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Abstract
We consider the following sparse signal recovery (or feature selection) problem: given a design
matrix X ∈ R

n×m (m≫ n) and a noisy observation vectory ∈ R
n satisfyingy = Xβ∗ + ε where

ε is the noise vector following a Gaussian distributionN(0,σ2I), how to recover the signal (or
parameter vector)β∗ when the signal is sparse?

The Dantzig selector has been proposed for sparse signal recovery with strong theoretical guar-
antees. In this paper, we propose a multi-stage Dantzig selector method, which iteratively refines
the target signalβ∗. We show that ifX obeys a certain condition, then with a large probability
the difference between the solutionβ̂ estimated by the proposed method and the true solutionβ∗

measured in terms of theℓp norm (p≥ 1) is bounded as

‖β̂−β∗‖p ≤
(

C(s−N)1/p
√

logm+∆
)

σ,

whereC is a constant,s is the number of nonzero entries inβ∗, the risk of the oracle estimator∆ is
independent ofmand is much smaller than the first term, andN is the number of entries ofβ∗ larger
than a certain value in the order ofO(σ

√
logm). The proposed method improves the estimation

bound of the standard Dantzig selector approximately fromCs1/p√logmσ to C(s−N)1/p√logmσ
where the valueN depends on the number of large entries inβ∗. When N = s, the proposed
algorithm achieves the oracle solution with a high probability, where the oracle solution is the
projection of the observation vectory onto true features. In addition, with a large probability, the
proposed method can select the same number of correct features under a milder condition than the
Dantzig selector. Finally, we extend this multi-stage procedure to the LASSO case.
Keywords: multi-stage, Dantzig selector, LASSO, sparse signal recovery

1. Introduction

The sparse signal recovery problem has been studied in many areas including machine learning
(Zhang, 2009b; Zhao and Yu, 2006), signal processing (Donoho et al., 2006; Romberg, 2008; Wain-
wright, 2009), and mathematics/statistics (Bunea et al., 2007; Candès and Plan, 2009; Candès and
Tao, 2007; Koltchinskii and Yuan, 2008; Lounici, 2008; Meinshausenet al., 2006; Ravikumar et al.,
2008; Zhang, 2009a). In the sparse signal recovery problem, one ismainly interested in the signal
recovery accuracy, that is, the distance between the estimationβ̂ and the original signal or the true
solutionβ∗. If the design matrixX is considered as a feature matrix, that is, each column is a feature
vector, and the observationy as a target object vector, then the sparse signal recovery problem is
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equivalent to feature selection (or model selection). In feature selection, one concerns the feature
selection accuracy. Typically, a group of features corresponding to the coefficient values in̂β
larger than a threshold form the supporting feature set. The differencebetween this set and the true
supporting set (i.e., the set of features corresponding to nonzero coefficients in the original signal)
measures the feature selection accuracy.

Two well-known algorithms for learning sparse signals include LASSO (Tibshirani, 1996) and
Dantzig selector (Candès and Tao, 2007):

LASSO min
β

:
1
2
‖Xβ−y‖2

2+λ′||β||1,

Dantzig Selector min
β

: ||β||1

s.t. : ‖XT(Xβ−y)‖∞ ≤ λ.

Strong theoretical results concerning LASSO and Dantzig selector have been established in the
literature (Cai et al., 2009; Candès and Plan, 2009; Candès and Tao, 2007; Wainwright, 2009; Zhang,
2009a; Zhao and Yu, 2006).

1.1 Contributions

In this paper, we propose a multi-stage procedure based on the Dantzig selector, which estimates
the supporting feature setF0 and the signal̂β iteratively. The intuition behind the proposed multi-
stage method is that feature selection and signal recovery are tightly correlated and they can benefit
from each other: a more accurate estimation of the supporting features canlead to a better signal
recovery and a more accurate signal recovery can help identify a betterset of supporting features.
In the proposed method, the supporting setF0 starts from an empty set and its size increases by one
after each iteration. At each iteration, we employ the basic framework of Dantzig selector and the
information about the current supporting feature setF0 to estimate the new signalβ̂. In addition, we
select the supporting feature candidates inF0 among all features in the data at each iteration, thus
allowing to remove incorrect features from the previous supporting feature set.

The main contributions of this paper lie in the theoretical analysis of the proposed method.
Specifically, we show: 1) the proposed method can improve the estimation bound of the standard
Dantzig selector approximately fromCs1/p√logmσ to C(s−N)1/p√logmσ where the valueN de-
pends on the number of large entries inβ∗; 2) whenN = s, the proposed algorithm can achieve the
oracle solution̄β with a high probability, where the oracle solution is the projection of the observa-
tion vectory onto true features (see Equation (1) for the explicit description ofβ̄); 3) with a high
probability, the proposed method can select the same number of correct features under a milder
condition than the standard Dantzig selector method; 4) this multi-stage procedure can be easily
extended to the LASSO case. The numerical experiments validate these theoretical results.

1.2 Related Work

Sparse signal recovery without observation noise was studied by Candès and Tao (2005), which
showed under the restricted isometry property (RIP) sparse signals canbe perfectly recovered by
solving anℓ1 norm minimization problem. LASSO and Dantzig selector can be considered as its
noisy versions. Zhao and Yu (2006) proved the feature selection consistency of LASSO under
the irrepresentable condition. It was also shown by Candès and Plan (2009) that if the true signal
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is strong enough together with some additional assumptions on its supporting set and signs, the
mutual incoherence property (MIP) (or incoherence condition) can guarantee the feature selection
consistency and the sign consistency with a high probability. A comprehensive analysis for LASSO,
including the recovery accuracy in an arbitraryℓp norm (p≥ 1) and the feature selection consistency,
was presented in Zhang (2009a). Candès and Tao (2007) proposed the Dantzig selector (which is a
linear programming problem) for sparse signal recovery and presenteda bound of recovery accuracy
with the same order as LASSO under the uniform uncertainty principle (UUP). An approximate
equivalence between the LASSO estimator and the Dantzig selector was given by Bickel et al.
(2009). Lounici (2008) studied theℓ∞ convergence rate for LASSO and Dantzig estimators in
a high-dimensional linear regression model under MIP. James et al. (2009) provided conditions on
the design matrixX under which the LASSO and Dantzig selector coefficient estimates are identical
for certain tuning parameters. Please refer to recent papers (Zhang,2009a; Fan and Lv, 2010) for a
more comprehensive overview of LASSO and Dantzig selector.

Since convex regularization methods like LASSO and Dantzig selector give biased estimation
due to convex regularization, many heuristic methods have been proposedto correct the bias of
convex relaxation recently, including orthogonal matching pursuit (OMP)(Tropp, 2004; Donoho
et al., 2006; Zhang, 2009b, 2011a; Cai and Wang, 2011), two stage LASSO (Zhang, 2009a), multi-
ple thresholding LASSO (Zhou, 2009), adaptive LASSO (Zou, 2006),adaptive forward-backward
greedy method (FoBa) (Zhang, 2011b), and nonconvex regularization methods (Zhang, 2010b; Fan
and Lv, 2011; Lv and Fan, 2009; Zhang, 2011b). They have been shown to outperform the standard
convex methods in many practical applications. It was shown that under exact recovery condition
(ERC) (similar to MIP) the solution of OMP guarantees the feature selection consistency in the
noiseless case (Tropp, 2004). The results of Tropp (2004) were extended to the noisy case by Zhang
(2009b). Very recently, Zhang (2011a) showed that under RIP (weaker than MIP and ERC), OMP
can stably recover a sparse signal in 2-norm under measurement noise. A multiple thresholding pro-
cedure was proposed to refine the solution of LASSO or Dantzig selector (Zhou, 2009). The FoBa
algorithm was proposed by Zhang (2011b), and it was shown that under RIP the feature selection
consistency is achieved if the minimal nonzero entry in the true solution is largerthanO(σ

√
logm).

The adaptive LASSO was proposed to adaptively tune the weight value for the ℓ1 norm penalty,
and it was shown to enjoy the oracle properties (Zou, 2006). Zhang (2010b) proposed a general
multi-stage convex regularization method (MSCR) to solve a nonconvex sparse regularization prob-
lem. It was also shown that a specific case “least square loss + nonconvex sparse regularization”
can eliminate the bias in signal recovery (Zhang, 2010b) and achieve the feature selection con-
sistency (Zhang, 2011c) under the sparse eigenvalue condition (SEC)if the true signal is strong
enough. More related work about nonconvex regularization methods can be found in a recent paper
by Zhang and Zhang (2012).

Conditions mentioned above can be classified into two classes: 1) theℓ2 conditions including
RIP, UUP, and SEC; 2) theℓ∞ conditions including ERC and MIP. Overall, theℓ2 conditions are
considered to be weaker than theℓ∞ conditions, since theℓ∞ conditions require aboutO(s2 logm)
random projections while theℓ2 conditions only needO(slogm) random projections.

1.3 Definitions, Notations, and Basic Assumptions

We useX ∈ R
n×m to denote the design matrix and focus on the casem≫ n, that is, the signal

dimension is much larger than the observation dimension. The correlation matrixA is defined as
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A = XTX with respect to the design matrix. The noise vectorε follows the multivariate normal
distributionε ∼ N(0,σ2I). The observation vectory∈ R

n satisfiesy= Xβ∗+ ε, whereβ∗ denotes
the original signal (or true solution).β̂ is used to denote the solution of the proposed algorithm. The
α-supporting set (α ≥ 0) for a vectorβ is defined as

suppα(β) = { j : |β j |> α}.

