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Abstract
Since the invention of temporal difference (TD) learning (Sutton, 1988), many new algorithms
for model-free policy evaluation have been proposed. Although they have brought much progress
in practical applications of reinforcement learning (RL),there still remain fundamental problems
concerning statistical properties of the value function estimation. To solve these problems, we
introduce a new framework,semiparametric statistical inference, to model-free policy evaluation.
This framework generalizes TD learning and its extensions,and allows us to investigate statistical
properties of both of batch and online learning procedures for the value function estimation in a
unified way in terms ofestimating functions. Furthermore, based on this framework, we derive an
optimal estimating function with theminimum asymptotic varianceand propose batch and online
learning algorithms which achieve the optimality.
Keywords: reinforcement learning, model-free policy evaluation, TDlearning, semiparametirc
model, estimating function

1. Introduction

Studies in reinforcement learning (RL) have provided a methodology for optimal control and deci-
sion making in various practical applications, for example, job scheduling (Zhang and Dietterich,
1995), backgammon (Tesauro, 1995), elevator dispatching (Crites andBarto, 1996), and dynamic
channel allocation (Singh and Bertsekas, 1997). Although the tasks in these studies are large-scale
and complicated, RL has achieved good performance which exceeds thatof human experts. These
successes were attributed to model-free policy evaluation, that is, the valuefunction which evaluates
the expected cumulative reward is estimated from a given sample trajectory without specifying the
task environment. Since the policy is updated based on the estimated value function, the quality
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of its estimation directly affects policy improvement. Hence, it is important for research in RL to
develop efficient model-free policy evaluation techniques.

This article introduces a novel framework,semiparametric statistical inference, to model-free
policy evaluation. This framework generalizes previously developed model-free algorithms, which
include temporal difference learning and its extensions, and moreover, enables us to investigate the
statistical properties of these algorithms, which have not been yet elucidated.

The overall framework can be summarized as follows. We focus on the policy evaluation like in
previous studies (Singh and Dayan, 1998; Mannor et al., 2004; Grunëwälder and Obermayer, 2006;
Mannor et al., 2007); then we deal with the Markov Reward Process (MRP), in which the initial,
transition, and the reward probabilities are assumed to be unknown. From asample trajectory given
by MRP, the value function is estimated without directly identifying those probabilities. Central
to our proposed framework is the notion ofsemiparametric statistical modelswhich include not
only parameters of interest but also additional nuisance parameters with possibly infinite degrees of
freedom. We specify the MRP as a semiparametric model, where only the value function is modeled
parametrically with a smaller number of parameters than necessary, while the other unspecified part
of MRP corresponds to the nuisance parameters. For estimating the parameters of interest in such
models,estimating functionsprovide a well-established toolbox: they give consistent estimators
(M-estimators) regardless of the nuisance parameters (Godambe, 1960,1991; Huber and Ronchetti,
2009; van der Vaart, 2000). In this sense, the semiparametric inferenceis a promising approach to
model-free policy evaluation.

Our contributions are summarized as follows:

(a) A set of all estimating functions is shown explicitly: the set constitutes a general class of
consistent estimators (Theorem 4). Furthermore, by applying the asymptoticanalysis, we
derive the asymptotic estimation variance of general estimating functions (Lemma3) and
the optimal estimating function that yields theminimum asymptotic varianceof estimation
(Theorem 6).

(b) We discuss two types of learning algorithms based on estimating functions.One is the class
of batch algorithms which obtain estimators in one shot by using all samples in the given
trajectory such as least squares temporal difference (LSTD) learning(Bradtke and Barto,
1996). The other is the class of online algorithms which update the estimators step-by-step
such as temporal difference (TD) learning (Sutton, 1988). In the batchalgorithm, we assume
that the value function is represented as a parametrically linear function andderive a new least
squares-type algorithm,gLSTDlearning, which achieves the minimum asymptotic variance
(Algorithm 1).

(c) Following previous work (Amari, 1998; Murata and Amari, 1999; Bottouand LeCun, 2004,
2005), we examine the convergence of statistical deviations of the online algorithms. We
then show that the online algorithms can achieve the same asymptotic performance as their
batch counterparts if the parameters controlling learning processes are appropriately tuned
(Lemma 9 and Theorem 10). We derive the optimal choice of the estimating function and
construct the online learning algorithm that achieves the minimum estimation errorasymp-
totically (Algorithm 2). We also propose an acceleration of TD learning, which is called
accelerated TD learning(Algorithm 3).

(d) We then show that our proposed framework generalizes almost all ofthe conventional model-
free policy evaluation algorithms, such as TD learning, TD(λ) learning (Sutton, 1988; Sutton
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Figure 1: Graphical model for infinite horizon MRP.s andr denote state variable and reward, re-
spectively.

and Barto, 1998), Bellman residual (RG) learning (Baird, 1995), LSTDlearning (Bradtke
and Barto, 1996), LSTD(λ) learning (Boyan, 2002), least squares policy evaluation (LSPE)
learning (Nedíc and Bertsekas, 2003), and incremental LSTD (iLSTD) learning (Geramifard
et al., 2006, 2007) (Table 1).

We compare the performance of the proposed online algorithms with a couple of well-established
algorithms in simple numerical experiments and show that the results support our theoretical find-
ings.

The rest of this article is organized as follows. First, we give background of MRP and define
the semiparametric statistical model for estimating the value function (Section 2). After providing
a short overview of estimating functions (Section 3), we present the main contribution, fundamen-
tal statistical analysis based on the estimating function theory (Section 4). Then, we explain the
construction of practical learning algorithms, derived from estimating functions, as both batch and
online algorithms (Section 5). Furthermore, relations of our proposed methods to current algorithms
in RL are discussed (Section 6). Finally, we report our experimental results (Section 7), and discuss
open questions and future direction of this study (Section 8).

2. Markov Reward Processes

Figure 1 shows a graphical model for an infinite horizon MRP1 which is defined by the initial state
probability p(s0), the state transition probabilityp(st |st−1) and the reward probabilityp(rt |st ,st−1).
State variables is an element of a finite setS and reward variabler ∈ R can be either discrete or
continuous. The joint distribution of a sample trajectoryZT ≡ {s0,s1, r1 · · · ,sT , rT} of the MRP is
described as

p(ZT) = p(s0)
T

∏
t=1

p(rt |st ,st−1)p(st |st−1). (1)

We further impose the following assumptions on MRPs.

Assumption 1 Under p(st |st−1), the MRP has a unique invariant stationary distribution µ(s).

Assumption 2 For any time t, reward rt is uniformly bounded.

1. In this study, we only consider MRPs; however, extension to Markov Decision Processes (MDPs) is straightforward
as long as considering the policy evaluation problem (hence the policy is fixed).
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Before introducing the statistical framework, we begin by confirming that thevalue function esti-
mation can be interpreted as estimation of certain statistics of MRP (1).

Proposition 1 (Bertsekas and Tsitsiklis, 1996) Consider a conditional probability of{rt ,st} given
st−1,

p(rt ,st |st−1) = p(rt |st ,st−1)p(st |st−1).

Then, there is such a function V that

E [rt |st−1] =V(st−1)− γE[V(st)|st−1] (2)

holds for any state st−1∈S, whereγ∈ [0,1) is a constant called discount factor. Here,E [·|s] denotes
the conditional expectation for the given state s. The function V that satisfies Equation (2) is unique
and found to be the value function:

V(s)≡ lim
T→∞

E

[
T

∑
t=1

γt−1rt

∣∣∣∣∣s0 = s

]
. (3)

We assume throughout this article that the value function can be represented by a certain parametric
function, even a nonlinear function with respect to its parameter.

Assumption 3 The value function given by Equation (3) is represented by a parametric function
g(s,θ):

V(s) = g(s,θ).

Here, g: S×Θ 7→ R andθ ∈ Θ is a certain parameter in a parameter spaceΘ ⊆ R
m. Also, the

dimension of the parameterθ is smaller than that of the state space: m< |S|. Moreover, g(s,θ) is
assumed to be twice continuously differentiable with respect toθ.

Under Assumption 3,p(rt |st−1) is partially parametrized byθ, through its conditional mean

E[rt |st−1] = g(st−1,θ)− γE[g(st ,θ)|st−1]. (4)

Our objective is to find out such a value of the parameterθ that functiong(s,θ) satisfies Equa-
tion (4), that is, it coincides with the true value function.

To specify the probabilistic model (1) altogether, we usually need extra parameters other than
θ. Let ξ0 andξs be such additional parameters thatp(s0,ξ0) and p(r,s|s;θ,ξs) can completely
represent the initial and transition distributions, respectively. In such a case, the joint distribution of
the trajectoryZT is expressed as

p(ZT ;θ,ξ) = p(s0;ξ0)
T

∏
t=1

p(rt ,st |st−1;θ,ξs), (5)

whereξ ≡ (ξ0,ξs).
Since it is in general quite difficult to know the complexity of the target system, we attempt to

estimate the parameterθ representing the value function beside the presence of the extraξ which
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GENERALIZED TD LEARNING

may have innumerable degrees of freedom. Statistical models which contain such (possibly infinite-
dimensional) nuisance parameters (ξ) in addition to the parameter of interest (θ), are called semi-
parametric (Bickel et al., 1998; Amari and Kawanabe, 1997; van der Vaart, 2000). We emphasize
that the nuisance parameters are necessary only for developing theoretical frameworks. In actual
estimation procedures of the parameterθ, same as in other model-free policy evaluation algorithms,
we neither define them concretely, nor estimate them. This can be achieved byusing estimating
functions which is a well-established technique to obtain a consistent estimator of the parameter
without estimating the nuisance parameters (Godambe, 1960, 1991; Amari and Kawanabe, 1997;
Huber and Ronchetti, 2009). The advantages of considering such semiparametric models behind
the model-free policy evaluation are:

(a) we can characterize all possible model-free algorithms,

(b) we can discuss asymptotic properties of the estimators in a unified way andobtain the optimal
one with theminimum estimation error.

We review the estimating function method in the next section.

3. Estimating Functions in Semiparametric Models

We begin with a short overview of the estimating function theory in the independent and identically
distributed (i.i.d.) case and then discuss the MRP case in the next section. We consider a general
semiparametric modelp(x;θ,ξ), whereθ is an m-dimensional parameter of interest andξ is a
nuisance parameter which can have infinite degrees of freedom. Anm-dimensional vector function
f of x andθ is called anestimating function(Godambe, 1960, 1991) when it satisfies the following
conditions for anyθ andξ for sufficiently large values ofT;

Eθ,ξ[f(x,θ)] = 0, (6)

det|A| 6= 0, whereA = Eθ,ξ [∂θf(x,θ)] , (7)

Eθ,ξ

[
‖f(x,θ)‖2

]
< ∞, (8)

where∂θ = ∂/∂θ is the partial derivative with respect toθ, and det| · | and|| · || denote the determi-
nant and the Euclidean norm, respectively. HereEθ,ξ[·] means the expectation overx with respect
to the distributionp(x;θ,ξ) and we further remark that the parameterθ in f(x,θ) andEθ,ξ[·] must
be the same.

Suppose i.i.d. samples{x1, · · · ,xT} are generated from the modelp(x;θ∗,ξ∗). If there is an
estimating functionf(x,θ), we can obtain an estimatorθ̂T which has good asymptotic properties,
by solving the following estimating equation:

T

∑
t=1

f(xt , θ̂T) = 0. (9)

A solution of the estimating Equation (9) is called anM-estimatorin statistics (Huber and Ronchetti,
2009; van der Vaart, 2000). The M-estimator is consistent, that is, it converges to the true value
regardless of the nuisance parameterξ∗.2 Moreover, it is normally distributed, that is,

2. In this study, ‘consistency’ means ‘local consistency’ as well as in the previous works (Amari and Kawanabe, 1997;
Amari and Cardoso, 2002; Kawanabe and Müller, 2005).
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Figure 2: An illustrative plot of 1/T ∑t f (xt ,θ) as function ofθ (solid line). Due to the effect of
finite samples, the function is slightly apart from its expectationEθ∗,ξ∗ [ f (x,θ)] (dashed
line) which takes 0 atθ= θ∗ because of condition (6). Condition (7) means that the expec-
tation (dashed line) has a non-zero slope aroundθ∗, which ensures the local uniqueness
of the zero crossing point. On the other hand, condition (8) guarantees that its standard
deviation, shown by the two dotted lines, shrinks in the order of 1/

√
T, thus we can ex-

pect to find asymptotically at least one solutionθ̂T of estimating Equation (9) near the
true valueθ∗. This situation holds regardless of the value of the true nuisance parameter
ξ∗.

θ̂T ∼ N (θ∗,Av), when the sample sizeT approaches infinity. The matrix Av, which is called the
asymptotic variance, can be calculated by

Av ≡ Av(θ̂T) =
1
T

A−1
Eθ∗,ξ∗

[
f(x,θ∗)f(x,θ∗)⊤

]
(A⊤)−1,

whereA =Eθ∗,ξ∗ [∂θf(x,θ∗)], and the symbol⊤ denotes the matrix transpose. Note that the matrix
Av depends on(θ∗,ξ∗), but not on the samples{x1, · · · ,xT}. We illustrate in Figure 2 the left side
of the estimating Equation (9) normalized by the sample sizeT to explain why an M-estimator has
good properties and to show the meaning of conditions (6)-(8).

4. Estimating Functions in MRP Model

The notion of estimating functions has been extended to be applicable to Markov time-series (Go-
dambe, 1985, 1991; Wefelmeyer, 1996; Sørensen, 1999). We need asimilar extension to enable it
to be applied to MRPs. For convenience, we write the triplet at timet aszt ≡ {st−1,st , rt} ∈ S2×R
and the trajectory up to timet asZt ≡ {s0,s1, r1, . . . ,st , rt} ∈ St+1×Rt .

Let us consider anm-dimensional vector-valued function of the formfT : ST+1×RT×Θ 7→R
m:

fT(ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ).
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This is similar to the left side of (9) in the i.i.d. case, but now each termψt : St+1×Rt ×Θ 7→ R
m

depends also on previous observations, that is, a function of the sequence up to timet. If the
sequence of the functions{ψt} satisfies the following properties for anyθ andξ, the functionfT

becomes an estimating function forT sufficiently large (Godambe, 1985, 1991).

