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Abstract

DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. Its

design departs from most other existing frameworks in that it seeks to make algorithms explicit and

data structures transparent, as opposed to the more common black-box frameworks. Freely avail-

able with extensive documentation at http://deap.gel.ulaval.ca, DEAP is an open source

project under an LGPL license.
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1. Introduction

Evolutionary Computation (EC) is a sophisticated field with very diverse techniques and mecha-

nisms, where even well designed frameworks can become quite complicated under the hood. They

thus strive to hide the implementation details as much as possible, by providing large libraries of

high-level functionalities, often in many different flavours. This is the black-box software model

(Roberts and Johnson, 1997). The more elaborate these boxes become, the more obscure they are,

and the less likely the commoner is to ever take a peek under the hood to consider making changes.

But using EC to solve real-world problems most often requires the customization of algorithms.

The DEAP (Distributed Evolutionary Algorithms in Python) framework is built over the Python

programming language that provides the essential glue for assembling sophisticated EC systems.

Its aim is to provide practical tools for rapid prototyping of custom evolutionary algorithms, where

every step of the process is as explicit (pseudocode like) and easy to read and understand as possible.

It also places a high value on both code compactness and code clarity.

2. Core Architecture

DEAP’s core is composed of two simple structures: a creator and a toolbox. The creator module

is a meta-factory that allows the run-time creation of classes via both inheritance and composition.

Attributes, both data and functions, can be dynamically added to existing classes in order to cre-
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ate new types empowered with user-specific EC functionalities. Practically speaking, this allows

the creation of genotypes and populations from any data structure such as lists, sets, dictionaries,

trees, etc. This creator concept is key to facilitating the implementation of any type of EA, in-

cluding genetic algorithms (Mitchell, 1998), genetic programming (Banzhaf et al., 1998), evolution

strategies (Beyer and Schwefel, 2002), covariance matrix adaptation evolution strategy (Hansen and

Ostermeier, 2001), particle swarm optimization (Kennedy and Eberhart, 2001), and many more.

The toolbox is a container for the tools (operators) that the user wants to use in his EA. The

toolbox is manually populated by the user with selected tools. For instance, if the user needs a

crossover in his algorithm, but has access to several crossover types, he will choose the one best

suited for his current problem, for example a uniform crossover “cxUniform”, and register it into

the toolbox using a generic “mate” alias. This way, he is able to build algorithms that are decoupled

from operator sets. If he later decides that some other crossover is better suited, his algorithm will

remain unchanged, he will only need to update the corresponding alias in the toolbox.

The core functionalities of DEAP are levered by several peripheral modules. The algorithms

module contains four classical EC algorithms: generational, (µ , λ), (µ+λ), and ask-and-tell (Col-

lette et al., 2010). These serve as a starting point for users to build their own custom EAs meeting

their specific needs. The tools module provides basic EC operators such as initializations, mutations,

crossovers, and selections. These operators can be directly added to a toolbox in order to be used

in algorithms. This module also contains a number of components that gather useful information

regarding the evolution: fitness statistics, genealogy, hall-of-fame for the best individuals encoun-

tered so far, and checkpointing mechanisms to allow evolution restart. A base module contains

some data structures frequently used in EC, but not implemented in standard Python (e.g., generic

fitness object). The last module named dtm, for Distributed Task Manager, offers distributed sub-

stitutes for common Python functions such as apply and map. DTM allows distribution of specific

parts of users’ algorithms by taking care of spawning and distributing sub-tasks across a cluster of

computers. It even balances the workload among workers to optimize the distribution efficiency.

To illustrate DEAP usage, we now present an example for multi-objective feature selection.

The individual is represented as a bit-string where each bit corresponds to a feature that can be se-

lected or not. The objective is to maximize the number of well-classified test cases and to minimize

the number of features used. Figure 1 shows how this problem can be solved using DEAP.