The “supporting” set of a vector refers to the 0-supporting set.F denotes the supporting set of the
original signalβ∗. For any index setS, |S| denotes the size of the set andS̄denotes the complement
of S in {1,2,3, ...,m}. In this paper,s is used to denote the size of the supporting setF , that is,
s= |F|. We useβS to denote the subvector ofβ consisting of the entries ofβ in the index setS. The
ℓp norm of a vectorv is computed by‖v‖p = (∑i |vi |p)1/p, wherevi denotes theith entry ofv. The
oracle solution̄β is defined as

β̄F = (XT
F XF)

−1XT
F y andβ̄F̄ = 0. (1)

We employ the following notation to measure some properties of a PSD matrixM ∈ R
K×K (Zhang,

2009a):

µ(p)M,k = inf
u∈Rk,|I |=k

‖MI ,I u‖p

‖u‖p
, ρ(p)

M,k = sup
u∈Rk,|I |=k

‖MI ,I u‖p

‖u‖p
,

θ(p)
M,k,l = sup

u∈Rl ,|I |=k,|J|=l ,I∩J=∅

‖MI ,Ju‖p

‖u‖p
, γM = max

i 6= j
|Mi j |,

wherep ∈ [1,∞], I andJ are disjoint subsets of{1,2, ...,K}, andMI ,J ∈ R
|I |×|J| is a submatrix of

M with rows from the index setI and columns from the index setJ. One can easily verify that
µ(∞)

A,k ≥ 1− γA(k−1), ρ(∞)
A,k ≤ 1+ γA(k−1), andθ(∞)

A,k,l ≤ lγA, if all columns ofX are normalized to
have a unit length.

Additionally, we use the following notation to denote two probabilities:

η′
1 = η1(π log((m−s)/η1))

−1/2, η′
2 = η2(π log(s/η2))

−1/2,

whereη1 andη2 are two factors between 0 and 1. In this paper, if we say “large”, “larger” or “the
largest”, it means that the absolute value is large, larger or the largest. Forsimpler notation in the
computation of sets, we sometimes use “S1+S2” to indicate the union of two setsS1 andS2, and
use “S1−S2” to indicate the removal of the intersection ofS1 andS2 from the first setS1. In this
paper, the following assumption is always admitted.

Assumption 1 We assume that s= |supp0(β∗)| < n, the variable number is much larger than the
feature dimension (i.e., m≫ n), each column vector is normalized as XT

i Xi = 1 where Xi indicates
the ith column (or feature) of X, and the noise vectorε follows the Gaussian distribution N(0,σ2I).

In the literature, it is often assumed thatXT
i Xi = n, which is essentially identical to our assumption.

However, this may lead to a slight difference of a factor
√

n in some conclusions. We have automat-
ically transformed conclusions from related work according to our assumption when citing them in
our paper.
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1.4 Organization

The rest of the paper is organized as follows. We present our multi-stagealgorithm in Section 2.
The main theoretical results are summarized in Section 3 with detailed proofs given in Appendix
A (for Dantzig selector) and Appendix B (for LASSO). The numerical simulation is reported in
Section 4. Finally, we conclude the paper in Section 5.

2. The Multi-Stage Dantzig Selector Algorithm

In this section, we introduce the multi-stage Dantzig selector algorithm. In the proposed method,
we update the support setF0 and the estimation̂β iteratively; the supporting setF0 starts from an
empty set and its size increases by one after each iteration. At each iteration, we employ the basic
framework of Dantzig selector and the information about the current supporting setF0 to estimate
the new signal̂β by solving the following linear program:

min ‖βF̄0
‖1

s.t. ‖XT
F̄0
(Xβ−y)‖∞ ≤ λ

‖XT
F0
(Xβ−y)‖∞ = 0.

(2)

Since the features inF0 are considered as the supporting candidates, it is natural to enforce them to
be orthogonal to the residual vectorXβ−y, that is, one should make use of them for reconstructing
the overestimationy. This is the rationale behind the constraint:‖XT

F0
(Xβ− y)‖∞ = 0. The other

advantage is when all correct features (i.e., the true feature setF) are chosen, the proposed algorithm
can be shown to converge to the oracle solution. In other words, the oracle solution satisfies this
constraint withF . The detailed procedure is formally described inAlgorithm 1 below. Apparently,
whenF(0)

0 =∅ andN = 0, the proposed method is identical to the standard Dantzig selector.

Algorithm 1 Multi-Stage Dantzig Selector

Require: F(0)
0 , λ, N, X, y

Ensure: β̂(N), F(N)
0

1: while i=0; i≤N; i++ do
2: Obtainβ̂(i) by solving the problem (2) withF0 = F(i)

0 ;

3: FormF(i+1)
0 as the index set of thei+1 largest elements of̂β(i);

4: end while

3. Main Results

This section introduces the main results of this paper and discusses some of their implications. The
proofs are provided in the Appendix.

3.1 Motivation

To motivate the proposed multi-stage algorithm, we first consider a simple case where some knowl-
edge about the supporting features is known in advance. In standard Dantzig selector, we assume

1193



L IU , WONKA AND YE

F0 =∅. If we assume that the features belonging to a setF0 are known as supporting features, that
is, F0 ⊂ F , we have the following result:

Theorem 1 Assume that Assumption 1 holds. Take F0 ⊂ F and λ = σ
√

2log
(

m−s
η1

)

in the opti-

mization problem(2). If there exists some l such that

µ(p)A,s+l −θ(p)
A,s+l ,l

( |F̄0− F̄ |
l

)1−1/p

> 0

holds, then with a probability larger than1−η′
1, theℓp norm (1≤ p≤ ∞) of the difference between

β̂, the solution of the problem(2), and the oracle solution̄β is bounded as

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l −θ(p)
A,s+l ,l

(

|F̄0−F̄|
l

)1−1/p
λ (3)

and with a probability larger than1−η′
1−η′

2, the ℓp norm (1≤ p≤ ∞) of the difference between
β̂, the solution of the problem(2) and the true solutionβ∗ is bounded as

‖β̂−β∗‖p ≤

[

1+
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄|+ l2p)1/p

µ(p)A,s+l −θ(p)
A,s+l ,l

(

|F̄0−F̄ |
l

)1−1/p
λ+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

(4)

It is clear that both bounds (for any 1≤ p ≤ ∞) are monotonically increasing with respect to the
value of |F̄0 − F̄ |. In other words, the largerF0 is, the lower these bounds are. This coincides
with our motivation that more knowledge about the supporting features can lead to a better signal
estimation. Most related literatures directly estimate the bound of‖β̂−β∗‖p. Sinceβ∗ may not be
a feasible solution of problem (2), it is not easy to directly estimate the distancebetween̂β andβ∗.

The bound given in the inequality (4) consists of two terms. Sincem ≫ n > s, we have
√

2log((m−s)/η1)≫
√

2log(s/η2) if η1 ≈ η2. Whenp= 2, the following holds:

µ(2)A,s+l −θ(2)
A,s+l ,l

( |F̄0− F̄|
l

)1−1/2

≤ µ(2)
(XT

F XF )1/2,s

due to the following relationships:

µ(2)A,s+l ≤ µ(2)A,s ≤ µ(2)
XT

F XF ,s
≤ µ(2)

(XT
F XF )1/2,s

.

From the analysis in the next section, we can see that the first term is the upper bound of the distance
from the optimizer to the oracle solution, that is,‖β̂− β̄‖p and the second term is the upper bound
of the distance from the oracle solution to the true solution, that is,‖β̄−β∗‖p.1 Thus, the first term
may be much larger than the second term under the assumptionm≫ n> s.

1. The presented bound for‖β̄− β̂‖p can be sharper for a particular value ofp, for example,‖β̄− β∗‖2 ≤ O(σ
√

s),
‖β̄−β∗‖∞ ≤ O(σ

√
logs) (Zhang, 2009b). For simplicity, a general bound‖β̄−β∗‖p ≤ O(σs1/p√logs) is used in

this paper.
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3.2 Comparison with Dantzig Selector

We first compare our estimation bound with the one derived by Candès and Tao (2007) forp= 2.
For convenience of comparison, we rewrite their theorem (Candès and Tao, 2007) equivalently as:

Theorem 2 Supposeβ ∈ R
m is any s-sparse vector of parameters obeyingδ2s+θ(2)

A,s,2s < 1. Setting

λp = σ
√

2log(m/η) (0< η ≤ 1), with a probability at least1−η(π logm)−1/2, the solution of the
standard Dantzig selector̂βD obeys

‖β̂D −β∗‖2 ≤
4

1−δ2s−θ(2)
A,s,2s

s1/2σ
√

2log(m/η), (5)

whereδ2s = max(ρ(2)
A,2s−1,1−µ(2)A,2s).

