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Abstract

Action videos are multidimensional data and can be naturally represented as data tensors. While

tensor computing is widely used in computer vision, the geometry of tensor space is often ignored.

The aim of this paper is to demonstrate the importance of the intrinsic geometry of tensor space

which yields a very discriminating structure for action recognition. We characterize data tensors as

points on a product manifold and model it statistically using least squares regression. To this aim,

we factorize a data tensor relating to each order of the tensor using Higher Order Singular Value

Decomposition (HOSVD) and then impose each factorized element on a Grassmann manifold. Fur-

thermore, we account for underlying geometry on manifolds and formulate least squares regression

as a composite function. This gives a natural extension from Euclidean space to manifolds. Con-

sequently, classification is performed using geodesic distance on a product manifold where each

factor manifold is Grassmannian. Our method exploits appearance and motion without explicitly

modeling the shapes and dynamics. We assess the proposed method using three gesture databases,

namely the Cambridge hand-gesture, the UMD Keck body-gesture, and the CHALEARN gesture

challenge data sets. Experimental results reveal that not only does the proposed method perform

well on the standard benchmark data sets, but also it generalizes well on the one-shot-learning ges-

ture challenge. Furthermore, it is based on a simple statistical model and the intrinsic geometry of

tensor space.

Keywords: gesture recognition, action recognition, Grassmann manifolds, product manifolds,

one-shot-learning, kinect data

1. Introduction

Human gestures/actions are the natural way for expressing intentions and can be instantly recog-

nized by people. We use gestures to depict sign language to deaf people, convey messages in noisy

environments, and interface with computer games. Having automated gesture-based communica-

tion would broaden the horizon of human-computer interaction and enrich our daily lives. In recent

years, many gesture recognition algorithms have been proposed (Mitra and Acharya, 2007; Wang

et al., 2009; Bilinski and Bremond, 2011). However, reliable gesture recognition remains a chal-

lenging area due in part to the complexity of human movements. To champion the recognition

performance, models are often complicated, causing difficulty for generalization. Consequently,

heavy-duty models may not have substantial gains in overall gesture recognition problems.

In this paper, we propose a new representation to gesture recognition based upon tensors and the

geometry of product manifolds. Since human actions are expressed as a sequence of video frames,

an action video may be characterized as a third order data tensor. The mathematical framework
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for working with high order tensors is multilinear algebra which is a useful tool for characterizing

multiple factor interactions. Tensor computing has been successfully applied to many computer

vision applications such as face recognition (Vasilescu and Terzopoulos, 2002), visual tracking (Li

et al., 2007), and action classification (Vasilescu, 2002; Kim and Cipolla, 2009). However, the

geometrical aspect of data tensors remains unexamined. The goal of this paper is to demonstrate

the importance of the intrinsic geometry of tensor space where it provides a very discriminating

structure for action recognition.

Notably, several recent efforts (Lui, 2012a) have been inspired by the characteristics of space

and the associated construction of classifiers based upon the intrinsic geometry inherent in partic-

ular manifolds. Veeraraghavan et al. (2005) modeled human shapes from a shape manifold and

expressed the dynamics of human silhouettes using an autoregressive (AR) model on the tangent

space. Turaga and Chellappa (2009) extended this framework and represented the trajectories on

a Grassmann manifold for activity classification. The use of tangent bundles on special manifolds

was investigated by Lui (2012b) where a set of tangent spaces was exploited for action recognition.

Age estimation was also studied using Grassmann manifolds (Turaga et al., 2010). The geodesic

velocity from an average face to the given face was employed for age estimation where the space of

landmarks was interpreted as a Grassmann manifold. Lui and Beveridge (2008) characterized tan-

gent spaces of a registration manifold as elements on a Grassmann manifold for face recognition.

The importance of the ordering on Stiefel manifolds was demonstrated by Lui et al. (2009) and an

illumination model was applied to synthesize such elements for face recognition. These successes

motivate the exploration of the underlying geometry of tensor space.

The method proposed in this paper characterizes action videos as data tensors and demonstrates

their association with a product manifold. We focus attention on the intrinsic geometry of tensor

space, and draw upon the fact that the geodesic on a product manifold is equivalent to the Cartesian

product of geodesics from multiple factor manifolds. In other words, elements of a product manifold

are the set of all elements inherited from factor manifolds. Thus, in our approach, action videos are

factorized to three factor elements using Higher Order Singular Value Decomposition (HOSVD) in

which the factor elements give rise to three factor manifolds. We further extend the product manifold

representation to least squares regression. In doing so, we consider the underlying geometry and

formulate least squares regression as a composite function. As such, we ensure that both the domain

values and the range values reside on a manifold through the regression process. This yields a natural

extension from Euclidean space to manifolds. The least squares fitted elements from a training

set can then be exploited for gesture recognition where the similarity is expressed in terms of the

geodesic distance on a product manifold associated with fitted elements from factor manifolds.

We demonstrate the merits of our method on three gesture recognition problems including hand

gestures, body gestures, and gestures collected from the Microsoft KinectTM camera for the one-

shot-learning CHALEARN gesture challenge. Our experimental results reveal that our method is

competitive to the state-of-the-art methods and generalizes well to the one-shot-learning scheme, yet

is based on a simple statistical model. The key contributions of the proposed work are summarized

as follows:

• A new way of relating tensors on a product manifold to action recognition.

• A novel formulation for least squares regression on manifolds.

• The use of appearance and motion without explicitly modeling shapes or dynamics.
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• A simple pixel-based representation (no silhouette or skeleton extraction).

• No extensive training and parameter tuning.

• No explicit assumption on action data.

• Competitive performance on gesture recognition.

• Applicable to other visual applications.

The rest of this paper is organized as follows: Related work is summarized in Section 2. Tensor

algebra, orthogonal groups, and Grassmann manifolds are reviewed in Section 3. The formulation

of the proposed product manifold is presented in Section 4 and is further elaborated with examples

in Section 5. The statistical modeling on manifolds is introduced in Section 6. Section 7 reports

our experimental results. Section 8 discusses the effect of using raw pixels for action recognition.

