H-LSBP may be viewed as a mixture-of-experts model (Bishop and Svenśen, 2003) with
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Figure 5: Hierarchical tree structure representation of the H-LSBP, withspatially dependent gating
nodes. The parametersxk

mn are defined asxk
mn= {1,{K(smn, ŝmi;ψmk)}

Nc
i=1}.

spatially dependent gating nodes. Given the assigned layerk indicated byzmn, the appearance
featureymn is drawn from the associated atomθ∗

tmk
.

3.1 Setting Model Parameters

To implement LSBP, one must set several parameters. As discussed above, the hyperparameters
associated with the Student-t prior onwki are set asa0 = b0 = 10−6, this corresponding to the settings
of the related RVM (Bishop and Tipping, 2000). The number of kernel centersNc is generally set in
a natural manner, depending upon the application. For example, in the audioexample considered in
Section 5.2,Nc is set to the number of total temporal subsequences used to sample the signal.For
the image-processing application,Nc may be set to the number of superpixels used to define space-
dependent image features (discussed in more detail when presenting image-segmentation results
in Section 5.3). The truncation levelK on the LSBP may be set to any large value that exceeds
the number of anticipated segments in the image, and the model automatically infers the number
of segments in the end. The details are discussed and examined in Section 5 when presenting
results. For the H-LSBP results one must also setL, which defines the total library size of model
atoms/parameters shared across the multiple data sets. Again, we have foundany relatively large
setting forL to yield good results, as the nonparametric nature of LSBP manifests a selection of
which subset of theL library elements are actually needed for the data under test. This is also
examined when presenting experimental results in Section 5.

We must also define a set of possible kernel scales,{ψ∗
j}

τ
j=1. These again are set naturally to

define the relative range of scales in the data under test. For example, in theimage-segmentation
application, we selectτ scale levels to cover a range of resolutions characteristic of the images of
interest (e.g., defined by the size of the expected segment sizes relative tothe overall image size). In
the specific audio and image segmentation applications discussed below we explicitly define these
parameters, and note that no tuning of these parameters was performed. Our experience is that any
“reasonable” set of kernel scales yields very similar results.

213



REN, DU, CARIN AND DUNSON

The final thing that must be set within the model is the base measureH. For the audio-signal
example the data observed at each time point is a real vector, and therefore it is convenient to
use a multivariate Gaussian distribution to representF(·) in (1). Therefore, in that example the
observation-model parameters correspond to the mean and covariance of a Gaussian, implying that
the measureH should be a Gaussian-Wishart prior (or a Gaussian-Gamma prior, if a diagonal co-
variance matrix is assumed in the prior). For the image processing application the observed image
feature vectors are quantized, and consequently the observation at any point in the image corre-
sponds to a code index. In this caseF(·) is represented by a multinomial distribution, and henceH
is made to correspond to a Dirichlet distribution. Therefore, one may naturally defineH based upon
the form of the modelF(·), in ways typically employed within such Bayesian models.

4. Model Inference

Markov chain Monte Carlo (MCMC) (Gilks et al., 1998) is widely used for performing inference
with hierarchical models like LSBP. For example, many of the previous spatially-dependent mix-
tures have been analyzed using MCMC (Duan et al., 2007; Dunson and Park, 2007; Nguyen and
Gelfand, 2008; Orbanz and Buhmann, 2008). The H-KSBP (An et al., 2008) model is developed
based on a hybrid variational inference inference algorithm; however,nearly half of the model pa-
rameters still need to be estimated via a sampling technique. Although MCMC is an attractive
method for such inference, the computational requirements may lead to implementation challenges
for large-scale problems, and algorithm convergence is often difficult todiagnose.

The LSBP model proposed here may be readily implemented via MCMC sampling. However,
motivated by the goal of fast and relatively accurate inference for large-scale problems, we consider
variational Bayesian (VB) inference (Beal, 2003).

4.1 Variational Bayesian Analysis

Bayesian inference seeks to estimate the posterior distribution of the latent variablesΦ, given the
observed dataD:

p(Φ|D,Υ) =
p(D|Φ,Υ)p(Φ|Υ)∫

p(D|Φ,Υ)p(Φ|Υ)dΦ
,

where the denominator
∫

p(D|Φ,Υ)p(Φ|Υ)dΦ= p(D|Υ) is the model evidence (marginal likeli-
hood); the vectorΥ denotes hyper-parameters within the prior forΦ. Variational Bayesian (VB)
inference (Beal, 2003) seeks a variational distributionq(Φ) to approximate the true posterior distri-
bution of the latent variablesp(Φ). The expression

log p(D|Υ) = L(q(Φ))+KL(q(Φ) ‖ p(Φ|D,Υ))

with

L(q(Φ)) =
∫

q(Φ)log
p(D|Φ,Υ)p(Φ|Υ)

q(Φ)
dΦ, (5)

yielding a lower bound for logp(D|Υ) so that log p(D|Υ) ≥ L(q(Φ)), since
KL(q(Φ) ‖ p(Φ|D,Υ)) ≥ 0. Accordingly, the goal of minimizing the KL divergence between
the variational distribution and the true posterior reduces to adjustingq(Φ) to maximize (5).

Variational Bayesian inference (Beal, 2003) assumes a factorizedq(Φ), typically with the same
form as employed inp(Φ|D,Υ). With such an assumption, the variational distributions can be
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updated iteratively to increase the lower bound. For the LSBP model appliedto a single task, as
introduced in Section 2.1, we assume

q(Φ) =
K

∏
k=1

q(θk)
K−1

∏
k′=1

[

q(wk′)q(λk′)
N

∏
n=1

q(znk′)
]

,

whereq(θk) is defined by the specific application. In the audio-segmentation example considered
below, the feature vectoryn may be assumed drawn from a multivariate normal distribution, and the
K model parameters are means and precision matrices{µ∗

k,Ω
∗
k}

K
k=1; accordinglyq(θk) is specified

as a Normal-Wishart distribution (as isH), N(µk|µ̃k, t̃
−1
k Ωk

−1)Wi(Ωk|Ṽk, d̃k). For the rest of the
model,q(wk′) = ∏Nc

i=0N(wk′i |m̃k′i , Γ̃k′i), q(λk′) = ∏Nc
i=0Ga(λk′i |ãk′i , b̃k′i), andq(znk′) has a Bernoulli

form ρznk′

nk′ (1−ρnk′)
1−znk′ with ρnk′ = σ(gk′(n)). The factorized representation forq(Φ) is a function

of the hyper-parameters on each of the factors, with these hyper-parameters adjusted to minimize
the aforementioned KL divergence.