Eθ,ξs [ψt(Zt ,θ)|Zt−1] = 0, ∀t, (10)

det|A| 6= 0, where A ≡ lim
t→∞

Eθ,ξ [∂θψt(Zt ,θ)] , (11)

lim
t→∞

Eθ,ξ

[
‖ψt(Zt ,θ)‖2

]
< ∞. (12)

Note that the estimating functionfT(ZT ,θ) satisfies the martingale properties because of condition
(10). Therefore, it is called amartingale estimating functionin the literature (Godambe, 1985, 1991;
Wefelmeyer, 1996; Sørensen, 1999).3 Although time-series estimating functions can be defined in
a more general form, the above definition is sufficient for our theoreticalconsideration.

4.1 Characterizing Class of Estimating Functions

In this section, we characterize possible estimating functions in MRPs. Let
ε : S2×R×Θ 7→ R

1 be the so-called temporal difference (TD) error, that is,

εt ≡ ε(zt ,θ)≡ g(st−1,θ)− γg(st ,θ)− rt .

From Equation (4), its conditional expectationEθ,ξs [εt |Zt−1] = Eθ,ξs [εt |st−1] is equal to 0 for anyt.
Furthermore, this zero-mean property holds even when multiplied by any weight function
wt−1(Zt−1,θ), which depends on past observations and the parameter, that is,

Eθ,ξs [wt−1(Zt−1,θ)ε(zt ,θ)|Zt−1] =wt−1(Zt−1,θ)Eθ,ξs [ε(zt ,θ)|Zt−1] = 0, (13)

for any t. We can obtain a class of possible estimating functionsfT(ZT ,θ) in MRPs from this
observation if we impose some regularity conditions summarized in Assumption 4.

Assumption 4

(a) Functionwt : St+1×Rt ×Θ 7→ R
m can be twice continuously differentiable with respect to

parameterθ for any t, andlim
t→∞

Eθ,ξ [|∂θwt(Zt ,θ)|]< ∞ for anyθ.

(b) There exists a limit of matrixEθ,ξ[wt−1(Zt−1,θ){∂θε(zt ,θ)}⊤], and the matrix
lim
t→∞

Eθ,ξ[wt−1(Zt−1,θ){∂θε(zt ,θ)}⊤] is nonsingular for anyθ andξ.

(c) Eθ,ξ[‖wt−1(Zt−1,θ)ε(zt ,θ)‖2] is finite for any t,θ andξ.

3. Strictly speaking, strict consistency of M-estimator given by functionf(ZT ,θ) requires some additional conditions.
To show consistency rigorously, we have to impose further conditions for exchange between limit and expectation
operators in the neighborhood of the true parameter (more detailed discussion is shown in Theorem 3.6 in Sørensen
1999). In this article, for the sake of readability, we do not show such strict discussion.
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Lemma 2 Suppose that random sequence ZT is generated from a distribution of semiparametric
model{p(ZT ;θ,ξ) |θ, ξ} defined by Equation (5). If the conditions in Assumptions 1-4 are satisfied,
then

fT(ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ)≡
T

∑
t=1

wt−1(Zt−1,θ)ε(zt ,θ) (14)

becomes an estimating function.

The proof is given in Appendix C. From Lemma 2, we can obtain an M-estimator
θ̂T : ST+1×RT 7→ R

m by solving the estimating equation

T

∑
t=1

ψt(Zt , θ̂T) = 0. (15)

Practical procedures for finding the solution of the estimating Equation (15)will be discussed in
Section 5. The estimator derived from the estimating Equation (15) has an asymptotic variance
summarized in the following lemma.

Lemma 3 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). If the
conditions in Assumptions 1-4 are satisfied, then the M-estimator derived from Equation (15) has
asymptotic estimation variance

Av = Av(θ̂T) =
1
T

A−1
Σ

(
A⊤
)−1

, (16)

whereA = A(θ∗,ξ∗) = lim
t→∞

Eθ∗,ξ∗

[
wt−1(Zt−1,θ

∗){∂θε(zt ,θ
∗)}⊤

]
,

Σ=Σ(θ∗,ξ∗) = lim
t→∞

Eθ∗,ξ∗
[
ε(zt ,θ

∗)2wt−1(Zt−1,θ
∗)wt−1(Zt−1,θ

∗)⊤
]
.

The proof is given in Appendix D. Interestingly, for the MRP model, we canspecify all possi-
ble estimating functions. More specifically, the converse of Lemma 2 also holds; any martingale
estimating functions for MRP must take the form (14).

Theorem 4 Suppose that the conditions in Assumptions 1-4 are satisfied. Then, any martingale
estimating functionfT(ZT ,θ) = ∑T

t=1ψt(Zt ,θ) in the semiparametric model{p(ZT ;θ,ξ) |θ, ξ} of
MRP can be expressed as

fT(ZT ,θ) =
T

∑
t=1

ψt(Zt ,θ) =
T

∑
t=1

wt−1(Zt−1,θ)ε(zt ,θ). (17)

The proof is given in Appendix E.

4.2 Optimal Estimating Function

Since Theorem 4 has specified the set of all martingale estimating functions, we can now discuss the
optimal estimating function among them which gives an M-estimator with theminimum asymptotic
variance. The weight functionwt(Zt−1,θ) may depend not only on the current statest and the
parameterθ, but also on the previous states and rewards. However, we do not need to consider such
weight functions, as Lemma 5 shows.
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Lemma 5 Letwt(Zt ,θ) be any weight function that depends on the current and previous observa-
tions and the parameter, and satisfies the conditions in Assumption 4. Then, there is necessarily a
weight function depending only on the current state and the parameter whose corresponding esti-
mator has the minimum asymptotic variance among all possible weight functions.

The proof is given in Appendix F.
We next discuss the optimal weight function of Equation (14) in terms of asymptotic variance,

which corresponds to the optimal estimating function.

Theorem 6 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). If the
conditions in Assumptions 1-4 are satisfied, an optimal estimating function with minimum asymp-
totic estimation variance is given by

f ∗T(ZT ,θ) =
T

∑
t=1

ψ∗t (zt ,θ)≡
T

∑
t=1

w∗t−1(st−1,θ
∗)ε(zt ,θ), (18)

where

w∗t−1(st−1,θ
∗)≡ Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
−1
Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1].

The proof is given in Appendix G. Note that weight functionw∗t−1(Zt−1,θ
∗) depends on true pa-

rameterθ∗ (unknown) and requires the expectation with respect top(rt ,st |st−1;θ∗,ξ∗s), which is
also unknown. Therefore, we need to approximate the true parameter andthe expectation, which
will be explained in a later section.

The asymptotic variance of the optimal estimating function can be calculated fromLemma 3
and Theorem 6.

Lemma 7 The minimum asymptotic variance is given by

Av = Av(θ̂T) =
1
T

Q−1,

whereQ≡ lim
t→∞

Eθ∗,ξ∗ [∂θψ∗t (zt ,θ
∗)] = lim

t→∞
Eθ∗,ξ∗

[
ψ∗t (zt ,θ

∗)ψ∗t (zt ,θ
∗)⊤
]
.

The proof is given in Appendix H. We here note that positive definite matrixQ is similar to the
Fisher information matrix, which is well-known in asymptotic estimation theory. However, the in-
formation associated with this matrixQ is generally smaller than the Fisher information because we
sacrifice statistical efficiency for robustness against the nuisance parameter (Amari and Kawanabe,
1997; Amari and Cardoso, 2002). In other words, the estimator derived from the estimating function
(18) does not achieve the statistical lower bound, that is, the Cramèr-Rao lower bound.4

5. Learning Algorithms

In this section, we present two kinds of practical algorithms to obtain the solution of the estimating
Equation (15): one is the batch learning procedure and the other is the online learning procedure. In
Section 5.1, we discuss batch learning and derive new least squares-type algorithms like LSTD and

4. If one wants more efficient estimators, it is necessary to identify the target MRP, including the nuisance parameters.
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LSTD(λ) to determine the parameterθ under the assumption that the value function is represented
as a parametrically linear function. In Section 5.2, we then study convergence issues of online
learning. We first analyze the sufficient condition of the convergence of the estimation and the
convergence rate of various online procedures without the constraintof linear parametrization. This
theoretical consideration allows us to obtain a new online learning algorithm that asymptotically
converges faster than current online algorithms.

5.1 Batch Learning

Let g(s,θ) be a linear parametric function of features:

V(st)≡ φ(st)
⊤θ, (19)

whereφ : S 7→R
m is a feature vector andθ ∈Θ is a parameter vector. Then, estimating Equation (14)

is given as

T

∑
t=1

wt−1(Zt−1,θ)
{
(φ(st−1)− γφ(st))

⊤
θ̂T − rt

}
= 0.

If the weight function does not depend on parameterθ, the estimator̂θT can be analytically obtained
as

θ̂T =

{
T

∑
t=1

w̄t−1(Zt−1)(φ(st−1)− γφ(st))
⊤
}−1{ T

∑
t=1

w̄t−1(Zt−1)rt

}
,

wherew̄t : St+1×Rt 7→ R
m is a function which depends only on the previous observations. Note

that when the weight function ¯w(Zt) is set toφ(st), this estimator is equivalent to that of the LSTD
learning.

We now derive a new least-squares learning algorithm,generalized least squares temporal dif-
ference (gLSTD), which achieves minimum estimation of asymptotic variance in linear estimations
of value functions. If weight functionw∗t (Zt ,θ

∗) defined in Theorem 6 is known, an estimator of
the estimating function (18) can be obtained as

θ̂T =

{
T

∑
t=1

w∗t−1(Zt−1,θ
∗)(φ(st−1)− γφ(st))

⊤
}−1{ T

∑
t=1

w∗t−1(Zt−1,θ
∗)rt

}
,

by recalling thatw∗t−1(Zt−1,θ
∗) =Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
−1
Eθ∗,ξ∗s [φ(st−1)−γφ(st)|st−1]. Obviously,

we do not knoww∗t−1(Zt−1,θ
∗) because the definition ofw∗t−1(Zt−1,θ

∗) contains the residual at the
true parameter,ε(zt ,θ

∗), and unknown conditional expectations,Eθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]

andEθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]. Therefore, we replace the true residualε(zt ,θ
∗) with that of the

LSTD estimator and approximate the expectationsEθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]

−1 and
Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1] by using function approximations

Eθ∗,ξ∗s [ε(zt ,θ
∗)2|st−1]

−1≈ v(st−1,α),

Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]≈ ζ(st−1,β),
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Algorithm 1 gLSTD learning

for t = 1,2, · · · do
Obtain samplezt = {st−1,st , rt}

end for

Set constantk to a sufficiently large value
for t = 1,2, · · · do

Calculate LSTD estimator̂θLSTD based on sample
{z1, · · · ,zt−1}∪{zt+k, · · · ,zT}
Calculate its residual̂εt

ε̂t ← (φ(st−1)− γφ(st))
⊤θ̂LSTD− rt

Calculate conditional expectationsv(st−1,α), ζ(st−1,β) by means of function approximations
based on sample{z1, · · · ,zt−1}∪{zt+k, · · · ,zT}
Obtain the weight function

ŵ∗t−1← v(st−1,α)
−1ζ(st−1,β)

end for

Obtain the gLSTD estimator

θ̂
gLSTD
T ← [∑T

t=1ŵ
∗
t−1(φ(st−1)− γφ(st))

⊤]−1[∑T
t=1ŵ

∗
t−1rt ]

whereα andβ are adjustable parameters for function approximatorsv(st−1,α) and ζ(st−1,β),
respectively. The estimation of conditional expectations is a simpler problem than that of the con-
ditional probability itself. Also note that if the weight function is approximated byusing past ob-
servationsZt−1, condition (13) still holds regardless of the approximation accuracy of theweight
function, implying the consistency of gLSTD. This is because any function that only depends on
past observations can be employed as a weight function. This favorablecharacteristic is consistent
regardless of the accuracy of approximation and allows us to use any approximation techniques
(e.g., sparse regression, kernel regression, or neural networks) without particular constraints. Al-
gorithm 1 demonstrates the pseudo-code of gLSTD learning. We introduce constant non-negative
integerk to Algorithm 1 to enhance the efficient use of samples. LSTD estimatorθ̂LSTD can be ob-
tained in an unbiased manner by using future trajectory{zt+k, · · · ,zT} for sufficiently large positive
integerk, because the MRPs defined in Equation (1) satisfy geometrically uniform mixing, implying
the exponential decay of the correlation between the statistics ofst andst+k. Althoughk must be
infinite to guarantee consistency in a strict sense, it could be a certain moderate integer when we
consider the trade-off between the accuracy of function approximationsand consistency. There are
also some computational difficulties in Algorithm 1 with a largek value, because we must store the
sample trajectory in memory to estimate weight function ˆw∗t at each timet. Thus, in the simulations
in Sections 7 and 8, we setk to zero; both the LSTD estimator and conditional expectations are
calculated by using whole samples. Although this simplified implementation in fact violates the
condition of consistency, it works well in practice.
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5.2 Online Learning

Online learning procedures in the field of RL are often preferred to batchlearning ones because they
require less memory and can be adapted even to time-variant situations. Here, an online estimator of
θ at timet is denoted aŝθt . Suppose that sequence{ψ1(Z1,θ), · · · ,ψT(ZT ,θ)} forms a martingale
estimating function for MRP. Then, an online update rule can simply be given by

θ̂t = θ̂t−1−ηtψt(Zt , θ̂t−1), (20)

whereηt denotes a nonnegative scalar stepsize. In fact, there are other online update rules derived
from the same estimating functionft(Zt ,θ) = ∑t

i=1ψi(Zi ,θ) as

θ̂t = θ̂t−1−ηtR(θ̂t−1)ψt(Zt , θ̂t−1), (21)

whereR(θ) denotes anm×mnonsingular matrix only depending onθ (Amari, 1998). This variation
results from the fact that functionR(θ) ∑t

i=1ψi(Zi ,θ) yields the same roots as its original for any
R(θ). This equivalence guarantees that both learning procedures, (20) and (21), have the same
equilibrium, while their dynamics may be different, that is, even if the original algorithm (20) is
unstable around the required solution, it can be stabilized by introducing appropriateR(θ) into
(21).

