
Journal of Machine Learning Research 12 (2011) 2411-2414 Submitted 8/09; Revised 7/10; Published 7/11

MULAN : A Java Library for Multi-Label Learning

Grigorios Tsoumakas GREG@CSD.AUTH .GR

Eleftherios Spyromitros-Xioufis ESPYROMI@CSD.AUTH .GR

Jozef Vilcek JOJOVILCO@GMAIL .COM

Ioannis Vlahavas VLAHAVAS @CSD.AUTH .GR

Department of Informatics
Aristotle University of Thessaloniki
Thessaloniki 54124, Greece

Editor: Cheng Soon Ong

Abstract
MULAN is a Java library for learning from multi-label data. It offers a variety of classification, rank-
ing, thresholding and dimensionality reduction algorithms, as well as algorithms for learning from
hierarchically structured labels. In addition, it contains an evaluation framework that calculates a
rich variety of performance measures.
Keywords: multi-label data, classification, ranking, thresholding,dimensionality reduction, hier-
archical classification, evaluation

1. Multi-Label Learning

A multi-label data set consists of training examples that are associated with a subset of a finite set
of labels. Nowadays, multi-label data are becoming ubiquitous. They arise inan increasing number
and diversity of applications, such as semantic annotation of images and video, web page catego-
rization, direct marketing, functional genomics and music categorization into genres and emotions.

There exist two major multi-label learning tasks (Tsoumakas et al., 2010):multi-label classifi-
cationandlabel ranking. The former is concerned with learning a model that outputs a bipartition of
the set of labels into relevant and irrelevant with respect to a query instance. The latter is concerned
with learning a model that outputs a ranking of the labels according to their relevance to a query
instance. Some algorithms learn models that serve both tasks. Several algorithms learn models that
primarily output a vector of numerical scores, one for each label. This vector is then converted to a
ranking after solving ties, or to a bipartition, afterthresholding(Ioannou et al., 2010).

Multi-label learning methods addressing these tasks can be grouped into twocategories
(Tsoumakas et al., 2010):problem transformationandalgorithm adaptation. The first group of
methods are algorithm independent. They transform the learning task into one or more single-
label classification tasks, for which a large body of learning algorithms exists. The second group
of methods extend specific learning algorithms in order to handle multi-label datadirectly. There
exist extensions of decision tree learners, nearest neighbor classifiers, neural networks, ensemble
methods, support vector machines, kernel methods, genetic algorithms andothers.

Multi-label learning stretches across several other tasks. When labels are structured as a tree-
shaped hierarchy or a directed acyclic graph, then we have the interesting task ofhierarchical multi-
label learning. Dimensionality reductionis another important task for multi-label data, as it is for

c©2011 Grigorios Tsoumakas, Eleftherios Spyromitros-Xioufis,Jozef Vilcek and Ioannis Vlahavas.



TSOUMAKAS, SPYROMITROS-X IOUFIS, V ILCEK AND VLAHAVAS

any kind of data. When bags of instances are used to represent a training object, thenmulti-instance
multi-label learning algorithms are required. There also existsemi-supervised learningandactive
learningalgorithms for multi-label data.

2. TheMULAN Library

The main goal of MULAN is to bring the benefits of machine learning open source software
(MLOSS) (Sonnenburg et al., 2007) to people working with multi-label data.The availability of
MLOSS is especially important in emerging areas like multi-label learning, because it removes the
burden of implementing related work and speeds up the scientific progress.In multi-label learning,
an extra burden is implementing appropriate evaluation measures, since theseare different com-
pared to traditional supervised learning tasks. Evaluating multi-label algorithms with a variety of
measures, is considered important by the community, due to the different types of output (biparti-
tion, ranking) and diverse applications.

Towards this goal, MULAN offers a plethora of state-of-the-art algorithms for multi-label classi-
fication and label ranking and an evaluation framework that computes a large variety of multi-label
evaluation measures through hold-out evaluation and cross-validation. In addition, the library offers
a number of thresholding strategies that produce bipartitions from score vectors, simple baseline
methods for multi-label dimensionality reduction and support for hierarchical multi-label classifi-
cation, including an implemented algorithm.

MULAN is a library. As such, it offers only programmatic API to the library users. There is no
graphical user interface (GUI) available. The possibility to use the libraryvia command line, is also
currently not supported. Another drawback of MULAN is that it runs everything in main memory
so there exist limitations with very large data sets.

MULAN is written in Java and is built on top of Weka (Witten and Frank, 2005). This choice was
made in order to take advantage of the vast resources of Weka on supervised learning algorithms,
since many state-of-the-art multi-label learning algorithms are based on problem transformation.
The fact that several machine learning researchers and practitionersare familiar with Weka was
another reason for this choice. However, many aspects of the library are independent of Weka and
there are interfaces for most of the core classes.

MULAN is an advocate of open science in general. One of the unique features ofthe library is a
recently introduced experiments package, whose goal is to host code that reproduces experimental
results reported on published papers on multi-label learning.

To the best of our knowledge, most of the general learning platforms, likeWeka, don’t support
multi-label data. There are currently only a number of implementations of specific multi-label
learning algorithms, but not a general library like MULAN .