By integrating over all the hidden variables and model parameters, the lowerbound for the log
model evidence

log p(D|Υ) = log
∫

p
(

y,s,θ,W,λ,z
)

dΦ

≥
∫

q(θ,W,λ,z)log
p
(

y,s,θ,W,λ,z
)

q(θ,W,λ,z) dΦ

=
∫

q(θ)q(W)q(λ)q(z)log
p
(

y,s,θ,W,λ,z
)

q(θ)q(W)q(λ)q(z)dΦ

≡ LB(q(Φ)),

(6)

is a function of variational distributionsq(Φ). The variational lower bound is optimized by itera-
tively taking derivatives with respect to the hyper-parameters in eachq(·), and setting the result to
zero while fixing the hyper-parameters of the other terms. Within each iteration, the lower bound is
increased until the model converges.

The difficulty of applying VB inference for this model lies with the logistic-link function, which
is not within the conjugate-exponential family. Based on bounding log convex functions, we use a
variational bound for the logistic sigmoid function in the form (Bishop and Svenśen, 2003)

σ(x)≥ σ(η)exp
(x−η

2
− f (η)(x2−η2)

)

, (7)

where f (η) = tanh(η/2)
4η andη is a variational parameter. An exact bound is achieved asη = x or

η =−x.
The detailed update equations are omitted for brevity, but are of the form employed in the work

(Beal, 2003; Bishop and Svensén, 2003). Like other optimization algorithms, VB inference may
converge to a local-optimal solution. However, such a problem can be alleviated by running the
algorithm multiple times from different initializations (including varying the truncation levelK, and
for each case the atom parameters are initialized with k-mean clustering method (Gersho and Gray,
1991) for a fast model convergence) and then using the solution that maximizes the variational
model evidence.

4.2 Sampling the Kernel Width

As introduced in Section 2.1, the kernel widthψk is inferred for eachk. Due to the non-conjugacy of
the sigmoid function, we cannot acquire a variational distribution forψk. However, we can sample
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it from its posterior distribution or find a maximum a posterior (MAP) solution by establishing a
discrete set of potential kernel widthsΨ∗ = {ψ∗

j}
τ
j=1, as discussed above. This resulting hybrid

variational inference algorithm combines both sampling technique and VB inference, motivated
by the Monte Carlo Expectation Maximization (MCEM) algorithm (Wei and Tanner, 1990) and
developed by An et al. (2008). The intractable nodes within the graphicalmodel are approximated
with Monte Carlo samples from their conditional posterior distributions, and thelower bound of
the log model evidence generally has small fluctuations after the model converges (An et al., 2008).
A detail on related treatments within variational Bayesian (VB) analysis has been discussed (Winn
and Bishop, 2005) (see Section 6.3 of that paper).

Based on the variableszn, the cluster membership of each dataDn corresponding to different
mixture components{θ∗

k}
K
k=1 can be specified as

ξnk =
k−1

∏
k′=1

(1−znk′) ·znk.

Based on the above assumptions, we observe that ifξnk= 1 and the other entries inξn= [ξn1, . . . ,ξnK]
are equal to zero, thenyn is assigned to be drawn fromF(θ∗

k).
With the variablesξ introduced and a uniform priorU assumed on the kernel width{ψ∗

j}
τ
j=1,

the posterior distribution for eachψk is represented as

p(ψk = ψ∗
j | · · ·) ∝ U j ·exp

{

∑n < ξnk >
[

< logσ
(

g j
k(sn)

)

>
]}

·exp
{

∑n ∑l>k < ξnl >
[

< log
(

1−σ
(

g j
k(sn)

)

)

>
]}

,
(8)

whereU j is the jth component ofU, < · > represents the expectation with the associated random
variables,g j

k(sn) = ∑Nc
i=1wkiK(sn, ŝi ;ψ∗

j )+wk0 with j = 1, . . . ,τ.

With the definitionx j
n =

[

1,K(sn, ŝ1;ψ j), . . . ,K(sn, ŝNc;ψ j)
]

, it can be verified that

log
(

1−σ(g j
k(sn))

)

=−WT
k x j

n+ logσ(g j
k(sn)). (9)

Inserting (9) into the kernel width’s posterior distribution, (8) can be reduced to

p(ψk = ψ∗
j | · · ·) ∝ U j ·exp

{

∑n < ξnk >
[

< logσ
(

g j
k(sn)

)

>
]}

·exp
{

∑n ∑l>k < ξnl >
[

−< Wk >
T x j

n+< logσ
(

g j
k(sn)

)

>
]}

,

in which< logσ
(

g j
k(sn)

)

> is calculated via the variational bound of the logistic sigmoid function
in (7):

< logσ
(

g j
k(sn)

)

>≥ logσ(ηnk)+
1
2
(< g j

k(sn)>−ηnk)+ f (ηnk)(< {g j
k(sn)}

2 >−η2
nk),

in which
< g j

k(sn)>=< Wk >
T x j

n, < {g j
k(sn)}

2 >= x j
n

T
< WkWT

k > x j
n

x j
n =

[

1,K(sn, ŝ1;ψ∗
j ), . . . ,K(sn, ŝNc;ψ∗

j )
] (10)

As ηnk =

√

x j
n

T
< WkWT

k > x j
n, the bound holds and the Equation (10) is reduced to:

< logσ
(

g j
k(sn)

)

>= logσ(ηnk)+
1
2
(< Wk >

T x j
n−ηnk).
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From the above discussion, we have the following update equation for the kernel widths. For
each specifick from k= 1, . . . ,K:

ψk = ψ∗
rk
, rk ∼ Mult(pk1, . . . , pkτ),

pk j =
p(ψk=ψ∗

j )

∑τ
l=1 p(ψk=ψ∗

l )
.

We sample the kernel width based on the multinomial distribution from a given discrete set in each
iteration, or we can set the kernel width by choosing one with the largest probability component.
The latter one can be regarded as a MAP solution by specifying a discrete prior. Both of the two
methods get similar results in our experiments. Therefore, we only presentthe result by sampling
the kernel widths in our experimental examples.

Because of the sampling of the kernel width within the VB iterations, the lower bound shown
in (6) does not monotonically increase in general. Until the model converges, the lower bound
generally has small fluctuations, as shown when presenting experimental results.