We will discuss the convergence of the online learning algorithm (21) in the next two subsec-
tions.

5.2.1 CONVERGENCE TOTRUE VALUE

We will now discuss the convergence of online learning (21) to the true parameterθ∗. For the sake
of simplicity, we will focus on local convergence, that is, initial estimatorθ̂0 is confined in the
neighborhood of the true parameter, which is assumed to be a unique solutionin the neighborhood.
Now let us introduce sufficient conditions for convergence.

Assumption 5

(a) For any t,(θ̂t −θ∗)⊤R(θ̂t)Eθ∗,ξ∗s [ψt+1(Zt+1, θ̂t)|st ] is nonnegative.

(b) For any t, there exists such nonnegative constants c1 and c2 that

Eθ∗,ξ∗s

[∥∥R(θ̂t)ψt+1(Zt+1, θ̂t)
∥∥2
∣∣∣st

]
≤ c1+c2

∥∥θ̂t −θ∗
∥∥2

.

Condition (a) assumes that the opposite of gradientR(θ̂t)Eθ∗,ξ∗s [ψt+1(Zt+1, θ̂t)|st ] must point toward
the true parameterθ∗ at each timet. Then, the following theorem guarantees the convergence ofθ̂t

to θ∗.

Theorem 8 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗). Also,
suppose that the conditions in Assumptions 1-5 hold. If stepsizes{ηt} are all positive and sat-
isfy ∑∞

t=1 ηt = ∞ and ∑∞
t=1 η2

t < ∞, then the online algorithm (21) almost surely converges to true
parameterθ∗.

The proof is given in Appendix I. Theorem 8 ensures that even if the original online learning algo-
rithm (20) does not converge to the true parameter, we can construct anonline learning algorithm
with local consistency by appropriately choosing matrixR(θ).
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5.2.2 CONVERGENCERATE

The convergence speed of an online algorithm could generally be slowerthan that of its batch
counterpart that tries to solve the estimating equation using all available samples. However, if we set
matrix R(θ) and stepsizes{ηt} appropriately, then it is possible to achieve the same convergence
speed as that of the batch algorithm (Amari, 1998; Murata and Amari, 1999;Bottou and LeCun,
2004, 2005). Following the discussion on the previous work (Bottou and LeCun, 2004, 2005), we
elucidate the convergence speed of online learning for estimating the value function in this section.
Throughout the following discussion, the notion ofstochastic ordersplays a central role. Appendix
A briefly describes the definition of stochastic orders and their properties. Then, we characterize
the learning process for the batch algorithm.

Lemma 9 Let θ̃t andθ̃t−1 be solutions to estimating equations
(1/t)∑t

i=1ψi(Zi , θ̃t) = 0 and (1/(t − 1))∑t−1
i=1ψi(Zi , θ̃t−1) = 0, respectively. We assume that the

conditions in Assumptions 2-4 are satisfied. Also we assume thatθ̃t is uniformly bounded for any t,
and matrixR̃t(θ̃t−1)≡ (1/t)∑t

i=1 ∂θψi(Zi , θ̃t−1) is nonsingular for any t. Then, we have

θ̃t = θ̃t−1−
1
t
R̃−1

t (θ̃t−1)ψt(Zt , θ̃t−1)+Op

(
1
t2

)
, (22)

where the definition of Op(·) is given in Appendix A.

The proof is given in Appendix J. Note that Equation (22) defines the sequence ofθ̃t as a recursive
stochastic process that is essentially the same as online learning (21) for thesameR. In other
words, Lemma 9 indicates that online algorithms can converge with the same convergence speed as
their batch counterparts through an appropriate choice of matrixR. Finally, the following theorem
addresses the convergence speed of the (stochastic) learning process such as that in Equation (22).

Theorem 10 Suppose that random sequence ZT is generated from distribution p(ZT ;θ∗,ξ∗), and
then consider the following learning process

θ̂t = θ̂t−1−
1
t
R̂−1

t ψt(Zt , θ̂t−1)+Op

(
1
t2

)
, (23)

whereR̂t ≡ {(1/t)∑t
i=1 ∂θψi(Zi , θ̂i−1)}. Assume that:

(a) For any t,θ̂t is uniformly bounded.

(b) R̂−1
t can be written aŝR−1

t = Eθ∗,ξ∗s [R̂
−1
t |Zt−1]+op(1/t).

(c) Eθ∗,ξ∗ [∂θψt(Zt ,θ
∗)θ̂t−1θ̂

⊤
t−1] can be written as

Eθ∗,ξ∗ [∂θψt(Zt ,θ
∗)θ̂t−1θ̂

⊤
t−1] = Eθ∗,ξ∗ [∂θψt(Zt ,θ

∗)]Eθ∗,ξ∗ [θ̂t−1θ̂
⊤
t−1]+o(1/t).

(d) For any t,R̂t is a nonsingular matrix.

Also assume that the conditions in Assumptions 1-4 are satisfied. If learning process (23) almost
surely converges to the true parameter, then the convergence rate is given as

Eθ∗,ξ∗
[
‖θ̂t −θ∗‖2

]
=

1
t
tr
{

A−1
Σ(A−1)⊤

}
+o

(
1
t

)
, (24)
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whereA = lim
t→∞

Eθ∗,ξ∗ [wt−1(Zt−1,θ
∗){∂θε(zt ,θ

∗)}⊤] and

Σ= lim
t→∞

Eθ∗,ξ∗ [ε(zt ,θ
∗)2wt−1(Zt−1,θ

∗)wt−1(Zt−1,θ
∗)⊤].

The proof is given in Appendix K. Note that this convergence rate (24) isneither affected by the
third term of (23) nor by theop(1/t) term in matrixR̂−1

t .

5.2.3 GENERALIZED TD LEARNING

We now present the online learning procedure that yields the minimum estimation error. Roughly
speaking, this is given by estimating functionf ∗T(ZT ,θ) in Theorem 6 with the best (i.e., with the
fastest convergence) choice of the nonsingular matrix in Theorem 10:

θ̂t = θ̂t−1−
1
t
Q̂−1

t ψ
∗(zt , θ̂t−1), (25)

whereQ̂−1
t = {(1/t)∑t

i=1 ∂θψ∗(zi , θ̂i−1)}−1 andψ∗(zt ,θ) have been defined by Equation (18). If
learning equation (25) satisfies conditions in Assumptions 1-5 and Theorem10, then it converges
to the true parameter with the minimum estimation error,(1/t)Q−1. However, this is impractical
as learning rule (25) contains unknown parameters and quantities. For practical implementation,
we need to evaluateEθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1] andEθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1] by using function approxi-

mations, whereas standard online learning procedures do not maintain statistics as a time series to
avoid increasing the amount of memory. Therefore, we apply online functional approximations to
these.

Let v(st ,αt)andζ(st ,βt) be the approximations ofEθ∗,ξ∗s [ε(zt+1,θt)
2|st ] and

Eθ∗,ξ∗s [∂θε(zt+1,θt)|st ], respectively. Here,αt andβt are adjustable parameters, and they are ad-
justed in an online manner;

α̂t = α̂t−1−ηα
t ∂αv(st−1,α̂t−1){v(st−1,α̂t−1)− ε(zt , θ̂t−1)

2}
β̂t = β̂t−1−ηβ

t ∂βζ(st−1, β̂t−1){ζ(st−1, β̂t−1)−∂θε(zt , θ̂t−1)},

whereηα
t andηβ

t are stepsizes. By using these parametrized functions, we can replaceψ∗t (zt , θ̂t−1)
andQ̂−1

t by

ψ∗t (zt , θ̂t−1) = v(st−1,α̂t−1)
−1ζ(st−1, β̂t−1)ε(zt , θ̂t−1)

Q̂−1
t =

{
1
t

t

∑
i=1

v(si−1,α̂i−1)
−1ζ(si−1, β̂i−1)∂θε(zi , θ̂i−1)

⊤
}−1

. (26)

Note that update (26) can be done in an online manner by applying the well-known matrix
inversion lemma (Horn and Johnson, 1985);

Q̂−1
t =

1
(1− εt)

Q̂−1
t−1−

εt

1− εt

Q̂−1
t−1ŵ

∗
t−1∂θε(zt , θ̂t−1)

⊤Q̂−1
t−1

(1− εt)+ εt∂θε(zt , θ̂t−1)⊤Q̂−1
t−1ŵ

∗
t−1

, (27)

whereεt ≡ 1/t andŵ∗t−1 ≡ v(st−1,α̂t−1)
−1ζ(st−1, β̂t−1). Following Amari et al. (2000), we addi-

tionally simplify update equation (27) as

Q̂−1
t = (1+ εt)Q̂−1

t−1− εtQ̂−1
t−1ŵ

∗
t−1∂θε(zt , θ̂t−1)

⊤Q̂−1
t−1, (28)
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Algorithm 2 Optimal TD Learning

Initialize α̂0, β̂0, θ̂0, Q̂−1
0 = εIm, a1, a2

{ε andIm denote a small constant and anm×m identical matrix.}
for t = 1,2, · · · do

Obtain a new sample,zt = {st−1,st , rt}
Calculate the weight function, ˆw∗t−1

α̂t ← α̂t−1−ηα
t ∂αv(st−1,α̂t−1){v(st−1,α̂t−1)− ε(zt , θ̂t−1)

2}
β̂t ← β̂t−1−ηβ

t ∂βζ(st−1, β̂t−1){ζ(st−1, β̂t−1)−∂θε(zt , θ̂t−1)}
ŵ∗t−1← v(st−1,α̂t−1)

−1ζ(st−1, β̂t−1)

UpdateQ̂−1
t by using Equation (28)

Q̂−1
t ← (1+(1/t))Q̂−1

t−1− (1/t)Q̂−1
t−1ŵ

∗
t−1∂θε(zt , θ̂t−1)

⊤Q̂−1
t−1

Update the parameter,
τ←min(a1,a2/t)
θ̂t ← θ̂t−1− (1/τ)Q̂−1

t ŵ
∗
t−1ε(zt , θ̂t−1)

end for

which can be obtained becauseεt is small. We call this procedureoptimal TD learningand its
pseudo-code is summarized in Algorithm 2.5

5.2.4 ACCELERATEDTD LEARNING

TD learning is a traditional online approach to model-free policy evaluation and has been one of
the most important algorithms in the RL field. Although TD learning is widely used because of
its simplicity, it is known that it converges rather slowly. This section discusses TD learning from
the viewpoint of the method of estimating functions and proposes a new online algorithm that can
achieve faster convergence than standard TD learning.

To simplify the following discussion, we have assumed thatg(s,θ) is a linear function as in
Equation (19) with which we can solve the linear estimating equation using both batch and online
procedures. When weight functionwt(Zt ,θ) in Equation (13) is set toφ(st), the online and batch
procedures correspond to the TD and LSTD algorithms, respectively. Note that both TD and LSTD
share the same estimating function. Therefore, from Lemma 9 and Theorem 10, we can theoretically
construct accelerated TD learning, which converges at the same speedas LSTD learning.

Here, we consider the following learning equation:

θ̂t = θ̂t−1−
1
t
R̂−1

t φ(st−1)ε(zt , θ̂t−1), (29)

whereR̂−1
t = {(1/t)∑t

i=1φ(si−1)(φ(si−1)− γφ(si))
⊤}−1. SinceR̂−1

t converges to
A−1 = lim

t→∞
Eθ∗,ξ∗ [φ(st−1)(φ(st−1)− γφ(st))

⊤]−1 andA−1 must be a positive definite matrix (see

Lemma 6.4 in Bertsekas and Tsitsiklis 1996), online algorithm (29) also almost surely converges
to the true parameter. Then, ifR̂t satisfies the conditions in Theorem 10, it can achieve thesame

5. Since the online approximation of the weight function only depends on past observations, optimal TD learning is
necessarily consistent even when the online approximation of the weight function is inaccurate.
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Algorithm 3 Accelerated-TD Learning

Initialize θ̂0, R̂−1
0 = εIm, a1, a2

{ε andIm denote a small constant and anm×m identical matrix.}
for t = 1,2, · · · do

Obtain a new sample,zt = {st−1,st , rt}
UpdateR̂−1

t

R̂−1
t ← (1+(1/t))R̂−1

t−1− (1/t)R̂−1
t−1∂θg(st−1, θ̂t−1)∂θε(zt , θ̂t−1)R̂−1

t−1

Update the parameter,
τ←min(a1,a2/t)
θ̂t ← θ̂t−1− (1/τ)R̂−1

t ∂θg(st−1, θ̂t−1)ε(zt , θ̂t−1)
end for

convergence rate as LSTD. We call this procedureAccelerated-TD learning. We present an imple-
mentation of Accelerated-TD learning in Algorithm 3.

6. Related Work

This section discusses the relation between current major RL algorithms and the proposed ones from
the viewpoint of estimating functions. Theorem 4 describes the broadest class of estimating func-
tions that lead to unbiased estimators. Therefore, almost all the current value-based RL methods, in
which consistency is assured, can be viewed as instances of the method ofestimating functions.

For simplicity, letg(s,θ) be a linear function, that is, the value function can be represented as in
Equation (19). We have two ways of solving such a linear estimating equation.The first is a batch
procedure:

θ̂T =

[
T

∑
t=1

wt−1(φ(st−1)− γφ(st))
⊤
]−1[ T

∑
t=1

wt−1rt

]
.

and the second is an online procedure:

θ̂t = θ̂t−1−ηtR̂twt−1ε(zt , θ̂t−1),

wherewt is a weight function at timet. By choosing both weight functionwt−1 and the learning
procedure, we can derive various RL algorithms. LetfTD

T , fTD(λ)
T , fRG

T andf ∗T be the estimating
functions that are defined as

fTD
T ≡ fTD

T (ZT ,θ) =
T

∑
t=1

φ(st−1)ε(zt ,θ),

f
TD(λ)
T ≡ fTD(λ)

T (ZT ,θ) =
T

∑
t=1

t

∑
i=1

(γλ)t−iφ(si−1)ε(zt ,θ),

fRG
T ≡ fRG

T (ZT ,θ) =
T

∑
t=1

Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]ε(zt ,θ),

f ∗T ≡ f ∗T(ZT ,θ) =
T

∑
t=1

Eθ∗,ξ∗s [(ε(zt ,θ
∗)2|st−1]

−1
Eθ∗,ξ∗s [φ(st−1)− γφ(st)|st−1]ε(zt ,θ).
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Figure 3: A five-states MRP.