Finally, we conclude this paper in Section 9.

2. Related Work

Many researchers have proposed a variety of techniques for action recognition in recent years. We

highlight some of this work here, including bag-of-features models, autoregressive models, 3D

Fourier transforms, tensor frameworks, and product spaces.

In the context of action recognition, bag-of-features models (Dollar et al., 2005; Wang et al.,

2009; Bilinski and Bremond, 2011) may be among the most popular methods wherein visual vocab-

ularies are learned from feature descriptors and spatiotemporal features are typically represented by

a normalized histogram. While encouraging results have been achieved, bag-of-features methods

have heavy training loads prior to classification. In particular, feature detection and codebook gener-

ation can consume tremendous amounts of time if the number of training samples is large. Recently,

Wang et al. (2009) have evaluated a number of feature descriptors and bag-of-features models for

action recognition. This study concluded that different sampling strategies and feature descriptors

were needed to achieve the best results on alternative action data sets. Similar conclusions were also

found by Bilinski and Bremond (2011) where various sizes of codebooks are needed for different

data sets in order to obtain peak performances.

Another school of thought for action classification is using an autoregressive (AR) model. Some

of the earliest works involved dynamic texture recognition (Saisan et al., 2001) and human gait

recognition (Bissacco et al., 2001). These works represented actions using AR models. The authors

found that the most effective way to compare dynamics was by computing the Martin distance

between AR models. Veeraraghavan et al. (2005) modeled human silhouettes based on Kendall’s

theory of shape (Kendall, 1984) where shapes were expressed on a shape manifold. This method

modeled the dynamics of human silhouettes using an AR model on the tangent space of the shape

manifold. The sequences of human shapes were compared by computing the distance between

the AR models. Turaga and Chellappa (2009) investigated statistical modeling with AR models

for human activity analysis. In their work, trajectories were considered a sequence of subspaces

represented by AR models on a Grassmann manifold. As such, the dynamics were learned and

kernel density functions with Procrustes representation were applied to density estimation.

Three-dimensional Fourier transform has been demonstrated as a valuable tool in action classi-

fication. Weinland et al. (2006) employed Fourier magnitudes and cylindrical coordinates to repre-

sent motion templates. Consequently, the action matching was invariant to translations and rotations
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around the z-axis. Although this method was view invariant, the training videos needed to be ac-

quired from multiple cameras. Rodriguez et al. (2008) synthesized a filter respond using the Clifford

Fourier transform for action recognition. The feature representation was computed using spatiotem-

poral regularity flow from the xy-parallel component. The advantage of using Clifford algebra is

the direct use of vector fields to Fourier transform.

Data tensors are the multidimensional generalizations to matrices. Vasilescu (2002) modeled

the joint angle trajectories on human motion as a set of factorized matrices from a data tensor.

Signatures corresponding to motion and identity were then extracted using PCA for person identifi-

cation. Kim and Cipolla (2009) extended canonical correlation analysis to the tensor framework by

developing a Tensor Canonical Correlation Algorithm (TCCA). This method factorized data tensors

to a set of matrices and learned a set of projection matrices maximizing the canonical correlations.

The inner product was employed to compute the similarity between two data tensors. The use of

SIFT features with CCA was also considered for gesture recognition by Kim and Cipolla (2007).

Recently, nonnegative tensor factorization has been exploited for action recognition by Krausz and

Bauckhage (2010) where action videos were factorized using a gradient descent method and repre-

sented as the sum of rank-1 tensors associated with a weighting factor. As a result, the appearance

was captured by the basis images and the dynamics was encoded with the weighting factor.

Product spaces have received attention in applications related to spatiotemporal interactions.

Datta et al. (2009) modeled the motion manifold as a collection of local linear models. This method

learned a selection of mappings to encode the motion manifold from a product space. Lin et al.

(2009) proposed a probabilistic framework for action recognition using prototype trees. Shape and

motion were explicitly learned and characterized via hierarchical K-means clustering. The joint

likelihood framework was employed to model the joint shape-motion space. Li and Chellappa

(2010) investigated the product space of spatial and temporal submanifolds for action alignment.

Sequential importance sampling was then used to find the optimal alignment. Despite these efforts,

the geometry of the product space has not been directly considered and the geodesic nature on the

product manifold remains unexamined.

3. Mathematical Background

In this section, we briefly review the background mathematics used in this paper. Particularly,

we focus on the elements of tensor algebra, orthogonal groups, Stiefel manifolds, and Grassmann

manifolds.

3.1 Tensor Representation

Tensors provide a natural representation for high dimensional data. We consider a video as a third

order data tensor ∈R
X×Y×T where X , Y , and T are the image width, image height, and video length,

respectively. High order data tensors can be regarded as a multilinear mapping over a set of vector

spaces. Generally, useful information can be extracted using tensor decompositions. In particular,

a Higher Order Singular Value Decomposition (HOSVD) (De Lathauwer et al., 2000) is considered

in this paper because the data tensor can be factorized in a closed-form. A recent review paper on

tensor decompositions can be found in Kolda and Bader (2009). Before we describe HOSVD, we

illustrate a building block operation called matrix unfolding.
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Figure 1: An example of matrix unfolding for a third order tensor. The illustration is for a video

action sequence with two spatial dimensions X and Y and a temporal dimension T .

3.1.1 MATRIX UNFOLDING

Let A be an order N data tensor ∈ R
I1×I2×···×IN . The data tensor A can be converted to a set of

matrices via a matrix unfolding operation. Matrix unfolding maps a tensor A to a set of matrices

A(1), A(2), . . . , A(N), where A(k) ∈ R
Ik×(I1×···×Ik−1×Ik+1···×IN) is a mode-k matrix of A . An example of

matrix unfolding of a third order, that is, N = 3, tensor is given in Figure 1. As Figure 1 shows, we

can slice a third order tensor in three different ways along each axis and concatenate these slices into

three different matrices A(1), A(2), and A(3) where the rows of an unfolded matrix are represented by

a single variation of the tensor and the columns are composed by two variations of the tensor.