For the hierarchical logistic stick-breaking process (H-LSBP), we adopt a similar inference
technique to that employed for LSBP, with the addition of updating the parameters of the Dirichlet
process. We omit those details here, but summarize the model update equations in the Appendix.

5. Experimental Results

The LSBP model proposed here may be employed in many problems for which one has spatially-
dependent data that must be clustered or segmented. Since the spatial relationships are encoded
via a kernel distance measure, the model can also be used to segment time-series data. Below
we consider three examples: (i) a simple “toy” problem that allows us to compare with related
approaches in an easily understood setting, (ii ) segmentation of multiple speakers in an audio signal,
and (iii ) segmentation of images. When presenting (iii ), we first consider processing single images,
to demonstrate the quality of the segmentations, and to provide more details on the model. We then
consider joint segmentation of multiple images, with the goal of inferring relationships between
images (of interest for image sorting and search). In all examples the Student-t construction is used
to impose the model sparseness, and all model coefficients (including the bias terms) are drawn
from the same prior.

5.1 Simulation Example

In this example the feature vectoryn is the intensity value of each pixel, and the pixel location is
the spatial informationsn. Each observation is assumed to be drawn from a spatially dependent
Gaussian mixture (i.e.,F(·) is a Gaussian). A comparison is made between the proposed LSBP, the
Dirichlet process (DP), and the kernel stick-breaking process (KSBP), and in all cases VB inference
is performed; for the KSBP, we use the same model as considered by An etal. (2008), and this
simple example was also taken from that paper. The data are shown in Figure6(a), in which four
distinct contiguous sub-regions reside in a background, with a color barencoding the pixel ampli-
tudes. Each pixel is drawn from a Gaussian distribution with a standard deviation of 10; the two
pairs of contiguous regions are generated respectively from the Gaussian distributions with mean
intensities equal to 40 and 60, and the background has a mean of 5 (An et al., 2008). In the LSBP,
DP, and KSBP analyses, we do not set the number of clustersa priori and the models infer the
number of clusters automatically from the data. Therefore, we fixed the truncation level toK = 10
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for all models, and the clustering results are shown in Figure 6, with different colors representing
the cluster index (mixture component to which a data sample is assigned).
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Figure 6: Segmentation results for the simulation example. (a) original image, (b) DP, (c) KSBP,
(d) LSBP

Compared with DP and KSBP, the proposed LSBP shows a much cleaner segmentation in Figure
6(d), as a consequence of the imposed favoring of contiguous segments. We also note that the
proposed model inferred that there were only three importantk (three dominant sticks) within the
observed data, consistent with the representation in Figure 6(a).

5.2 Segmentation of Audio Waveforms

0 0.5 1 1.5 2

x 10
6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

sample index

au
di

o 
w

av
e 

fo
rm

(a)

observation index

fe
at

ur
e 

in
de

x

 

 

50 100 150 200 250 300 350 400 450

2

4

6

8

10

12
−4

−3

−2

−1

0

1

2

3

(b)

Figure 7: Original audio waveform, (a), and representation in terms of MFCC features, (b).

With the kernel in(2.1) specified in a temporal (one-dimensional) space, the proposed LSBP
is naturally extended to segmentation of sequential data, such as for speaker diarization (Ben et al.,
2004; Tranter and Reynolds, 2006; Fox et al., 2008). Provided with a spoken document consisting of
multiple speakers, speaker diarization is the process of segmenting the audiosignal into contiguous
temporal regions, and within a given region a particular individual is speaking. Further, one also
wishes to group all temporal regions in which a specific individual is speaking.

We assume the acoustic observations at different times are drawn from a Gaussian mixture
model (each generating Gaussian ideally corresponds to a speaker ID). Within LSBP and KSBP, the
observations of adjacent temporal points are encouraged to be drawn from the same Gaussian, since
they are with high probability assumed to be generated from the same source (speaker). The total
number of speakers is unknown in advance, and is inferred from the data. An alternative approach,
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to which we compare, is a sticky HMM (Fox et al., 2008), in which the speech isrepresented by an
HMM with Gaussian state-dependent emissions; to associate a given speaker with a particular state,
the states are made to be persistent, or “sticky’, with the state-dependent degree of stickiness also
inferred.

We consider identification of different speakers from a recording of broadcast news, which may
be downloaded with its ground truth.1 The spoken document has a length of 122.05 seconds, and
consists of three speakers. Figure 7(a) presents the audio waveformwith a sampling rate of 16000
Hz. The ground truth indicates that Speaker 1 talked within the first 13.77 seconds, followed by
Speaker 2 until the 59.66 second, then Speaker 1 began to talk again until 74.15 seconds, and
Speaker 3 followed and speaks until the end.
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Figure 8: Segmentation results for the audio recording. The colored symbols denote the ground
truth: red represents Speaker 1, green represents Speaker 2, bluerepresents Speaker 3.
Each MFCC feature vector is assigned to a cluster index (K = 10), with the index shown
along the vertical axis. (a) DP, (b) KSBP, (c) sticky HMM using VB inference, (d) LSBP

For the feature vector, we computed the first 13 Mel Frequency Cepstral Coefficients (MFCCs)
(Ganchev et al., 2005) over a 30 ms window every 10 ms, and defined the observations as averages
over every 250 ms block, without overlap. We used the first 13 MFCCs because the high frequency

1. Recording can be downloaded fromhttp://www.itl.nist.gov/iad/mig//tests/rt/2002/inde x.html .
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content of these features contained little discriminative information (Fox et al.,2008). The software
that we used to extract the MFCCs feature can be downloaded online.2 There are 488 feature vectors
in total, shown in Figure 7(b); the features are normalized to zero mean and the standard deviation
is made equal to one.

To apply the DP, KSBP and LSBP Gaussian mixture models on this data, we set the truncation
level asK = 10. To calculate the temporal distance between each pair of observations,we take the
observation index from 1 to 488 as the location coordinates in (2.1) fors. The potential kernel-
width set isΨ∗ = {50,100, . . . ,1000} for LSBP and KSBP; note that these are the same range of
parameters used to present the generative model in Figure 2. The experiment shows that all the
models converge after 20 VB iterations.

For the sticky HMM, we employed two distinct forms of posterior computation: (i) a VB anal-
ysis, which is consistent with the methods employed for the other models; and (ii ) a Gibbs sampler,
analogous to that employed in the original sticky-HMM paper (Fox et al., 2008). For both the VB
and Gibbs sampler, a truncated stick-breaking representation was used for the DP draws from the
hierarchical Dirichlet process (HDP); see Fox et al. (2008) for a discussion of how the HDP is
employed in this model.
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Figure 9: Sticky HMM results for the data in Figure 7(a), based on a Gibbs sampler. The figure
denotes the fraction of times within the collection samples that a given portion of the
waveform shares the same underlying state.