Here, we remark that TD-based algorithms (TD Sutton and Barto, 1998, NTD Bradtke and Barto,
1996, LSTD Bradtke and Barto, 1996, LSPE Nedić and Bertsekas, 2003, GTD Sutton et al., 2009b,
GTD2, TDC Sutton et al., 2009a and iLSTD Geramifard et al., 2006), TD (λ)-based algorithms
(TD (λ) Sutton and Barto, 1998, NTD (λ) Bradtke and Barto, 1996, LSTD (λ) Boyan, 2002, LSPE
(λ) Nedíc and Bertsekas, 2003, and iLSTD (λ) Geramifard et al., 2007) and RG (Baird, 1995)
originated from the estimating functionsfTD

T , fTD(λ)
T andfRG

T , respectively. It should be noted
that GTD, GTD2, GTDc, iLSTD, and iLSTD (λ) are specific online implementations for solving
corresponding estimating equations; however, these algorithms can also beinterpreted as instances
of the method of estimating functions we propose. We have briefly summarized the relation between
the current learning algorithms and the proposed algorithms in Table 1.

The asymptotic behavior of model-free policy evaluation has been analyzedwithin special con-
texts; Konda (2002) derived the asymptotic variance of LSTD (λ) and revealed that the convergence
rate of TD (λ) was worse than that of LSTD (λ). Yu and Bertsekas (2006) derived the convergence
rate of LSPE (λ) and found that it had the same convergence rate as LSTD (λ). Because these results
can be seen in Lemma 3 and Theorem 8, our proposed framework generalizes previous asymptotic
analyses to provide us with a methodology that can be more widely applied to carry out asymptotic
analyses.

7. Simulation Experiment

In order to validate our theoretical developments, we compared the performance (statistical error)
of the proposed algorithms (gLSTD, Accelerated-TD and Optimal-TD algorithms) with those of the
online and batch baselines: TD algorithm (Sutton and Barto, 1998) and LSTD algorithm (Bradtke
and Barto, 1996), respectively, in a very simple problem. An MRP trajectory was generated from a
simple Markov random walk on a chain with five states(s= 1, · · · ,5) as depicted in Figure 3. At
each timet, the state changes to either of its left (−1) or right (+1) with equal probability of 0.5. A
reward function was set as a deterministic function of the state:
r = [0.6594,−0.3870,−0.9742,−0.9142,0.9714]6 and the discount factor was set to 0.95. The
value function was approximated by a linear function with three-dimensional basis functions, that is,
V(s)≈∑3

n=1 θnφn(s). The basis functionsφn(s) were generated according to a diffusion model (Ma-
hadevan and Maggioni, 2007); basis functions were given based on the minor eigenvectors of the

6. This reward function was prepared as follows. We first set the true value function by choosing the basis function and
generating the parameter randomly, then the reward function was set sothat it satisfied the Bellman equation.
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Online Learning: θ̂t = θ̂t−1−ηtR̂twt−1(Zt−1)ε(zt , θ̂t)

• fTD
T (ZT ,θ) = ∑T

t=1φ(st−1)ε(zt ,θ)

• TD (Sutton, 1988) R̂t = R = I

• NTD (Bradtke and Barto, 1996) R̂t = {(1/t)∑t
i=1φ(si)

⊤φ(si)}−1I

• LSPE (Nedíc and Bertsekas, 2003) R̂t = {(1/t)∑t
i=1φ(si)φ(si)

⊤}−1

• GTD (Sutton et al., 2009b) See Equations (9) and (10) in the literature

• GTD2 (Sutton et al., 2009a) See Equations (8) and (9) in the literature

• TDC (Sutton et al., 2009a) See Equations (9) and (10) in the literature

• iLSTD (Geramifard et al., 2006) See Algorithm 3 in the literature

• Accelerated-TD Learning R̂t = {(1/t)∑t
i=1φ(si−1)(φ(si−1) −

γφ(si))
⊤}−1, ηt = 1/t

• fTD(λ)
T (ZT ,θ) = ∑T

t=1 ∑t
i=1(γλ)t−iφ(si−1)ε(zt ,θ)

• TD(λ) (Sutton, 1988) R̂t = R = I

• NTD(λ) (Bradtke and Barto, 1996) R̂t = {(1/t)∑t
i=1φ

⊤(si)φ(si)}−1I

• LSPE(λ) (Nedíc and Bertsekas, 2003) R̂t = {(1/t)∑t
i=1φ(si)φ(si)

⊤}−1

• iLSTD(λ) (Geramifard et al., 2007) See Algorithm 2 in the literature

• fRG
T (ZT ,θ) = ∑T

t=1

(
φ(st−1)− γEθ∗,ξ∗s [φ(st)|st−1]

)
ε(zt ,θ)

• RG (Baird, 1995) R̂ = R = I

• f ∗T(ZT ,θ) given by Equation (18)

• Optimal-TD Learning R̂t = Q̂−1
t , ηt = 1/t

Batch Learning: θ̂T =
[
∑T

t=1wt−1(Zt−1)(φ(st−1)− γφ(st))
⊤]−1[

∑T
t=1w(Zt−1)rt

]

• fTD
T (ZT ,θ) = ∑T

t=1φ(st−1)ε(zt ,θ)

• LSTD (Bradtke and Barto, 1996)

• fTD(λ)
T (ZT ,θ) = ∑T

t=1 ∑t
i=1(γλ)t−iφ(si−1)ε(zt ,θ)

• LSTD(λ) (Boyan, 2002)

• f ∗T(ZT ,θ) given by Equation (18)

• gLSTD

Table 1: Relation between the current learning and the proposed algorithms. I denotes anm×m
identity matrix.
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Figure 4: Boxplots of MSE both of the online (TD, Accelerated-TD and Optimal-TD) and batch
(LSTD and gLSTD) algorithms. The center line, and the upper and lower sides of each
box denote the median of MSE, and the upper and lower quartiles, respectively. The
number above each box is the average MSE.

graph Laplacian on an undirected graph constructed by the state transition. The basis functions actu-
ally used in this simulation wereφ(s1) = [1,−0.6015,0.5117]⊤, φ(s2) = [1,−0.3717,−0.1954]⊤,
φ(s3) = [1,0,−0.6325]⊤,φ(s4) = [1,0.3717,−0.1954]⊤, andφ(s5) = [1,0.6015,0.5117]⊤. In gen-
eral, there is no guarantee that the true value function is included in the space spanned by the gener-
ated basis functions. In our example, however, the true value function can be represented faithfully
by the basis vectors above.

We first generatedM = 500 trajectories (episodes) each of which consisted ofT = 500 random
walk steps. The value function was estimated for each episode. We evaluated the mean squared
error (MSE) between the true value function and the estimated value function, evaluated over the
five states.

Figure 4 shows the boxplots of the MSE of the value functions estimated by the proposed
(Accelerated-TD, Optimal-TD and gLSTD) and baseline (TD and LSTD) algorithms, in which the
MSEs of all 500 episodes are shown by box-plots. For this example, the conditional expectations
both in Optimal-TD and gLSTD can be calculated by sample average in each state, because there
were only five states. In the online algorithms (TD, Accelerated-TD, and Optimal-TD), we used
some batch procedures to obtain initial estimates of the parameters, as is often done in many online
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procedures. More specifically, the first 10 steps in each episode wereused to obtain initial estimators
in a batch manner and the online algorithm started after the 10 steps.

In the proposed online algorithms (Accelerated-TD and Optimal-TD), the stepsizes were de-
creased as simple as 1/t. On the other hand, the convergence of TD learning was too slow in the sim-
ple 1/t setting due to fast decay of the stepsizes; this slow convergence was alsoobserved when em-
ploying a certain well-chosen constant stepsize. Therefore, we adoptan ad-hoc adjustment for the
stepsizes as 1/τ, whereτ = α0(n0+1)/(n0+ t). The bestα0 andn0 have been selected by searching
the sets ofα0 ∈ {0.05,0.1,0.2,0.3,0.4} andn0 ∈ {10,50,100,150,200,250,300,400,500,1000},
so thatα0 andn0 are selected as 0.3 and 200, respectively.

As shown in Figure 4, the Optimal-TD and gLSTD algorithms achieved the minimum MSE
among the online and batch algorithms, respectively. The MSEs by these two methods were com-
parable.7 It should be noted that the Accelerated-TD algorithm performed significantly better than
the ordinary TD algorithm, showing the matrixR was effective for accelerating the convergence of
the online procedure as expected by our theoretical analysis.

Figure 5 shows how the estimation error of the estimator (θ̂T) behaves as the learning proceeds,
both for online (upper panel) and batch (lower panel) learning algorithms.X-axis and y-axis denote
the number of learning steps and the estimation error, that is, the MSE betweenthe true parameter
and estimated parameter, average over 500 runs, respectively. The theoretical results, dotted and
solid lines, exhibit good accordance with the simulation results, crosses andcircles, respectively, as
expected. Although our theoretical methods were mostly based on asymptotic analysis, they were
supported by simulation results even in the cases of relatively small number ofsamples.

8. Discussion and Future Work

The contributions of this study are to present a new semiparametric approach to the model-free
policy evaluation, which generalizes most of the current policy evaluation methods, and to clarify
statistical properties of the policy evaluation problem. On the other hand, ourframework to eval-
uate the policy evaluation has been restricted to situations in which the function approximation is
faithful, that is, there is no model misspecification for the value function; we have not referred to sta-
tistical behaviors of our proposed algorithms in misspecified cases. In fact, the proposed algorithms
may not better than current algorithms when the choice of parametric functiong or the preparation
of basis functions for approximating the value function introduces bias. Also, it is unsure whether
our proposed online algorithms converge or not in misspecified cases. Figure 6 shows an example
where the proposed algorithms (Optimal-TD and gLSTD) fail to obtain the bestestimation accuracy.
Here, an MRP trajectory was generated from an Markov random chain on the same dynamics as in
Section 7. Rewards+1 and−1 were given when arriving at states ‘1’ and ‘20’, respectively, and the
discounted factor was set at 0.98. Under this setting, we generatedM = 500 trajectories (episodes)
each of which consisted ofT = 1000 random walk steps. We tested two linear function approxi-
mations with eight-dimensional and four-dimensional basis functions, respectively, which were also
generated by the diffusion model. The former basis functions cause a tiny bias which can be ignored,
whereas the latter ones make a significant bias. The upper and lower panels in Figure 6 show the

7. In a particular implementation of the gLSTD algorithm (Algorithm 1) here, we used the whole sample trajectory to
approximate the weight functionw∗t , that is,k= 0, implying gLSTD does not necessarily hold consistency. Based on
good agreement of the results between gLSTD and Optimal-TD, however, we can speculate that the approximation
of the weight function using the whole sample trajectory did not affect the estimation accuracy so much.
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Figure 5: 500 learning runs by varying the initial conditions were performed. (Upper panel) Trian-
gles (△), crosses (×) and circles (◦) denote the simulation results for TD, Accelerated-TD
and Optimal-TD, respectively. They were averaged over the 500 runs.The dotted and
solid lines show the theoretical results discussed in Lemma 3 for estimating functions
fTD

T andf ∗T described in Section 6. (Lower panel) Crosses (×) and circles (◦) denote the
simulation results for LSTD and gLSTD, respectively.

MSEs of the value functions estimated by the proposed (Accelerated-TD, Optimal-TD and gLSTD)
and baseline (TD and LSTD) algorithms employing eight-dimensional and four-dimensional ba-
sis functions, respectively. For scheduling of stepsizes in the online algorithms, we followed the
same procedures as in Section 7. In the well-specified case (upper panel), the proposed algorithms
achieved the smaller MSEs than the baseline algorithms as expected by our analysis, while in the
misspecified case (lower panel), our proposed algorithms were inferior tothe baseline algorithms.
These results indicate the limitation of our analysis. When the bias-variance trade-off cannot be ig-
nored, it is not sufficient to consider solely the asymptotic variance. Therefore, we need to analyze a
risk R (θ̂T) which represents the deviation between the estimated value function and the true value
function. Also, it is an important future work to construct good parametric representations (e.g.,
basis functions in linear cases) which attain small modeling biases. Furthermore, it is necessary to
extend our convergence analysis for online learning algorithms to applicable to misspecified cases.
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Figure 6: Boxplots of MSE for both of the online (TD, Accelerated-TD andOptimal-TD) and batch
(LSTD and gLSTD) algorithms on a twenty states Markov random walk problem. (Upper
panel) Simulation results on the function approximation with eight-dimensional diffusion
basis functions. (Lower panel) Simulation results on the function approximation with
four-dimensional diffusion basis functions.

8.1 Asymptotic Analysis in Misspecified Situations

First, let us revisit the asymptotic variance of the estimating function (15). In misspecified cases,
estimating function (14) does not necessarily satisfy the martingale property, then its asymptotic
variance can no longer be calculated by Equation (16). However, by introducing a notion ofuniform
mixing, the asymptotic variance can be correctly evaluated, even in misspecified cases.

To clarify the following discussion, we only consider the class of estimators given by the fol-
lowing estimating functionf̄T : ST+1×RT ×Θ 7→ R

m:

f̄T(ZT ,θ) =
T

∑
t=1

ψ̄t(Zt ,θ)≡
T

∑
t=1

w̄t−1(Zt−1)ε(zt ,θ). (30)

Note that the class of estimators characterized by the above estimating function(30) is general
enough for our theoretical consideration because it leads to almost all ofthe major algorithms for
model-free policy evaluation that have been proposed so far (see Table1). Now we demonstrate
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with Lemma 11 that the asymptotic variance of the estimatorsθ̂T given by the estimating equation

T

∑
t=1

ψ̄t(Zt , θ̂) = 0. (31)

Lemma 11 Suppose that the random sequence ZT is generated from the distribution p(ZT) defined
by Equation (1). Assume that:

(a) There exists such a parameter valueθ̄ ∈ Θ that

lim
t→∞

E
[
ψ̄t(Zt , θ̄)

]
= 0,

where thatE[·] denotes the expectation with respect to p(ZT), and θ̂T converges to the pa-
rameterθ̄ in probability.8

(b) There exists a limit of matrix E
[
w̄t−1(Zt−1){∂θε(zt , θ̄)}⊤

]
and

lim
t→∞

E
[
w̄t−1(Zt−1){∂θε(zt , θ̄)}⊤

]
is nonsingular.

