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Abstract

We study pool-based active learning in the presence of noise, that is, the agnostic setting. It is
known that the effectiveness of agnostic active learning depends on the learning problem and the
hypothesis space. Although there are many cases on which active learning is very useful, it is
also easy to construct examples that no active learning algorithm can have an advantage. Previous
works have shown that the label complexity of active learning relies on thedisagreement coefficient
which often characterizes the intrinsic difficulty of the learning problem. In this paper, we study the
disagreement coefficient of classification problems for which the classification boundary is smooth
and the data distribution has a density that can be bounded bya smooth function. We prove upper
and lower bounds for the disagreement coefficients of both finitely and infinitely smooth problems.
Combining with existing results, it shows that active learning is superior to passive supervised
learning for smooth problems.
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1. Introduction

Active learning addresses the problem that the algorithm is given a pool of unlabeled data drawn
i.i.d. from some underlying distribution; the algorithm can then pay for the labelof any example
in the pool. The goal is to learn an accurate classifier by requesting as fewlabels as possible. This
is in contrast with the standard passive supervised learning, where the labeled examples are chosen
randomly.

The simplest example that demonstrates the potential of active learning is to learn the optimal
threshold on an interval. Suppose the instances are uniformly distributed on[0,1], and there exists
a perfect threshold separating the two classes (i.e., there is no noise), then binary search needs
O(log 1

ε ) labels to learn anε-accurate classifier, while passive learning requiresO(1
ε ) labels. Another

encouraging example is to learn homogeneous linear separators. If the data are distributed on the
unit sphere ofRd, and the distribution has a density function upper and lower bounded byλ and
1/λ respectively, whereλ is some constant, then active learning can still give exponential savings
in the label complexity (Dasgupta, 2005).

However, there are also very simple problems that active learning does not help. Suppose again
that the instances are uniformly distributed on[0,1]. But this time the positive class could be any
interval on[0,1]. In this case, for any active learning algorithm there exists a distribution (i.e., a
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target classifier) such that the algorithm needsΩ(1
ε ) label requests to learn anε-accurate classifier

(Dasgupta, 2005). Thus there is no improvement over passive learningin the minimax sense. All
above are realizable problems. Of more interest and more realistic is the agnostic setting, where the
best classifier in the hypothesis space has a non-zero errorν. For agnostic active learning, there is
no active learning algorithm that can always reduce label requests dueto a lower boundΩ(ν2

ε2 ) for
the label complexity (K̈aäriäinen, 2006).

Previous results have shown that whether active learning helps relies crucially on thedisagree-
ment coefficientof the learning problem (Hanneke, 2007). The disagreement coefficient depends on
the distribution of the instance-label pairs and the hypothesis space and often describes the intrinsic
difficulty of the active learning problem. In particular, it has been shown that the label complexity
of two important agnostic active learning algorithmsA2 (Balcan et al., 2006) and the one due to
Dasgupta et al. (2007) (will be referred to as DHM) are characterizedby the disagreement coeffi-
cient. If the disagreement coefficient is small, active learning usually has smaller label complexity
than passive learning.

In this paper, we study the disagreement coefficient for smooth problems.Specifically we ana-
lyze the disagreement coefficient for learning problems whose classification boundaries are smooth.
Such problems are often referred to as the boundary fragment class (van der Vaart and Wellner,
1996). Under some mild assumptions on the distribution, we show that the magnitude of the dis-
agreement coefficient depends on the order of smoothness. For finite order smoothness, it is poly-
nomially smaller than the largest possible value, and exponentially smaller for infinite smoothness.
Combining with known upper bounds on the label complexity in terms of disagreement coefficient,
we give sufficient condition under which active learning is strictly superior to passive learning.

1.1 Related Works

Our work is closely related to Castro and Nowak (2008) which proved label complexity bounds for
problems with smooth classification boundary under Tsybakov’s noise condition (Tsybakov, 2004).
Please see Section 3.3 for a detailed discussion on this work.

Another related work is due to Friedman (2009). He introduced a different notion of smooth-
ness. In particular, he considered smooth problems whose hypothesis space is a finite dimensional
parametric space (and therefore has finite VC dimension). He gave conditions under which the dis-
agreement coefficient is always bounded from above by a constant. In contrast, the hypothesis space
(the boundary fragment class) studied in our work is a nonparametric class and is more expressive
than VC classes.

2. Background

Let X be an instance space,D a distribution overX ×{−1,1}. Let H be the hypothesis space, a
set of classifiers fromX to {−1,1}. DenoteDX the marginal ofD overX . In our active learning
model, the algorithm has access to a pool of unlabeled examples fromDX. For any unlabeled point
x, the algorithm can ask for its labely, which is generated from the conditional distribution atx.
The error of a hypothesish according toD is erD(h) = Pr(x,y)∼D(h(x) 6= y). The empirical error on
a sampleS of sizen is erS (h) = 1

n ∑(x,y)∈S I[h(x) 6= y], whereI is the indicator function. We useh∗

denote the best classifier inH . That is,h∗ = argminh∈H erD(h). Let ν = erD(h∗). Our goal is to
learn aĥ∈H with error rate at mostν+ ε, whereε is the desired accuracy.
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Input: unlabeled data pool(x1,x2, . . . ,xm) i.i.d. fromDX, hypothesis spaceH ;
Initially: V←H , R← DIS(V), Q← /0;
for t = 1,2, . . . ,mdo

if Pr(DIS(V))≤ 1
2 Pr(R) then

R← DIS(V); Q← /0;
end
Find a new dataxi from the data pool withxi in R;
Request the labelyi of xi , and letQ←Q∪{(xi ,yi)};
V←{h∈V : LB(h,Q,δ/m)≤minh′∈V UB(h′,Q,δ/m)};
ht ← argminh∈V erQ(h);
βt ← (UB(ht ,Q,δ/m)−LB(ht ,Q,δ/m))Pr(R) ;

end
Returnĥ= h j , where j = arg min

t∈{1,2,...,m}
βt .

Algorithm 1 : TheA2 algorithm

A2 (Balcan et al., 2006) is the first rigorous agnostic active learning algorithm. It can be viewed
as a robust version of the active learning algorithm due to Cohn et al. (1994) for the realizable
setting. A description of the algorithm is given in Algorithm 1. It was shown that A2 is never much
worse than passive learning in terms of the label complexity. The key observation thatA2 can be
superior to passive learning is that, since our goal is to choose anĥ such thaterD(ĥ)≤ erD(h∗)+ ε,
we only need tocomparethe errors of hypotheses. Therefore we can just request labels of thosex
on which the hypotheses under consideration have disagreement.

To do this, the algorithm keeps track of two spaces. One is the current version spaceV, con-
sisting of hypotheses that with statistical confidence are not too bad compared toh∗; the other is the
region of disagreementDIS(V), which is the set of allx∈ X for which there are hypotheses inV
that disagree onx. Formally, for any subsetV ⊂H ,

DIS(V) = {x∈ X : ∃h,h′ ∈V, h(x) 6= h′(x)}.