To segment the audio data, we labeled each observation to the index of the cluster with the
largest probability value, and the results are shown in Figure 8 (here the sticky-HMM results were
computed via VB analysis). To indicate the ground truth, different symbols and colors are used to
represent different speakers.

From the results in Figure 8, the proposed LSBP yields the best segmentationperformance, with
results in close agreement with ground truth. We found the sticky-HMM results to be very sensitive
to VB initialization, and the results in Figure 8 were the best we could achieve.

2. Software can be downloaded fromhttp://www.ee.columbia.edu/ ˜ dpwe/resources/matlab/rastamat/ .
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While the sticky HMM did not yield reliable VB-computed results, it performed well when a
Gibbs sampler was employed (as in the work Fox et al., 2008). In Figure 9 are shown the fraction
of times within the collection Gibbs samples that a given portion of the signal share the same un-
derlying state; note that the results are in very close agreement with “truth”.We cannot plot the
Gibbs results in the same form as the VB results in Figure 8 due to label switchingwithin the Gibbs
sampler. The Gibbs-sampler results were computed using 5000 burn iterations and 5000 collection
iterations.

These results demonstrate that the proposed LSBP, based on a fast VB solution, yields results
commensurate with a state-of-the-art method (the sticky HMM based on a Gibbssampler). On the
same PC, the VB LSBP results required approximately 45 seconds of CPU time,while the Gibbs
sticky-HMM results required 3 hours; in both cases the code was written in non-optimized Matlab,
and these numbers should be viewed as providing arelative view of computational expense. The
accuracy and speed of the VB LSBP is of interest for large-scale problems, like those considered
in the next section. Further, the LSBP is a general-purpose algorithm, applicable to time- and
spatially-dependent data (images), while the sticky HMM is explicitly designed for time-dependent
data.

In the LSBP, DP, and KSBP analyses, we do not set the number of clusters a priori and the
models infer the number of clusters automatically from the data. Therefore, we fixed the truncation
level toK = 10 for all models, and the clustering results are shown in Figure 6, with different colors
representing the cluster index (mixture component to which a data sample is assigned).

In Figure 2 we illustrated a draw from the LSBP prior, in the absence of anydata. The param-
eters of that example (number of samples, the definition ofNc, and the libraryΨ∗) were selected
as to correspond to this audio example. To generate the draws in Figure 2, aspike-and-slab prior
was employed, since the Student-t prior would prefer (in the absence of data) to set all coefficients
to zero (or near zero), with high probability. Further, for related reasons we treated the bias terms
wk0 distinct from the other coefficients. We now consider a draw from the LSBP posterior, based
on the audio data considered above. This gives further insight into the machinery of the LSBP. We
also emphasize that, in this example based on real data, as in all examples shown in this section,
we impose sparseness via the Student-t prior. Therefore, when lookingat the posterior, we may see
which coefficientswki have been “pulled” away from zero such that the model fits the observed data.
A representative draw from the LSBP posterior is shown in Figure 10, using the same presentation
format as applied to the draw from the prior in Figure 2. Note that only three sticks have appreciable
probability for any timet, and the segments tend to be localized, with near-unity probability of using
a corresponding model parameter within a given segment. While the spike-slab prior was needed to
manifest desirable draws from the prior alone, the presence of data simplifies the form of the LSBP
prior, based only on a relatively standard use of the hierarchical Student-t construction.

5.3 Image Segmentation with LSBP

The images considered first are from Microsoft Research Cambridge3 and each image has 320×213
pixels. To apply the hierarchical model to image segmentation, we first over-segment each im-
age into 1,000 “superpixels”, which are local, coherent and preserve most of thestructure neces-
sary for segmentation at the scale of interest (Ren and Malik, 2003). Thesoftware used for this

3. Images can be downloaded from http://research.microsoft.com/en-us/projects/
objectclassrecognition/ .
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Figure 10: Example draw from the LSBP posterior, for the audio data under test. (a)wk , (b) gk(t)
, (c) σk(t), (d) πk(t)

is described in Mori (2005), and can be downloaded athttp://fas.sfu.ca/ ˜ mori/research/
superpixels/ . Each superpixel is represented by both color and texture descriptors, based on
the local RGB, hue feature vectors (Weijer and Schmid, 2006), and also the values of Maximum
Response (MR) filter banks (Varma and Zisserman, 2002). We discretizethese features using a
codebook of size 32, and then calculate the distributions (Ahonen and Pietikäinen, 2009) for each
feature within each superpixel as visual words (Cao and Li, 2007; Wang and Grimson, 2007).

Since each superpixel is represented by three visual words, the mixturecomponentsθ∗
k are three

multinomial distributions as{Mult(p1∗
k)⊗Mult(p2∗

k)⊗Mult(p3∗
k)} for k= 1, . . . ,K. The variational

distributionq(θ∗
k) is Dir(p1∗

k|β̃
1
k)⊗Dir(p2∗

k|β̃
2
k)⊗Dir(p3∗

k|β̃
3
k), and within VB inference we opti-

mize the parameters̃β1
k, β̃2

k, andβ̃3
k.

To perform segmentation at the patch level (each superpixel corresponds to one patch), the cen-
ter of each superpixel is recorded as the location coordinatesn. The discrete kernel-width setΨ∗ is
composed of 30,35, . . . ,160, which are scaled empirically based on the image and object average
size. Typically we may choose theΨ∗ as a subset between the minimum and maximum Euclidean
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distance associated with any two data points’ spatial locations within this image. Tosave computa-
tional resources, we chose as basis locations{ŝi}

Nc
i=1 the spatial centers of every tenth superpixel in

a given image, after sequentially indexing the superpixels (we found that ifwe do not perform this
subsampling, very similar segmentation results are achieved, but at greatercomputational expense).

Three representative example images are shown in Figures 11(a), (b) and (c); the superpixels are
generated by over-segmentation (Mori, 2005) on each image, with associated over-segmentation re-
sults shown in Figures 11(d), (e) and (f). The segmentation task now reduces to grouping/clustering
the superpixels based on the associated image feature vector and associated spatial information.
To examine the effect of the truncation levelK, we consideredK from 2 to 10 and quantified the
VB approximation to the model evidence (marginal likelihood). The segmentationperformance
for each of these images is shown in Figure 11(g), (h) and (i), using respectivelyK = 4, 3 and 6,
based on the model evidence (discussed further below). These (typical) results are characterized
by homogeneous segments with sharp boundaries. In Figure 11(j), (k) and (l), the segmentation
results are shown withK fixed atK = 10. In this case the LSBP has ten sticks; however, based on
the segmentation there are a subset of sticks (5, 8 and 7, respectively) inferred to have appreciable
amplitude.