(c) E
[
‖w̄t−1(Zt−1)ε(zt , θ̄)‖2

]
is finite for any t.

Then, the estimator derived from estimating Equation (31) has the asymptotic variance

Ãv ≡ Ãv(θ̂T)≡ E

[
(θ̂T − θ̄)(θ̂T − θ̄)⊤

]
=

1
T

Ā−1
Σ̄

(
Ā⊤
)−1

, (32)

where

Ā ≡ Ā(θ̄)≡ lim
t→∞

E

[
w̄t−1

{
∂θε(zt , θ̄)

}⊤]
,

Σ̄≡ Σ̄(θ̄)≡ lim
t→∞

E

[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
+ lim

t→∞
2

∞

∑
t ′=1

cov
[
ε(zt , θ̄)w̄t−1,ε(zt+t ′ , θ̄)w̄t+t ′−1

]
.

Here,w̄t andcov[·, ·] denote the abbreviation of̄wt(Zt) and the covariance function, respectively.
The proof is given in Appendix L. Since this proof required the central limittheorem under uni-

form mixing condition, we briefly review the notion and properties of uniformmixing in Appendix
B. We note that the infinite sum of covariance in Equation (32) becomes zerowhen the parametric
representation of the value function is faithful. This implies that Lemma 11 generalizes the result
of Lemma 3.

Furthermore, we can derive the upper bound of the asymptotic variance (32).

Lemma 12 There exists such a positive constantϒ that

1
T

Ā−1
Σ̄

(
Ā⊤
)−1
� ϒ

T
Ā−1

Σ̄0

(
Ā⊤
)−1

holds, whereΣ̄0≡ lim
t→∞

E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
.

8. We can show the stochastic convergence of the estimator to the parameter θ̄ by imposing further mild conditions to
f̄T . The proof can be obtained by following the procedure used in Theorem3.6 in Sørensen (1999).
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The proof is given in Appendix M. This lemma addresses that the estimators, which we have
proposed so far, minimize the upper bound of the asymptotic variance in misspecified cases.

Lemma 11 allows us to see the asymptotic behavior of the risk, like done by the previous work in
a different context; Liang and Jordan (2008) evaluated the quality of probabilistic model-based pre-
dictions in a structured prediction task. They analyzed the expected log-loss (risk) of composite like-
lihood estimators and compared it with those of generative, discriminative andpseudo-likelihood
estimators, both when the probabilistic models are well-specified and misspecified. Since composite
likelihood estimators are in the class of M-estimator, we will be able to evaluate the risk of vari-
ous estimators by performing a similar analysis to Liang and Jordan (2008). Konishi and Kitagawa
(1996) introduced generalized information criterion (GIC) which could beapplied to evaluate statis-
tical models constructed by various types of estimation procedures. GIC is the generalization of the
well-known Akaike information criterion (AIC) (Akaike, 1974) and provided an unbiased estimator
for the expected log-loss (risk) of statistical models obtained by M-estimators. Therefore, it may
be possible to select a good model from a set of potential models by constructing an information
criterion for model-free policy evaluation based on the analysis in Konishi and Kitagawa (1996).

8.2 Online Learning Procedures in Large Scale Situations

In both Optimal-TD and Accelerated-TD learning, it is necessary to maintain theinverse of the
scaling matrixR̂t . Since this matrix inversion operation costsO(m2) in each step, maintaining the
inverse matrix becomes expensive when the dimensionality of the parameters increases. An effi-
cient implementation in such a large-scale setting is to use a coarsely-represented scale matrix, for
example, a diagonal or a block diagonal matrix. An appropriate setting still ensures the conver-
gence rate ofO(1/t) without losing the computational efficiency. Le Roux et al. (2008) presented
an interesting implementation of natural gradient learning (Amari, 1998) for large-scale settings,
which was called “TONGA”. TONGA uses a low-rank approximation of the scaling matrix and
casted both problems of finding the low-rank approximation and computing the gradient onto a
lower-dimensional space, thereby attaining a lower computational complexity.Therefore, by apply-
ing such an idea to our proposed algorithms, we can improve the computationalcomplexity without
sacrificing the fast convergence.

9. Conclusions

We introduced a framework of semiparametric statistical inference for valuefunction estimation
which can be applied to analyzing both batch learning and online learning procedures. Based on
this framework, we derived the general form of estimating functions for model-free value function
estimation in MRPs, which provides a statistical basis to many batch and online learning algorithms
available currently for policy evaluation. Moreover, we found an optimal estimating function, which
yields the minimum asymptotic estimation variance amongst the general class, and presented new
learning algorithms based on it as both batch and the online procedures. Using a simple MRP prob-
lem, we confirmed the validity of our analysis; actually, our proposed algorithms showed reasonably
good performance.
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Appendix A. Stochastic Order Symbols

The stochastic order symbolsOp and op are useful when evaluating the rate of convergence by
means of asymptotic theory. Letn denote the number of observations. The stochastic order symbols
are defined as follows.

Definition 13 Let {Xn} and{Rn} denote a sequence of random variables and a sequence of real
numbers, respectively. Then Xn = op(Rn) if and only if Xn/Rn converges in probability to0 when
n→ ∞.

Definition 14 Let {Xn} and{Rn} denote a sequence of random variables and a sequence of real
numbers, respectively. Then Xn = Op(Rn) if and only if Xn/Rn is bounded in probability when
n→ ∞. “Bounded in probability” means that there exist a constant Cε and a natural number n0(ε)
such that for anyε > 0 and n> n0(ε),

P{|Xn| ≤Cε} ≥ 1− ε

holds.
Most properties of the usual orders also apply to stochastic orders. For instance,

op(1)+op(1) = op(1),

op(1)+Op(1) = Op(1),

Op(1)op(1) = op(1),

(1+op(1))
−1 = Op(1),

op(Rn) = Rnop(1),

Op(Rn) = RnOp(1),

op(Op(1)) = op(1).

Moreover, by taking the expectation, the stochastic order symbolop(·) reduces to the usual order
symbolo(·).

Remark 15 Let{Xn} and{Rn} denote a sequence of random variables which satisfies Xn = op(1)
and a sequence of real numbers, respectively. Let Yn = XnRn denote a random variable which
satisfies Yn = op(Rn). If the sequence of random variable Yn is asymptotically uniformly integrable,
then, the expectation of the random variables Yn has the same normal order,E[Yn] = o(Rn).

This remark can be shown from Theorem 2.20 in van der Vaart (2000).Note that the sequence
of real numbers{Rn} which appears in Definition 13 and 14 corresponds to theconvergence rate;
thenYn = op(Rn) andYn = Op(Rn) mean that the sequenceYn converges in probability to zero and
is bounded in probability, respectively, at the rate ofRn.
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Appendix B. Uniform Mixing and Central Limit Theorem

The notion ofmixingis important when analyzing the rate of convergence in the stochastic processes
which do not satisfy the martingale condition. There are several different definitions for mixing. In
this section, we will especially focus onuniform mixingwhich is defined as follows.

Definition 16 Let Y ≡ {Yt : t = 1,2, . . .} be a strictly stationary process9 on a probabilistic space
(Ω,F ,P) andF m

k beσ-algebra generated by{Yk, · · · ,Ym}. Then, the processY is said to be uniform
mixing (φ-mixing) if ϕ(t)→ 0 as t→ ∞ where

ϕ(t)≡ sup
A∈F k

1 ,B∈F ∞
k+t

|P(B|A)−P(B)|, P(A) 6= 0.

The functionϕ(t) is calledmixing coefficient. If the mixing coefficientϕ(t) converges to zero
as fast as exponential, then Y is calledgeometrically uniform mixing.

Definition 17 Suppose thatY is a strictly stationary process. If there exist some constants C> 0
andρ ∈ [0,1) such that

ϕ(t)<Cρt ,

thenY is said to be geometrically uniform mixing.
Let f be a Borel function on the state space and definef̄T = 1/T ∑T

t=1 f (Yt). We now consider
the conditions under which the central limit theorem holds forf̄T .

Lemma 18 (Ibragimov and Linnik, 1971, Theorem 18.5.2.) Suppose that{YT} is a strictly station-
ary process with geometrically uniform mixing. Iflim

t→∞
E[‖ f (Yt)‖2] is finite, then the central limit

theorem holds for̄f , that is,
√

T
(

f̄T − lim
t→∞

E[ f (Yt)]
)

d−→N (0,σ2),

as T→ ∞ whereσ2≡ lim
t→∞

E[ f (Yt)
2]+2 lim

t→∞
∑∞

t ′=1cov[ f (Yt), f (Yt+t ′)].

Note that, unlike the i.i.d. or the martingale case, the variance of the asymptotic distribution
involves the correlation between different times. Generally, such time dependency makes finding
an exact relationship difficult; however, it may be easy to evaluate the upper bound of the time-
dependent covariance.

Lemma 19 (Ibragimov and Linnik, 1971, Theorem 17.2.3.) Suppose thatY is a strictly stationary
process with uniform mixing. Let f and g be measurable functions with respect to F k

1 andF ∞
k+t ,

respectively. If f and g satisfy

E [| f |p]< ∞, E [|g|q]< ∞,

where p,q> 1, p+q= 1, then

|E [ f g]−E [ f ]E [g]| ≤ 2ϕ(t)1/p
E [| f |p]1/p

E [|g|q]1/q .

Finally in this section, we consider the conditions that Markov processes satisfy the uniform
mixing condition.

9. In a strictly stationary stochastic process, joint probability distribution is consistent when shifted in time.
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Lemma 20 (Bradley, 2005, Theorem 3.1) Suppose thatY is a strictly stationary, finite state Markov
process. Then the following statements are equivalent:

(a) Y is irreducible and aperiodic.

(b) Y is ergodic.

(c) Y is geometrically uniform mixing.

Note that if a finite state Markov process has an unique and invariant stationary distribution, it
implies ergodicity. Then Lemma 20 addresses that such Markov process is uniform mixing.

Appendix C. Proof of Lemma 2

Proof Condition corresponding to (12) is satisfied by condition (c) in Assumption 4.Also, condi-
tion (10) is satisfied by Equation (13). From condition (a) in Assumption 4, theexpectation of the
derivative of the functionwt−1(Zt−1,θ)ε(zt ,θ) can be expressed as

lim
t→∞

Eθ,ξ [∂θ {wt−1(Zt−1,θ)ε(zt ,θ)}]

= lim
t→∞

Eθ,ξ [∂θwt−1(Zt−1,θ)ε(zt ,θ)]+ lim
t→∞

Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)]

= lim
t→∞

Eθ,ξ


∂θwt−1(Zt−1,θ)Eθ,ξs [ε(zt ,θ)|Zt−1]︸ ︷︷ ︸

=0


+ lim

t→∞
Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)]

= lim
t→∞

Eθ,ξ [wt−1(Zt−1,θ)∂θε(zt ,θ)] ,

where we have used the fact in Equation (13). Therefore, using condition (b) in Assumption 4, we
can show that condition (11) is satisfied.

Appendix D. Proof of Lemma 3

Proof By performing a Taylor series expansion of estimating Equation (15) around the true param-
eterθ∗, we obtain

0=
T

∑
t=1

ψt(Zt ,θ
∗)+

T

∑
t=1

∂θψt(Zt ,θ
∗)(θ̂T −θ∗)+Op

(∥∥θ̂T −θ∗
∥∥2
)
.

Here, high order terms of the above equation are in total represented as
Op(‖θ̂T−θ∗‖2) because of Assumption 3, that is, the twice differentiable condition for the function
g(s,θ). By applying the law of large numbers (ergodic pointwise theorem) (Billingsley, 1995,
Theorem 24.1) to(1/T)∑T

t=1 ∂θψt(Zt ,θ
∗) and the martingale central limit theorem (Billingsley,
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1961) to(1/
√

T)∑T
t=1 ∂θψt(Zt ,θ

∗), we have

1
T

T

∑
t=1

∂θψt(Zt ,θ
∗) =

1
T

T

∑
t=1

∂θwt−1(Zt−1,θ
∗)ε(zt ,θ

∗)+
1
T

T

∑
t=1

wt−1(Zt−1,θ
∗)∂θε(zt ,θ

∗)

a.s.−−→ lim
t→∞

Eθ∗,ξ∗ [∂θwt−1(Zt−1,θ
∗)ε(zt ,θ

∗)]
︸ ︷︷ ︸

=0

+ lim
t→∞

Eθ∗,ξ∗

[
wt−1(Zt−1,θ

∗){∂θε(zt ,θ
∗)}⊤

]

︸ ︷︷ ︸
=A

1√
T

T

∑
t=1

ψt(Zt ,θ
∗) =

1√
T

T

∑
t=1

wt−1(Zt−1,θ
∗)ε(zt ,θ

∗)

d−→N


0, lim

t→∞
Eθ∗,ξ∗

[
ε(zt ,θ

∗)2wt−1(Zt−1,θ
∗)wt−1(Zt−1,θ

∗)⊤
]

︸ ︷︷ ︸
=Σ


 .

By neglecting higher order terms, we obtain

√
T(θ̂T −θ∗)∼N

(
0,A−1

Σ(A⊤)−1
)
.

Then,θ̂T is Gaussian distributed:̂θT ∼ N (θ∗,Av), where the asymptotic variance Av is given by
Equation (16).