3.1.2 HIGHER ORDER SINGULAR VALUE DECOMPOSITION

Just as a data matrix can be factorized using a Singular Value Decomposition (SVD), a data tensor

can also be factorized using Higher Order Singular Value Decomposition (HOSVD), also known as

multilinear SVD. HOSVD operates on the unfolded matrices A(k), and each unfolded matrix may
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be factored using SVD as follows:

A(k) =U (k)Σ(k)V (k)T

(1)

where Σ(k) is a diagonal matrix, U (k) is an orthogonal matrix spanning the column space of A(k)

associated with nonzero singular values, and V (k) is an orthogonal matrix spanning the row space

of A(k) associated with nonzero singular values. Then, an N order tensor can be decomposed using

HOSVD as follows:

A = S ×1 U (1)×2 U (2)
. . .×n U (N)

where S ∈ R
(I1×I2×···×IN) is a core tensor, U (1), U (2), . . . , U (N) are orthogonal matrices spanning the

column space described in (1), and ×k denotes mode-k multiplication. The core tensor signifies the

interaction of mode matrices and is generally not diagonal when the tensor order is greater than two.

3.2 Orthogonal Groups

Matrix Lie groups arise in various kinds of non-Euclidean geometry (Belinfante and Kolman, 1972).

The General Linear Group1 GL(n) is a set of nonsingular n×n matrices defined as:

GL(n) = {Y ∈ R
n×n : det(Y ) 6= 0}.

The GL(n) is closed under a group operation, that is, matrix multiplication. This is because the

product of two nonsingular matrices is a nonsingular matrix. Of practical importance here is the

fact that elements of GL(n) are full rank and thus their row and column spaces span R
n. A further

subgroup of GL(n) is the orthogonal group denoted as:

O(n) = {Y ∈ R
n×n : Y TY = I}.

It is known that the determinants of orthogonal matrices can be either +1 or −1 where the matrices

with the determinant of 1 are rotation matrices and the matrices with the determinant of −1 are

reflection matrices.

3.3 Stiefel Manifolds

The Stiefel manifold Vn,p is a set of n× p orthonormal matrices defined as:

Vn,p = {Y ∈ R
n×p : Y TY = I}.

The Stiefel manifold Vn,p can be considered a quotient space of O(n) so we can identify an isotropy

subgroup H of O(n) expressed as

{[

Ip 0

0 Qn−p

]

: Qn−p ∈ O(n− p)

}

where the isotropy subgroup

leaves the element unchanged. Thus, the Stiefel manifold can be expressed as Vn,p = O(n) / O(n−
p). From a group theory point of view, O(n) is a Lie group and O(n− p) is its subgroup so that

O(n) / O(n− p) represents the orbit space. In other words, Vn,p is the quotient group of O(n) by

O(n− p).

1. In this paper, we are only interested in the field of real number R. Unitary groups may be considered in other contexts.
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3.4 Grassmann Manifolds

When we impose a group action of O(n) onto the Stiefel manifold, this gives rise to the equivalence

relation between orthogonal matrices so that the elements of Stiefel manifolds are rotation and

reflection invariant. In other words, elements are considered being equivalent if there exists a p× p

orthogonal matrix Qp which maps one point into the other. This equivalence relation can be written

as:

⌊Y⌋= {Y Qp : Qp ∈ O(n)} (2)

where ⌊Y⌋ is an element on the Grassmann manifold. Therefore, the Grassmann manifold Gn,p is

a set of p-dimensional linear subspaces of Rn and its isotropy subgroup composes all elements of
{[

Qp 0

0 Qn−p

]

: Qp ∈ O(p) , Qn−p ∈ O(n− p)

}

. The quotient representation of Grassmann mani-

folds is expressed as Gn,p = O(n) / (O(p)×O(n− p)) = Vn,p / O(p). As such, the element of the

Grassmann manifold represents the orbit of a Stiefel manifold under the group action of orthogo-

nal groups. More details on the treatment of Grassmann manifolds can be found in Edelman et al.

(1998) and Absil et al. (2008).

4. Elements of Product Manifolds

This section discusses the elements of product manifolds in the context of gesture recognition. We il-

lustrate the essence of product manifolds and the factorization of action videos. Further, we describe

the realization of geodesic distance on the product manifold and its use for action classification.

4.1 Product Manifolds

A product manifold can be recognized as a complex compound object in a high dimensional space

composed by a set of lower dimensional objects. For example, the product of a line with elements

y in R
1 and a solid circle with elements x in R

2 becomes a cylinder with elements (x, y) in R
3 as

shown in Figure 2. Formally, this product topology can be expressed as:

I = {y ∈ R : |y|< 1},

D2 = {x ∈ R
2 : |x|< 1},

D2 × I = {(x,y) ∈ R
2 ×R : |x|< 1 and |y|< 1}

where D2 and I are viewed as topological spaces.

The cylinder may be equally well interpreted as either a circle of intervals or an interval of

circles. In general, a product manifold may be viewed as the cross section of lower dimensional

objects. Formally, let M1, M2, . . . , Mq be a set of manifolds. The set M1 × M2 × . . . × Mq

is called the product of the manifolds where the manifold topology is equivalent to the product

topology. Hence, a product manifold is defined as:

M = M1 ×M2 ×·· ·×Mq

= {(x1,x2, . . . ,xq) : x1 ∈ M1,x2 ∈ M2, . . . ,xq ∈ Mq}

where × denotes the Cartesian product, Mk represents a factor manifold (a topological space), and

xk is an element in Mk. Note that the dimension of a product manifold is the sum of all factor

manifolds (Lee, 2003).
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Figure 2: An example of a product manifold: A cylinder is a cross product of a circle and an

interval.

The product manifold naturally expresses a compound topological space associated with a num-

ber of factor manifolds. For action video classification, third order data tensors are manifested as

elements on three factor manifolds. As such, video data can be abstracted as points and classified

on a product manifold.