In order to compare Theorem 1 with the result above, takingl = |F̄0− F̄| ≤ s, p= 2, η1 =
m−s

m η,
andη2 =

s
mη in Theorem 1, we obtain that

‖β̂−β∗‖2 ≤





√
10l

µ(2)A,s+l −θ(2)
A,s+l ,l

+

√
s

µ(2)
(XT

F XF )1/2,s



σ
√

2log(m/η) (6)

holds with probability larger than 1−η(π logm)−1/2. It is easy to verify that

1−δ2s−θ(2)
A,s,2s ≤ µ(2)A,s+l −θ(2)

A,s+l ,s ≤ µ(2)A,2s ≤ µ(2)
(XT

F XF ),s
=
(

µ(2)
(XT

F XF )1/2,s

)2
≤ µ(2)

(XT
F XF )1/2,s

≤ 1.

WhenF0 =∅, the bound in (6) is comparable to the one in (5). Sinceµ(2)A,s+l −θ(2)
A,s+l ,l in Equation (6)

is a decreasing function in terms ofl , if F0 is nonempty, particularly ifF0 is close toF (i.e., l is close
to 0), the conditionµ(2)A,s+l −θ(2)

A,s+l ,l > 0 required in Equation (6) is much easier to satisfy than the

condition 1−δ2s−θ(2)
A,s,2s > 0 required in Equation (5).

3.3 Feature Selection

The estimation bounds in Theorem 1 assume that a setF0 is given. In this section, we show how
the supporting set can be estimated. Similar to previous work (Candès and Plan, 2009; Zhang,
2009b),|β∗

j | for j ∈ F is required to be larger than a threshold value. As is clear from the proof

in Appendix A, the threshold valueα0 is actually proportional to the value of‖β̂− β∗‖∞. We
essentially employ the result withp= ∞ in Theorem 1 to estimate the threshold value. It shows that
the value of‖β̂−β∗‖∞ is bounded byO(λ), which is consistent with the result of Lounici (2008).
In the following, we first consider the simple case whenN = 0. We have shown in the last section
that the estimation bound in this case is similar to the one for Dantzig selector.

Theorem 3 Under the Assumption 1, if there exist a nonempty set

Ω = {l | µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(s
l

)

> 0}
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and an index set J such that|β∗
j |> α0 for any j∈ J, where

α0 =‖β̂(0)−β∗‖∞ +‖β̂(0)− β̄‖∞

≤4min
l∈Ω

max
(

1, s
l

)

µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(

s
l

)

λ+
1

µ(∞)

(XT
F XF )1/2,s

σ
√

2log(s/η2),

then taking F0 = ∅, N = 0, λ = σ
√

2log
(

m−s
η1

)

into the problem(2) (equivalent to Dantzig selec-

tor), the largest|J| elements of̂βstd (or β̂(0)) belong to F with probability larger than1−η′
1−η′

2.

The theorem above indicates that under the given condition, if minj∈J |β∗
j | > O(σ

√
logm) (as-

suming that there existsl ≥ s such thatµ(∞)
A,s+l − θ(∞)

A,s+l ,l

(

s
l

)

> 0), then with high probability the
selected|J| features by Dantzig selector belong to the true supporting set. In particular, if |J| = s,
then the consistency of feature selection is achieved. In order to build up alink to the previous work,
we let l = s. Note thatµ(∞)

A,2s−θ(∞)
A,2s,s ≥ 1− γA(3s−1). If the MIP holds likeγAs≤ 1/6 (see Corol-

lary 8.1 in Zhang, 2009a), then the condition required in Theorem 3 is satisfied as well. It means
that the condition we require is not stronger than MIP. However, it still belongs to theℓ∞ condition
like MIP. The result above is comparable to the ones for other feature selection algorithms, includ-
ing LASSO/two stage LASSO (Candès and Plan, 2009; Zhao and Yu, 2006), OMP (Tropp, 2004;
Donoho et al., 2006; Zhang, 2009b), and two stage LASSO (Zhang, 2009a). In all these algorithms,
the conditions minj∈F |β∗

j | ≥Cσ
√

logm and anℓ∞ condition are required. As pointed out by Zhang
and Zhang (2012) and Zhang (2011a), these conditions required by OMP, Dantzig selector, and
LASSO in feature selection cannot be improved. If one wants to use theℓ2 conditions in feature
selection, the minimal nonzero entry of the true solution must be in the order ofO(σ

√
slogm),

which can be obtained by simply using‖β̂(0)− β∗‖∞ + ‖β̂(0)− β̄‖∞ ≤ ‖β̂(0)− β∗‖2+ ‖β̂(0)− β̄‖2.
A similar requirement under theℓ2 condition for LASSO (or two stage LASSO) is also implied by
Zhang (2009a, Theorem 8.1).

Next, we show that the condition|β∗
j |> α0 in Theorem 3 can be relaxed by the proposed multi-

stage procedure withN > 0, as summarized in the following theorem:

Theorem 4 Under the Assumption 1, if there exist a nonempty set

Ω = {l | µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(s
l

)

> 0}

and a set J such that|suppαi (β∗
J)|> i holds for all i∈ {0,1, ..., |J|−1}, where

αi =‖β̂(i)−β∗‖∞ +‖β̂(i)− β̄‖∞

≤4min
l∈Ω

max
(

1, s−i
l

)

µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(

s−i
l

)

λ+
1

µ(∞)

(XT
F XF )1/2,s

σ
√

2log(s/η2),

then taking F(0)0 = ∅, λ = σ
√

2log
(

m−s
η1

)

and N= |J| − 1 into Algorithm 1, the solution after

N iterations satisfies F(N)
0 ⊂ F (i.e., |J| correct features are selected) with probability larger than

1−η′
1−η′

2.
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Assume that one aims to selectN correct features by the standard Dantzig selector and the multi-
stage method. These two theorems show that the standard Dantzig selector requires that at leastN
of |β∗

j |’s with j ∈ F are larger than the threshold valueα0, while the proposed multi-stage method
requires that at leasti of the |β∗

j |’s are larger than the threshold valueαi−1, for i = 1, · · · ,N. Since
the upper bounds of{α j}’s strictly decrease and the difference of two neighbors is greater than

4θ(∞)
A,s+l ,l

l
(

µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(

s−i
l

)

)2 λ

for somel ∈ Ω, the proposed multi-stage method requires a strictly weaker condition for selecting
N correct features than the standard Dantzig selector. If we consider theℓ2 conditions, using‖β̂(i)−
β∗‖∞+‖β̂(i)− β̄‖∞ ≤ ‖β̂(i)−β∗‖2+‖β̂(i)− β̄‖2 to boundαi , we obtain thatαi ≤O(

√

(s− i) logm+
∆)σ where∆ is a small number relying ons. When i is close tos, the order ofαi approaches
O(σ

√
logm). Recall that the FoBa algorithm (Zhang, 2011b), MSCR (Zhang, 2011c), and MC+

(Zhang, 2010a) require anℓ2 condition and the threshold value is in the order ofO(σ
√

logm) for the
feature selection consistency while the standard LASSO or Dantzig selectorrequires the threshold
value in the order ofO(σ

√
slogm). Therefore, our condition lies between them.

3.4 Signal Recovery

In this section, we derive the estimation bound of the proposed multi-stage method by combining
results from Theorems 1, 3, and 4.

Theorem 5 Under the Assumption 1, if there exist l such that

µ(∞)
A,s+l −θ(∞)

A,s+l ,l

(s
l

)

> 0 and µ(p)A,2s−θ(p)
A,2s,s > 0,

and a set J such that|suppαi (β∗
J)|> i holds for all i∈ {0,1, ..., |J|−1}, where theαi ’s are defined

in Theorem 4, then

(1) taking F0 = ∅, N = 0 andλ = σ
√

2log
(

m−s
η1

)

into Algorithm 1, with probability larger than

1−η′
1−η′

2, the solution of the Dantzig selectorβ̂D (i.e., β̂(0)) obeys:

‖β̂D −β∗‖p ≤
(2p+1+2)1/ps1/p

µ(p)A,2s−θ(p)
A,2s,s

λ+
s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2);

(2) taking F0 =∅, N = |J| andλ = σ
√

2log
(

m−s
η1

)

into Algorithm 1, with probability larger than

1−η′
1−η′

2, the solution of the multi-stage methodβ̂mul (i.e., β̂(N)) obeys:

‖β̂mul−β∗‖p ≤
(2p+1+2)1/p(s−N)1/p

µ(p)A,2s−N −θ(p)
A,2s−N,s−N

λ+
s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Similar to the analysis in Theorem 1, the first term (i.e., the distance fromβ̂ to the oracle solution̄β)
dominates in the estimated bounds. Thus, the performance of the multi-stage method approximately
improves the standard Dantzig selector fromCs1/p√logmσ to C(s−N)1/p√logmσ. Whenp= 2,
our estimation has the same order as FoBa (Zhang, 2011b) and MCSR (Zhang, 2010b), but the
conditions involved in our estimation belong to theℓ∞ class while they use theℓ2 condition.
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3.5 The Oracle Solution

The oracle solution̂β defined in Equation (1) is the minimum-variance unbiased estimator of the
true solution given the noisy observation. We show in the following theorem that the proposed
method can obtain the oracle solution with high probability under certain conditions:

Theorem 6 Under the assumption 1, if there exists l such that µ(∞)
A,s+l − θ(∞)

A,s+l ,l

(

s−i
l

)

> 0, and the
supporting set F ofβ∗ satisfies|suppαi (β∗

F)|> i for all i ∈ {0,1, ...,s−1}, where theαi ’s are defined

in Theorem 4, then taking F0 = ∅, N = s andλ = σ
√

2log
(

m−s
η1

)

into Algorithm 1, the oracle

solution can be achieved, that is, F(N)
0 = F andβ̂(N) = β̄, with probability larger than1−η′

1−η′
2.