Appendix E. Proof of Theorem 4

Proof From Equation (2), for anyt, the value functionV(st) = g(st ,θ) must satisfy

Eθ,ξs [rt+1|st ] = g(st ,θ)−Eθ,ξs [g(st+1,θ)|st ] ,

regardless of the nuisance parameterξ. Then, the TD error
ε(zt+1,θ) = g(st ,θ)− γg(st+1,θ)− rt+1 must satisfyEθ,ξs [ε(zt+1,θ)|Zt ] = 0 for anyt andξ. Also,
from the condition of martingale estimating functions, for any timet, the estimating function must
satisfy

Eθ,ξs [ft+1(Zt+1,θ)−ft(Zt ,θ)|Zt ] = 0, (33)

regardless of the nuisance parameterξ. If we can show from Equation (33) that
ft+1(Zt+1,θ)−ft(Zt ,θ) =wt(Zt ,θ)ε(zt+1,θ) holds,fT(ZT ,θ) must have the form (17) by induc-
tion. Since this statement can be considered component-wise, we will prove the similar claim for
scalar functions, that is,

Eθ,ξs [h(Zt+1,θ)|Zt ] = 0, ∀ξs =⇒ h(Zt+1,θ) = w(Zt ,θ)ε(zt+1,θ), (34)

in the following two steps.
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1. We first prove in aconstructivemanner that any simple functionh(zt+1,θ) which depends
only onzt+1 and satisfyEθ,ξs[h(zt+1,θ)|st ] = 0 andEθ,ξs[{h(zt+1,θ)}2]< ∞ for anyt, θ and
ξs can be expressed ash(zt+1,θ) = w(st ,θ)ε(zt+1,θ), wherew(st ,θ) is a function ofst .

2. Our claim (34) for general functionh(Zt+1,θ) is derived from the fact shown in the previous
step, because for each fixedZt this problem boils down to the simple case above.

To prove the simple case first, for arbitrary fixedst andθ, we consider the setM (st ,θ) of
all probability distributions ofrt+1 andst+1 with each of which the expectation of the TD error
ε(zt+1,θ) vanishes. In the following discussion,st is treated as afixed constant. In our semipara-
metric case, this set can be expressed as the set of all conditional distributions of rt+1 andst+1 for
givenst which has value functiong(st ,θ) with the fixedθ, that is,

M (st ,θ) ≡ { p(rt+1,st+1|st ;θ,ξs) |st , θ: fixed,

Eθ,ξs [ε(zt+1,θ)|st ] = g(st ,θ)− γEθ,ξs [g(st+1,θ)|st ]−Eθ,ξs [rt+1|st ] = 0},

where the nuisance parameterξs is designed so that it becomes bijective with the distributions in
M (st ,θ). We remark that the setM (st ,θ) and the domain of the nuisance parameterξs depend on
st andθ.

Suppose that there exists a function ofh(zt+1) which satisfiesEp[h(zt+1)] = 0 and
Ep[{h(zt+1)}2] < ∞ for any p(rt+1,st+1) ∈M (st ,θ). Then, because of the linearity and continuity
of the integral operator, the unbiasedness condition can be extended to any functionq(rt+1,st+1)

which belongs to the closed spanM (st ,θ) of M (st ,θ):

∑
st+1

∫
h(zt+1)q(rt+1,st+1)drt+1 = 0. (35)

It is also easy to show thatM (st ,θ) contains any functions (i.e., even without satisfying the non-
negativity constraint of probabilities) which satisfy the condition

∑
st+1

∫
ε(zt+1)q(rt+1,st+1)drt+1 = 0. (36)

Indeed, we can always construct a linear representation of such a function q(rt+1,st+1) with four
probability distributions inM (st ,θ) which take positive values only in two regions out of
{(rt+1,st+1) |ε≥ 0, q≥ 0}, {(rt+1,st+1) |ε≥ 0, q< 0}, {(rt+1,st+1) |ε < 0, q≥ 0} and
{(rt+1,st+1) |ε < 0, q< 0}.

Now, we take a distributionp(rt+1,st+1) in M (st ,θ) which is positive over its domain10 and
consider its perturbation

q̃(rt+1,st+1)≡ p(rt+1,st+1)

{
1+δh(zt+1)−δ

Ep[h(zt+1)ε(zt+1)]

Ep[ε(zt+1)2]
ε(zt+1)

}
,

whereδ > 0 is a small constant andEp denotes the expectation overrt+1 andst+1 with respect to
p(rt+1,st+1). This functionq̃(rt+1,st+1) does not necessarily belong to the modelM (st ,θ), but

10. If there exists a region where all distributions inM (st ,θ) take 0, it is impossible to characterize the functional form
of h(zt+1) in that region. For simplicity, however, we do not consider such a pathological case in this proof.
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is an element of its closed spanM (st ,θ), because it also satisfies the condition (36). Therefore,
Equation (35) must hold for this perturbed functionq̃, leading to

∑
st+1

∫
h(zt+1) q̃(rt+1,st+1)drt+1 = δ

{
Ep[h(zt+1)

2]− (Ep[h(zt+1)ε(zt+1)])
2

Ep[ε(zt+1)2]

}
= 0. (37)

From Cauchy-Schwarz’s inequality, this equation holds if and only ifh(zt+1) ∝ ε(zt+1) and other-
wiseEq̃[h(zt+1)], the left-hand-side of Equation (37), becomes strictly positive, which contradicts
the fact (35). Since the whole argument holds for anyst andθ, the first claim is proved.

In the general case for the function ofZt+1, we just show that any functionh(Zt+1,θ) which
satisfiesEθ,ξs[h(Zt+1,θ)|Zt ] = 0 andEθ,ξs[{h(Zt+1,θ)}2]< ∞ for anyst , θ andξs can be expressed
ash(Zt+1,θ) = wt(Zt ,θ)ε(zt+1,θ), wherewt(Zt ,θ) is a function ofZt andθ.

For arbitrary fixedZt , h(Zt+1,θ) can be regarded as a function ofrt+1 and st+1. Therefore,
the problem reduces to the case that the function only depends onzt+1, so that we can say that
h(rt+1,st+1,Zt ,θ) ∝ ε(rt+1,st+1,st). Since this relationship holds for anyZt , we conclude that the
functionh(Zt+1,θ) must have the formwt(Zt ,θ)ε(zt+1,θ).

Appendix F. Proof of Lemma 5

Proof We show that the conditional expectation ˜wt(st ,θ) = Eξs[wt(Zt ,θ)|st ], which depends only
on the current statest and the parameterθ, gives an equally good estimator or better estimator than
those by the original weight functionwt(Zt ,θ). As shown in Equation (16), the asymptotic variance
of the estimator̂θw with wt(Zt ,θ) is given by

Av(θ̂w)≡
1
T

A−1
w Σw

(
A−1

w

)⊤
,

whereAw = lim
t→∞

Eθ∗,ξ∗

[
wt−1{∂θε(zt ,θ

∗)}⊤
]
≡ lim

t→∞
Eθ∗,ξ∗

[
wt−1(Zt−1,θ

∗){∂θε(zt ,θ
∗)}⊤

]
and

Σw = lim
t→∞

Eθ∗,ξ∗
[
(ε∗t )2wt−1w

⊤
t−1

]
≡ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t )2wt−1(Zt−1,θ

∗)wt−1(Zt−1,θ
∗)⊤
]
. Here,wt is

an abbreviation ofwt(Zt ,θ
∗). Similarly, the asymptotic variance of the estimatorθ̂w̃ with w̃t−1(st−1,θ)

is given by

Av(θ̂w̃)≡
1
T

A−1
w̃ Σw̃

(
A−1

w̃

)⊤
,

whereAw̃≡ lim
t→∞

Eθ∗,ξ∗

[
w̃t−1{∂θε(zt ,θ

∗)}⊤
]
≡ lim

t→∞
Eθ∗,ξ∗

[
w̃t−1(st−1,θ

∗){∂θε(zt ,θ
∗)}⊤

]
and

Σw̃ ≡ lim
t→∞

Eθ∗,ξ∗
[
(ε∗t )2w̃t−1w̃

⊤
t−1

]
≡ lim

t→∞
Eθ∗,ξ∗

[
(ε∗t )2w̃t−1(st−1,θ

∗)w̃t−1(st−1,θ
∗)⊤
]
. Here,w̃t is

2006



GENERALIZED TD LEARNING

an abbreviation of ˜wt(st ,θ). The matricesAw andΣw can be calculated as

Aw = lim
t→∞

Eθ∗,ξ∗

[
wt−1{∂θεt(zt ,θ

∗)}⊤
]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s [wt−1|st−1]{∂θεt(zt ,θ

∗)}⊤
]
= Aw̃,

Σw = lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(
Eθ∗,ξ∗s [wt−1|st−1]+wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)

(
Eθ∗,ξ∗s [wt−1|st−1]+wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)⊤ ]

= lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2
Eθ∗,ξ∗s [wt−1|st−1]Eθ∗,ξ∗s [wt−1|st−1]

⊤
]

+ lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2
Eθ∗,ξ∗s [wt−1|st−1]

(
wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)⊤]

+ lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(

Eθ∗,ξ∗s [wt−1|st−1]
)⊤]

+ lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(
wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)⊤]

=Σw̃+ lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)(
wt−1−Eθ∗,ξ∗s [wt−1|st−1]

)⊤]

=Σw̃+ lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(wt−1− w̃t−1)(wt−1− w̃t−1)
⊤
]
,

where we have usedEθ∗,ξ∗s [wt−1|zt−1] = Eθ∗,ξ∗s [wt−1|st−1] = w̃t−1 and

lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(wt−1−Eθ∗,ξ∗s [wt−1|st−1]
)
Eθ∗,ξ∗s [wt−1|st−1]

⊤
]

= lim
t→∞

Eθ∗,ξ∗

[
(ε∗t )

2(
Eθ∗,ξ∗s [wt−1|st−1]−Eθ∗,ξ∗s [wt−1|st−1]

)(
Eθ∗,ξ∗s [wt−1|st−1]

)⊤]
= 0.

This implies that

Av(θ̂w) =
1
T

A−1
w Σw

(
A−1

w

)⊤ � 1
T

A−1
w̃ Σw̃

(
A−1

w̃

)⊤
= Av(θ̂w̃),

where� denotes the semipositive definiteness of the subtraction.

Appendix G. Proof of Theorem 6

Proof As shown in Equation (16), the asymptotic variance of the estimatorθ̂w is given by

Av =
1
T

AwΣw(A−1
w )⊤,

where

Aw≡ lim
t→∞

Eθ∗,ξ∗ [wt−1(Zt−1,θ
∗){∂θε(zt ,θ

∗)}⊤],

Σw≡ lim
t→∞

Eθ∗,ξ∗ [ε(zt ,θ
∗)2wt−1(Zt−1,θ

∗)wt−1(Zt−1,θ
∗)⊤].
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For the sake of expression simplicity, the weight functionwt(Zt ,θ
∗) the TD errorε(zt ,θ

∗) are
abbreviated aswt andεt , respectively; we rewriteAw andΣ as

Aw = lim
t→∞

Eθ∗,ξ∗

[
wt−1{∂θε(zt ,θ

∗)}⊤
]
,

Σw = lim
t→∞

Eθ∗,ξ∗

[
ε2

twt−1w
⊤
t−1

]
.

We first derive the weight function that minimizes the trace of the asymptotic variance, that is,

w∗t−1 = argmin
wt−1

F (wt−1)

where F (wt−1) = tr{Av (wt−1)}.

Let δt−1 ≡ δt−1(Zt−1,θ
∗) be an arbitrary function ofZt−1 andθ∗. We consider how much a func-

tionalF(wt−1) changes when we make a small changehδt−1 to the weight functionwt−1. For nota-
tional convenience, we defineG(h;wt−1,δt−1)≡F (wt−1+hδt−1).11 If the functionG(h;wt−1,δt−1)
is twice differentiable with respect toh, then we have

G(h;wt−1,δt−1) = G(0;wt−1,δt−1)+h ∂hG(h;wt−1,δt−1)|h=0+O(h2),

where∂h denotes the partial derivative with respect toh. Since the functionalF(wt−1) is stationary
for tiny variation in the functionwt−1, the weight functionw∗t−1 which minimizes the asymptotic
estimation variance must satisfy

∂hG(h;w∗t−1,δt−1)
∣∣
h=0 = 0,

for arbitrary choice ofδt−1.
The definition of derivative says

∂hG(h;wt−1,δt−1)|h=0 = lim
λ→0

G(λ;wt−1,δt−1)−G(0;wt−1,δt−1)

λ
.

The numerator of the above equation is written as

G(λ;wt−1,δt−1)−G(0;wt−1,δt−1)

= tr
[
A−1

w+λδΣw+λδ(A
−1
w+λδ)

⊤
]
− tr

[
A−1

w Σw(A−1
w )⊤

]
, (38)

where

Aw+λδ ≡ lim
t→∞

Eθ∗,ξ∗ [(wt−1+λδt−1){∂θε(zt ,θ
∗)}⊤]

= Aw+λ lim
t→∞

Eθ∗,ξ∗ [δt−1{∂θε(zt ,θ
∗)}⊤] (39)

Σw+λδ ≡ lim
t→∞

Eθ∗,ξ∗ [ε2
t (wt−1+λδt−1)(wt−1+λδt−1)

⊤]

=Σw+λ lim
t→∞

Eθ∗,ξ∗ [ε2
t (δt−1w

⊤
t−1+wt−1δ

⊤
t−1)]+O(λ2). (40)

11. We used this notation to emphasize thatG(h;wt−1,δt−1) is a function ofh, while wt−1 andδt−1 are regarded as
auxiliary variables.
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By using the matrix inversion lemma (Horn and Johnson, 1985),A−1
w+λδ can be written as

A−1
w+λδ =

(
Aw+λ lim

t→∞
Eθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]
)−1

= A−1
w − lim

t→∞
A−1

w

(
I +λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]A−1
w

)−1
λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]A−1
w .

The matrix
(
I +λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]A−1
w

)−1
can be calculated as

(
I +λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]A−1
w

)−1
=
(

I −λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ
∗)}⊤]A−1

w

)
+O(λ2),

because of
(

I +λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ
∗)}⊤]A−1

w

)(
I −λEθ∗,ξ∗ [δt−1{∂θε(zt ,θ

∗)}⊤]A−1
w

)
= I +O

(
λ2) .