To achieve the statistical guarantee that the version spaceV contains only good hypotheses, the
algorithm must be provided with a uniform convergence bound over the hypothesis space. That is,
with probability at least 1−δ over the draw of sampleS according toD conditioned onDIS(V) for
any version spacesV,

LB(S ,h,δ)≤ erD|V (h)≤UB(S ,h,δ),

hold simultaneously for allh∈H , where the lower boundLB(S ,h,δ) and upper boundUB(S ,h,δ)
can be computed from the empirical errorerS (h). HereD|V is the distribution ofD conditioned on

DIS(V). If H has finite VC dimensionVC(H ), thenerS (h)±O(VC(H )
n )−1/2 are upper and lower

bounds oferD|V (h) respectively.
We will denote the volume ofDIS(V) by ∆(V) = PrX∼DX(X ∈ DIS(V)). Requesting labels of

the instances fromDIS(V) rather than from the whole spaceX allowsA2 require fewer labels than
passive learning. Hence the key issue is how fast∆(V) reduces. This process, and in turn the label
complexity ofA2, are nicely characterized by the disagreement coefficientθ introduced in Hanneke
(2007).
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Input: unlabeled data pool(x1,x2, . . . ,xm) i.i.d. fromDX, hypothesis spaceH ;
Initially: G0← /0, T0← /0;
for t = 1,2, . . . ,mdo

For each ˆy∈ {−1,1}, hŷ← LEARNH (Gt−1∪{(xt , ŷ)},Tt−1);
if erGt−1∪Tt−1(h−ŷ)−erGt−1∪Tt−1(hŷ)> ∆t−1 for someŷ∈ {−1,1} then

Gt ← Gt−1∪{(xt , ŷ)}; Tt ← Tt−1;
end
else

Request the true labelyt of xt ; Gt ← Gt−1; Tt ← Tt−1∪{(xt ,yt)};
end

end
Returnh= LEARNH (Gm,Tm).

Algorithm 2 : The DHM algorithm

Definition 1 Let ρ(·, ·) be the pseudo-metric on a hypothesis spaceH induced byDX. That is, for
h,h′ ∈H , ρ(h,h′) =PrX∼DX(h(X) 6= h′(X)). Let B(h, r) = {h′ ∈H : ρ(h,h′)≤ r}. The disagreement
coefficientθ(ε) is

θ(ε) = sup
r≥ε

∆(B(h∗, r))
r

= sup
r≥ε

PrX∼DX(X ∈ DIS(B(h∗, r)))
r

,

where h∗ = argminh∈H erD(h).

Note thatθ depends onH andD, and 1≤ θ(ε)≤ 1
ε .1 The following is an upper bound of the label

complexity ofA2 in terms of the disagreement coefficientθ(ε) (Hanneke, 2007).

Theorem 2 Suppose thatH has finite VC dimension VC(H ). Then using the definitions given
above, the label complexity of A2 is

O

(

(θ(ν+ ε))2
(

ν2

ε2 +1

)

polylog

(

1
ε

)

log

(

1
δ

)

VC(H )

)

. (1)

In addition, Hanneke (2007) showed thatΩ̃(θ2 log 1
δ) is a lower bound for theA2 algorithm of any

problem withν = 0, where inΩ̃ we hide the logrithm terms.
Another important agnostic active learning algorithm is DHM. (Algorithm 2 gives a formal

description of the algorithm.) DHM reduces active learning to a series ofconstrainedsupervised
learning. The key idea of the algorithm is that each time we encounter a new unlabeled datax, we
test if we can guess the label ofx with high confidence, using the information obtained so far. If
we can, we put the data and the confidently guessed label(x, ŷ) into theguessedsetG ; otherwise,
we request the true labely of x and put(x,y) into thetrue setT . The criterion of whether we can
guess the label ofx confidently is as follows. For each ˜y∈ {−1,+1}, we learn a classifierhỹ ∈ H
such thathỹ(x) = ỹ, andhỹ is consistent with all(x, ŷ) ∈ G and has minimal error onT . (This is the
subroutine LEARN in Algorithm 2.) If for some ˜y∈ {−1,+1} the error rate ofhỹ is smaller than

1. Here we only consider the nontrivial case that∆(B(h∗, r)) ≥ r for all r. This condition is satisfied by the smooth
problems studied in this paper.
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that ofh−ỹ by a threshold∆t (t is the number of unlabeled data encountered so far), then we guess
that ŷ= ỹ confidently.

The algorithm DHM relies crucially on a good choice of the threshold function∆t . If H has
finite VC dimensionVC(H ), Dasgupta et al. (2007) suggested to choose∆t based on the normalized
uniform convergence bound onH (Vapnik, 1998). They also showed that DHM is never much worse
than passive learning and it has label complexity2

Õ

(

θ(ν+ ε)
(

1+
ν2

ε2

)

polylog

(

1
ε

)

log

(

1
δ

)

VC(H )

)

. (2)

From (1) and (2) it can be seen that ifε > ν, the termν2

ε2 is upper bounded by 1 and the label
complexity of the active learning algorithms crucially depends on the disagreement coefficientθ.
However, the asymptotic label complexity asε tends to 0 (assumingν > 0) can at best only be upper

bounded byO
(

ν2

ε2

)

. In fact, this bound cannot be improved: it is known that given some hypothesis

spaceH , for every active learning algorithmA, there is a learning problem (to be concrete, ah∗)
such that the label complexity ofA is at leastΩ(ν2

ε2 ) (Kääriäinen, 2006). ThusΩ(ν2

ε2 ) is a minimax
lower bound of the label complexity of agnostic active learning algorithms.

Although no active learning algorithm is superior to passive learning in all agnostic settings, it
turns out that if the disagreement coefficient is small, active learning doesalways help under a finer
parametrization of the noise distribution, known as Tsybakov’s noise condition (Tsybakov, 2004).

Definition 3 Let η(x) = Pr(Y = 1|X = x). We say that the distribution of the learning problem has
noise exponentκ = a+1

a (κ≥ 1) if there exists constant c> 0 such that

Pr

(∣

∣

∣

∣

η(X)− 1
2

∣

∣

∣

∣

≤ t

)

≤ cta, 0< a≤+∞

for all 0< t ≤ t0 for some constant t0.

Tsybakov’s noise condition characterizes the behavior ofη(x) whenx crosses the class bound-
ary. If κ = 1, η(x) has a jump from1

2− t0 to 1
2 + t0. The larger theκ, the more “flat”η(x) is.

Under Tsybakov’s noise condition, Hanneke (2009, 2011) proved that a variant of the DHM al-
gorithm (by choosing the threshold∆t based on local Rademacher complexity (Koltchinskii, 2006))
has the following asymptotic label complexity.

Theorem 4 Suppose that the learning problem satisfies the Tsybakov’s noise condition with noise
exponentκ. Assume that the hypothesis spaceH and the marginal distributionDX satisfies that the

entropy with bracketing H[ ](ε,H ,L2(DX)) = O
(

(

1
ε
)2p
)

for some0< p< 1. If the Bayes classifier

h∗B ∈H , then the label complexity of DHM is

O

(

θ(ε0)

(

1
ε

)2− 2−p
κ
(

log
1
ε
+ log

1
δ

)

)

, (3)

whereε0 depends onε, κ, p, δ and the learning problem. In particular, settingε0 = ε 1
κ the theorem

holds.