The theorem above shows that when the nonzero elements of the true coefficients vectorβ∗ are large
enough, the oracle solution can be achieved with high probability.

3.6 The Multi-Stage LASSO Algorithm

Next we extend the multi-stage procedure to the LASSO case; we expect to achieve similar improve-
ments over the standard LASSO. The multi-stage LASSO algorithm can be obtained by substituting
the basic optimization problem, that is, Equation (2) inAlgorithm 1, by the following problem:

min
β

:
1
2
‖Xβ−y‖2

2+λ′||βF̄0
||1

s.t. : ‖XT
F0
(Xβ−y)‖∞ = 0.

(7)

Note that the constraint in Equation (7) is satisfied automatically at the optimal solution by observing
the subdifferential of its objective function. Thus, the constraint can beremoved from Equation (7)
in practice.

We apply the same framework in Dantzig selector to analyze the multi-stage LASSOto obtain
a bound estimation for anyp∈ [1,∞] and show that similar improvements can be achieved over the
standard LASSO. For completeness, we include all proofs and results for multi-stage LASSO in
Appendix B.

It is worth mentioning that Zhang (2010b, 2011b) recently developed a similar method called
MSCR. The main difference is that it uses a threshold value to update the candidate setF(i+1)

0 at each
iteration and may need to solve LASSO more thans times to converge, while our algorithm needs to
solve LASSO less thans times. An advantage of MSCR is that it requires a weaker condition, that
is, mini∈F |β∗| > O(σ

√
logm) and anℓ2 condition, to achieve the consistency on feature selection

and signal recovery.

4. Simulation Study

We have performed simulation studies to verify our theoretical analysis. Ourcomparison includes
two aspects: signal recovery accuracy and feature selection accuracy. The signal recovery accuracy
is measured by the relative signal error:SRA=−20log10(‖β̂−β∗‖2/‖β∗‖2), whereβ̂ is the solution
of a specific algorithm. The feature selection accuracy is measured by the percentage of correct
features selected:FSA= |F̂ ∩F |/|F|, whereF̂ is the estimated feature candidate set.

We generate ann×m random matrixX. Each element ofX follows an independent stan-
dard Gaussian distributionN(0,1). We then normalize the length of the columns ofX to be 1.

1198



MULTI -STAGE DANTZIG SELECTOR

The s−sparse original signalβ∗ is generated withs nonzero elements independently uniformly
distributed from[−10,10]. The locations ofs nonzero elements are uniformly distributed in
{1,2, · · · ,m}. We form the observation byy = Xβ∗ + ε, where the noise vectorε is generated
by the Gaussian distributionN(0,σ2I). All experiments are repeated 100 times and we use their
average performance for comparison.

First we compare the standard Dantzig selector and the multi-stage version. For a fair compar-
ison, we choose the sameλ = σ

√
2logm in both algorithms. We run the proposed algorithm with

F(0)
0 = ∅ with different values ofN and let the estimation̂β be the output̂β(N) in Algorithm 1 .

The feature candidate setF̂ is predicted by the index set of thes largest elements in̂β. Note thatF̂

identified byβ̂ = β̂(N) is different from the outputF(N)
0 by Algorithm 1 . The size ofF̂ is always

s while the size ofF(N)
0 is N. Note that the solution of the standard Dantzig selector algorithm is

equivalent tôβ(N) with N = 0. We report theSRAcurve ofβ̂(N) with respect toN in the left column
of Figure 1. The right column of Figure 1 shows theFSAcurve with respect toN. We allowN > s
in our simulation although this case is beyond our theoretical analysis, since inpractice the sparsity
numbers is usually unknown in advance. We can observe from Figure 1 that 1) themulti-stage
method obtains a solution with a smaller distance to the original signal than the standard Dantzig
selector method; 2) the multi-stage method selects a larger percentage of correct features than the
standard Dantzig selector method; 3) the multi-stage method can achieve the oracle solution with a
large probability; and 4) even whenN > s, the multi-stage algorithm still outperforms the standard
Dantzig selector and achieves high accuracy in signal recovery and feature selection. Overall, the
recovery accuracy curve increases with an increasing value ofN before reaching the sparsity levels
and decreases slowly after that, and the feature selection accuracy curve increases whileN ≤ s and
becomes flat afterN goes beyonds.

Next we apply the multi-stage procedure to the LASSO case and compare the multi-stage
LASSO to the standard LASSO and the two-stage LASSO (Zhang, 2009a).The two-stage LASSO
algorithm first estimates a support setF0 = suppα(β′) from the solutionβ′ of the standard LASSO
whereα > 0 is the threshold parameter; the second stage estimates the signal by solving the follow-
ing problem

min
β

:
1
2
‖Xβ−y‖2

2+λ′‖βF̄0
‖1, (8)

which is indeed identical to Equation (7). In order to make it comparable to the proposed multi-
stage LASSO algorithm with the parameterN, we properly chooseα such that|F0|= N and use the
outputβ̂′ from Equation (8) and the feature candidate set byβ̂′ for comparison. Similarly, we use
the sameλ′ = 2λ in the three algorithms. The comparison reported in Figure 2 also indicates the
advantage of the proposed multi-stage procedure.

5. Conclusion

In this paper, we propose a multi-stage procedure to improve the performance of the Dantzig selector
and the LASSO by iteratively selecting the supporting features and recovering the original signal.
The proposed method makes use of the information of supporting features toestimate the signal
and simultaneously makes use of the information of the estimated signal to select the supporting
features. Our theoretical analysis shows that the proposed method improves upon the standard
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Figure 1: Numerical simulation. We compare the solutions of the standard Dantzig selector method
(N = 0), the proposed method for different values ofN = 0,1, · · · ,s, · · · ,s+5, and the oracle so-
lution. TheSRAandFSAcomparisons are reported on the left column and the right column, re-
spectively. The red line indicates theSRA(or FSA) value of the standard Dantzig selector method;
the blue line indicates the value of the oracle solution; the green curve with black boxes records the
results by the proposed method for different values ofN; the vertical cyan line distinguishes two
casesN <= s andN > s.
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Figure 2: Numerical simulation. We compare the solutions of the standard Dantzig selector
method (N = 0), the two-stage LASSO algorithm, the proposed method for different values of
N = 0,1, · · · ,s, · · · ,s+5, and the oracle solution. TheSRAandFSAcomparisons are reported on
the left column and the right column, respectively. The red line indicates theSRA(or FSA) value
of the standard Dantzig selector method; the blue line indicates the value of the oracle solution; the
green curve with black boxes records the results of the proposed methodfor different values ofN;
the magenta curve with yellow diamonds indicates the results of the two-stage LASSO algorithm;
the vertical cyan line distinguishes two casesN <= sandN > s.
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Dantzig selector and the LASSO in both signal recovery and supporting feature selection. The final
numerical simulation confirms our theoretical analysis.
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Appendix A.

Theorem 1 is fundamental for the rest of the theorems. We first highlight abrief architecture for its
proof. Theorem 1 estimates‖β̂−β∗‖p, which is bounded by the sum of two parts:‖β̂−β∗‖p ≤‖β̂−
β̄‖p+ ‖β̄−β∗‖p. We use the upper bounds of these two parts to estimate the bound of‖β̂−β∗‖p.
The analysis in Section 3.2 shows that the first term‖β̂− β̄‖p may be much larger than the second
term‖β̄−β∗‖p. In Lemma 7, we estimate the bound of‖β̄−β∗‖p and its holding probability. The
remaining part of the proof focuses on the estimation of the bound of‖β̂− β̄‖p. For convenience,
we useh to denoteβ̂− β̄. h can be divided intohF̄1−T1

andhF1+T1, whereF0 ⊂ F1 ⊂ F . Lemma 9
studies the relationship betweenhF̄1−T1

andhF1+T1, if β̄ is feasible (Lemma 8 computes its holding
probability). Then, Lemma 11 shows that‖h‖p can be bounded in terms of‖hF1+T1‖p. In Theorem
12, we estimate the bound of‖hF1+T1‖p. Finally, lettingF1 = F , we prove Theorem 1.

Lemma 7 With probability larger than1−η(π log(s/η))−1/2, the following holds:

‖β̄−β∗‖p ≤
s1/pσ

√

2log(s/η)

µ(p)
(XT

F XF )1/2,s

. (9)

Proof According to the definition of̄β, we have

β̄F = (XT
F XF)

−1XT
F y= (XT

F XF)
−1XT

F (Xβ∗+ ε) = (XT
F XF)

−1XT
F (XFβ∗

F + ε)

= β∗
F +(XT

F XF)
−1XT

F ε.