Thus we obtain

A−1
w+λδ = A−1

w −λ lim
t→∞

A−1
w Eθ∗,ξ∗

[
δt−1{∂θε(zt ,θ

∗)}⊤
]

A−1
w +O(λ2), (41)

where high order terms are summarized asO(λ2).
Substituting Equations (39)-(41) to Equation (38), we have

tr
[
A−1

w+λδΣw+λδ(A
−1
w+λδ)

⊤
]
− tr

[
A−1

w Σw(A−1
w )⊤

]

=−λ lim
t→∞

tr
[
A−1

w Eθ∗,ξ∗

[
δt−1{∂θε(zt ,θ

∗)}⊤
]

A−1
w Σw

(
A−1

w

)⊤]

−λ lim
t→∞

tr
[
A−1

w Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ⊤t−1

]
A−1

w Σw
(
A−1

w

)⊤]

+λ lim
t→∞

tr
[
A−1

w lim
t→∞

Eθ∗,ξ∗ [ε2
t (δt−1w

⊤
t−1+wt−1δ

⊤
t−1)]

(
A−1

w

)⊤]
+O(λ2)

=−2λ lim
t→∞

tr
[
A−1

w Σw(A−1
w )⊤Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ⊤t−1

]
(A−1

w )⊤
]

+2λ lim
t→∞

tr
[
A−1

w Eθ∗,ξ∗ [ε2
twt−1δ

⊤
t−1](A

−1
w )⊤

]
+O(λ2).

This gives the partial derivative∂hG(h;wt−1,δt−1) as

∂hG(h;wt−1,δt−1)|h=0

=−2 lim
t→∞

tr
[
A−1

w Σw(A−1
w )⊤Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ⊤t−1

]
(A−1

w )⊤
]

+2 lim
t→∞

tr
[
A−1

w Eθ∗,ξ∗ [ε2
twt−1δ

⊤
t−1](A

−1
w )⊤

]

=−2 lim
t→∞

Eθ∗,ξ∗

[
δ⊤t−1(A

−1
w )⊤A−1

w Σw(A−1
w )⊤Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|Zt−1]
]

+2 lim
t→∞

Eθ∗,ξ∗

[
δ⊤t−1(A

−1
w )⊤A−1

w Eθ∗,ξ∗s [ε
2
t |Zt−1]wt−1

]

=2 lim
t→∞

Eθ∗,ξ∗

[
δ⊤t−1(A

−1
w )⊤A−1

w

{
Eθ∗,ξ∗s [ε

2
t |st−1]wt−1−Σw(A−1

w )⊤Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]

}]
.
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By applying the condition that the deviation becomes0 for any functionδt−1(Zt−1,θ
∗), the optimal

weight function is obtained as

w∗t−1 = Eθ∗,ξ∗s [(ε(zt ,θ
∗)2|st−1]

−1
Σw(A−1

w )⊤Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1].

Because any estimating function is invariant to transformation applied by any regular matrix, the
optimal estimating function is restricted as

w∗t−1 =w
∗
t−1(Zt−1,θ

∗) = Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1],

or its transformation applied by any regular matrix.
Now, we confirm that the estimator obtained by Equation (18) yields the minimum asymptotic

variance. Substitutingw∗t−1 to the matrixAw, some calculations in Appendix H lead us to

Aw∗ =Σw∗ = Q,

where

Q≡ lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s [ε

2
t |st ]

−1
Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]

⊤
]
.

We consider how much the asymptotic variance Av changes when we make a small change
δ̄t−1≡ hδt−1 onw∗t−1. The matrices atw∗t−1+ δ̄t−1 become

Aw∗+δ̄ = Q+ lim
t→∞

Eθ∗,ξ∗ [δ̄t−1∂θε(zt ,θ
∗)⊤],

Σw∗+δ̄ = Q+ lim
t→∞

Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ̄⊤t−1

]

+ lim
t→∞

Eθ∗,ξ∗

[
δ̄t−1{∂θε(zt ,θ

∗)}⊤
]
+ lim

t→∞
Eθ∗,ξ∗

[
ε2

t δ̄t−1δ̄
⊤
t−1

]
.

Therefore,

A−1
w∗+δ̄Σw∗+δ̄

(
A−1

w∗+δ̄

)⊤
−A−1

w∗Σw∗
(
A−1

w∗
)⊤

= A−1
w∗+δ̄

(
Σw∗+δ̄−Aw∗+δ̄A−1

w∗Σw∗(A−1
w∗ )
⊤A⊤w∗+δ̄

)

︸ ︷︷ ︸
C1

(
A−1

w∗+δ̄

)⊤
.

The matrixC1 is a semipositive definite matrix, because

C1 =Σw∗+δ̄−Aw∗+δ̄A−1
w∗Σw∗(A−1

w∗ )
⊤A⊤w∗+δ̄

= lim
t→∞

Eθ∗,ξ∗

[
ε2

t δ̄t−1δ̄
⊤
t−1

]
− lim

t→∞
Eθ∗,ξ∗

[
δ̄t−1{∂θε(zt ,θ

∗)}⊤
]

Q−1
Eθ∗,ξ∗

[
∂θε(zt ,θ

∗)δ̄⊤t−1

]

= lim
t→∞

Eθ∗,ξ∗

[(
δ̄t−1−νt−1

)(
δ̄t−1−νt−1

)⊤]� 0,

where

νt−1≡ Eθ∗,ξ∗s [ε
2
t |st−1]

−1
Eθ∗,ξ∗

[
δ̄t−1{∂θε(zt ,θ

∗)}⊤
]

Q−1
Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1] .

Thus we have

A−1
w∗+δ̄Σw∗+δ̄

(
A−1

w∗+δ̄

)⊤
−A−1

w∗Σw∗
(
A−1

w∗
)⊤ � 0,

where� denotes the semipositive definiteness of the subtraction. The equality in the above equation
holds only whenδ̄t−1 ∝w∗t−1.
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Appendix H. Proof of Lemma 7

Proof The matrixA in the asymptotic variance given by Equation (16) can be calculated as

A = lim
t→∞

Eθ∗,ξ∗ [∂θψ∗t (zt ,θ
∗)]

= lim
t→∞

Eθ∗,ξ∗

[
w∗t−1(Zt−1,θ

∗){∂θε(zt ,θ)}⊤
]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]
⊤
]
.

Also the matrixΣ can be calculated as

Σ= lim
t→∞

Eθ∗,ξ∗

[
ψ∗t (zt ,θ

∗)ψ∗t (zt ,θ
∗)⊤
]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]
w∗t−1(Zt−1,θ

∗){w∗t−1(Zt−1,θ
∗)}⊤

]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]

{
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]

}

{
Eθ∗,ξ∗s

[
ε(zt ,θ

∗)2|st−1
]−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]

}⊤]

= lim
t→∞

Eθ∗,ξ∗

[
Eθ∗,ξ∗s [ε(zt ,θ

∗)2|st−1]
−1

Eθ∗,ξ∗s [∂θε(zt ,θ
∗)|st−1]Eθ∗,ξ∗s [∂θε(zt ,θ

∗)|st−1]
⊤
]
= A = Q.

These observations yield

Av(θ̂) =
1
T

A−1
Σ(A−1)⊤ =

1
T

Q−1.

Appendix I. Proof of Theorem 8

Proof To simplify the following proof, we assume the true parameter is located on the origin
without loss of generality:θ∗ = 0. Let ht be‖θ̂t‖2. The conditional expectation of variation ofht

can be derived as

Eθ∗,ξ∗s [ht+1−ht |st ] =−2ηt+1θ̂
⊤
t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st
]

+η2
t+1Eθ∗,ξ∗s

[
‖R(θ̂t)ψt+1(Zt+1, θ̂t)‖2

∣∣st
]
.

From Assumption 5, the second term of this equation is bounded by the second moment, thus we
obtain

Eθ∗,ξ∗s

[
ht+1− (1+η2

t+1c2)ht |st
]

≤−2ηt+1θ̂
⊤
t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st
]
+η2

t+1c1. (42)
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Now, letχt = ∏t
k=11/(1+η2

kc2) andh′t = χtht . From the assumption
∑∞

t=1 η2
t < ∞, we easily verify that 0< χt < 1. Multiplying the both sides of Equation (42) byχt+1,

we obtain

Eθ∗,ξ∗
[
h′t+1−h′t |Zt

]

≤−2ηt+1χt+1θ̂
⊤
t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st
]
+η2

t+1χt+1c1.

The first term of this upper bound is negative because of Assumption 5, the second term is non-
negative becauseηt , χt+1, andc1 are nonnegative, and the sum of the second terms∑∞

t=1 η2
t χt+1c1

is finite. Then, the supermartingale convergence theorem (Neveu, 1975; Bertsekas and Tsitsiklis,
1996, Proposition 4.2) guarantees thath′t converges to a nonnegative random variable almost surely,
and∑∞

t=1 ηt+1χt+1θ̂
⊤
t Rt(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st
]
< ∞. Since∑∞

t=1 ηt = ∞ and lim
t→∞

χt = χ∞ > 0,

we haveθ̂⊤t R(θ̂t)Eθ∗,ξ∗s

[
ψt+1(Zt+1, θ̂t)

∣∣st
] a.s.−→ 0. This result suggests the conclusion that the on-

line learning algorithm converges to the true parameter almost surely:θ̂t
a.s.−→ θ∗ = 0.

Appendix J. Proof of Lemma 9

Proof Using Taylor series expansion of the estimating equation(1/t)∑t
i=1ψi(Zi , θ̃t) aroundθ̃t−1,

we obtain

1
t

t

∑
i=1

ψi(Zi , θ̃t) =
1
t

t

∑
i=1

ψi(Zi , θ̃t−1)

+
1
t

t

∑
i=1

∂θψi(Zi , θ̃t−1)(θ̃t− θ̃t−1)+Op
(
‖θ̃t − θ̃t−1‖2

)
.

Since∑t
i=1ψi(Zi , θ̃t) = ∑t−1

i=1ψi(Zi , θ̃t−1) = 0, we obtain the following equation:

−1
t
ψt(Zt , θ̃t−1) = R̃t(θ̃t−1)(θ̃t− θ̃t−1)+Op

(
‖θ̃t − θ̃t−1‖2

)
.

We can then rewrite the right hand side as

−1
t
ψt(Zt , θ̃t−1) = {R̃t(θ̃t−1)+Op(‖θ̃t − θ̃t−1‖)}(θ̃t− θ̃t−1),

and

(θ̃t − θ̃t−1) =−
1
t
{R̃−1

t (θ̃t−1)+Op(‖θ̃t − θ̃t−1‖)}ψt(Zt , θ̃t−1).

Note thatR̃−1
t (θ̃t−1) is uniformly bounded because of the nonsingular condition in Lemma 9. Also

θ̃t is uniformly bounded for anyt. Furthermore,ψt(Zt , θ̃t−1) is uniformly bounded for anyt since
the conditions in Assumptions 2-4 imply thatψt(Zt , θ̃t−1) is a continuous function of uniformly
bounded variables. Hence, the above equation implies that
θ̃t − θ̃t−1 = Op(1/t). Therefore, we can obtain the following equation

−1
t
ψt(Zt , θ̃t−1) = R̃t(θ̃t−1)(θ̃t− θ̃t−1)+Op

(
1
t2

)
.

2012



GENERALIZED TD LEARNING

By using the matrix inversion operation, we derive

θ̃t = θ̃t−1−
1
t
R̃−1

t ψt(Zt , θ̃t−1)+Op

(
1
t2

)
.

Appendix K. Proof of Theorem 10

Proof Similar to the proof in Appendix I, we assume the true parameter is located at the origin:
θ∗ = 0. From the assumption in Theorem 10, the online learning converges to the true parameter
almost surely; this implies that̂θt = θ

∗+op(1) = op(1). Note also thatRt converges toA almost
surely; this implies thatRt = A+op(1). Furthermore, from condition (d) in Theorem 10, the matrix
Rt is invertible for anyt; this implies thatR−1

t = A−1+op(1).
Using Equation (23),(θ̂t −θ∗)(θ̂t −θ∗)⊤ = θ̂t θ̂

⊤
t can be expressed as

θ̂t θ̂
⊤
t =

(
θ̂t−1−

1
t
R̂−1

t ψt(Zt , θ̂t−1)+Op

(
1
t2

))

(
θ̂t−1−

1
t
R̂−1

t ψt(Zt , θ̂t−1)+Op

(
1
t2

))⊤

=θ̂t−1θ̂
⊤
t−1−

1
t
θ̂t−1ψt(Zt , θ̂t−1)

⊤(R̂−1
t )⊤− 1

t
R̂−1

t ψt(Zt , θ̂t−1)θ̂
⊤
t−1

+
1
t2 R̂−1

t ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)
⊤(R̂−1

t )⊤+op

(
1
t2

)
,

where high order terms are in total represented asop
(
1/t2

)
because of

θ̂t−1Op(1/t2) = op(1)Op(1/t2) = op(1/t2). Taking the conditional expectation ofθ̂t θ̂
⊤
t givenZt−1,

we obtain

Eθ∗,ξ∗s

[
θ̂t θ̂
⊤
t |Zt−1

]
=θ̂t−1θ̂

⊤
t−1−

1
t
θ̂t−1Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)

⊤(R̂−1
t )⊤

∣∣∣Zt−1

]

︸ ︷︷ ︸
C⊤1

− 1
t
Eθ∗,ξ∗s

[
R̂−1

t ψt(Zt , θ̂t−1)
∣∣Zt−1

]
θ̂⊤t−1︸ ︷︷ ︸

C1

+
1
t2 Eθ∗,ξ∗s

[
R̂−1

t ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)
⊤(R̂−1

t )⊤
∣∣∣Zt−1

]

︸ ︷︷ ︸
C2

+op

(
1
t2

)
.

We now express each of the terms in the above equation.
In order to expressC1 andC2, we introduce the following lemma.

Lemma 21 (Bottou and LeCun, 2005, Theorem 4) Let Xt be a uniformly bounded random variable
depending on Zt . Then we have

Eθ∗,ξ∗s

[
R̂−1

t Xt
∣∣Zt−1

]
= Eθ∗,ξ∗s

[
R̂−1

t

∣∣Zt−1
]
Eθ∗,ξ∗s [Xt |Zt−1]+op

(
1
t

)
.
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Proof By using assumption (b) in Theorem 10,Eθ∗,ξ∗s [R̂
−1
t Xt |Zt−1] can be calculated as

Eθ∗,ξ∗s

[
R̂−1

t Xt |Zt−1
]
= Eθ∗,ξ∗s [R̂

−1
t |Zt−1]Eθ∗,ξ∗s [Xt |Zt−1]+Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1] ,

whereεt(Zt) = op(1/t). Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1] is summarized asop(1/t) because of the Cauchy-
Schwartz’s inequality:

Eθ∗,ξ∗s [εt(Zt)Xt |Zt−1]≤
√
Eθ∗,ξ∗s [‖εt(Zt)‖2|Zt−1]

√
Eθ∗,ξ∗s [‖Xt‖2|Zt−1].