2. Here inÕ we hide terms like log log( 1
ε ) and log log( 1

δ ).
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Inspired by this result, Koltchinskii (2010) further proved that under similar conditions a variant
of theA2 algorithm has label complexity

O

(

θ(ε
1
κ )

(

(

1
ε

)2− 2−p
κ

+

(

1
ε

)2− 2
κ
(

log
1
δ
+ log log

1
ε

)

))

. (4)

Note that in the last formula
(

1
ε
)2− 2−p

κ dominates over
(

1
ε
)2− 2

κ asε→ 0 if p> 0.
If the hypothesis spaceH has finite VC dimension, the entropy with bracketing is

H[ ](ε,H ,L2(DX)) = O

(

log
1
ε

)

,

smaller than
(

1
ε
)2p

for any p > 0. In this case, it can be shown that the above label complexity
bounds still hold by just puttingp= 0 into them.

In contrast, the sample complexity for passive learning under the same conditions is known to
be (Tsybakov, 2004)

O

(

(

1
ε

)2− 1−p
κ
(

log
1
δ
+ log log

1
ε

)

)

, (5)

and it is also a minimax lower bound. Comparing (3), (4) and (5) one can seethat whether active
learning is strictly superior to passive learning entirely depends on how small the disagreement
coefficientθ(ε) is.

One shortcoming ofA2 and DHM is that they are computationally expensive. This is partially
because that they need to minimize the 0-1 loss and need to maintain the version space. Beygelzimer
et al. (2009) proposed an importance weighting procedure IWAL which,during learning, minimize
a convex surrogate loss and therefore avoid 0-1 minimization. Furthermore, Beygelzimer et al.
(2010) developed an active learning algorithm which does not need to keep the version space and
therefore is computationally efficient. There are also upper bounds on thelabel complexity of these
two algorithms in terms of the disagreement coefficient.

Finally, for a comprehensive survey of the theoretical research on active learning, please see the
excellent tutorial (Dasgupta and Langford, 2009).

3. Main Results

As described in the previous section, whether active learning helps largely depends on the disagree-
ment coefficient which often characterizes the intrinsic difficulty of the learning problem using a
given hypothesis space. So it is important to understand if the disagreement coefficient is small for
learning problems with practical and theoretical interests. In this section we give bounds on the
disagreement coefficient for problems that have smooth classification boundaries, under additional
assumptions on the distribution. Such smooth problems are often referred to as boundary fragment
class and has been extensively studied in passive learning and especially in empirical processes.

In Section 3.1 we give formal definitions of the smooth problems. Section 3.2 contains the main
results, where we establish upper and lower bounds for the disagreement coefficient of smooth
problems. In Section 3.3 we provide some discussions on some closely relatedworks.
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3.1 Smoothness

Let f be a function defined onΩ ⊂ R
d andα > 0 be a real number. Letα be the largest integer

strictly smaller thanα. (Henceα = α−1 whenα is an integer.) For any vectork = (k1, · · · ,kd) of
d nonnegative integers, let|k|= ∑d

i=1ki . Let

Dk =
∂|k|

∂k1x1 · · ·∂kdxd ,

be the differential operator. Define theα-norm as (van der Vaart and Wellner, 1996)

‖ f‖α := max
|k|≤α

sup
x
|Dk f (x)|+ max

|k|=α
sup
x,x′

|Dk f (x)−Dk f (x′)|
‖x−x′‖α−α ,

where the suprema are taken over allx,x′ overΩ with x 6= x′.

Definition 5 (Finite Smooth Functions) A function f is said to beαth order smooth with respect
to a constant C, if‖ f‖α ≤C. The set ofαth order smooth functions is defined as

Fα
C := { f : ‖ f‖α ≤C}.

Thusαth order smooth functions have uniformly bounded partial derivatives upto orderα, and the
αth order partial derivatives are Hölder continuous. As a special case, note that iff has continuous
partial derivatives upper bounded byC up to orderm, wherem is any positive integer, thenf ∈ Fm

C .

Also, if 0< β < α, then f ∈ Fα
C implies f ∈ Fβ

C .

Definition 6 (Infinitely Smooth Functions) A function f is said to be infinitely smooth with respect
to a constant C, if‖ f‖α ≤C for all α > 0. The set of infinitely smooth functions is denoted by F∞

C .

With the definitions of smoothness, we introduce the hypothesis space we usein active learning
algorithms.

Definition 7 (Hypotheses with Smooth Classification Boundaries) A set of hypothesesH α
C de-

fined onX = [0,1]d+1 is said to haveαth order smooth classification boundaries, if for every
h ∈ H α

C , the classification boundary is aαth order smooth function on[0,1]d. To be precise,
let x = (x1,x2, . . . ,xd+1) ∈ [0,1]d+1. The classification boundary is the graph of function xd+1 =
f (x1, . . . ,xd), where f∈ Fα

C . Similarly, a hypothesis spaceH ∞
C is said to have infinitely smooth

boundaries, if for every h∈ H ∞
C the classification boundary is the graph an infinitely smooth func-

tion on[0,1]d.

The first thing we need to guarantee is that smooth problems are learnable, both passively and
actively. To be concrete, we must show that the entropy with bracketing ofsmooth problems satisfies

H[ ] (ε,H ,L2(DX)) = O

(

(

1
ε

)2p
)

,

for somep< 1 (van der Vaart and Wellner, 1996) (see also Theorem 4). For smoothproblems, the
following proposition is known.
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Proposition 8 (van der Vaart and Wellner, 1996)
Let the instance space be[0,1]d+1 and the hypothesis space beH α

C . Assume that the marginal
distributionDX has a density upper bounded by a constant. Then

H[ ] (ε,H α
C ,L2(DX)) = O

(

(

1
ε

) 2d
α
)

.

The problem is learnable ifα > d.

In the rest of this paper, we only consider smooth problems such thatα > d.

3.2 Disagreement Coefficient

The disagreement coefficientθ plays an important role for the label complexity of active learning
algorithms. In fact previous negative examples for which active learningdoes not work are all
because of largeθ. For instance the interval learning problem,θ(ε) = 1

ε , which leads to the same
label complexity as passive learning. (Recall thatθ(ε)≤ 1

ε , so this is the worst case.)
In this section we will show that that the disagreement coefficientθ(ε) for smooth problems is

small. Especially, we establish both upper bounds (Theorem 9 and Theorem 10) and lower bounds
(Theorem 13) for the disagreement coefficient of smooth problems. Finally we will combine our
upper bounds on the disagreement coefficient with the label complexity result of Theorem 4 and
show that active learning is strictly superior to passive learning for smoothproblems.

Theorem 9 Let the instance space beX = [0,1]d+1. Let the hypothesis space beH α
C , where d<

α < ∞. If the marginal distributionDX has a density p(x) on [0,1]d+1 such that there exists anαth
order smooth function g(x) and two constants0 < a≤ b such that ag(x) ≤ p(x) ≤ bg(x) for all
x ∈ [0,1]d+1, then3

θ(ε) = O

(

(

1
ε

) d
α+d

)

.