It follows that

β̄F −β∗
F = (XT

F XF)
−1XT

F ε ∼ N(0,(XT
F XF)

−1σ2).
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Since‖β̄− β∗‖p = ‖β̄F − β∗
F‖p, we only need to consider the bound for‖β̄F − β∗

F‖p. Let Z =
(XT

F XF)
1/2(β∗

F − β̄F)/σ ∼ N(0, I). We have

P(‖Z‖p ≥ t) = (2π)−s/2
∫
‖Z‖p≥t

e−ZTZ/2dZ

≤ (2π)−s/2
∫

s1/p‖Z‖∞≥t
e−ZTZ/2dZ (due to‖Z‖p ≤ s1/p‖Z‖∞)

= 1− (2π)−s/2
∫
‖Z‖∞≤s−1/pt

e−ZTZ/2dZ

= 1−
[

(2π)−1/2
∫
|Zi |≤s−1/pt

e−Z2
i /2dZi

]s

= 1−
[

1−2(2π)−1/2
∫ ∞

s−1/pt
e−Z2

i /2dZi

]s

≤ s

[

2(2π)−1/2
∫ ∞

s−1/pt
e−Z2

i /2dZi

]

≤ 2s1+1/p

t(2π)1/2
exp

[ −t2

2s2/p

]

.

Thus the following bound holds with probability larger than 1− 2s1+1/p

t(2π)1/2 exp
[

−t2

2s2/p

]

:

P(‖Z‖p ≤ t) = P(‖(XT
F XF)

1/2(β∗
F − β̄F)‖p ≤ tσ)

≤ P(µ(p)
(XT

F XF )1/2,s
‖β∗

F − β̄F‖p ≤ tσ) = P(‖β∗
F − β̄F‖p ≤ tσ/µ(p)

(XT
F XF )1/2,s

).

Takingt =
√

2log(s/η)s1/p, we prove the claim. Note that the presented bound holds for anyp≥ 1.

Lemma 8 With probability larger than1−η(π log m−s
η )−1/2, the following bound holds:

‖XT
F̄ (Xβ̄−y)‖∞ ≤ λ,

whereλ = σ
√

2log(m−s)/η.

Proof Let us first consider the probability of‖XT
F̄ (Xβ̄−y)‖∞ ≤ λ. For any j ∈ F̄ , definev j as

v j = XT
j (Xβ̄−y)

= XT
j

(

XF(X
T
F XF)

−1XT
F (XFβ∗

F + ε)−XFβ∗
F − ε

)

= XT
j

(

XF(X
T
F XF)

−1XT
F − I

)

ε

∼ N(0,XT
j (I −XF(X

T
F XF)

−1XT
F )Xjσ2).

Since(I −XF(XT
F XF)

−1XT
F ) is a projection matrix, we haveXT

j (I −XF(XT
F XF)

−1XT
F )Xjσ2 ≤ σ2.

Thus,

P(‖XT
F̄ (Xβ̄−y)‖∞ ≥ λ) = P(sup

j∈F̄
|v j | ≥ λ)≤ 2(m−s)σ

λ(2π)1/2
exp{−λ2/2σ2}.
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Takingλ = σ
√

2log(m−s)/η in the inequality above, we prove the claim.

It follows from the definition ofβ̄ that ‖XT
F (Xβ̄− y)‖∞ = 0 always holds. In the following

discussion, we assume that the following assumption holds:

Assumption 2 β̄ is a feasible solution of the problem(2), if F0 ⊂ F.

Under the assumption above, both‖XT
F̄ (Xβ̄−y)‖∞ ≤ λ and‖XT

F (Xβ̄−y)‖∞ = 0 hold.
Note that this assumption is just used to simplify the description for following proofs. Our proof

for the final theorems will substitute this assumption by the probability it holds.
In the following, we introduce an additional setF1 satisfyingF0 ⊂ F1 (Zhang, 2009a).

Lemma 9 Let F0 ⊂ F. Assume that Assumption 2 holds. Given any index set F1 such that F0 ⊂ F1,
we have the following conclusions:

‖hF̄0−F̄1
‖1+2‖β̄F̄1

‖1 ≥‖hF̄1
‖1

‖XT
F0

Xh‖∞ =0

‖XT
F̄ Xh‖∞ ≤2λ

‖XT
F̄0−F̄Xh‖∞ ≤λ.

Proof Sinceβ̄ is a feasible solution, the following holds

‖β̂F̄0
‖1 ≤ ‖β̄F̄0

‖1

‖β̂F̄0−F̄1
‖1+‖β̂F̄1

‖1 ≤ ‖β̄F̄0−F̄1
‖1+‖β̄F̄1

‖1

‖β̂F̄1
‖1 ≤ ‖hF̄0−F̄1

‖1+‖β̄F̄1
‖1

‖hF̄1
+ β̄F̄1

‖1 ≤ ‖hF̄0−F̄1
‖1+‖β̄F̄1

‖1

‖hF̄1
‖1 ≤ ‖hF̄0−F̄1

‖1+2‖β̄F̄1
‖1.

Thus, the first inequality holds. Since

XT
F0

Xh= XT
F0

X(β̂− β̄) = XT
F0
(Xβ̂−y)−XT

F0
(Xβ̄−y),

the second inequality can be obtained as follows:

‖XT
F0

Xh‖∞ ≤ ‖XT
F0
(Xβ̂−y)‖∞ +‖XT

F0
(Xβ̄−y)‖∞ = 0.

The third inequality holds since

‖XT
F̄ Xh‖∞ ≤ ‖XT

F̄ (Xβ̂−y)‖∞ +‖XT
F̄ (Xβ̄−y)‖∞ ≤ 2λ.

Similarly, the fourth inequality can be obtained as follows:

‖XT
F̄0−F̄Xh‖∞ ≤ ‖XT

F̄0−F̄(Xβ̂−y)‖∞ +‖XT
F̄0−F̄(Xβ̄−y)‖∞ ≤ λ.
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Lemma 10 Given any v∈ R
m, its index set T is divided into a group of subsets Tj ’s ( j = 1,2, ...)

without intersection such that
⋃

j Tj = T. If maxj |Tj | ≤ l andmaxi∈Tj+1 |vTj+1[i]| ≤ ‖vTj‖1/l hold for
all j’s, then we have

‖vT̄1
‖p ≤ ‖v‖1l1/p−1.

Proof Since|vTj+1[i]| ≤ ‖vTj‖1/l , we have

‖vTj+1‖p
p = ∑

i∈Tj+1

|vp
Tj+1

[i]| ≤ ‖vTj‖
p
1l1−p,

⇒‖vTj+1‖p ≤‖vTj‖1l1/p−1.

Thus,
‖vT̄1

‖p ≤ ∑
j≥1

‖vTj+1‖p ≤ ∑
j≥1

‖vTj‖1l1/p−1 = ‖v‖1l1/p−1,

which proves the claim.

Note that similar techniques as those in Lemma 10 have been used in the literature (Cand̀es and
Tao, 2007; Zhang, 2009a).

Lemma 11 Assume that F0 ⊂ F and F0 ⊂ F1. We divide the index set̄F1 into a group of subsets Tj ’s
( j = 1,2, ...) such that they satisfy all conditions in Lemma 10 with v= h. Then the following holds:

‖hF̄1−T1
‖p ≤l1/p−1

(

|F̄0− F̄1|1−1/p‖hF̄0−F̄1
‖p+2‖β̄F̄1

‖1

)

,

‖h‖p ≤
[

1+

( |F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l1/p−1‖β̄F̄1
‖1.

Proof Using Lemma 10 withT = F̄1, the first inequality can be obtained using the first inequality
in lemma 9 as follows:

‖hF̄1−T1
‖p ≤l1/p−1‖hF̄1

‖1 ≤ l1/p−1(‖hF̄0−F̄1
‖1+2‖β̄F̄1

‖1
)

≤l1/p−1
(

|F̄0− F̄1|1−1/p‖hF̄0−F̄1
‖p+2‖β̄F̄1

‖1

)

.

For anyx≥ 0, y≥ 0, p≥ 1, anda≥ 0, it can be easily verified that

(xp+(ax+y)p)1/p ≤ (1+ap)1/px+y. (10)

It follows that

‖h‖p =
[

‖hF1+T1‖p
p+‖hF̄1−T1

‖p
p

]1/p

≤
[

‖hF1+T1‖p
p+

[

( |F̄0− F̄1|
l

)1−1/p

‖hF̄0−F̄1
‖p+2l1/p−1‖β̄F̄1

‖1

]p]1/p

≤
[

1+

( |F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l1/p−1‖β̄F̄1
‖1.
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The first inequality is due to the first claim in this lemma; the second inequality is dueto‖hF̄0−F̄1
‖p ≤

‖hF1+T1‖p and (10). We complete the proof for the second claim.