4.2 Factorization in Product Spaces

As discussed in Section 3, HOSVD operates on the unfolded matrices (modes) via matrix unfolding

in which the variation of each mode is captured by HOSVD. However, the traditional definition of

HOSVD does not lead to a well-defined product manifold in the context of action recognition.

We observe that the column of every unfolded matrix A(k) is composed by multiple orders from

the original data tensor A ∈ R
I1×I2×···×IN . This fact can also be observed in Figure 1. Let m be the

dimension of the columns, I1× I2×·· ·× Ik−1× Ik+1 · · ·× IN , and p be the dimension of the rows, Ik,

for an unfolded matrix A(k). We can then assume that the dimension of the columns is greater than

the dimension of the rows due to the nature of matrix unfolding for action videos, that is, m > p.

This implies that the unfolded matrix A(k) only spans p dimensions.

Alternatively, one can factorize the data tensor using the right orthogonal matrices (Lui et al.,

2010). From the context of action videos, the HOSVD can be expressed as:

A = Ŝ ×1 V
(1)
horizontal-motion×2 V

(2)
vertical-motion×3 V

(3)
appearance

where Ŝ is a core tensor, V (k) are the orthogonal matrices spanning the row space with the first p

rows associated with non-zero singular values from the unfolded matrices, respectively. Because we

are performing action recognition on videos, the orthogonal matrices, V
(1)
horizontal-motion, V

(2)
vertical-motion,

and V
(3)
appearance, correspond to horizontal motion, vertical motion, and appearance. Figure 3 shows

some examples from the action decomposition.

From the factorization of HOSVD, each V (k) is a tall orthogonal matrix, thus it is an element

on a Stiefel manifold. When we impose a group action of the orthogonal group, elements on the

Stiefel manifold become rotation and reflection invariant. In other words, they are elements on

the Grassmann manifold described in (2). As such, the action data are represented as the orbit of
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elements on the Stiefel manifold under the rotation and reflection actions with respect to appearance

and dynamics. Section 5 will discuss how we benefit from imposing such a group action on the

Stiefel manifold.

4.3 Geodesic Distance on Product Manifolds

The geodesic in a product manifold M is the product of geodesics in M1, M2, . . . , Mq (Ma et al.,

1998; Begelfor and Werman, 2006). Hence, for any differentiable curve γ parametrized by t, we have

γ(t) = (γi(t),γ j(t)) where γ is the geodesic on the product manifold M , and γi and γ j are the geodesics

on the factor manifold Mi and M j respectively. From this observation, the geodesic distance on a

product manifold may be expressed as a Cartesian product of canonical angles computed by factor

manifolds.

Just as there are alternatives to induce a metric on a Grassmann manifold (Edelman et al., 1998)

using canonical angles, the geodesic distance on a product manifold could also be defined in differ-

ent ways. One possible choice is the chordal distance that approximates the geodesic via a projec-

tion embedding (Conway et al., 1996). Consequently, we define the geodesic distance on a product

manifold as:

dM (A ,B) = ‖ sinΘ ‖2 (3)

where A and B are the N order data tensors, Θ = (θ1, θ2, . . . , θN), and θk ∈ Gk is a set of canonical

angles (Björck and Golub, 1973) computed independently from each factor (Grassmann) manifold.

This development of geodesic distance on the product manifold can be related back to our

cylinder example where a circle in R
2 and a line in R

1 form a cylinder in R
3 where R

3 is the

product space. Recall that a Grassmann manifold is a set of p-dimensional linear subspaces. In

analogous fashion, the product of a set of p1, p2, . . . , pN linear subspaces forms a set of product

subspaces whose dimension is (p1 + p2 + . . . + pN). The product subspaces are the elements on a

product manifold. This observation is consistent with the Θ in (3) where the number of canonical

angles agrees with the dimension of product subspaces on the product manifold.

Note that canonical angles θk are measured between V
(k)
A and V

(k)
B where each is an orthogonal

matrix spanning the row space associated with nonzero singular values from a mode-k unfolded

matrix. As such, an N order tensor in R
I1×I2×···×IN would span N row spaces in I1, I2, . . . , IN ,

respectively, and the dimension of a product manifold is the sum of each order of a data tensor, that

is, (∑N
i=1 = I1 + I2 + . . . + IN).

5. The Product Manifold Representation

The tensor representation on a product manifold models the variations in both space and time for

action videos. Specifically, the product manifold captures the individual characteristics of spatial

and temporal evolution through three factor manifolds. As such, one factor manifold is acquiring the

change in time, resulting in the appearance (XY) component, while the other two capture the vari-

ations in horizontal and vertical directions, demonstrating the horizontal motion (YT) and vertical

motion (XT). Putting all these representations together, geodesic distance on the product manifold

measures the changes in both appearance and dynamics.

The aim of this section is to illustrate how the product manifold characterizes appearance and

dynamics from action videos. To visualize the product manifold representation, let us consider

3305



LUI

Different Actions Same Actions

Action 1 Action 2 Action 1 Action 3

XY

YT

XT

∑i θi = (44.0,37.66,38.58) ∑i θi = (38.15,32.56,33.58)

Figure 3: Examples of appearance and motion changes where the first row is the overlay appear-

ances, the second and third rows are the overlay horizontal motion and vertical motion,

and the bottom row gives the sum of canonical angles computed from each factorization

of the pairs of canonical variates.

the example given in Figure 3 where the first row expresses the pairs of overlay appearance (XY)

canonical variates, the second and third rows reveal the pairs of overlay horizontal motion (YT)

and vertical motion (XT) canonical variates, and the bottom row gives the sum of canonical angles

computed from the pairs of canonical variates. Note that the canonical variates are elements on

Stiefel manifolds. In the first column, two distinct actions are factorized to canonical variates.

We can see that all canonical variates exhibit very different characteristics in both appearance and

motions. On the contrary, the second column shows the same action performed by different actors

and the canonical variates are much more similar than the first column, resulting in smaller canonical

angles overall.