The key points in the theorem are: the classification boundaries are smooth;and the density is
bounded from above and below by constants times a smooth function.4 Note that the density itself
is not necessarily smooth. We merely require the density does not change too rapidly.

The intuition behind the theorem above is as follows. Letfh∗(x) and fh(x) be the classification
boundaries ofh∗ andh, and supposeρ(h,h∗) is small, whereρ(h,h∗) = Prx∼DX(h(x) 6= h∗(x)) is
the pseudo metric. If the classification boundaries and the density are all smooth, then the two
boundaries have to be close to each other everywhere. That is,| fh(x)− f f ∗(x)| is small uniformly
for all x. Hence only the points close to the classification boundary ofh∗ can be inDIS(B(h∗,ε)),
which leads to a small disagreement coefficient.

For infinitely smooth problems, we have the following theorem. Note that the requirement on
the density is stronger than finite smoothness problems.

3. This upper bound was obtained with the help of Yanqi Dai, Kai Fan, Chicheng Zhang and Ziteng Wang. It improves

a previous upper boundO

(

( 1
ε
)1− αd

(1+α)d

)

, which converges to the current bound asα
d → ∞.

4. These two conditions include a large class of learning problems. For example, the boundary fragment class equipped
with most elementary distributions (truncated in[0,1]d+1) satisfies these conditions.
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Theorem 10 Let the hypothesis space beH ∞
C. If the distributionDX has a density p(x) such

that there exist two constants0 < a≤ b such that a≤ p(x) ≤ b for all x ∈ [0,1]d+1, thenθ(ε) =
O(log2d(1

ε )).

The proofs of Theorem 9 and Theorem 10 rely on the following two lemmas.

Lemma 11 Let Φ be a function defined on[0,1]d and isαth order smooth. If
∫
[0,1]d
|Φ(x)|dx≤ r,

then

‖Φ‖∞ = O
(

r
α

α+d

)

= O

(

r ·
(

1
r

) d
α+d

)

,

where‖Φ‖∞ = supx∈[0,1]d |Φ(x)|.

Lemma 12 Let Φ be a function defined on[0,1]d and is infinitely smooth. If
∫
[0,1]d
|Φ(x)|dx≤ r,

then

‖Φ‖∞ = O

(

r ·
(

log
1
r

)2d
)

.

Proof of Theorem 9 First of all, since we focus on binary classification,DIS(B(h∗, r)) can be
written equivalently as

DIS(B(h∗, r)) = {x∈ X , ∃h∈ B(h∗, r), s.t. h(x) 6= h∗(x)}.

Consider anyh∈ B(h∗, r). Let fh, fh∗ ∈ Fα
C be the corresponding classification boundaries ofh and

h∗ respectively. Ifr is sufficiently small, we must have

ρ(h,h∗) = Pr
X∼DX

(h(X) 6= h∗(X)) =
∫

[0,1]d

dx1 . . .dxd

∣

∣

∣

∣

∣

∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
p(x1, . . . ,xd+1)dxd+1

∣

∣

∣

∣

∣

.

Denote

Φh(x
1, . . . ,xd) =

∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
p(x1, . . . ,xd+1)dxd+1.

We assert that there is aαth order smooth functioñΦh(x1, . . . ,xd) and two constants 0< a≤ b such
thata|Φ̃h| ≤ |Φh| ≤ b|Φ̃h|. To see this, remember thatfh and fh∗ areαth order smooth functions;
and the densityp is upper and lower bounded by constants times aαth order smooth function
g(x1, . . . ,xd+1). Also note that if we define

Φ̃h(x
1, . . . ,xd) =

∫ fh(x1,...,xd)

fh∗ (x1,...,xd)
g(x1, . . . ,xd+1)dxd+1,
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Φ̃h is aαth order smooth function, which is easy to check by taking derivatives. Now

∫
[0,1]d
|Φ̃h(x)|dx≤

∫
[0,1]d

1
a
|Φh(x)|dx≤ r

a
.

According to Lemma 11, we have‖Φ̃h‖∞ = O(r
α

α+d ). Thus‖Φh‖∞ ≤ b‖Φ̃h‖∞ = O(r
α

α+d ). Because
this holds for allh∈ B(h∗, r), we have

sup
h∈B(h∗,r)

‖Φh‖∞ = O
(

r
α

α+d

)

.

Now consider the region of disagreement ofB(h∗, r). Note that

DIS(B(h∗, r)) = ∪h∈B(h∗,r){x : h(x) 6= h∗(x)}.

Hence

Pr
X∼DX

(x∈ DIS(B(h∗, r))) = Pr
X∼DX

(

x∈ ∪h∈B(h∗,r){x : h(x) 6= h∗(x)}
)

≤ 2
∫
[0,1]d

sup
h∈B(h∗,r)

‖Φh‖∞dx1 . . .dxd = O
(

r
α

α+d

)

= O

(

r ·
(

1
r

) d
α+d

)

.

The theorem follows by the definition ofθ(ε).

Theorem 10 can be proved similarly by using Lemma 12.
In the next theorem, we give lower bounds on the disagreement coefficient for finite smooth

problems under the condition that the marginal distributionDX is the uniform distribution.5 Note
that in this case the lower bound matches the upper bound in Theorem 9. Thus in general Theorem
9 cannot be improved.

Theorem 13 Let the hypothesis space beH α
C whereα < ∞. Assume that the marginal distribution

DX is uniform on[0,1]d+1. Then the disagreement coefficient has the following lower bound6

θ(ε) = Ω

(

(

1
ε

) d
α+d

)

.

Proof Without loss of generality, we assume that the classification boundary of theoptimal classifier
h∗ is the graph of functionxd+1 = f (x1,x2, . . . ,xd)≡ 1/2. That is, the classification boundary ofh∗

is a hyperplane orthogonal to thed+1th axis. We will show that for most points(x1,x2, . . . ,xd+1) ∈
[0,1]d+1 that areε ·

(

1
ε
)

d
α+d -close to the classification boundary ofh∗, that is,|xd+1− 1

2| ≤ ε ·
(

1
ε
)

d
α+d ,

there is ahf ∈H α
C satisfying

hf (x
1,x2, . . . ,xd+1) 6= h∗(x1,x2, . . . ,xd+1),

5. The condition can be relaxed to thatDX is bounded from above and below by positive constants.
6. The bound was obtained with the help of Yanqi Dai, Kai Fan, Chicheng Zhang and Ziteng Wang. It improves a

previous lower boundΩ
(

( 1
ε
)

d
2α+d

)

.
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and at the same time
ρ(hf ,h

∗) = Pr(hf (X) 6= h∗(X))≤ ε,

and thereforehf ∈ B(h∗,ε). Thus the volume ofDIS(B(h∗,ε)) is Ω
(

ε ·
(

1
ε
)

d
α+d

)

; and consequently

θ(ε)≥ Pr(DIS(B(h∗,ε)))
ε

= Ω

(

(

1
ε

) d
α+d

)

.