Theorem 12 Under Assumption 1, taking F0 ⊂ F and λ = σ
√

2log
(

m−s
η1

)

into the optimization

problem(2), for any given index set F1 satisfying F0 ⊂ F1 ⊂ F , if there exists some l such that

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p
> 0 holds where s1 = |F1|, then with probability larger than1−η′

1,

theℓp norm (1≤ p≤ ∞) of the difference between the optimizer of the problem(2) and the oracle
solution is bounded as

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

)

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1
‖1

and with probability larger than1−η′
1−η′

2, the ℓp norm (1≤ p≤ ∞) of the difference between the
optimizer of the problem(2) and the true solution is bounded as

‖β̂−β∗‖p ≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

)

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1
‖1+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Proof First, we assume Assumption 2 and the inequality (9) hold. DivideF̄1 into a group of subsets
Tj ’s ( j = 1,2, ...) without intersection such that

⋃
j Tj = F̄1, maxj |Tj | ≤ l and maxi∈Tj+1 hTj+1[i] ≤

‖hTj‖1/l hold. Note that such a partition always exists. Simply, letT1 be the index set of the largest
l elements inh, T2 be the index set of the largestl elements among the remaining elements, and so
on (the size of the last set may be less thanl ). It is easy to verify that this group of sets satisfy all
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conditions above. For convenience of presentation, we denoteT0 = F̄0− F̄1 andT01= T0+T1. Since

‖XT
T01+F0

Xh‖p

=‖XT
T01+F0

XT01+F0hT01+F0 + ∑
j≥2

XT
T01+F0

XTj hTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p− ∑
j≥2

θ(p)
A,s1+l ,l‖hTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)
A,s1+l ,l ∑

j≥2

‖hTj‖p

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)
A,s1+l ,l l

1/p−1‖hF̄1
‖1 (due to lemma 10)

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)
A,s1+l ,l l

1/p−1(‖hT0‖1+2‖β̄F̄1
‖1
)

(due to lemma 9)

≥µ(p)A,s1+l‖hT01+F0‖p−θ(p)
A,s1+l ,l

(

l
|T0|

)1/p−1

‖hT0‖p−2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

≥
(

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

l
|T0|

)1/p−1
)

‖hT01+F0‖p−2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

and
‖XT

T01+F0
Xh‖p

p

=‖XT
F0

Xh‖p
p+‖XT

T01∩FXh‖p
p+‖XT

T01∩F̄Xh‖p
p

≤|T01∩F |λp+ |T01∩ F̄ |(2λ)p (due to lemma 9)

≤|T0∩F |λp+ |T1∩F |λp+ |T0∩ F̄ |(2λ)p+ |T1∩ F̄ |(2λ)p (due toF1 ⊂ F)

≤|T0|λp+ l(2λ)p, (due toT0∩ F̄ =∅)

we have

‖hF1+T1‖p =‖hT01+F0‖p ≤
(|T0|+2pl)1/pλ+2θ(p)

A,s1+l ,l l
1/p−1‖β̄F̄1

‖1

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

l
|T0|

)1/p−1

=
(|F̄0− F̄1|+2pl)1/pλ+2θ(p)

A,s1+l ,l l
1/p−1‖β̄F̄1

‖1

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p
.

Due to the second inequality in Lemma 11, we have

‖h‖p ≤
[

1+

( |F̄0− F̄1|
l

)p−1
]1/p

‖hF1+T1‖p+2l1/p−1‖β̄F̄1
‖1

=

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

)

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p
+

2l1/p−1‖β̄F̄1
‖1.
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Thus, we can bound‖β̂−β∗‖p as

‖β̂−β∗‖p ≤‖β̂− β̄‖p+‖β̄−β∗‖p

≤

[

1+
(

|F̄0−F̄1|
l

)p−1
]1/p

(

(|F̄0− F̄1|+2pl)1/pλ+2θ(p)
A,s1+l ,l l

1/p−1‖β̄F̄1
‖1

)

µ(p)A,s1+l −θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+2l1/p−1‖β̄F̄1
‖1+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Finally, takingλ = σ
√

2log
(

m−s
η1

)

, Lemma 8 withη = η1 implies that Assumption 2 holds with

probability larger than 1−η′
1 and Lemma 7 withη = η2 implies that (9) holds with probability

larger than 1−η′
2. Thus, these two bounds above hold with probabilities larger than 1−η′

1 and
1−η′

1−η′
2, respectively.

Remark 13 Cand̀es and Tao (2007) provided a more general upper bound for the Dantzig selec-

tor solution in the order ofO
(

k1/2σ
√

logm+ r(2)k (β∗)
√

logm
)

, where1 ≤ k ≤ s and r(p)k (β) =
(

∑i∈Lk
|βi |p

)1/p
(Lk is the index set of the k largest entries inβ). We argue that the result in

Theorem 12 potentially implies a tighter bound for Dantzig selector. Setting F0 = ∅ (equiva-
lent to the standard Dantzig selector) and l= k with k= |F̄1| in Theorem 12, it is easy to verify

that the order of the bound for‖β̂D − β̄‖p is determined byO
(

k1/pσ
√

logm+k1/p−1r(1)k (β̄)
)

, or

O

(

k1/pσ
√

logm+k1/p−1r(1)k (β∗)
)

due to Lemma 7. This bound achieves the same order as the

bound of the LASSO solution given by Zhang (2009a), which is the sharpest bound for LASSO to
our knowledge.

We are now ready to prove Theorem 1.
Proof of Theorem 1: TakingF1 = F in theorem 12 which indicates thatβ̄F̄1

= 0, we conclude that

‖β̂− β̄‖p ≤

[

1+
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l −θ(p)
A,s+l ,l

(

|F̄0−F̄|
l

)1−1/p
λ

holds with probability larger than 1−η′
1 and

‖β̂−β∗‖p ≤‖β̂− β̄‖p+‖β̄−β∗‖p

≤

[

1+
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄ |+ l2p)1/p

µ(p)A,s+l −θ(p)
A,s+l ,l

(

|F̄0−F̄|
l

)1−1/p
λ+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2)
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holds with probability larger than 1−η′
1−η′

2. �

Proof of Theorem 3: From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if Assumption 2 and the inequality (9) hold. It is easy to verify by Theorem 1
that for anyj ∈ J, the following holds:|β∗

j |> α0 ≥ ‖β̂− β̄‖∞ +‖β̂−β∗‖∞. For any j ∈ J, we have

|β̂ j | ≥ |β∗
j |− |β̂ j −β∗

j |> ‖β̂− β̄‖∞ +‖β̂−β∗‖∞ −|β̂ j −β∗
j | ≥ ‖β̂− β̄‖∞ ≥ ‖β̂F̄‖∞.

Thus, there exist at least|J| elements of̂βF larger than‖β̂F̄‖∞. If we pick up the largest|J| elements
in β̂, then all of them correspond to the location of nonzero entries in the true solution β∗. Since
Assumption 2 and the inequality (9) hold, the bounds (3) and (4) in Theorem1 hold with probability
larger than 1−η′

1−η′
2. Thus the claim above holds with probability larger than 1−η′

1−η′
2. Note

that the probability will not accumulate, as we only need the holding probability of Assumption 2
and the inequality (9). The proofs below follow the same principle. �

Proof of Theorem 4: From the proof in Theorem 12, the bounds (3) and (4) in Theorem 1 hold
with probability 1 if assumption 2 and the inequality (9) hold. In the multi-stage algorithm, the
problem in (2) is solvedN times. It is easy to verify that the following holds:

α0 ≥ ‖β̂(0)− β̄‖∞ +‖β̂(0)−β∗‖∞.

Since|suppα0(β∗
J)| > 0, there exists at least 1 element inβ̂(0)

J larger than‖β̂(0)
F̄ ‖∞. Thus,F(1)

0 must
be a subset ofF . Then, we can verify that

α1 ≥ ‖β̂(1)− β̄‖∞ +‖β̂(1)−β∗‖∞,

and|suppα1(β∗
J)|> 1 guarantee that there exist at least 2 elements inβ̂(1)

J larger than‖β̂(1)
F̄ ‖∞. Thus,

F(2)
0 must be a subset ofF . Similarly, we can show thatF(N)

0 is guaranteed to be a subset ofF .
Since the bounds (3) and (4) in Theorem 1 hold with probability larger than 1−η′

1−η′
2, the claim

F(N)
0 ⊂ F holds with probability larger than 1−η′

1−η′
2. �

Proof of Theorem 5: From Theorem 1, the first conclusion holds with probability larger than
1−η′

1−η′
2 by choosingF0 =∅ andl = s.

Assuming Assumption 2 and the inequality (9) hold, the bounds (3) and (4) in Theorem 1 hold
with probability 1. Since the conditions in Theorem 4 are satisfied, the|J| correct features can be

selected from the feature set, that is,F(|J|)
0 ⊂ F . Using the conclusion in (4) of Theorem 1, the bound

of the multi-stage method can be estimated by takingl = |F̄0− F̄| as follows:

‖β̂mul−β∗‖p ≤
(2p+1+2)1/p(s−N)1/p

µ(p)A,2s−N −θ(p)
A,2s−N,s−N

λ+
s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Note that since
µ(p)A,2s−N −θ(p)

A,2s−N,s−N ≥ µ(p)A,2s−θ(p)
A,2s,s,

the following always holds:µ(p)A,2s−N −θ(p)
A,2s−N,s−N > 0. Since Assumption 2 and the inequality (9)

hold, the bounds (3) and (4) in Theorem 1 hold with probability larger than 1−η′
1−η′

2. Thus the
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claim above holds with probability larger than 1−η′
1−η′

2. �

Proof of Theorem 6: First, we assume that Assumption 2 and the inequality (9) hold. In this case,
the claim in Theorem 4 holds with probability 1. Since all conditions in Theorem 4are satisfied,
after s iterations,s correct features will be selected (i.e.,F(N)

0 = F) with probability 1. Since all
correct features are obtained, the optimization problem in the last iteration can be formulated as:

min : ‖βF̄‖1

s.t. : ‖XT
F̄ (Xβ−y)‖∞ ≤ λ

‖XT
F (Xβ−y)‖∞ = 0.