One of the advantages of the product manifold representation is that actions do not need to

be aligned in temporal space. To demonstrate this merit, we permute the frame order from action

3 denoted as action 4 and match it to action 1. Figure 4 shows the pairs of canonical variates

between actions (1, 3) and actions (1, 4). We should first note that the appearance (XY) of action

3 and action 4 span the same space despite the visual differences resulting in the identical sum

of canonical angles 38.15. This is because elements on the Grassmann manifold are rotation and

reflection invariant from elements of the Stiefel manifold. This important concept is illustrated in

Figure 5 where the exchange matrix O(p) maps the appearance of action 4 to the appearance of

action 3.
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Same Actions Same Actions (Permuted)

Action 1 Action 3 Action 1 Action 4

XY

YT

XT

∑i θi = (38.15,32.56,33.58) ∑i θi = (38.15,32.88,38.16)

Figure 4: Examples of appearance and motion changes where Action 4 is a permuted version of

Action 3. The canonical angles for the appearance indicates that the action is not affected

by the frame order.

Figure 5: The characterization of the Grassmann manifold where a point is mapped to another point

on the Stiefel manifold via an exchanged matrix. The group action is (X ,Q) 7−→ XQ

where X ∈ Vn,p and Q ∈ O(p) so that elements on the Grassmann manifold are closed

under the orthogonal matrix multiplication.

In the example given in Figure 4, the most prominent change is related to the motion in vertical

directions (XT) between action 3 and action 4. This arises from the fact that the change of motion

mostly occurs in the vertical direction when we permute the order of the video frames from action

3. Consequently, the sum of canonical angles in XT varies from 33.58 to 38.16 which is less similar

to action 1. When we identify a waving hand moving from top to bottom and from bottom to

3307



LUI

Action Category Appearances (XY) Horizontal Motion (YT)

Walk vs. Walk

Run vs. Run

Walk vs. Run

Figure 6: Illustration of capturing the rate of actions. The first column shows the change of appear-

ance while the second column reveals the change of horizontal motion where the slopes

exhibit the rate of motion.

top, the vertical motion is the key feature. Otherwise, a simple cyclical search can compensate

such variation. As a result, the product manifold representation is resilient to misregistration in the

temporal space for appearance while keeping the dynamics intact.

Another intriguing attribute of the product manifold representation is its ability to capture the

rate of motion, which is useful in identifying some particular actions. Figure 6 shows the pairs of

canonical variates of two similar actions - walking and running. First, we note that there is little

information from the vertical motion since the movements of walking and running occur horizon-

tally. The appearance differences between walking and running are not substantial, which is shown

in the first column of Figure 6. The key information between walking and running is embedded

in the horizontal motion (YT). While the structure of horizontal motion between walking and run-

ning is similar exhibiting a line-like pattern, they have very distinct slopes shown in the horizontal

motion column of Figure 6. These slopes characterize the rate of motion and are the key factors in

recognizing these types of actions. In particular, when walking and running are compared depicted

in the third row of Figure 6, the idiosyncratic aspect is captured by the rate of horizontal motion. In

general, it is possible to see the rate of motion through both motion representations depending on

the type of actions.

6. Statistical Modeling

Least squares regression is one of the fundamental techniques in statistical analysis. It is simple

and often outperforms complicated models when the number of training samples is small (Hastie
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et al., 2001). Since video data do not reside in Euclidean space, we pay attention to the manifold

structure. Here, we introduce a nonlinear regression framework in non-Euclidean space for gesture

recognition. We formulate least squares regression as a composite function; as such, both domain

and range values are constrained on a manifold through the regression process. The least squares

fitted elements from a training set can then be exploited for gesture recognition.

6.1 Linear Least Squares Regression

Before we discuss the geometric extension, we will first review the standard form of least squares fit-

ting. We consider a regression problem y=Aβ where y ∈R
n is the regression value, A([a1|a2| · · · |ak])

∈ R
n×k is the training set, and β ∈ R

k is the fitting parameter. The residual sum-of-squares can be

written as:

R(β) =‖ y−Aβ ‖2 (4)

and the fitting parameter β can be obtained by minimizing the residual sum-of-squares error from

(4). Then, we have

β̂ = (AT A)−1AT y.

The regressed pattern from the training set has the following form

ŷ = Aβ̂ = A(AT A)−1AT y. (5)

The key advantage of least squares fitting is its simplicity and it intuitively measures the best fit of

the data.

6.2 Least Squares Regression on Manifolds

Non-Euclidean geometry often arises in computer vision applications. We consider the nonlinear

nature of space and introduce a geometric framework for least squares regression. First, we extend

the linear least squares regression from (5) to a nonlinear form by incorporating a kernel function

shown in the following

A(A⋆A)−1(A⋆ y)

where ⋆ is a nonlinear similarity operator. Obviously, ⋆ is equal to xT y in the linear case. In this

paper, we employ the RBF kernel given as:

x⋆ y = exp(−
∑k θk

σ
) (6)

where x and y are the elements on a factor manifold, θk is the canonical angle computed from

the factor manifold, and σ is set to 2 in all our experiments. While other kernel functions can be

considered, our goal is to demonstrate our geometric framework and choose a commonly used RBF

kernel operator.

Considering the similarity measure given in (6), the regression model becomes three sub-regression

estimators given by

ψ(k)(y) = A(k)(A(k)
⋆A(k))−1(A(k)

⋆ y(k)) (7)
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Algorithm 1 Weighted Karcher Mean Computation

1: Initialize a base point µ on a manifold

2: while not converged do

3: Apply the logarithmic map to the training samples Yi to the base point µ

4: Compute the weighted average on the tangent space at the base point µ

5: Update the base point µ by applying the exponential map on the weighted average

6: end while

where k denotes the mode of unfolding, A(k) is a set of orthogonal matrices factorized from HOSVD,

and y(k) is an orthogonal matrix from the unfolded matrix.