Based upon these representative example results, which are consistentwith a large number
of tests on related images, we make the following observations. Considering first the “chimney”
results in Figure 11(a), (g) and (j), for example, we note that there are portions of the brick that have
textural differences. However, the prior tends to favor contiguous segments, and one solid texture is
manifested for the bricks. We also note the sharp boundaries manifested in the segments, despite the
fact that the logistic-regression construction is only using simple Gaussian kernels (not particularly
optimized for near-linear boundaries). For the relatively simple “chimney” image, the segmentation
results are very similar with different initializations ofK (Figure 11(g)) and simply truncating the
sticks at a “large” value (Figure 11(j) withK = 10).

The “cow” example is more complex, pointing out further characteristics of LSBP. We again
observe homogeneous contiguous segments with sharp boundaries. In this case a smallerK yields
(as expected) a simpler segmentation (Figure 11(h)). All of the relatively dark cows are segmented
together. By contrast, with the initialization ofK = 10, the results in Figure 11(k) capture more
details in the cows. However, we also note that in Figure 11(k) the clouds are properly assigned
to a distinctive type of segment, while in Figure 11(h) the clouds are just included in the sky clus-
ter/segment. Similar observations are also obtained from the “flower” examplefor Figure 11(c),
with more flower texture details kept with a large truncation level setting in Figure11(l) than the
result with a smallerK shown in Figure 11(i).

Because of the sampling of the kernel width, the lower bound of the log modelevidence did not
increase monotonically in general. For the “chimney” example considered in Figure 11(a), the log
model evidence was found to sequentially increase approximately within the first 20 iterations and
then converge to the local optimal solution with small fluctuations, as shown in Figure 12(a) with
a model ofK = 4. To test the model performance with different initializations ofK, we calculate
the mean and standard deviation of the lower bound after 25 iterations whenK equals from 2 to 10,
as plotted in Figure 12(b); from this figure one clearly observes that the data favor the model with
K = 4, for at this point the VB lower bound (approximation to the evidence) has itslargest value.
Hence, one may stop examining increasingK once it is evident that the model evidence is falling
with increasingK (as compared with simply settingK to a large value).
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Figure 11: LSBP Segmentation for three image examples. (a)∼(c) image examples of “chim-
ney”,“cows” and “flowers”; (d)∼(f) image examples represented with “superpixels”;
(g)∼(i) segmentation results with largest values of model evidence (K = 4 for “chim-
ney”, K = 3 for “cows” andK = 6 for “flowers”); (j)∼(l) segmentation results with a
initialization ofK = 10 for the image examples.
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Figure 12: LSBP Segmentation for three image examples. (a)VB iteration lowerbound for image
“chimney” with K = 4; (b) Approximating the model evidence as a function ofK for
image “chimney”.

To further evaluate the performance of LSBP for image segmentation, we also consider several
other state-of-art methods, including two other non-parametric statistical models: the Dirichlet pro-
cess (DP) (Sethuraman, 1994) and the kernel stick-breaking process (KSBP) (An et al., 2008). We
also consider two graph-based spectral decomposition methods: normalized cuts (Ncuts) (Shi and
Malik, 2000) and multi-scale Ncut with long-range graph connections (Cour et al., 2005). Further,
we consider the Student-t distribution mixture model (Stu.-t MM) (Sfikas et al., 2007), and also
spatially varying mixture segmentation with edge preservation (St.-svgm) (Sfikas et al., 2008). We
consider the same data source as in the previous examples, but for the next set of results segmen-
tation “ground truth” was provided with the data. The data are divided into eight categories: trees,
houses, cows, faces, sheep, flowers, lake and street; each category has thirty images. All models
were initialized with a segment number ofK = 10.

Figure 13 shows typical segmentation results for the different algorithms. Given a segment
count number, both the normalized cuts and the multi-scale Ncut produced very smooth segmen-
tations, while certain textured regions might be split into several pieces. TheStudent-t distribution
mixture model (Stu.-t MM) yields a relatively robust segmentation, but it is sensitive to the texture
appearance. Compared with Stu.-t MM, the spatially varying mixtures (St.-svgm) favors a more
contiguous segmentation for the texture region, preserving edges; this maymake a good tradeoff
between keeping coherence and capturing details, but the segmentation performance is degraded by
redundant boundaries, such as those within the goose body. Comparedwith these state-of-art algo-
rithms, the LSBP results appear to be very competitive. Among the Bayesian methods (DP, KSBP
and LSBP), LSBP tends to yield better segmentation, characterized by homogeneous segmentation
regions and sharp segment boundaries.

To quantify segmentation results, we also calculated the Rand Index (RI) (Unnikrishnan et al.,
2007) and the Variation of Information (VoI) (Meilă, 2003), using segmentation “truth” provided
with the data. RI measures consistency between two segmentation labels via an overlapping frac-
tion, and VoI roughly calculates the amount of randomness that exists in onesegmentation that is
not explained by the other. Accordingly, for the RI measure, larger values represent better perfor-
mance, and for VoI smaller values are preferred. We calculated the average RI and VoI values of the
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Figure 13: Segmentation examples of different methods with an initialization ofK = 10. From top
to down, each row shows: the original image, the image ground truth, normalized cuts,
multiscale Ncut, Student-t distributions mixture model (Stu.-t MM), spatially varying
mixtures (St.-svgm), DP mixture, KSBP mixture, and the LSBP mixture model.

thirty images for each category; the statistics for the two measures are depicted in Tables 1 and 2,
considering all 240 images and variousK.

Compared with other state-of-the-art methods, the LSBP yields relatively larger mean and me-
dian values for average RI, and relatively small average VoI, for mostK. For K = 2 and 4 the
spatially varying mixtures (St.-svgm) shows the largest RI values, while it does not yield similar
effectiveness asK increases. In contrast, the LSBP yields a relatively stable RI and VoI from K = 4
to 10. This property is more easily observed in Figure 14, which shows the averaged RI and VoI
evaluated as a function ofK, for categories “houses” and “cows”. The Stu.-t MM, St.-svgm, DP and
KSBP have similar performances for mostK; LSBP generates a competitive result with a smaller
K, and also yields robust performance with a largeK.