(11)

The oracle solution minimizes the objective function to 0. Since Assumption 2 indeedimplies that
the oracle is a feasible solution, the oracle solution is one optimizer. We can alsoshow that it is the
unique optimizer. If there is another optimizerβ 6= β̄, thenβF̄ = 0 andβF = (XT

F XF)
−1XT

F y, which
is identical to the definition of the oracle solution. Thus, we conclude that the oracle is the unique
optimizer for the optimization problem (11) with probability 1. Since the holding probability of
Assumption 2 and the inequality (9) is larger than 1−η′

1−η′
2, the oracle solution can be achieved

with the same probability. �

Appendix B.

In this section, we expound the properties of the multi-stage LASSO which arevery similar to the
multi-stage Dantzig selector. The complete proof is given below.

In the following discussion, we usêβ′ to denote the solution in Equation (7) and leth′ = β̂′− β̄.
We first consider the simple caseF0 ⊂ F as in Section 3.1; we have the following theorem.

Theorem 14 Assume Assumption 1 holds. Take F0 ⊂ F and

λ′ = 2σ

√

2log

(

m−s
η1

)

into the optimization problem(7). If there exists some l such that

µ(p)A,s+l −3θ(p)
A,s+l ,l

( |F̄0− F̄ |
l

)1−1/p

> 0

holds, then with probability larger than1−η′
1, theℓp norm (1≤ p≤ ∞) of the difference between

β̂′, the optimizer of the problem(7) and the oracle solution̄β is bounded as

‖β̂′− β̄‖p ≤

[

1+3
(

|F̄0−F̄|
l

)p−1
]1/p

(|F̄0− F̄ |+(3/2)pl)1/p

µ(p)A,s+l −3θ(p)
A,s+l ,l

(

|F̄0−F̄|
l

)1−1/p
λ′
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and with probability larger than1−η′
1−η′

2, the ℓp norm (1≤ p≤ ∞) of the difference between̂β′,
the optimizer of the problem(7) and the true solutionβ∗ is bounded as

‖β̂′−β∗‖p ≤

[

1+3
(

|F̄0−F̄ |
l

)p−1
]1/p

(|F̄0− F̄|+(3/2)pl)1/p

µ(p)A,s+l −3θ(p)
A,s+l ,l

(

|F̄0−F̄ |
l

)1−1/p
λ′+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

This theorem is similar to Theorem 1 for the multi-stage Dantzig selector. Like Equations (3)
and (4), the two bounds in the above theorem are strictly decreasing in termsof |F̄0− F̄ |. Thus,
feature selection and signal recovery can benefit from each other. For this reason, the multi-stage
LASSO has similar properties as the multi-stage Dantzig selector. We expound them as follows.
(a) First, like Theorem 4, in the LASSO case the multi-stage procedure can lead toa weaker require-
ment to choose|J| correct features than the standard LASSO as shown in the following theorem.

Theorem 15 Under Assumption 1, if there exist a nonempty set

Ω = {l |µ(p)A,s+l −3θ(p)
A,s+l ,l

(s
l

)1−1/p
> 0}

and a set J such that|suppαi (β∗
J)|> i holds for all i∈ {0,1, ..., |J|−1}, where

αi =
3
2

min
l∈Ω

max(1, 3(s−i)
l )

µ(∞)
A,s+l −3θ(∞)

A,s+l ,l

(

s−i
l

)

λ′+
1

µ(∞)

(XT
F XF )1/2,s

σ
√

2log(s/η2),

then taking F(0)0 = ∅, λ = σ
√

2log
(

m−s
η1

)

and N= |J| − 1 into the multi-stage algorithm 1, the

result after N iterations satisfies F(N)
0 ⊂ F (i.e., |J| correct features are chosen) with probability

larger than1−η′
1−η′

2.

It is easy to see thatα0 > α1 > ... > α|J|−1 holds strictly. Referring to the analysis for Theorem 4,
we know that the multi-stage method for LASSO requires weaker conditions to obtain |J| correct
features than the standard LASSO.
(b) Second, like Theorem 5 the following theorem shows that with a high probability the multi-
stage procedure can improve the upper bound of the standard LASSO from Cs1/p√logm+∆ to
C(s−N)1/p√logm+∆, whereC is a constant and∆ is a small number independent fromm.

Theorem 16 Under Assumption 1, if there exist l such that µ(∞)
A,s+l −3θ(∞)

A,s+l ,l

(

s
l

)

> 0, µ(p)A,2s−3θ(p)
A,2s,s>

0, and a set J such that|suppαi (β∗
J)|> i holds for all i∈ {0,1, ..., |J|−1}, whereαi ’s follow the def-

inition in Theorem 15, then taking F0 = ∅, N = |J| andλ′ = 2σ
√

2log
(

m−s
η1

)

into the multi-stage

LASSO algorithm, the solution̂β′
mul of the multi-stage LASSO obeys

‖β̂′
mul−β∗‖p ≤

4
(

(

3
2

)p
+1
)1/p

(s−N)1/p

µ(p)A,2s−N −3θ(p)
A,2s−N,s−N

λ′+
s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2)

with probability larger than1−η′
1−η′

2.
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(c) Finally, the proposed method can obtain the oracle solution with high probability under certain
conditions:

Theorem 17 Under Assumption 1, if there exists l such that µ(∞)
A,s+l − 3θ(∞)

A,s+l ,l

(

s−i
l

)

> 0, and the
supporting set F ofβ∗ satisfies|suppαi (β∗

F)| > i for all i ∈ {0,1, ...,s− 1}, whereαi follows the

definition in theorem 15, then taking F0 = ∅, N = s andλ′ = 2σ
√

2log
(

m−s
η1

)

into the multi-

stage LASSO algorithm, the oracle solution can be achieved, that is, F(N)
0 = F and β̂′(N) = β̄ with

probability larger than1−η′
1−η′

2.

In the following, we provide the complete proof for the theorems above.

Lemma 18 Let β̂′ be defined above. We have

‖XT
F̄0
(Xβ̂′−y)‖∞ ≤ λ′.

Proof The subdifferential of the objective function in Equation (7) at the optimal solution β̂′ is
given by:

XT
i (Xβ̂′−y)+λ′sgn(β̂′

i)

wherei ∈ F̄0 and

sgn(x) =







1, x> 0;
−1, x< 0;
[-1,1], x= 0.

Since 0 must belong to the subdifferential at the optimal solution, we have

|XT
i (Xβ̂′−y)| ≤ λ′,

which implies the claim.

Let us assume that the oracle solution satisfies the following assumption.

Assumption 3
‖XT

F̄ (Xβ̄−y)‖∞ ≤ λ′/2.

This assumption actually plays the same role as Assumption 2 in the Dantzig selector.
In the following, we introduce an additional setF1 satisfyingF0 ⊂ F1 (Zhang, 2009a).
Similar to Lemma 9, we have the following results for the LASSO case:

Lemma 19 Let F0 ⊂ F. Assume that Assumption 3 holds. Given any index set F1 such that F0 ⊂ F1,
we have the following conclusions:

3‖h′F̄0−F̄1
‖1+4‖β̄F̄1

‖1 ≥ ‖h′F̄1
‖1

‖XT
F0

Xh′‖∞ = 0

‖XT
F̄ Xh′‖∞ ≤ 3

2
λ′

‖XT
F̄0−F̄Xh′‖∞ ≤ λ′.
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Proof We only show the proof for the first inequality and the rest can be easily proven by following
the proof in Lemma 9.

Let ε = Xβ̄− y and f (.) be the objective function in Equation (7) with respect toβ. One can
verify thatεTXF = 0. Sinceβ̂′ is the optimal solution of Equation (7), we have

0≥ f (β̂′)− f (β̄)

=
1
2
(‖Xβ̂′−y‖2

2−‖Xβ̄−y‖2
2)+λ′(‖β̂′

F̄0
‖1−‖β̄F̄0

‖1)

=
1
2
(Xh′)T(Xβ̂′−y+ ε)+λ′(‖β̂′

F̄0
‖1−‖β̄F̄0

‖1)

≥εTXh′+λ′(‖β̂′
F̄0
‖1−‖β̄F̄0

‖1)

≥εT(XFh′F +XF̄h′F̄)+λ′(‖β̂′
F̄0
‖1−‖β̄F̄0

‖1)

≥−λ′/2‖h′F̄‖1+λ′(‖β̂′
F̄0−F̄1

‖1+‖β̂′
F̄1
‖1−‖β̄F̄0−F̄1

‖1−‖β̄F̄1
‖1) (due to Assumption 3)

≥−λ′/2‖h′F̄0
‖1+λ′(−‖h′F̄0−F̄1

‖1+‖h′F̄1
‖1−2‖β̄F̄1

‖1)

=λ′/2‖h′F̄1
‖1−

3
2

λ′‖h′F̄0−F̄1
‖1−2λ′‖β̄F̄1

‖1,

which implies the first inequality.