For this purpose, fixing(x1,x2, . . . ,xd+1) ∈ [0,1]d+1 with

0≤ xd+1− 1
2
≤ cε

(

1
ε

) d
α+d

,

for some constantc. We only consider point(x1,x2, . . . ,xd+1)∈ [0,1]d+1 that are not too close to the
“boundary” of[0,1]d+1. (e.g., 0.1≤ xi ≤ 0.9 for all 1≤ i ≤ d.) We constructhf whose classification
boundary is the graph of the following functionf . For convenience, we shift(x1,x2, . . . ,xd, 1

2) to
the origin. Let f be defined on[0,1]d as

f (u1,u2, . . . ,ud) =

{

ξ−α (ξ2−∑d
i=1u2

i

)α
if ∑d

i=1u2
i ≤ ξ2,

0 otherwise,

whereξ is determined by ∫
Ω
| f |dω = ε,

that is,ρ(hf ,h∗) = ε, andΩ is the region obtained from[0,1]d after shifting(x1,x2, . . . ,xd, 1
2) to the

origin.
First, it is not hard to check by calculus thatf is αth order smooth. Next, since

∫
Ω | f |dω = ε, it

is not difficult to calculate thatξ = c′ε
1

α+d , for some constantc′. Thus

‖ f‖∞ = f (0,0, . . . ,0) = c′ε
α

α+d = c′ε
(

1
ε

) d
α+d

.

So we havehf (0,0, . . . ,0) 6= h∗(0,0, . . . ,0) andρ(hf ,h∗) = ε. This completes the proof.

For infinite smoothness, we do not know any lower bound for the disagreement coefficient larger
than the trivialΩ(1).

3.2.1 LABEL COMPLEXITY FOR SMOOTH PROBLEMS

Now we combine our results (Theorem 9 and Theorem 10) with the label complexity bounds for
active learning (Theorem 4 and (4)) and show that active learning is strictly superior to passive
learning for smooth problems.

Remember that under Tsybakov’s noise conditions the label complexity of active learning is
(see Theorem 4 and (4))

O

(

θ(ε
1
κ )

(

1
ε

)2− 2−p
κ
(

log
1
ε
+ log

1
δ

)

)

.
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While for passive learning it is (see (5))

O

(

(

1
ε

)2− 1−p
κ
(

log
1
δ
+ log log

1
ε

)

)

.

We see that if

θ(ε
1
κ ) = o

(

(

1
ε

) 1
κ
)

,

then active learning requires strictly fewer labels than passive learning.
By Theorem 9 and remember thatα > d (see Proposition 8) we obtain

θ(ε
1
κ ) = O

(

1
ε

) d
κ(α+d)

= o

(

(

1
ε

) 1
2κ
)

= o

(

(

1
ε

) 1
κ
)

.

So we have the following conclusion.

Theorem 14 Assume that the Tsybakov noise exponentκ is finite. Then active learning algorithms
A2 and DHM have label complexity strictly smaller than passive learning forαth order smooth
problems wheneverα > d.

3.3 Discussion

In this section we discuss and compare our results to a closely related work due to Castro and
Nowak (2008), which also studied the label complexity of smooth problems under Tsybakov’s noise
condition. Castro and Nowak’s work is heavily based on their detailed analysis of actively learning
a threshold on[0,1] described below.

Consider the learning problem in which the instance spaceX = [0,1]; the hypothesis spaceH
contains all threshold functions, that is,H = {I(x≥ t) : t ∈ [0,1]}∪ {I(x < t) : t ∈ [0,1]}, where
I is indicator function; and the marginal distributionDX is the uniform distribution on[0,1]. Sup-
pose that the Bayes classifierh∗B ∈ H . Assume that the learning problem satisfies the “geometric”
Tsybakov’s noise condition

∣

∣

∣

∣

η(x)− 1
2

∣

∣

∣

∣

≥ b|x−x∗B|κ−1 , (6)

for some constantb > 0 and for allx such that|η(x)− 1
2| ≤ τ0 with the constantτ0 > 0. Here

x∗B is the threshold of the Bayes classifier. (One can verity that (6) implies the ordinary Tsybakov’s
condition with noise exponentκ whenDX is uniform on [0,1].) In addition, assume that the learning
problem satisfies a reverse-sided Tsybakov’s condition

∣

∣

∣

∣

η(x)− 1
2

∣

∣

∣

∣

≤ B|x−x∗B|κ−1 ,

for some constantB> 0.
Under these assumptions, Castro and Nowak showed that an active learning algorithm they

attributed to Burnashev and Zigangirov (1974) (will be referred to as BZ), which is essentially

a Bayesian binary search algorithm,7 has label complexityÕ

(

(

1
ε
)2− 2

κ

)

. Moreover, due to the

7. Note that this BZ algorithm can choose any pointx from the instance space, not necessarily from the given pool of
unlabeled data. This model is called membership query, making strongerassumptions than the pool-based active
learning model.
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reverse-sided Tsybakov’s condition, one can show that with high probability that the threshold ˆx
returned by the active learning algorithm converges to the Bayes threshold x∗B exponentially fast
with respect to the number of label requests.8

Castro and Nowak then generalized this result to smooth problems similar to whatwe studied
in this paper. Let the hypothesis space beH α

C . Suppose that the Bayes classifierh∗B ∈H α
C . Assume

that on every vertical line segment in[0,1]d+1, (that is, for every{(x1,x2, . . . ,xd,xd+1) : xd+1 ∈
[0,1]}, (x1,x2, . . . ,xd) ∈ [0,1]d,) the one dimensional distributionηx1,...,xd(xd+1) satisfies the two-
sided geometric Tsybakov’s condition with noise exponentκ. Based on these assumptions, they
proposed the following active learning algorithm: ChoosingM vertical line segments in[0,1]d+1.
Performing one dimensional threshold learning on each line segment as in theone-dimensional
case described above. After obtaining the threshold for each line, doinga piecewise polynomial
interpolation on these thresholds and return the interpolation function as the classification boundary.

They showed that this algorithm has label complexityÕ

(

(

1
ε
)2− 2− d

α
κ

)

.

In sum, their algorithm makes the following main assumptions:

(A1) On every vertical line, the conditional distribution is two-sided Tsybakov. Thus the distri-
butionDXY has a uniform “one-dimensional” behavior along the(d+1)th axis.

(A2) The algorithm can choose any point fromX = [0,1]d+1 and ask for its label.