We also considered the Berkeley 300 data set.4 These images have size 481×321 pixels, and we
also over-segmented each image into 1000 superpixels. Both the RI and VoImeasures are calculated
on average, with the multiple labels (human labeled) provided with the data. Eachindividual image

4. Data set can be downloaded fromhttp://www.eecs.berkeley.edu/Research/Projects/CS/v ision/
grouping/segbench/ .
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K 2 4 6 8 10

Ncuts
mean 0.5552 0.6169 0.6269 0.6180 0.6093

median 0.5259 0.6098 0.6376 0.6286 0.6235
st. dev. 0.0953 0.1145 0.1317 0.1402 0.1461

Multi-
scale
Ncuts

mean 0.6102 0.6491 0.6387 0.6306 0.6228
median 0.5903 0.6548 0.6515 0.6465 0.6396
st. dev. 0.0979 0.1361 0.1462 0.1523 0.1584

Stu.-t
MM

mean 0.6522 0.6663 0.6409 0.6244 0.6110
median 0.6341 0.6858 0.6631 0.6429 0.6360
st. dev. 0.1253 0.1248 0.1384 0.1455 0.1509

St.-
svgm

mean 0.6881 0.6861 0.6596 0.6393 0.6280
median 0.6781 0.7026 0.6825 0.6575 0.6516
st. dev. 0.1249 0.1262 0.1427 0.1532 0.1599

DP
mean 0.6335 0.6527 0.6389 0.6270 0.6187

median 0.6067 0.6669 0.6431 0.6321 0.6232
st. dev. 0.1272 0.1283 0.1384 0.1464 0.1507

KSBP
mean 0.6306 0.6530 0.6396 0.6290 0.6229

median 0.5963 0.6693 0.6448 0.6371 0.6272
st. dev. 0.1237 0.1303 0.1397 0.1464 0.1523

LSBP
mean 0.6516 0.6791 0.6804 0.6704 0.6777

median 0.6384 0.6921 0.6900 0.6835 0.6885
st. dev. 0.1310 0.1202 0.1263 0.1294 0.1319

Table 1: Statistics on the averaged Rand Index (RI) over 240 images as a function ofK (Microsoft
Research Cambridge images).

typically has roughly ten segments within the ground truth. We calculated the evaluation measures
for K = 5, 10 and 15. Table 3 presents results, demonstrating that all methods produced competitive
results for both the RI and VoI measures. By a visual evaluation of the segmentation results (see
Figure 15), multi-scale Ncut is not as good as the other methods when the segments are of irregular
shape and unequal size.

The purpose of this section was to demonstrate that LSBP yields competitive segmentation
performance, compared with many state-of-the-art algorithms. It should be emphasized that there
is no perfect way of quantifying segmentation performance, especially since the underlying “truth”
is itself subjective. An important advantage of the Bayesian methods (DP, KSBP and LSBP) is
that they may be readily extended to joint segmentation of multiple images, considered in the next
section.

5.4 Joint Image Segmentation with H-LSBP

In this section we consider H-LSBP for joint segmentation of multiple images. Experiments are
performed on the Microsoft data, with another two unlabeled categories: “cloud” and “office”.
Each category is composed of 30 images, and therefore there are 300 images in total, analyzed
simultaneously. The same feature and image processing techniques are employed as above.
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K 2 4 6 8 10

Ncuts
mean 1.7911 2.2034 2.4344 2.6885 2.8828

median 1.8201 2.1990 2.4392 2.7134 2.8956
st. dev. 0.4402 0.4213 0.4003 0.3673 0.3615

Multi-
scale
Ncuts

mean 1.7017 2.0538 2.3535 2.5548 2.7397
median 1.7322 2.0238 2.3746 2.5912 2.7471
st. dev. 0.4253 0.4276 0.4030 0.4056 0.4215

Stu.-t
MM

mean 1.4903 2.0078 2.4258 2.7421 3.0085
median 1.5312 2.0283 2.4653 2.7495 3.0341
st. dev. 0.5161 0.4544 0.4120 0.3941 0.3798

St.-
svgm

mean 1.4031 1.8957 2.2667 2.5764 2.7999
median 1.4000 1.8957 2.2673 2.5919 2.8123
st. dev. 0.5094 0.4176 0.4113 0.3956 0.4001

DP
mean 1.4810 1.9522 2.2961 2.5808 2.7740

median 1.5145 1.9522 2.3541 2.6321 2.8432
st. dev. 0.4952 0.3923 0.4186 0.4164 0.4573

KSBP
mean 1.4806 1.9383 2.3063 2.5888 2.7873

median 1.4980 1.9811 2.3403 2.6304 2.8338
st. dev. 0.4811 0.3919 0.4150 0.4128 0.4457

LSBP
mean 1.4484 1.8142 1.9811 2.1050 2.0861

median 1.4631 1.8288 1.9825 2.1528 2.1178
st. dev. 0.4835 0.4478 0.4979 0.5101 0.5254

Table 2: Statistics on the Variation of Information (VoI) over 240 images as a function ofK (Mi-
crosoft Research Cambridge images).

Normalized Multiscale Stu.-t St.- DP KSBP LSBP
cuts Ncut MM svgm mixture mixture mixture

RI 0.7220 0.7404 0.7093 0.7188 0.7228 0.7237 0.7241
VoI 2.7857 2.5541 3.7772 3.5682 2.8573 2.7027 2.6591

Table 3: Different segmentation methods compared on Berkeley 300 images data set.

The H-LSBP automatically generates a set of indicator variableszmn for each superpixel. The
probability that thenth superpixel within imagem is associated with thekth hidden indicator vari-
abletmk, is represented aspk(smn) = σ(gk(smn))∏l<k(1−σ(gl (smn))). By integrating out the distri-
bution for each hidden indicator variabletmk drawn from the global set of atomsθ∗

k, we approximate
the membership for each superpixel by assigning it to the cluster with largestprobability. This
“hard” segmentation decision is employed to provide labels for each data point (the Bayesian anal-
ysis yields a “soft” segmentation in terms of a full posterior distribution), as employed above when
considering one image at a time.