To gain a better insight on the regression model, we explore the geometrical interpretation from

(7). Given p training instances, the first element, A(k), is a set of factorized training samples residing

on a manifold. Furthermore, (A(k) ⋆ A(k))−1 produces a p × p matrix from the training set and

(A(k) ⋆ y(k)) would create a p× 1 vector. Therefore, the rest of the regression provides a weighting

vector characterizing the training data on a factor manifold as:

w = (A(k)
⋆A(k))−1(A(k)

⋆ y(k))

where the weighting vector is in a vector space, that is, w ∈ V .

Now, we have a set of factorized training samples, A(k), on a manifold and a weighting vector,

w, in a vector space. To incorporate these two elements with the least squares fitting given in (7),

we make a simple modification and reformulate the regression as follows

Ψ(k)(y) = A(k) • (A(k)
⋆A(k))−1(A(k)

⋆ y(k)) (8)

where • is an operator mapping points from a vector space back to a factor manifold. By introducing

an additional operator, we ensure that both the domain values y(k) and the range values Ψk(y) reside

on a manifold. From a function composition point of view, the proposed regression technique can

be viewed as a composition map G ◦H where H : M −→ V and G : V −→ M where M is a

manifold and V is a vector space.

One possible way to realize the composition map, G ◦H , is to employ the tangent space and

modify the Karcher mean (Karcher, 1977). The computation of Karcher mean considers the intrinsic

geometry and iteratively minimizes the distance between the updated mean and all data samples via

the tangent space. Since w is the weighting vector, it naturally produces the weight between training

samples. All we need is to apply the weighting vector to weight the training samples on a factor

manifold. This is equivalent to computing the weighted Karcher mean, which is an element of a

manifold.

So far, our geometric formulation on least squares regression is very general. To make it specific

for gesture recognition, we impose rotation and reflection invariance to the factorized element V (k)

such that they are elements on a Grassmann manifold and the computation of the weighted Karcher

mean can be realized. Here, we sketch the pseudo-code in Algorithm 1. As Algorithm 1 illustrates,

the first step is to initialize a base point on a manifold. To do so, we compute the weighted average

from the training samples in Euclidean space and project it back to the Grassmann manifold using

QR factorization. Then, we iteratively update the base point on the Grassmann manifold. The

update procedure involves the standard logarithmic map and the exponential map on Grassmann
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Figure 7: An illustration of logarithmic and exponential maps where Y and µ are points on a mani-

fold, ∆ is the tangent vector, and TµM is the tangent space at µ.

manifolds (Edelman et al., 1998) described as follows

logµ(Yi) = U1Θ1V T
1

where µ is the base point for the tangent space, Yi is a training instance factorized from the Grass-

mann manifold, µ⊥µT
⊥Yi(µ

TYi)
−1 =U1Σ1V T

1 , Θ1 = arctan(Σ1), and µ⊥ is the orthogonal complement

to µ.

expµ(∆) = µV2 cos(Σ2)+U2 sin(Σ2)

where ∆ is the weighted tangent vector at µ and ∆ = U2Σ2V T
2 . From a geometric point of view,

the logarithmic operator maps a point on a manifold to a tangent space whereas the exponential

map projects a point in the tangent space back to the manifold. A pictorial illustration is given in

Figure 7. In addition, the Karcher mean calculation exhibits fast convergence (Absil et al., 2004).

Typically, convergence can be reached within 10 iterations in our experiments. A sample run is

depicted in Figure 8 where expeditious reduction of residuals occurs in the first few iterations.

To perform gesture recognition, a set of training videos is collected. All videos are normalized

to a standard size. During the test phase, the category of a query video is determined by

j∗ = argmin
j

D(Y,Ψ j(Y ))

where Y is a query video, Ψ j is the regression instance for the class j given in (8), and D is a

geodesic distance measure. Because the query gesture Y and the regression instance are realized as

elements on a product manifold, we employ the chordal distance given in (3) for gesture classifica-

tion.

In summary, the least squares regression model applies HOSVD on a query gesture Y and fac-

torizes it to three sub-regression models (Ψ
(1)
j , Ψ

(2)
j , Ψ

(3)
j ) on three Grassmann manifolds where

regressions are performed. The distance between the regression output and query is then character-

ized on a product manifold; gesture recognition is achieved using the chordal distance. We note that
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Figure 8: The residual values of tangent vectors.

our least squares framework is applicable to many matrix manifolds as long as the logarithmic and

exponential maps are well-defined. Furthermore, when the kernel operator is ⋆= xT y, logx(y) = y,

and expx(∆) = x+∆, the regression model in (8) becomes the canonical least squares regression in

Euclidean space.

When statistical models exhibit high variance, shrinkage techniques are often applied (Hastie

et al., 2001). We see that a simple regularization parameter turns least squares regression into

ridge regression. This observation can also be applied to our non-Euclidean least squares regression

framework.

7. Experimental Results

This section summarizes our empirical results and demonstrates the proficiency of our framework

on gesture recognition. To facilitate comparison, we first evaluate our method using two publicly

available gesture data sets namely Cambridge hand-gesture (Kim and Cipolla, 2009) and UMD

Keck body-gesture (Lin et al., 2009). We further extend our method to the one-shot-learning gesture

challenge (CHALEARN, 2011). Our experiments reveal that not only does our method perform well

on the standard benchmark data sets, but also it generalizes well on the one-shot-learning gesture

challenge.

7.1 Cambridge Hand-Gesture Data Set

Our first experiment is conducted using the Cambridge hand-gesture data set which has 900 video

sequences with nine different hand gestures (100 video sequences per gesture class). The gesture

data are collected from five different illumination sets labeled as Set1, Set2, Set3, Set4, and Set5.

Example gestures are shown in Figure 9.
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Figure 9: Hand gesture samples. Flat-Leftward, Flat-Rightward, Flat-Contract, Spread-Leftward,

Spread-Rightward, Spread-Contract, V-Shape-Leftward, V-Shape-Rightward, and V-

Shape-Contract.

Figure 10: Body gesture samples. First row: Turn Left, Turn Right, Attention Left, Attention Right,

Attention Both, Stop Left, and Stop Right. Second row: Stop Both, Flap, Start, Go Back,

Close Distance, Speed Up, and Come Near.