Comparing the label complexity of this algorithm

Õ





(

1
ε

)2− 2− d
α

κ





and that obtained from Theorem 4 and Proposition 8

Õ



θ(ε0)

(

1
ε

)2− 2− d
α

κ





one sees that their label complexity is smaller byθ(ε0). It seems that the disagreement coefficient
of smooth problem does not play a role in their label complexity formula. The reason is that the
assumption (A1) in their model assumes that the distribution of the problem has auniform one-
dimensional behavior: on each line segment parallel to thed+1th axis, the conditional distribution
ηx1,...,xd(xd+1) satisfies the two-sided Tsybakov’s condition with equal noise exponentκ. Therefore
the algorithm can assign equal label budget to each line segment for one-dimensional learning.
Recall that the disagreement coefficient of the one-dimensional threshold learning problem is at
most 2 for allε > 0, so there seems noθ(ε) term in the final label complexity formula. If, instead of
assumption (A1), we assume the ordinary Tsybakov’s noise condition, thealgorithm has to assign

8. It needs to be pointed out that the BZ algorithm requires that the noise exponentκ is known and the algorithm takes it
as imput. But by Threorem 4 and (4) we know that bothA2 and DHM (with slight modifications) have the same label
complexity and the convergence property, since the disagreement coefficient for this threshold problem isθ(ε) = 2
for all ε > 0.
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label budgets according to the “worst” noise on all the line segments, that is,the largestκ of the
conditional distributionsηx1,...,xd(xd+1) over all (x1, . . . ,xd). But under the ordinary Tsybakov’s
condition, the largestκ on lines can be arbitrarily large, resulting a label complexity equal to that of
passive learning.

4. Proof of Lemma 11 and 12—Some Generalizations of the Landau-Kolmogorov
Type Inequalities

In this section we give proofs of Lemma 11 and Lemma 12. The two lemmas are closely related
to the Landau-Kolmogorov type inequalities (Landau, 1913; Kolmogorov, 1938; Schoenberg, 1973)
(see also Mitrinovíc et al., 1991 Chapter I for a comprehensive survey), and specificallythe follow-
ing result due to Gorny (1939).

Theorem 15 Let f(x) be a function defined on[0,1] and has derivatives up to the nth order. Let
Mk = ‖ f (k)‖∞, k= 0,1, . . . ,n. Then

Mk ≤ 4
(n

k

)k
ekM

1− k
n

0 M
′ kn
n ,

where M′n = max(M0n!,Mn).

Roughly, for functionf defined on a finite interval, the above theorem bounds the∞-norm of
thekth order derivative off by the∞-norm of f and itsnth derivative.

In order to prove Lemma 11, we give the following generalization of Theorem 15 (in the direc-
tion of dimensionality and non-integer smoothness). Our proof is elementary and is simpler than
Gorny’s proof of Theorem 15. But note that the definition ofM′α in Theorem 16 is different to that
of Theorem 15.

Theorem 16 Let f be a function defined on[0,1]d. Letα > 1 be a real number. Assume that f has
partial derivatives up to orderα. For all 1≤ t ≤ α, define

Mt = max
|k|=t

sup
x,x′

|Dk f (x)−Dk f (x′)|
‖x−x′‖t−t ,

where Dk is the differential operator defined in Section 3.1 and x,x′ ∈ [0,1]d. Also define M0 =
supx∈[0,1]d f (x). Then

Mk ≤CM
1− k

α
0 M

′ kα
α , (7)

where M′α = max(M0,Mα), k = 1,2, . . . ,α, and the constant C depends on k andα but does not
depend on M0 and Mα.

Lemma 11 can be derived from Theorem 16.

Proof of Lemma 11 The proof has two steps. First, we construct a functionf by scalingΦ and
redefine the domain of the function, so that a) the integral off over the unit hypercube is at most
1; b) theαth order derivatives off is Hölder continuous with the same constant asΦ, and c)

‖ f‖∞ =
(

1
r

)
α

α+d ‖Φ‖∞. Next, we use Theorem16 to show that‖ f‖∞ can be bounded from above by
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a constant depending only onα, d, C (recall thatΦ ∈ Fα
C ) but independent ofr. Combining the two

steps concludes the theorem.
Now, for the first step assume

∫
[0,1]d
|Φ(x)|dx= t ≤ r.

Let

f (x1,x2, . . . ,xd) =

(

1
t

) α
α+d

Φ(t
1

α+d x1, t
1

α+d x2, . . . , t
1

α+d xd),

where now the domain off is (x1, . . . ,xd) ∈ [0, 1
t

1
α+d ]d.

First, it is easy to check that ∫
[0, 1

t

1
α+d ]d
| f (x)|dx= 1;

and theαth order derivatives off is Hölder continuous with the same constantC asΦ. That is,

max
|k|=α

sup

x,x′∈[0, 1
t

1
α+d ]d

|Dk f (x)−Dk f (x′)|
‖x−x′‖α−α = max

|k|=α
sup

x,x′∈[0,1]d

|DkΦ(x)−DkΦ(x′)|
‖x−x′‖α−α ≤C.

In addition, clearly we have
‖Φ‖∞ = t

α
α+d ‖ f‖∞ ≤ r

α
α+d ‖ f‖∞.

Thus in order to prove the lemma, we only need to show‖ f‖∞ is bounded from above by a universal
constant independent ofr.

Note that the domain off is [0, 1
t

1
α+d ]d, larger than[0,1]d. Assumef achieves its maximum at

(a1,a2, . . . ,ad)∈ [0, 1
t

1
α+d ]d. Now we truncate the domain off to ad-dimensional hypercube[z1,z1+

1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd+1] so that(a1,a2, . . . ,ad)∈ [z1,z1+1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd+1].
Let f be the function by restrictingf on this hypercube[z1,z1+1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd +1].
Clearly, we have

‖ f‖∞ = ‖ f‖∞,

where‖ f‖∞ is the maximum over the hypercube[z1,z1+1]⊗ [z2,z2+1]⊗ . . . ,⊗[zd,zd +1]. Thus
we just need to show‖ f‖∞ has a universal upper bound.

Now we begin the second step of the proof, where our goal is to showf has an upper bound
independent ofr. Assumezi = 0 for i = 1, . . . ,d by shifting if necessary.

Let

gd(x
1, . . . ,xd) =

∫ xd

0
f (x1, . . . ,xd−1,ud)dud.

For any fixedx1, . . . ,xd−1, considergd as a function of the single variablexd. Since f is the first
order derivative ofgd, it is easy to check thatgd has derivatives up to orderα+1 with respect toxd

and itsα+1 order derivative is Ḧolder continuous with constantC. Thus according to Theorem16,
we have

‖ f‖∞ ≤ ‖gd‖
α

α+1
∞ C

1
α+1 . (8)
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Similarly, let

gi(x
1, . . . ,xd) =

∫ xi

0
gi+1(x

1, . . . ,xi−1,ui ,x
i+1, . . . ,xd)dui , i = 1,2, . . . ,d−1.

For eachgi use the above argument and observe that theα + 1th order derivative of eachgi is
bounded from above byC, then it is easy to obtain that

‖gi‖∞ ≤ ‖gi+1‖
α

α+1
∞ C

1
α+1 . (9)

Combining (8) and (9) for alli = 1,2, . . . ,d we have

‖ f‖∞ ≤ ‖g1‖(
α

α+1)
d

∞ C′,

whereC′ is a constant depending onC, α, d. This completes the proof since

g1(x
1, . . . ,xd) =

∫ x1

0
. . .

∫ xd

0
f (u1, . . . ,ud)du1, . . . ,dud ≤ 1.