Since condition (a) in Theorem 10 and Assumptions 2-4 leadψt(Zt , θ̂t−1) andR̂t to be continuous
functions of uniformly bounded variables,ψt(Zt , θ̂t−1) and R̂t are uniformly bounded for anyt.
Then, using Lemma 21,C2 can be expressed as

C2 =

{
Eθ∗,ξ∗s

[
R̂−1

t

∣∣Zt−1
]

Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)

⊤
∣∣∣Zt−1

]
Eθ∗,ξ∗s

[
(R̂−1

t )⊤
∣∣∣Zt−1

]}
+op

(
1
t

)
.

We note thatEθ∗,ξ∗s [ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)
⊤|Zt−1] can be calculated as

Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)ψt(Zt , θ̂t−1)

⊤
∣∣∣Zt−1

]
= Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)⊤
∣∣∣Zt−1

]
+op(1),

becausêθt−1 converges to the true parameter andψt(Zt ,θ) is uniformly bounded. Since
R̂−1

t = A−1+op(1) is satisfied,C2 can be rewritten as

C2 = A−1
Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)⊤
∣∣∣Zt−1

]
(A−1)⊤+op(1) . (43)

Using similar arguments,C1 can be expressed as

C1 = Eθ∗,ξ∗s

[
R̂−1

t ψt(Zt , θ̂t−1)
∣∣Zt−1

]
θ̂t−1

= Eθ∗,ξ∗s

[
R̂−1

t

∣∣Zt−1
]
Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)|Zt−1

]
θ̂⊤t−1+op

(
1
t

)
.

We now considerEθ∗,ξ∗s [ψt(Zt , θ̂t−1)|Zt−1]. Applying a Taylor series expansion to
Eθ∗,ξ∗s [ψt(Zt , θ̂t−1)|Zt−1] around the true parameterθ∗ = 0, we have

Eθ∗,ξ∗s

[
ψt(Zt , θ̂t−1)

∣∣Zt−1
]

= Eθ∗,ξ∗s [ψt(Zt ,θ
∗)|Zt−1]+Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1+op
(
|θ̂t−1|

)

= Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1+op

(
|θ̂t−1|

)
,

where we have used the fact thatEθ∗,ξ∗s [ψt(Zt ,θ
∗)|Zt−1] is zero. Since

R̂t = A+op(1) is satisfied,C1 can be rewritten as

C1 =
(
A−1+op(1)

)(
Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1+op
(
|θ̂t−1|

))
θ̂⊤t−1+op

(
1
t

)

= A−1
Eθ∗,ξ∗s [∂θψt(Zt ,θ

∗)|Zt−1] θ̂t−1θ̂
⊤
t−1+op

(
‖θ̂t−1‖2

)
+op

(
1
t

)
. (44)
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We now use Equations (43) and (44), leading to

Eθ∗,ξ∗s

[
θ̂t θ̂
⊤
t |Zt−1

]
=

(
1+op

(
1
t

))
θ̂t−1θ̂

⊤
t−1−

1
t
A−1

Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1θ̂

⊤
t−1

− 1
t

(
A−1

Eθ∗,ξ∗s [∂θψt(Zt ,θ
∗)|Zt−1] θ̂t−1θ̂

⊤
t−1

)⊤

+
1
t2A−1

Eθ∗,ξ∗s

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)⊤|Zt−1

]
(A−1)⊤+op

(
1
t2

)
.

Taking the expectation over the sequence, we obtain

Eθ∗,ξ∗

[
θ̂t θ̂
⊤
t

]
=

(
1+o

(
1
t

))
Eθ∗,ξ∗

[
θ̂t−1θ̂

⊤
t−1

]
− 1

t
A−1

Eθ∗,ξ∗

[
∂θψt(Zt ,θ

∗)θ̂t−1θ̂
⊤
t−1

]

− 1
t

(
A−1

Eθ∗,ξ∗

[
∂θψt(Zt ,θ

∗)θ̂t−1θ̂
⊤
t−1

])⊤
+

1
t2A−1

Σ(A−1)⊤+o

(
1
t2

)
,

where we have used the fact thatEθ∗,ξ∗
[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)⊤
]

converges toΣ:
Eθ∗,ξ∗

[
ψt(Zt ,θ

∗)ψt(Zt ,θ
∗)⊤
]
=Σ+o(1). Using assumption (c) in Theorem 10 and applying the

trace operator, we obtain

Eθ∗,ξ∗
[
‖θ̂t‖2

]
=

(
1− 2

t
+o

(
1
t

))
Eθ∗,ξ∗

[
‖θ̂t−1‖2

]
+

1
t2 tr

{
A−1

Σ(A−1)⊤
}
+o

(
1
t2

)
.

We now introduce the following lemma.

Lemma 22 (Bottou and LeCun, 2005, Lemma 1) Let{ut} be a positive sequence defined as

ut =

(
1− ᾱ

t
+o

(
1
t

))
ut−1+

β̄
t2 +o

(
1
t2

)
.

If ᾱ > 1 andβ̄ > 0 hold, then

tut →
β̄

ᾱ−1
.

The proof is given in Lemma 1 in Bottou and LeCun (2005). Referring the result of Lemma 22, we
have

Eθ∗,ξ∗
[
‖θ̂t‖2

]
=

1
t
tr
{

A−1
Σ(A−1)⊤

}
+o

(
1
t

)
.

Appendix L. Proof of Lemma 11

Proof Since the MRPs defined in Section 2 are ergodic, the MRPs satisfy geometrically uniform
mixing. By performing a Taylor series expansion to estimating Equation (15) around the parameter
θ̄, we obtain

0=
T

∑
t=1

ψ̄t(Zt , θ̄)+
T

∑
t=1

∂θψ̄t(Zt , θ̄)(θ̂T − θ̄)+O
(∥∥θ̂T − θ̄

∥∥2
)
.
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Here, high order terms are in total represented asO(‖θ̂T − θ̄‖2) because of the twice differentiable
condition for the functiong(s,θ) as Assumption 3. By applying the law of large numbers (ergodic
pointwise theorem) (Billingsley, 1995, Theorem 24.1) to(1/T)∑T

t=1 ∂θψ̄t(Zt , θ̄), we have

1
T

T

∑
t=1

∂θψ̄t(Zt , θ̄) =
1
T

T

∑
t=1

w̄t−1(Zt−1){∂θε(zt , θ̄)}⊤ a.s.−→ lim
t→∞

E

[
w̄t−1(Zt−1)∂θ{ε(zt , θ̄)}⊤

]

︸ ︷︷ ︸
=Ā

.

Let k ∈ R
m be any nonzero vector. By applying the central limit theorem in Lemma 18 to

(1/
√

T)∑T
t=1k

⊤ψ̄t(Zt , θ̄), we have

1√
T

T

∑
t=1

k⊤ψ̄t(Zt , θ̄) =
1√
T

T

∑
t=1

k⊤w̄t−1(Zt−1)εt(zt , θ̄)

d−→N




0,k

(
lim
t→∞

E

[
εt(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
+ lim

t→∞
2

∞

∑
t ′=1

cov
[
ε(zt , θ̄)w̄t−1,ε(zt+t ′ , θ̄)w̄t+t ′−1

]
)

︸ ︷︷ ︸
Σ̄

k



.

Therefore, from the Craḿer-Wold theorem (van der Vaart, 2000),(1/
√

T)∑T
t=1 ψ̄t(Zt , θ̄) converges

to a Gaussian distribution as follows;

1√
T

T

∑
t=1

ψ̄t(Zt , θ̄)
d−→N

(
0,Σ̄

)
.

By neglecting higher order terms, we obtain

√
T(θ̂T − θ̄)∼N

(
0, Ā−1

Σ̄(Ā⊤)−1
)
.

Then, θ̂T is Gaussian distributed:̂θT ∼ N (θ̄, Ãv), where the asymptotic variancẽAv is given by
Equation (32).

Appendix M. Proof of Lemma 12

Proof Let k ∈ R
m be any nonzero vector. By applying the central limit theorem to

(1/
√

T)∑T
t=1k

⊤ψ̄t(Zt , θ̄) in Lemma 18, we have

1√
T

T

∑
t=1

k⊤ψ̄t(Zt , θ̄)
d−→N

(
0,k⊤Σ̄k

)
,

where

k⊤Σ̄k = lim
t→∞

k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

+ lim
t→∞

2
∞

∑
t ′=1

cov
[
ε(zt , θ̄)k

⊤w̄t−1,ε(zt+t ′ , θ̄)k
⊤w̄t+t ′−1

]
.
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Since the target process is a geometrically uniform mixing, there exist some positive constantsC
andρ ∈ [0,1) such thatϕ(t)≤Cρt . Then, by using the covariance bound in Lemma 19, we obtain

∣∣∣cov
[
ε(zt , θ̄)k

⊤w̄t−1,ε(zt+t ′ , θ̄)k
⊤w̄t+t ′−1

]∣∣∣≤ 2
√

ϕ(t ′) lim
t→∞

k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

≤ 2
√

Cρt ′/2 lim
t→∞

k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k.

Therefore,k⊤Σ̄k is bounded as
∣∣∣k⊤Σ̄k

∣∣∣

=

∣∣∣∣∣ limt→∞
k⊤E

[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k+2 lim

t→∞

∞

∑
t ′=1

cov
[
ε(zt , θ̄)k

⊤w̄t−1,ε(zt+t ′ , θ̄)k
⊤w̄t+t ′−1

]∣∣∣∣∣

≤ lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣+2 lim
t→∞

∞

∑
t ′=1

∣∣∣cov
[
ε(zt , θ̄)k

⊤w̄t−1,ε(zt+t ′ , θ̄)k
⊤w̄t+t ′−1

]∣∣∣

≤ lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣+4
√

C
∞

∑
t ′=1

ρt ′/2 lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣

= lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣
(

1+4
√

C
∞

∑
t ′=1

ρt ′/2

)

= lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣
(

1+4
√

C
ρ1/2

(1−ρ1/2)

)

= ϒ lim
t→∞

∣∣∣k⊤E
[
ε(zt , θ̄)

2w̄t−1w̄
⊤
t−1

]
k

∣∣∣= ϒ
∣∣∣k⊤Σ̄0k

∣∣∣ ,

whereϒ = 1+4
√

Cρ1/2/(1−ρ1/2). Thus, we can obtain the following relation;

k⊤
(
ϒΣ̄0− Σ̄

)
k ≥ 0.

This implies thatϒΣ̄0− Σ̄ is a semipositive definite matrix, hence we derive

1
T

Ā−1
Σ̄
(
Ā−1)⊤ � ϒ

T
Ā−1

Σ̄0
(
Ā−1)⊤ .

References

H. Akaike. A new look at the statistical model identification.IEEE Transactions on Automatic
Control, 19(6):716–723, 1974.

S. Amari. Natural gradient works efficiently in learning.Neural computation, 10(2):251–276, 1998.

S. Amari and J. F. Cardoso. Blind source separation-semiparametric statistical approach. IEEE
Transactions on Signal Processing, 45(11):2692–2700, 2002.

2017



UENO, MAEDA , KAWANABE AND ISHII

S. Amari and M. Kawanabe. Information geometry of estimating functions in semi-parametric
statistical models.Bernoulli, 3(1):29–54, 1997.

S. Amari, H. Park, and K. Fukumizu. Adaptive method of realizing natural gradient learning for
multilayer perceptrons.Neural Computation, 12(6):1399–1409, 2000.

L. Baird. Residual algorithms: Reinforcement learning with function approximation. InProceed-
ings of the 12th International Conference on Machine Learning, pages 30–37, 1995.

D. P. Bertsekas and J. N. Tsitsiklis.Neuro-Dynamic Programming. Athena Scientific, 1996.

P. J. Bickel, C. A. Klaassen, Y. Ritov, and J. A. Wellner.Efficient and Adaptive Estimation for
Semiparametric Models. Springer, 1998.

P. Billingsley. The Lindeberg-Levy theorem for martingales.Proceedings of the American Mathe-
matical Society, 12(5):788–792, 1961.

P. Billingsley.Probability and Measure. John Wiley and Sons, 1995.

L. Bottou and Y. LeCun. Large scale online learning. InAdvances in Neural Information Processing
Systems 16, 2004.

L. Bottou and Y. LeCun. On-line learning for very large datasets.Applied Stochastic Models in
Business and Industry, 21(4):137–151, 2005.

J. A. Boyan. Technical update: Least-squares temporal differencelearning.Machine Learning, 49
(2):233–246, 2002.

R. C. Bradley. Basic properties of strong mixing conditions. A survey andsome open questions.
Probability Surveys, 2:107–144, 2005.

S. J. Bradtke and A. G. Barto. Linear least-squares algorithms for temporal difference learning.
Machine Learning, 22(1):33–57, 1996.

R. H. Crites and A. G. Barto. Improving elevator performance using reinforcement learning. In
Advances in Neural Information Processing Systems 8, pages 1017–1023, 1996.

A. Geramifard, M. Bowling, and R. S. Sutton. Incremental least-squarestemporal difference learn-
ing. In Proceedings of the 21st National Conference on Artificial Intelligence, pages 356–361.
AAAI Press, 2006.

A. Geramifard, M. Bowling, M. Zinkevich, and R. S. Sutton. iLSTD: Eligibility traces and con-
vergence analysis. InAdvances in Neural Information Processing Systems 19, pages 441–448,
2007.

V. P. Godambe. An optimum property of regular maximum likelihood estimation.The Annals of
Mathematical Statistics, 31(4):1208–1211, 1960.

V. P. Godambe. The foundations of finite sample estimation in stochastic processes.Biometrika, 72
(2):419–428, 1985.

2018



GENERALIZED TD LEARNING

V. P. Godambe, editor.Estimating Functions. Oxford University Press, 1991.
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