We follow the experimental protocol employed by Kim and Cipolla (2009) where Set5 is the

target set, and Set1, Set2, Set3, and Set4 are the test sets. The target Set5 is further partitioned into a

training set and validation set (90 video sequences in the training set and 90 video sequences in the

validation set). We employ five random trials in selecting the training and validation videos in Set5.

The recognition results are summarized in Table 1 where the classification rates are the average

accuracy obtained from five trial runs followed by the standard deviation. As Table 1 shows, our

method performs very well across all illumination sets obtaining 91.7% average classification rate.

7.2 UMD Keck Body-Gesture Data Set

The UMD Keck body-gesture data set consists of 14 naval body gestures acquired from both static

and dynamic backgrounds. In the static background, the subjects and the camera remain stationary

whereas the subjects and the camera are moving in the dynamic environment during the performance

of the gesture. There are 126 videos collected from the static scene and 168 videos taken from the

dynamic environment. Example gestures are given in Figure 10.

We follow the experimental protocol proposed by Lin et al. (2009) for both static and dynamic

settings. The region of interest is tracked by a simple correlation filter. In the static background,

the protocol is leave-one-subject-out (LOSO) cross-validation. As for the dynamic environment,

the gestures acquired from the static scene are used for training while the gestures collected from

the dynamic environment are the test videos. The recognition results for both static and dynamic

backgrounds are reported in Table 2. We can see that our method is competitive to the current state-

of-the-art methods in both protocols. One of the key advantages of our method is its direct use of

raw pixels while the prototype-tree (Lin et al., 2009), MMI-2+SIFT (Qiu et al., 2011), and CC K-
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Method Set1 Set2 Set3 Set4 Total

Graph Embedding (Yuan et al., 2010) - - - - 82%

TCCA (Kim and Cipolla, 2009) 81% 81% 78% 86% 82±3.5%

DCCA+SIFT (Kim and Cipolla, 2007) - - - - 85±2.8%

RLPP (Harandi et al., 2012) 86% 86% 85% 88% 86.3±1.3%

TB{Vn,p} (Lui, 2012b) 88% 84% 85% 87% 86±3.0%

PM 1-NN (Lui et al., 2010) 89% 86% 89% 87% 88±2.1%

Our Method 93% 89% 91% 94% 91.7±2.3%

Table 1: Recognition results on the Cambridge Hand-Gesture data set (Five trial runs).

Method Static Setting Dynamic Setting

HOG3D (Bilinski and Bremond, 2011) - 53.6%

Shape Manifold (Abdelkadera et al., 2011) 82% -

MMI-2+SIFT (Qiu et al., 2011) 95% -

CC K-Means (Jiang et al., 2012)) - 92.9%

Prototype-Tree (Lin et al., 2009) 95.2% 91.1%

TB{Vn,p} (Lui, 2012b) 92.1% 91.1%

PM 1-NN (Lui et al., 2010) 92.9% 92.3%

Our Method 94.4% 92.3%

Table 2: Recognition results on the UMD Keck Body-Gesture data set.

means (Jiang et al., 2012) methods operate on silhouette images which require image segmentation

prior to classification. This makes our representation more generic.

7.3 One-Shot-Learning Gesture Challenge

Microsoft KinectTM has recently revolutionized gesture recognition by providing both RGB and

depth images. To facilitate the adaptation to new gestures, CHALEARN (Guyon et al., 2012) has

organized a one-shot-learning challenge for gesture recognition.

The key aspect of one-shot-learning is to perform machine learning on a single training example.

As such, intra-class variability needs to be modeled from a single example or learned from different

domains. While traditional machine learning techniques require a large amount of training data to

model the statistical distribution, least squares regression appears to be more robust when the size of

training samples is limited (Hastie et al., 2001). We employ our least squares regression framework

and model the intra-class variability by synthesizing training examples from the original training

instance. Consequently, we apply the same regression framework on the product manifold to the

one-shot-learning gesture challenge.

One of the gesture variations is performing gesture positions. Our initial studies for frame

alignment did not yield positive results due in part to the incidental features of the upper body. Since

gesture positions are the key source of variations, we synthesize training examples for translational

instances on both RGB and depth images. The synthesized examples are generated by shifting the

entire action video horizontally and vertically. Specifically, we synthesize two vertically (up/down)

and four horizontally (left/right) translated instances along with the original training example. As

such, we have seven training instances for RGB and depth images, respectively. We stress that we
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Figure 11: An illustration of temporal segmentation where the dash lines indicate the peak locations

and the resting frames from the action sequence.

do not apply any spatial segmentation or intensity normalization to video data; alignment is the only

variation that we synthesize for one-shot-learning. Our experiments on the training batches indicate

that there is about 2% gain by introducing the translational variations.

We assess the effectiveness of the proposed framework on the development data set for the

one-shot-learning gesture challenge. The development data set consists of 20 batches of gestures.

Each batch is made of 47 gesture videos and split into a training set and a test set. The training set

includes a small set of vocabulary spanning from 8 to 15 gestures. Every test video contains 1 to 5

gestures. Detailed descriptions of the gesture data can be found in Guyon et al. (2012).

Since the number of gestures varies for test videos, we perform temporal segmentation to lo-

calize each gesture segment. It is supposed that the actor will return to the resting position before

performing a new gesture. Thus, we employ the first frame as a template and compute the correla-

tion coefficient with subsequent frames. We can then localize the gesture segments by identifying

the peak locations from the correlations; the number of gestures is the number of peaks + 1. An

illustration of temporal segmentation is given in Figure 11 where the peak locations provide a good

indication for the resting frames. Furthermore, we fix the spatial dimension to 32×32 and dynami-

cally determine the number of frames by selecting 90% of the PCA energy from each training batch.

Linear interpolation is then applied to normalize the video length.