Proof of Theorem 16The structure of the proof is as follows: we first deal with the case ofd = 1
and then generalize tod> 1. For the case ofd= 1, we first show the case 1< α≤ 2, and then prove
generalα by induction.

Now assumed = 1 and 1< α≤ 2. Our goal is to show

M1≤CM
1− 1

α
0 M

′ 1α
α .

For any fixedx∈ [0,1], there must be ay∈ [0,1] such that|y−x|= 1/2. We thus have

f (y)− f (x)
y−x

= f ′(x+u), (10)

where|u| ≤ 1/2. Since 1< α≤ 2, we knowα = 1. By the definition ofMα we have

| f ′(x+u)− f ′(x)| ≤Mα|u|α−1. (11)

Combining (10) and (11) and recall|y−x|= 1/2, we obtain

| f ′(x)| ≤
∣

∣

∣

∣

f (y)− f (x)
y−x

∣

∣

∣

∣

+Mα|u|α−1

≤ 4M0+

(

1
2

)α−1

Mα

≤ 4M0+Mα. (12)

Let g(x) = f (ax+ r), where 0< a≤ 1, r ∈ [0,1−a] andx∈ [0,1]. Let

Mg
0 = sup

x∈[0,1]
|g(x)|, Mg

α = sup
x,x′∈[0,1]

|g′(x)−g′(x′)|
|x−x′|α−1 .
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It is easy to check thatMg
0 ≤M0 andMg

α ≤ aαMα. Applying (12) tog(x), which is defined on[0,1],
we obtain that for everya∈ (0,1]

| f ′(ax+ r)|= 1
a
|g′(x)| ≤ 4Mg

0

a
+

Mg
α

a
≤ 4M0

a
+aα−1Mα.

Taking

a= min

(

(

M0

Mα

) 1
α

,1

)

,

we obtain for allx∈ [r,a+ r]

| f ′(x)| ≤ 5M
1− 1

α
0 M

′ 1α
α ,

whereM′α = max(M0,Mα). Sincer ∈ [0,1−a] is arbitrary, we have that

M1 = sup
x∈[0,1]

| f ′(x)| ≤ 5M
1− 1

α
0 M

′ 1α
α . (13)

Note that this implies that for all nonnegative integerm and 1< α≤ 2, we have

Mm+1≤ 5M
1− 1

α
m M

′ 1α
m+α.

We next prove the generalα > 1 case. Letn be a positive integer. By induction, assume for all
1< α≤ n we already have, fork= 1,2, . . . ,α

Mk ≤CM
1− k

α
0 (max(M0,Mα))

k
α , (14)

where the constantC depends onk andα but does not depend onM0 andMα. (In the following the
constantC my be different from line to line and even in the same line.) We will prove that (14) is
true forα ∈ (n,n+1]. Here we will treat the two cases 1≤ k< n andk= n separately.

For the case 1≤ k< n, sinceα−k≤ n, by the assumption of the induction we have

Mn≤CM
1− n−k

α−k
k (max(Mk,Mα))

n−k
α−k . (15)

Combining (14) and (15), and settingα = n in (14). We distinguish three cases.

Case I: M0 > Mn

We have

Mk ≤ CM
1− k

n
0 (max(M0,Mn))

k
n

= CM0

≤ CM
1− k

α
0 (max(M0,Mα))

k
α .

Case II: M0≤Mn andMk > Mα
We have

Mk ≤CM
1− k

n
0 M

k
n
n ≤CM

1− k
n

0 M
k
n
k .
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Thus
Mk ≤CM0≤CM

1− k
α

0 (max(M0,Mα))
k
α .

Case III: M0≤Mn andMk ≤Mα
We have

Mk ≤ CM
1− k

n
0 M

k
n
n

≤ CM
1− k

n
0

(

M
1− n−k

α−k
k M

n−k
α−k
α

) k
n

= CM
1− k

n
0 M

k(α−n)
n(α−k)

k M
k(n−k)
n(α−k)
α .

We obtain after some simple calculations that

Mk ≤CM
1− k

α
0 M

k
α
α .

This completes the proof for 1≤ k< n.
For the casek= n, note that

Mn≤CM
1− n−1

α−1
1 max(M1,Mα)

n−1
α−1 , (16)

and
M1≤CM

1− 1
n

0 max(M0,Mn)
1
n . (17)

We need to distinguish four cases.
Case I: M1 > Mα andM0 > Mn

Combining (16) and (17), we have

Mn≤CM1≤CM0≤CM
1− n

α
0 (max(M0,Mα))

n
α .

Case II: M1 > Mα andM0≤Mn

We have
Mn≤CM1≤CM

1− 1
n

0 M
1
n
n .

Thus
Mn≤CM0≤CM

1− n
α

0 (max(M0,Mα))
n
α .

Case III: M1≤Mα andM0 > Mn

We have

Mn ≤ CM
1− n−1

α−1
1 M

n−1
α−1
α

≤ CM
1− n−1

α−1
0 M

n−1
α−1
α . (18)

If M0≤Mα, then from (18) we obtain

Mn ≤ CM
1− n

α
0 M

n
α
α

(

M0

Mα

) n
α− n−1

α−1

≤ CM
1− n

α
0 (max(M0,Mα))

n
α .
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Otherwise,M0 > Mα, by (18)
Mn≤CM0.

Case IV: M1≤Mα andM0≤Mn

We have

Mn ≤ C

(

M
1− 1

n
0 M

1
n
n

)1− n−1
α−1

M
n−1
α−1
α

= CM
(n−1)(α−n)

n(α−1)
n M

n−1
α−1
α M

α−n
n(α−1)
n .

After some simple calculation, this yields

Mn≤CM
1− n

α
0 M

n
α
α .

This completes the proof of thek= n case, and we finished the discussion of thed = 1 case.
The above arguments are easy to generalize to thed≥ 2 case. Consider the functionf (x1, . . . ,xd).

Again we first look at 1< α≤ 2. AssumeM1 is achieved at thejth partial derivative off . That is,
∥

∥

∥

∥

∂ f
∂x j

∥

∥

∥

∥

∞
= M1.

Fixing x1, . . . ,x j−1,x j+1, . . . ,xd, considerf as a function of a single variablex j . By the argument
for thed = 1 case, we know that

M1≤ 5M
1− 1

α
0 M̃

1
α ,

where

M̃ = max



M0,sup
x,x′

∣

∣

∣

∂ f
∂x j

∣

∣

x−
∂ f
∂x j

∣

∣

x′

∣

∣

∣

‖x−x′‖α−1



 .

Clearly,M̃ ≤max(M0,Mα) = M′α. Hence for 1< α≤ 2, we haveM1≤ 5M
1− 1

α
0 M

′ 1α
α . Finally, using

the previous induction argument and noting that it does not depend on the dimensionalityd, we
obtain the desired result for allα > 1.

To prove Lemma 12 however, Theorem 16 is not a suitable tool. Note that theM′α in (7) is
max(M0,Mα), while in Theorem 15M′α = max(n!M0,Mα). Therefore the constant in Theorem 16
grows exponentially regarding toα. In the following we give another generalization of Gorny’s
inequality which will be used to prove Lemma 12. The price however is that it cannot handle the
non-integer smoothness.