Our goal is to segment all the images simultaneously, sharing model parameters(atoms) across
all images. The results of this analysis are used to infer the inter-relationshipbetween different
images, of interest for image sorting and search. We set truncation levelsL = 40 andK = 10
(similar results were found for larger truncations, and these parameters have not been optimized).
As demonstrated below, the model automatically infers the total number of principal atoms shared
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Figure 14: Average Rand Index (RI) and Variation of Information (VoI) as functions ofK with
image categories. (a) RI for “houses” , (b) RI for “cows”, (c) VoI for “houses”, (d) VoI
for “cows”.

across all images, and the number of atoms that dominate the segmentation of each individual
image. The learning of these principal atoms, across the multiple images, is an important aspect of
the model, so that the associated mixture weights with these atoms for each image can be regarded
as a measurable quantity of inter-relationship between images (Blei et al., 2003; An et al., 2008).
Specifically, similar images should have similar distributions over the model atoms. Withthe same
inter-relationship measure generated from the HDP (Teh et al., 2005), H-KSBP (An et al., 2008)
and the proposed H-LSBP, we may compare model utility as an image sorting or organizing engine.

To depict how the atoms are shared across multiple images with H-LSBP, we display an atom-
usage count matrix in Figure 16, in which the size of each square size is proportional to the relative
counts of that atom in a given image. Similar atom usage was revealed for HDPand H-KSBP
(omitted for brevity), but the H-LSBP generally was more parsimonious in its use of atoms. This is
attributed to the fact that the spatial continuity constraint within LSBP encourages a parsimonious
representation (a relatively small number of contiguous clusters).

Each inferred image atom is in principle associated with one class of featureswithin the images.
To get a feel for how the model operates, we examine the types of image segments associated
with representative atoms. Specifically, in Figure 17 we consider how eightrepresentative atoms
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Figure 15: Segmentation examples of different methods withK = 10, for Berkeley image data set.
From left to right, each column shows: the original image, the image ground truth, nor-
malized cuts, multiscale Ncut, the Student-t distribution mixture model (Stu.-t MM),
spatially varying mixtures (St.-svgm), DP mixture, KSBP mixture, and the LSBP mix-
ture model.
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Figure 16: Atom usage-count matrix for H-LSBP.

are distributed within example images. In this figure we show the original image, and also the
same image with all portionsnot associated with a given atom blacked out. From Figure 17 we
observe that atom 1 is principally associated with trees, atom 2 is associated with grass, atom 4
principally models offices, and atom 10 is mainly attributed to the surface of buildings. Figure 18
shows atom examples inferred from the H-KSBP and HDP, and the representative “cloud”, “grass”,
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Figure 17: Demonstration of different atoms inferred by the H-LSBP model. The original images
and associated connection to model-parameter atoms are shown on consecutive rows.
All regionsnot associated with a respective atom are blacked out.

“tree” and “street” atoms do not do as well in maintaining spatial contiguity. Thisproperty is
especially important to locate certain objects or scenes. For example, for animage annotation
task, it is usually expensive to acquire training data set by manually annotating image by image.
Therefore, the H-LSBP might be used as an automatic annotation tool to saveredundant manual
work for the preprocessing the images with no words given.
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Figure 18: Examples of different atoms inferred by the H-KSBP and HDP model: The first row is
the original images; the second row is the atoms inferred by H-KSBP; the thirdrow is
the atoms inferred by HDP.
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Based on the atoms inferred from Figure 16, we can jointly segment the 300 images with H-
LSBP. Each atom represents a label, and the superpixels that shared thesame atom are grouped
together. Some representative segmentation examples are shown in Figure 19, in which each column
shows one segmentation example with its “ground truth” (the second row), and the color bar encodes
the labels/indexes of the results in the third row (the labels are re-ordered tobe different from the
atom index).

Another interesting problem is to infer the inter-relationship between different images, and this
may be achieved by quantifying the degree to which they share atoms (the sharing of the same set
of atoms across all images plays an important role in inferring inter-image relationships). Since we
know which atoms{θ∗

l }
L
l=1 the superpixels within each image are drawn from, we may calculate

the Kullback-Leibler (KL) divergence based on the histogram over atomsbetween each pair of
images (a small value is added to the probability of each atom, to avoid numerical problems when
computing the KL divergence, when the actual usage of particular atoms maybe zero). The KL
divergence between different categories, computed by averaging across all of the sub-class images,
are shown in Figure 20. To make the figure easier to read, the KL divergenceDKL is re-scaled as
exp(−DKL). In Figure 20(a) results are shown based on the proposed H-LSBP, in(b) based upon an
H-KSBP analysis, and in (c) based upon an HDP analysis. The H-LSBP,H-KSBP and HDP each
yield good results, but Figure 20 indicates that the H-LSBP produces smaller cross-class similarity
(additionally, the H-KSBP results are better than those of HDP).

To demonstrate the utility of the proposed method in the context of an image sorting/search
engine, we show image sorting examples in Figure 21. The left-most column is theoriginal image,
and columns 2-6 are the ordered five most similar images in the database, ordered according to the
value of the KL divergence between the original image and the remaining 299images. The five
most similar images are shown in Figure 21, with generally good sorting performance manifested.

5.5 Computational Complexity

All the experiments in this paper were performed in Matlab on a Pentium PC with 1.73 GHz CPU
and 4G RAM. For the audio-waveform example, 80 VB iterations for LSBP required 40 seconds.
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Figure 19: Representative set of segmentation results of H-LSBP. The top row gives example im-
ages, the second row defines “truth” as given by the data set, and the third row represents
the respective H-LSBP results.
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Figure 20: Similarity matrix associated with the ten image categories. (a) H-LSBP,(b) H-KSBP,
(c) HDP

For the multi-task image segmentation, H-LSBP required nearly 7 hours of CPUto jointly segment
300 images, using 60 VB iterations (this CPU time may be cut in half if we only use 30VB iter-
ations, with minor degradation in performance). With both experiments, KSBP/H-KSBP typically
required comparable CPU time, while DP/HDP required less than half the CPU time.

6. Conclusions

The logistic stick-breaking process (LSBP) is proposed for clustering spatially- or temporally-
dependent data, imposing the belief that proximate data are more likely to be clustered together.
The sticks in the LSBP are realized via multiple kernel-based logistic regression functions, with
a shrinkage prior employed for favoring contiguous and spatially localizedpartitions. Competi-
tive segmentation performance has been manifested in several examples. Relative to other related
approaches, the proposed LSBP yields sharp segmentations, and is ableto automatically infer an
appropriate number of segments.