Similar to Lemma 11, the following result holds in the LASSO case:

Lemma 20 Assume F0 ⊂ F and F0 ⊂ F1 and the index set̄F1 is divided into a group of subsets Tj ’s
such that they satisfy all conditions in Lemma 10 with v= h′. Then the following holds:

‖h′F̄1−T1
‖p ≤l1/p−1

(

3|F̄0− F̄1|1−1/p‖h′F̄0−F̄1
‖p+4‖β̄F̄1

‖1

)

‖h′‖p ≤
[

1+3p(|F̄0− F̄1|/l)p−1]1/p‖h′F1+T1
‖p+4l1/p−1‖β̄F̄1

‖1,

where s1 = |F1|.
Proof Using the claim in Lemma 10 withv= h′, we have

‖h′F̄1−T1
‖p

≤l1/p−1‖h′F̄1
‖1

≤l1/p−1
(

3‖h′F̄0−F̄1
‖1+4‖β̄F̄1

‖1

)

(due to the first inequality in Lemma 19)

≤l1/p−1
(

3|F̄0− F̄1|1−1/p‖h′F̄0−F̄1
‖p+4‖β̄F̄1

‖1

)

.

This proves the first inequality. Using this equality, we can obtain the secondinequality as follows:

‖h′‖p

=(‖h′F1+T1
‖p

p+‖h′F̄1−T1
‖p

p)
1/p

≤
[

‖h′F1+T1
‖p

p+

(

3

( |F̄0− F̄1|
l

)1−1/p

‖h′F̄0−F̄1
‖p+

4

l1−1/p
‖β̄F̄1

‖1

)p]1/p

≤
[

1+3p(|F̄0− F̄1|/l)p−1]1/p‖h′F1+T1
‖p+4l1/p−1‖β̄F̄1

‖1.
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The last inequality is due to Equation (10).

Similar to the Lemma 12, the following result holds in the LASSO case:

Theorem 21 Under Assumption 1, taking F0 ⊂ F andλ′ = 2σ
√

2log
(

m−s
η1

)

into the optimization

problem(7), if for any index set F1 satisfying F0 ⊂ F1 ⊂ F there exists some l such that µ(p)
A,s1+l −

3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p
> 0 holds where s1 = |F1|, then with probability larger than1−η′

1, the ℓp

norm (1≤ p≤ ∞) of the difference between the optimizer of the problem(7) and the oracle solution
is bounded as

‖β̂′− β̄‖p

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l ,l

l1−1/p ‖β̄F̄1
‖1

)

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1
‖1

and with probability larger than1−η′
1−η′

2, the ℓp norm (1≤ p≤ ∞) of the difference between the
optimizer of the problem(7) and the true solution is bounded as

‖β̂′−β∗‖p

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l ,l

l1−1/p ‖β̄F̄1
‖1

)

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1
‖1+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Proof The proof follows the same strategy as in Theorem 12. First, we assume thatAssumption 3
and the inequality (9) hold. DividēF1 into a group of subsetsTj ’s ( j = 1,2, ...) without intersection
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such that
⋃

j Tj = F̄1, maxj |Tj | ≤ l and maxi∈Tj+1 hTj+1[i]≤ ‖hTj‖1/l hold. Since

‖XT
T01+F0

Xh′‖p

=‖XT
T01+F0

XT01+F0h
′
T01+F0

+ ∑
j≥2

XT
T01+F0

XTj h
′
Tj
‖p

≥µ(p)A,s1+l‖h′T01+F0
‖p− ∑

j≥2

θ(p)
A,s1+l ,l‖h′Tj

‖p

≥µ(p)A,s1+l‖h′T01+F0
‖p−θ(p)

A,s1+l ,l ∑
j≥2

‖h′Tj
‖p

≥µ(p)A,s1+l‖h′T01+F0
‖p−θ(p)

A,s1+l ,l l
1/p−1‖h′F̄1

‖1

≥µ(p)A,s1+l‖h′T01+F0
‖p−θ(p)

A,s1+l ,l l
1/p−1

(

3‖h′F̄0−F̄1
‖1+4‖β̄F̄1

‖1

)

(due to the first inequality of Lemma 19)

≥µ(p)A,s1+l‖h′T01+F0
‖p−3θ(p)

A,s1+l ,l

(

l
|T0|

)1/p−1

‖h′T0
‖p−4θ(p)

A,s1+l ,l l
1/p−1‖β̄F̄1

‖1

≥
[

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

( |T0|
l

)1−1/p
]

‖h′T01+F0
‖p−4θ(p)

A,s1+l ,l l
1/p−1‖β̄F̄1

‖1

and

‖XT
T01+F0

Xh′‖p
p

=‖XT
F0

Xh′‖p
p+‖XT

T01∩FXh′‖p
p+‖XT

T01∩F̄Xh′‖p
p

≤|T01∩F |λ′p+ |T01∩ F̄ |(3λ′/2)p (due to Lemma 19)

≤|T0∩F |λ′p+ |T1∩F |λ′p+ |T0∩ F̄ |(3λ′/2)p+ |T1∩ F̄ |(3λ′/2)p (due toF1 ⊂ F)

≤|T0|λ′p+ l(3λ′/2)p, (due toT0∩ F̄ =∅)

thus we have

‖h′F1+T1
‖p = ‖h′T01+F0

‖p ≤
(|F̄0− F̄1|+(3/2)pl)1/pλ′+4θ(p)

A,s1+l ,l l
1/p−1‖β̄F̄1

‖1

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p
.

It follows that

‖h′‖p ≤
[

1+3p
( |F̄0− F̄1|

l

)p−1
]1/p

‖h′F1+T1
‖p+4l1/p−1‖β̄F̄1

‖1

≤

[

1+3p
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l ,l

l1−1/p ‖β̄F̄1
‖1

)

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1
‖1,
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and
‖β̂′−β∗‖p

≤

[

1+3
(

|F̄0−F̄1|
l

)p−1
]1/p(

(|F̄0− F̄1|+(3/2)pl)1/pλ′+
4θ(p)A,s1+l ,l

l1−1/p ‖β̄F̄1
‖1

)

µ(p)A,s1+l −3θ(p)
A,s1+l ,l

(

|F̄0−F̄1|
l

)1−1/p

+4l1/p−1‖β̄F̄1
‖1+

s1/p

µ(p)
(XT

F XF )1/2,s

σ
√

2log(s/η2).

Finally, taking

λ′ = 2σ

√

2log

(

m−s
η1

)

,

Lemma 8 (lettingη = η1) implies that Assumption 3 holds with probability larger than 1−η′
1 and

Lemma 7 (lettingη = η2) implies that Equation (9) holds with probability larger than 1−η′
2. Thus,

these two bounds above hold with probability larger than respectively 1−η′
1 and 1−η′

1−η′
2.

Proof to Theorem 14: By takingF1 = F in Theorem 21, the claims above can be obtained imme-
diately. �

Proof to Theorem 15:Please refer to the proof for Theorem 4. �

Proof to Theorem 16:Please refer to the proof for Theorem 5. �

Proof to Theorem 17: First, we assume that Assumption 3 and the inequality (9) holds. Then,
the claim in Theorem 15 holds with probability 1. Since all conditions in Theorem15 are satisfied,
afters iterationsscorrect features can be chosen (i.e.,F(N)

0 = F) with probability 1. Since all correct
features are obtained, the optimization problem in the last iteration can be formulated as

min :
1
2
‖Xβ−y‖2

2+λ′‖βF̄‖1. (12)

A minimizer should satisfy the following conditions:

0∈XT
F̄ (Xβ−y)+λ′sgn(βF̄)

0=XT
F (Xβ−y),

(13)

where the first formula is based on the subdifferential set. Because of Assumption 3, the oracle
solution satisfies these two conditions. Since the objective function is not strictly convex, we need
to show that the oracle solution is the unique minimizer.

From the second equality in Equation (13), we haveβF =−(XT
F XF)

−1XT
F (XF̄βF̄ −y). It follows

that the objective function in Equation (12) can be expressed as

f (βF̄) =
1
2
‖(I −XF(X

T
F XF)

−1XT
F )(XF̄βF̄ −y)‖2

2+λ′‖βF̄‖1.

Because the oracle solution is a minimizer of the Equation (12), “0” should be one of the minimizers
of f (βF̄). Next we show that “0” is the unique minimizer, which implies that the oracle solution
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is the unique minimizer for Equation (12). We can compute the directional derivative along any
direction∆ at the point “0” for the functionf (βF̄) as follows:

d f(0+ t∆)
dt

|t=0 =−yT(I −XF(X
T
F XF)

−1XT
F )X

T
F̄ ∆+λ′‖∆‖1

≥λ′‖∆‖1−‖∆‖1‖yT(I −XF(X
T
F XF)

−1XT
F )X

T
F̄ ‖∞

=‖∆‖1(λ′−‖XT
F̄ (Xβ̄−y)‖∞)

>0. (due to Assumption 3)

Thus, the directional derivative at “0” is always strictly greater than 0 at arbitrary directions, which
shows that “0” should be the unique minimizer forf (βF̄).

Finally, because the probability of Assumption 3 and the inequality (9) holding islarger than
1−η′

1−η′
2, the oracle solution is achieved with the same probability. �
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