3. UsingMULAN

This section presents an example of how to setup an experiment for empiricallyevaluating two
multi-label algorithms on a multi-label data set using cross-validation. We createa new Java class
for this experiment, which we callMulanExp1.java.

The first thing to do is load the multi-label data set that will be used for the empirical evaluation.
MULAN requires two text files for the specification of a data set. The first one is in the ARFF format
of Weka. The labels should be specified as nominal attributes with values “0”and “1” indicating

2412



MULAN : A JAVA L IBRARY FOR MULTI -LABEL LEARNING

absence and presence of the label respectively. The second file is in XML format. It specifies the
labels and any hierarchical relationships among them. Hierarchies of labelscan be expressed in the
XML file by nesting thelabel tag.

In our example, the two filenames are given to the experiment class through command-line
parameters.

String arffFile = Utils.getOption("arff", args);
String xmlFile = Utils.getOption("xml", args);

Loading the data can then be done using the following code.

MultiLabelInstances data = new MultiLabelInstances(arffFile, xmlFile);

The next step is to create an instance from each of the two learners that wewant to evaluate. We
will create an instance of the RAkEL and MLkNN algorithms. RAkEL is actually a meta algorithm
and can accept any multi-label learner as a parameter, but is typically usedin conjunction with the
Label Powerset (LP) algorithm. In turn LP is a transformation-based algorithm and it accepts a
single-label classifier as a parameter. We will use Weka’s J48 algorithm for this purpose. MLkNN
is an algorithm adaptation method that is based onkNN.

RAkEL learner1 = new RAkEL(new LabelPowerset(new J48()));
MLkNN learner2 = new MLkNN();

We then declare anEvaluator object that handles empirical evaluations and an object of the
MultipleEvaluation class that stores cross-validation results.

Evaluator eval = new Evaluator();
MultipleEvaluation results;

To actually perform the evaluations we use thecrossValidate method of theEvaluator class.
This returns aMultipleEvaluation object, which we can print to see the results in terms of all
applicable evaluation measures available in MULAN .

int numFolds = 10;
results = eval.crossValidate(learner1, data, numFolds);
System.out.println(results);
results = eval.crossValidate(learner2, data, numFolds);
System.out.println(results);

For running the experiment, we can use the emotions data (emotions.xml and emotions.arff)
that are available together with the MULAN distribution. Other open access multi-label data sets
can be found athttp://mulan.sourceforge.net/datasets.html. Assuming the experiment’s
source file is in the same directory with emotions.arff, emotions.xml, weka.jar and mulan.jar from
the distribution package, then to run this experiment we type the following commands (under Linux
use : instead of ; as path separator).

javac -cp mulan.jar;weka.jar MulanExp1.java
java -cp mulan.jar;weka.jar;. MulanExp1 -arff emotions.arff -xml emotions.xml

Themulan.examples package includes additional examples of usage of the MULAN API, such
as how to do hold-out and cross-validation learning experiments, how to store/load learned models,
perform dimensionality reduction, estimate data set statistics and obtain predictions on test sets with
unknown label values.

2413



TSOUMAKAS, SPYROMITROS-X IOUFIS, V ILCEK AND VLAHAVAS

4. Documentation, Requirements and Availability

MULAN ’s online documentation1 contains user oriented sections, such asgetting started withMU-
LAN andthe data set format ofMULAN , as well as developer-oriented sections, such asextending
MULAN , API referenceand running tests. There is also a mailing list for requesting support on
using or extending MULAN .

MULAN is available under the GNU GPL licence. The current version of the library2 is 1.3.0.
It requires Java version 1.6, Weka version 3.7.3 and JUnit version 4.5 (only for running tests).

Acknowledgments

We would like to thank several people that have contributed pieces of codeto the library. First
and most importantly Robert Friberg for his help on the first steps towards MULAN . Then, the
following people in alphabetical order: S. Bakirtzoglou, W. Cheng, M. Ioannou, I. Katakis, S.-H.
Park, E. Rairat, G. Sakkas, G. Saridis, K. Sechidis, E. Stachtiari and G. Traianos.

References

Marios Ioannou, George Sakkas, Grigorios Tsoumakas, and IoannisVlahavas. Obtaining biparti-
tions from score vectors for multi-label classification.IEEE International Conference on Tools
with Artificial Intelligence, 1:409–416, 2010. ISSN 1082-3409.

Sören Sonnenburg, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou, Geoffrey
Holmes, Yann LeCun, Klaus-Robert M̈uller, Fernando Pereira, Carl Edward Rasmussen, Gun-
nar R̈atsch, Bernhard Schölkopf, Alexander Smola, Pascal Vincent, Jason Weston, and Robert
Williamson. The need for open source software in machine learning.JMLR, 8:2443–2466, 2007.

Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. Mining multi-label data. In Oded
Maimon and Lior Rokach, editors,Data Mining and Knowledge Discovery Handbook, chap-
ter 34, pages 667–685. Springer, 2nd edition, 2010.

Ian H. Witten and Eibe Frank.Data Mining: Practical Machine Learning Tools and Techniques.
Morgan Kaufmann, 2005.

1. Available athttp://mulan.sourceforge.net/documentation.html.
2. Available for download athttp://sourceforge.net/projects/mulan/.

2414