We also propose thehierarchical logistic stick-breaking process, H-LSBP, to segment multiple
data sets simultaneously, with example results presented for images. The modelparameters (atoms)
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Figure 21: Sample image sorting result, as generated by H-LSBP. The firstleft column shows the
images inquired, followed by the five most similar images from the second to sixth
column.
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are shared across all images, using a shared draw from a global DP prior. The total number of
important atoms across all images, as well as the particular important atoms for aspecific image,
are inferred with an efficient variational Bayesian (VB) solution. Compared with the hierarchical
Dirichlet process (HDP) and the hierarchical KSBP, the proposed method yields superior segmen-
tation performance, based on studies with natural images. Further, we have investigated the ability
of HDP, H-KSBP and H-LSBP to infer inter-relationship between different images, based on the
underlying sharing of model atoms. The improved segmentation quality of the H-LSBP, relative to
HDP and H-KSBP, also yields an improved ability to infer inter-image relationships.

Concerning future research, the results in Figure 17 indicate that the inferred atoms have con-
nections to physical entities in images. This suggests that the model may be extended to the joint
modeling of images and text (Barnard et al., 2003), with the text associated with aspects of the
image. In addition, in the H-LSBP modeling of multiple images, the employed DP prior assumes
that the order of the images is exchangeable (although LSBP imposes that spatial location within
a particular image is not exchangeable). There are many applications (e.g.,video) for which the
multiple images may have a prescribed time index, that should be exploited. The results on the
time-dependent audio data demonstrate how LSBP may also be employed to exploit temporal infor-
mation.

The LSBP software is posted atwww.ece.duke.edu\ ˜ lcarin\LSBP_code.rar

Appendix A. VB Update Equations for H-LSBP

For the model introduced in Section 3, we assume

q(Φ) = q(γ)
L

∏
l=1

q(θl )
L−1

∏
l ′=1

q(β̃l ′)
M

∏
m=1

[ K

∏
k′=1

q(tmk′)
K−1

∏
k=1

[

q(wmk)q(λmk)
Nm

∏
n=1

q(zmnk)
]

]

,

whereq(θl ) is the Dirichlet distribution, the same form as its priorp(θl |α0). Thenq(θl |α̃l ) is
updated with a uniform prior specified forα0 as follows:

α̃li = α0i +
M

∑
m=1

Nm

∑
n=1

K

∑
k′=1

< ξmn,k′ >q(zmn)< tmk′,l > ymni,

whereα0i = 1/I for i = 1, . . . , I , andI is the feature dimension;< ξmn,k′ >q(zmn)= ∏k′−1
k=1 (1−q(zmn=

k)) ·q(zmn= k′) represents the approximated posterior probability that dataDmn is associated with
the hidden “atom”tmk′ . Fork′ = K, ξmn,k′ = ∏k′−1

k=1 (1−q(zmn= k)). Finally,< tmk′,l >= q(tmk′ = l)
represents the approximated posterior probability thattmk′ takes the atomθl .

For updatingq(β̃) andq(γ) given the priorp(γ) = Ga(γ|e0, f0), assumeq(β̃l ) = Be(β̃l |πl1,πl2)
with l = 1, . . . ,L, andq(γ) = Ga(γ|ẽ, f̃ ). Then the update equations are as follows:

πl1 = 1+∑M
m=1 ∑K

k′=1 < tmk′,l >,
πl2 = ẽ/ f̃ +∑M

m=1 ∑K
k′=1 ∑L

l ′=l+1 < tmk′,l ′ >,
ẽ= e0+L−1,
f̃ = f0−∑L−1

l=1

[

ψ(πl2)−ψ(πl1+πl2)
]

,

in which ψ(·) is the Digamma function.
Given the approximate distribution of the other variables,

q(tmk′ = l) ∝ exp
[

< logp(tmk′ |β)>q(β) +< logp(ym|tmk′ ,zm,θl )>q(zm),q(θl )

]

,
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where< ·>q(·) represents the expectation of the associated variable’s distribution. One may readily
derive that

q(tmk′ = l) ∝ exp
[ l−1

∑
l ′=1

[

ψ(πl ′2)−ψ(πl ′1+πl ′2)
]

+
[

ψ(πl1)−ψ(πl1+πl2)
]

+

Nm

∑
n=1

< ξmn,k′ >q(zmn)< logp(y|θl )>q(θl )

]

,

where< logp(y|θl ) >q(θl ) is the data likelihood, with expectation performed with respect to the
distribution of atomsθl (which may be derived readily). Thenq(tmk′) = Mult(umk′1, . . . ,umk′L), in

whichumk′l =
q(tmk′=l)

∑L
l ′=1 q(tmk′=l ′)

.

Similarly, assumeq(Wmk) =N(m̃mk, Γ̃mk) andq(zmnk= 1) = ρmn,k = σ(hmnk) for k= 1, . . . ,K−
1, then

hmnk=
K

∑
k′=k

(−1)νkk′ < ξ−k
mn,k′ >q(z−k

mn)

L

∑
l ′=1

q(tmk′ = l ′)
[

< logp(y|θl )>q(θl )

]

+ m̃T
mkx

k
mn,

where< ξ−k
mn,k′ >z−k

mn
= ∏K−1

j=1, j 6=k

[

ρmn, j(−1)ν jk′ + ν jk′
]

is the expectation associated the gating vari-
ables{zmn1, . . . ,zmn(k−1),zmn(k+1), . . . ,zmn(K−1)} exceptzmnk, with the following definition forνkk′ :

νkk′ =

{

0 if tmk′ is in the left subtree ofGmk (see Fig. 5),
1 otherwise.

Assumingq(λmki) = Ga(ãmki, b̃mki), with i = 0,1, . . . ,Nc, the update equations forq(Wmk) are
as follows:

Γ̃mk=
[

2∑Nm
n=1 f (ηmnk)xk

mnx
k
mn

T
+diag( ãmk

b̃mk
)
]−1

,

m̃mk= Γ̃mk∑Nm
n=1

[

(ρmn,k−1/2)xk
mn

]

,

where the variational parameter

ηmnk=

√

xk
mn

T
(m̃mkm̃T

mk+ Γ̃mk)xk
mn,

and f (ηmnk) =
tanh(ηmnk/2)

4ηmnk
(Bishop and Svensén, 2003; Bishop and Tipping, 2000). The parameters

xk
mn are defined asxk

mn= {1,{K(smn, ŝmi;ψmk}
Nc
i=1}.

Givenq(Wmk), the update equations forq(λmk) are

ãmki = a0+1/2,
b̃mki =

1
2(Γ̃mk(i, i)+ m̃2

mki)+b0.
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