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Abstract

Jstacs is an object-oriented Java library for analysing and classifying sequence data, which emerged

from the need for a standardized implementation of statistical models, learning principles, classi-

fiers, and performance measures. In Jstacs, these components can be used, combined, and extended

easily, which allows for a direct comparison of different approaches and fosters the development of

new components. Jstacs is especially tailored to biological sequence data, but is also applicable to

general discrete and continuous data. Jstacs is freely available at http://www.jstacs.de under

the GNU GPL license including an API documentation, a cookbook, and code examples.
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1. Introduction

During the last years, machine learning techniques have gained an increasing importance in many

fields of science including bioinformatics and computational biology. A plethora of new or im-

proved statistical models, learning principles, and classification approaches has evolved.
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One critical step in assessing their relevance is the comparison to existing methods. Such direct

comparisons are hampered, if the approaches compared are implemented in stand-alone applications

or web-servers or if different performance measures are being used. In addition, the same building

blocks, such as statistical models or evaluation of performance measures, are implemented repeat-

edly, which induces an unnecessary implementation overhead slowing down scientific progress.

These observations lead to the development of Jstacs as an object-oriented open-source library.

In contrast to other libraries like JavaML (Abeel et al., 2009) or Shogun (Sonnenburg et al., 2010),

Jstacs focuses on statistical models and statistical learning principles. Similar to JavaML, Jstacs is

mainly targeted at developers who want to use the library in their own code.

In a typical Jstacs application for sequence classification, a user first chooses appropriate statis-

tical models for the data of the different classes. One then combines these models to a classifier,

chooses a learning principle for learning the parameters of this classifier, and learns this classifier

on training data. Finally, one uses the classifier for predicting class labels for previously unseen

data. For assessing the performance of the classifier, one can choose an evaluation schema like

cross-validation and choose different performance measures.

At each of these steps, one may use a statistical model, classifier, learning principle, evaluation

schema, or performance measure existing in Jstacs, or implement and use new ones. At each level,

Jstacs defines interfaces and abstract classes to standardize and ease development, and to achieve

modularity. Thus, a replacement of one component does not require a modification of other parts.

Jstacs has been applied to diverse biological problems such as prediction of transcription factor

binding sites and splice sites, de-novo motif discovery, analysis of gene expression and Array-CGH

data, and classification based on flow cytometry data.

In the following section, we describe the general structure, essential interfaces, and abstract

classes of Jstacs. In a case study, we show how these can be used for building a problem-specific

application.

2. The Jstacs Library

In Jstacs, data representation is organized at three levels: alphabets, sequences, and data sets. The

most prevalent alphabet in Jstacs is the DNAAlphabet, while more general implementations can be

used for instance to define a three-letter amino acid alphabet. Sequences are defined using such

alphabets, while DataSets comprise a collection of sequences over the same alphabet. DataSets

are constructed either from an existing array of sequences or from a file. The latter is the standard

way of loading data into Jstacs. In addition, DataSets can be sampled from statistical models.

On the algorithmic side, Jstacs is organized around two central types depicted in Figure 1:

the abstract class AbstractClassifier and the interface StatisticalModel, including two sub-

interfaces TrainableStatisticalModel and DifferentiableStatisticalModel abbreviated

as TrainSM and DiffSM, respectively. For these interfaces, Jstacs provides abstract classes with

standard implementations of many of the specified methods to reduce implementation effort as well

as factory classes enabling user-friendly creation of many standard models.

TrainableStatisticalModels provide methods for training the parameters of the model from

one data set. For example, this can be accomplished generatively by analytic parameter estimation.

Current implementations include inhomogeneous and homogeneous Markov models, Bayesian net-

works, hidden Markov models, and mixture models accepting any TrainableStatisticalModel

as mixture components.
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Figure 1: Part of the class structure of Jstacs. The interfaces are colored red, abstract classes

blue, enums orange, and concrete classes green without preceeding modifier. Continu-

ous transitions represent inheritance, where arrows indicate the direction of inheritance.

Arrows with diamond heads represent usage of a type in the class at the arrow head.

In contrast, DifferentiableStatisticalModels provide methods tailored to numerical opti-

mization like the computation of gradients with respect to their parameters. Jstacs provides several

DifferentiableStatisticalModels including Markov models, Bayesian networks, and mix-

tures of DifferentiableStatisticalModels. In addition, a ZOOPS1 model for de-novo motif

discovery is implemented in ExtendedZOOPSDiffSM, which will be the topic of the case study.

AbstractClassifiers provide methods for learning internal StatisticalModels on train-

ing data from different classes and for classifying new input sequences. The TrainSMBased-

Classifier trains each of the provided TrainableStatisticalModels separately on the data

set for the corresponding class. The GenDisMixClassifier performs a simultaneous numerical

parameter estimation for the enclosed DifferentiableStatisticalModel, for instance by max-

imum supervised posterior (MSP) (Grünwald et al., 2002; Cerquides and de Mántaras, 2005), or a

unified learning principle (GenDisMix) (Keilwagen et al., 2010).

ClassifierAssessments can be used for assessing the performance of any

AbstractClassifier, for example by k-fold cross validation or repeated holdout sampling. Here,

the user may choose one or multiple performance measures such as sensitivity, precision, or the

areas under the receiver operating characteristic and precision-recall curve.

3. Case Study

In this section, we describe how we used Jstacs for developing Dispom, a new application for de-

novo motif discovery (Keilwagen et al., 2011). Existing approaches for de-novo motif discovery

1. ZOOPS abbreviates Zero or one occurrence per sequence.
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Figure 2: Structure of Dispom within Jstacs. The left side illustrates, how modules can be plugged

into the core structure. The right side shows the concrete classes used in the application.

differ in the employed learning principle and in the capability of learning the positional preference

of motif occurrences. However, prior to Dispom, no approach existed for learning the motif and the

positional preference simultaneously using a discriminative learning principle. The general structure

of Dispom in Jstacs is depicted on the left side of Figure 2, where each white piece represents a slot

that can be filled with implementations of interfaces defined in Jstacs.

The motif, flanking, and background model are DifferentiableStatisticalModels, the po-

sition distribution is a DurationDiffSM, and the learning principle is a value from an enum type. In

the Dispom application illustrated on the right side of Figure 2, we use an inhomogeneous Markov

model of order 0 with a mixture over the DNA-strands as motif model. We use homogeneous

Markov models of order 0 for both the flanking and background model. All of these models existed

before we started developing Dispom. We use a mixture of a skew normal and a uniform distribution

as position distribution, and the discriminative MSP learning principle.

This modular structure allowed for an easy adaption to other problems like challenge 2 of

DREAM52 on protein binding microarray data, where we simply increased the orders of the motif,

flanking, and background model, and extended the learning principle to a weighted variant of the

MSP principle. These minimal changes were all that was needed for developing a novel application

for the analysis of protein binding microarrays and a successful performance in the challenge.
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Jesús Cerquides and Ramon López de Mántaras. Robust Bayesian linear classifier ensembles. In

Proceedings of the 16th European Conference on Machine Learning, volume 3720 of Lecture

Notes in Computer Science, pages 72–83. Springer, 2005.

Peter Grünwald, Petri Kontkanen, Petri Myllymäki, Teemu Roos, Henry Tirri, and Hannes Wet-
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