Theorem 17 Let f(x) be defined on[0,1]d and have uniformly bounded partial derivatives up to
order n. Let

Mk = sup
|k|=k
‖Dk f‖∞, k= 0,1,2, . . . ,n.

Then
Mk ≤CnkM

1− k
n

0 M
′ kn
n ,

where M′n = max(n!M0,Mn), and C is a constant depending on k but does not depend on M0, Mn

and n.
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This theorem is a straightforward generalization of Gorny’s theorem to multidimension. Now we
can use this theorem to prove Lemma 12.

Proof of Lemma 12Similar to the proof of Lemma 11, for(x1, . . . ,xd) ∈ [0,1]d, let

f (x1, . . . ,xd) =
∫ x1

0

∫ x2

0
· · ·

∫ xd

0
Φ(u1, . . . ,ud)du1, . . . ,dud.

It is easy to check thatf is infinitely smooth. LetMt be defined as in Theorem 15 forf . Clearly
M0 ≤ r and‖Φ‖∞ ≤ Md. Since f is infinitely smooth, there is a constantC such thatMn ≤C for
n= d+1,d+2, . . ..

Now for r sufficiently small, taken=
log 1

r

log log 1
r
. Let’s first look atn!M0. Note that

nn =

(

log 1
r

log log1
r

)

log 1
r

log log 1
r

≤
(

log
1
r

)

log 1
r

log log 1
r
=

1
r
.

We have

M0n! ≤ r
√

2πnnne−n≤
√

2π
log 1

r

log log1
r

(r)
1

log log 1
r

≤
√

2πexp

(

log log1
r − log log log1

r

2
− log 1

r

log log1
r

)

,

which tends to zero asr → 0 and therefore

M′n = max(M0n!,Mn))≤C.

Thus we have, by Theorem 17

‖Φ‖∞ ≤ Md

≤ CndM
1− d

n
0 M

′ dn
n

≤ CndM
1− d

n
0

≤ C

(

log 1
r

log log1
r

)d

r

(

1
r

)

d log log 1
r

log 1
r

≤ Cr

(

log
1
r

)2d

.

Proof of Theorem 17We know that the theorem is valid whend = 1. Now assumed ≥ 2. Using
the same argument in the proof of Theorem 16, we have that for all positive integersn,

M1≤CnM
1− 1

n
0 M

′ 1n
n ,
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and in general

Mm+1≤CnM
1− 1

n
m M

′ 1n
m+n, (19)

for any nonnegative integerm.
Now we prove the theorem by induction onk. Assume we have already shown

Mk−1≤Cnk−1M
1− k−1

n
0 (max(M0n!,Mn))

k−1
n . (20)

By (19) we have

Mk ≤C(n−k+1)M
1− 1

n−k+1
k−1

(

max
(

(n−k+1)!Mk−1,Mn

)) 1
n−k+1

. (21)

We consider the following four cases separately. Note that below we will frequently use the fact
that form= 1,2, . . .

1√
2π

(m!)
1
me≤m≤ (m!)

1
me1+ 1

12 .

To see this, just note that
√

2πmmme−(m+ 1
12m) ≤m! ≤

√
2πmmme−m,

and

1≤
(√

2πm
) 1

m ≤
√

2π.

Case I: (n−k+1)!Mk−1 > Mn andn!M0≤Mn

From (21) we have

Mk ≤C(n−k+1)Mk−1

(

(n−k+1)!
) 1

n−k+1 ≤C(n−k+1)2Mk−1≤Cn2Mk−1.

Taking into consideration of (20), we have

Mk ≤ Cnk+1M
1− k−1

n
0 M

′ k−1
n

n

≤ CnkM
1− k

n
0 M

′ kn
n

(

nM
1
n
0 M
′− 1

n
n

)

≤ CnkM
1− k

n
0 M

′ kn
n

(

n!M0

M′n

) 1
n

≤ CnkM
1− k

n
0 M

′ kn
n .

Case II: (n−k+1)!Mk−1 > Mn andn!M0 > Mn

By the similar argument as in Case I, we have

Mk ≤ Cnk+1M
1− k−1

n
0 M

′ k−1
n

n

= Cnk+1M0(n!)
k−1

n

≤ CnkM0(n!)
k
n

= CnkM
1− k

n
0 (n!M0)

k
n .
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Case III: (n−k+1)!Mk−1≤Mn andn!M0 > Mn

Combining (20) and (21),

Mk ≤ C(n−k+1)
(

nk−1M0(n!)
k−1

n

)1− 1
n−k+1

M
1

n−k+1
n

≤ CnkM
1− 1

n−k+1
0 (n!)(

k−1
n )(1− 1

n−k+1)(n!M0)
1

n−k+1

≤ CnkM0(n!)
k
n

≤ CnkM
1− k

n
0 (n!M0)

k
n .

Case IV: (n−k+1)!Mk−1≤Mn andn!M0≤Mn Combining (20) and (21), we obtain

Mk ≤ C(n−k+1)M
1− 1

n−k+1
k−1 M

1
n−k+1
n

≤ Cn

(

nk−1M
1− k−1

n
0 M

k−1
n

n

)1− 1
n−k+1

M
1

n−k+1
n

≤ CnkM
1− k

n
0 M

k
n
n .

This completes the proof.

5. Conclusion

This paper studies the disagreement coefficient of smooth problems and extends our previous results
(Wang, 2009). Comparing to the worst caseθ(ε) = 1

ε for which active learning has the same label

complexity as passive learning, the disagreement coefficient isθ(ε) = O

(

(

1
ε
)

d
α+d

)

for αth (α < ∞)

order smooth problems, and isθ(ε) = O
(

log2d
(

1
ε
))

for infinite order smooth problems. Combining
with the bounds on the label complexity in terms of disagreement coefficient, wegive sufficient
conditions for which active learning algorithmA2 and DHM are superior to passive learning under
Tsybakov’s noise condition.

Although we assume that the classification boundary is the graph of a function, our results can be
generalized to the case that the boundaries are a finite number of functions. To be precise, considerN
(N is even) functionsf1(x)≤ ·· · ≤ fN(x), for all x∈ [0,1]d. Let f0(x)≡ 0, fN+1(x)≡ 1. The positive
(or negative) set defined by these functions is{(x,xd+1) : f2i(x)≤ xd+1≤ f2i+1(x), i = 0,1, . . . , N

2 }.
It is easy to show that our main theorems still hold in this case. Moreover, using the techniques in
Dudley (1999, page 259), our results may generalize to the case that the classification boundaries
are intrinsically smooth, and not necessarily graphs of smooth functions. This would include a
substantially richer class of problems which can be benefit from active learning.

There is an open problems worthy of further study. For infinitely smooth problems we proved
that the disagreement coefficient can be upper and lower bounded byO

(

log2d
(

1
ε
))

andΩ(1) re-
spectively. Improving the upper bound and (or) the lower bound would be interesting.
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M. Kääriäinen. Active learning in the non-realizable case. In17th International Conference on
Algorithmic Learning Theory, 2006.

2291



WANG
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