The recognition performance is evaluated using the Levenshtein distance (Levenshtein, 1966),

also known as edit distance. Table 3 shows the average errors over 20 batches. As Table 3 reveals,

our method significantly outperforms the baseline algorithm (CHALEARN, 2011) and achieves

28.73% average Levenshtein distance per gesture on the development data set. Our method also

ranks among the top algorithms in the gesture challenge (Guyon et al., 2012). This illustrates that

our method can be effectively adopted for one-shot-learning from the traditional supervised learning

paradigm.
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Baseline Our Method

Batch TeLev% TeLen% TeLev% TeLen%

devel01 53.33 12.22 13.33 4.44

devel02 68.89 16.67 35.56 14.44

devel03 77.17 5.43 71.74 20.65

devel04 52.22 30.00 10.00 2.22

devel05 43.48 10.87 9.78 7.61

devel06 66.67 17.78 37.78 14.44

devel07 81.32 19.78 18.68 3.30

devel08 58.43 12.36 8.99 5.62

devel09 38.46 9.89 13.19 1.10

devel10 75.82 21.98 50.55 1.10

devel11 67.39 18.48 35.87 2.17

devel12 52.81 5.62 22.47 4.49

devel13 50.00 17.05 9.09 2.27

devel14 73.91 22.83 28.26 3.26

devel15 50.00 8.70 21.74 0.00

devel16 57.47 17.24 31.03 6.90

devel17 66.30 32.61 30.43 4.35

devel18 70.00 28.89 40.00 11.11

devel19 71.43 15.38 49.45 3.30

devel20 70.33 36.26 35.16 12.09

Average 62.32 18.01 28.73 6.24

Table 3: Recognition results on the development data for the one-shot-learning challenge where

TeLev is the sum of the Levenshtein distance divided by the true number of gestures and

TeLen is the average error made on the number of gestures.

While our method performs well on the one-shot-learning gesture challenge, it is not a complete

system yet. There are three particular batches that cause difficulties for our algorithm. These batches

are devel03, devel10, and devel19 where the example frames are shown in Figure 12. These three

batches share a common characteristic that the gesture is only distinguishable by identifying the

hand positions. Since we do not have a hand detector, the gross motion dominates the whole action

causing it to be confused with other similar gestures.

Another source of errors is made by the temporal segmentation. While the actor is supposed

to return to the resting position before performing a new gesture, this rule has not always been

observed. As a result, such variation introduces a mismatch between the template and subsequent

frames resulting errors in partitioning the video sequence. The large error in devel03 is caused by

the need for hand positions and temporal segmentation. Future work will focus on combining both

appearance and motion for temporal segmentation.

Nevertheless, the experimental results from the Cambridge hand-gesture and the UMD Keck

body-gesture data sets are encouraging. These findings illustrate that our method is effective in

both hand gestures and body gestures. Once we have a reliable hand detector, we expect to further

improve gesture recognition from a single training example. Currently, the processing time on 20

batches (2,000 gestures) including both training and testing is about 2 hours with a non-optimized

MATLAB implementation on a 2.5GHz Intel Core i5 iMac.
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Figure 12: Gesture samples on the one-shot-learning gesture challenge (devel03, devel10, and de-

vel19).

8. Discussion

The proposed method is geometrically motivated. It decomposes a video tensor to three Stiefel

manifolds via HOSVD where the orthogonal elements are imposed to Grassmannian spaces. As

mentioned before, one of the key advantages of our method is its direct use of raw pixels. This gives

rise to a practical and important question. How robust can the raw pixel representation be against

background clutter?

To address this concern, we synthesize an illustrative example given in Figure 13. The first,

second, and third columns depict the appearance, horizontal motion, and vertical motion of the

gesture, respectively. A V-shape rightward gesture and a flat leftward gesture are shown in the

first row and second row. We superpose a cluttered background on every frame of the flat leftward

gesture exhibited in the third row. While the appearances between the uniform flat gesture and the

cluttered flat gesture emerge differently, the deterioration on the dynamics is quite minimal. As a

result, the gesture performed with the background clutter can still be discriminated against other

gestures. Numerically, the sum of the canonical angles between the uniform (second row) and the

cluttered background (third row) gestures is (56.09, 7.99, 9.17) resulting in a geodesic distance of

5.91 on the product manifold. In contrast, the sum of the canonical angles between the V-shape (first

row) and the flat (second row) gestures is (76.35, 23.66, 18.42) yielding a geodesic distance of 8.29.

In addition, when the V-shape gesture (first row) matches against the cluttered flat gesture (third

row), the sum of the canonical angles is (76.09, 23.75, 18.84) and the geodesic distance is 8.31. This

finding reveals that the geodesic distance between the uniform and cluttered background gestures

are quite similar against inter-class gestures, while the geodesic distance is significantly smaller for

the intra-class gestures. Hence, raw pixels can be directly exploited in our representation.

As technology advances, we can now separate the foreground and background more easily us-

ing a KinectTM camera. We hypothesize that better recognition results may be obtained when the

foreground gestures are extracted. On the other hand, our method can still perform gracefully when

a cluttered background is present.

9. Conclusions

This paper promotes the importance of the underlying geometry of data tensors. We have presented

a geometric framework for least squares regression and applied it to gesture recognition. We view

action videos as third order tensors and impose them on a product manifold where each factor is
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(a) V-shape rightward gesture.

(b) Flat leftward gesture.

(c) Superposed cluttered background on the flat leftward gesture.

Figure 13: The effect of background clutter. Appearance, horizontal motion, and vertical motion

are depicted in the first, second, and third columns, respectively.

Grassmannian. The realization of points on these Grassmannians is achieved by applying HOSVD

to a tensor representation of the action video. A natural metric is inherited from the factor manifolds

since the geodesic on the product manifold is given by the product of the geodesic on the Grassmann

manifolds.

The proposed approach provides a useful metric and a regression model based on latent geom-

etry for action recognition. To account for the underlying geometry, we formulate least squares

regression as a composite function. This formulation provides a natural extension from Euclidean

space to manifolds. Experimental results demonstrate that our method is effective and generalizes

well to the one-shot-learning scheme.

For longer video sequences, micro-action detection is needed which may be modeled effec-

tively using HMM. Future work will focus on developing more sophisticated models for gesture

recognition and other regression techniques on matrix manifolds for visual applications.
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