On line 2, the relevant DEAP modules are first imported. On line 3, a multi-objective fit-

ness class FitnessMulti is created. The first argument of the creator.create method defines the

name of the derived class, while the second argument specifies the inherited base class (in this case

base.Fitness). The third argument adds a new class attribute called weights, initialized with a tu-

ple that specifies a two-objective fitness, of which the first must be maximized (1.0), and the second

must be minimized (-1.0). Next, an Individual class is derived from the Python list and composed

with our newly created FitnessMulti object. After defining a proper evaluation function that re-

turns the fitness values (classification rate, number of selected features) (lines 6 and 7), a toolbox

object is created on line 9, and populated on lines 10 through 16 with aliases in order to initialize

individuals and population, and specify the variation operators (mate, mutate, and select) and the

fitness evaluation function (evaluate) used by the evolutionary loop. The toolbox register method

accepts a variable number of arguments. The first is the alias name, and the second the function that

we want to associate with this alias. All other arguments are passed to this function when the alias is

called. For instance, a call to toolbox.bit will in fact call random.randint with arguments 0 and 1,

and thus generate a random bit. On line 11, to initialize an individual assuming a 80 features selec-
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Figure 1: Multi-objective feature selection example with NSGA-II (Deb et al., 2002).

tion problem, this bit function is simply called n = 80 times repeatedly using the tools.initRepeat

method that accepts three arguments: a container, a function, and the number of times to repeat

initialization. Similarly, a population alias is defined to allow population initialization, in this case

with n = 100 individuals. Line 18 then proceeds with the allocation of a population of individuals

that have their fitness evaluated on line 19 by mapping the evaluation function to every element of

the population container. Lines 20 and 21 replace the individuals fitness with their newly computed

values. Finally, lines 23 through 28 show the evolutionary loop that uses the µ+λ strategy, where

µ = 100 parents (current population) are mixed with λ = 100 offspring (lambda line 24) for the

selection process (NSGA-II) to produce the next generation of k = 100 parents (line 28). The varOr

algorithm loops until it has generated λ offspring using either crossover (mate alias) with probability

cxpb, mutation (mutate alias) with probability mutpb, or reproduction.

Efficient distribution of specific parts of user algorithms is made possible by the dtm module.

For instance, in the previous examples, the only required changes in order to distribute the fitness

evaluation task on a cluster of computers are to import the dtm module and to replace the toolbox

default map function by its distributed dtm equivalent:

The map function calls (lines 19 and 25 in Figure 1) spawn sub-tasks of the evaluation function.

The task manager distributes these sub-tasks across the worker nodes, and automatically balances

the workload evenly among them.
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Framework Type Configuration Algorithm Example Total

ECJ 202 35 65 26 328

EO 43 n/a 67 68 178

Open BEAGLE 256 41 116 64 477

Pyevolve 42 n/a 336 25 378

inspyred 23 n/a 143 24 190

DEAP n/a n/a n/a 59 59

Table 1: Comparison of the number of lines needed to define different components of a OneMax

example with some major frameworks, as counted by cloc (http://cloc.sf.net).

Table 1 presents a comparison of the number of lines required by some of the most popular

frameworks to define different components of a OneMax example (without distribution). Columns

respectively indicate how many lines are required to define the bit-string type, to configure the

operators, to implement the generational algorithm and to execute the example. DEAP is the only

framework that allows the complete definition of the EA in less than one hundred lines of code.

Even though some frameworks may allow shorter expressions of standardized solutions, any needed

customization of type or algorithm can also force the user to dig deep into the framework to modify

perhaps hundreds of lines. We therefore assert that DEAP is superior to previous frameworks for

rapid prototyping of new algorithms and definition of custom types.

3. Conclusion

Current major EC frameworks generally do a good job of offering generic tools to solve hard prob-

lems using EAs. However, their implementation intricacies can also make them difficult to extend

for the commoner. Even experts can become overwhelmed when trying to implement specific fea-

tures. This paper introduced the DEAP framework that combines the flexibility and power of the

Python programming language with a clean and lean core of transparent EC components that both

facilitate rapid prototyping and testing of new EA ideas, and encourage creativeness through sim-

plicity and explicit algorithms. The DEAP core is implemented in 6 program files (Python modules)

with only 1653 lines of code. To these core lines, the DTM module adds another 2073 lines for

enabling the easy distribution of computationally intensive algorithm parts. The framework also

includes more than 35 application examples that add another 2448 lines of code, leading to an av-

erage ratio of core lines to example lines of 1.5, compared with 2.4 for inspyred, 3.4 for ECJ, 5.4

for Pyevolve, 5.5 for EO, and 16.3 for OpenBEAGLE. In other words, DEAP implements the 15

examples of OpenBEAGLE plus 20 more with 10 times less lines of code.
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