
Journal of Machine Learning Research 13 (2012) 555-559 Submitted 6/11; Revised 2/12; Published 3/12

ML-Flex: A Flexible Toolbox for Performing Classification Analyses
In Parallel

Stephen R. Piccolo STEPHEN.PICCOLO@HSC.UTAH .EDU

Department of Pharmacology and Toxicology, School of Pharmacy
University of Utah
Salt Lake City, UT 84112, USA

Lewis J. Frey LEWIS.FREY@HSC.UTAH .EDU

Huntsman Cancer Institute
Department of Biomedical Informatics, School of Medicine
University of Utah
Salt Lake City, UT 84112, USA

Editor: Geoff Holmes

Abstract
Motivated by a need to classify high-dimensional, heterogeneous data from the bioinformatics do-
main, we developed ML-Flex, a machine-learning toolbox that enables users to perform two-class
and multi-class classification analyses in a systematic yetflexible manner. ML-Flex was writ-
ten in Java but is capable of interfacing with third-party packages written in other programming
languages. It can handle multiple input-data formats and supports a variety of customizations. ML-
Flex provides implementations of various validation strategies, which can be executed in parallel
across multiple computing cores, processors, and nodes. Additionally, ML-Flex supports aggre-
gating evidence across multiple algorithms and data sets via ensemble learning. This open-source
software package is freely available fromhttp://mlflex.sourceforge.net.

Keywords: toolbox, classification, parallel, ensemble, reproducible research

1. Introduction

The machine-learning community has developed a wide array of classificationalgorithms, but they
are implemented in diverse programming languages, have heterogeneous interfaces, and require
disparate file formats. Also, because input data come in assorted formats, custom transformations
often must precede classification. To address these challenges, we developed ML-Flex, a general-
purpose toolbox for performing two-class and multi-class classification analyses. Via command-line
interfaces, ML-Flex can invoke algorithms implemented in any programming language. Currently,
ML-Flex can interface with several popular third-party packages, includingWeka(Hall et al., 2009),
Orange(Demsar et al., 2004),C5.0 Decision Trees(RuleQuest Research, 2011), andR (R Develop-
ment Core Team, 2011). In many cases, new packages can be integratedwith ML-Flex through only
minor modifications to configuration files. However, via a simple extension mechanism, ML-Flex
also supports a great amount of flexibility for custom integrations. ML-Flexcan parse input data in
delimited and ARFF formats, and it can easily be extended to parse data from custom sources.

ML-Flex can perform systematic evaluations across multiple algorithms and datasets. Fur-
thermore, it can aggregate evidence across algorithms and data sets via ensemble learning. The

c©2012 Stephen R. Piccolo and Lewis J. Frey.



PICCOLO AND FREY

following ensemble learners currently are supported: majority vote (Boland, 1989), weighted ma-
jority vote (Littlestone and Warmuth, 1994), mean probability rule, weighted meanprobability rule,
maximum probability rule, select-best rule, and stacked generalization (Wolpert, 1992). (When en-
semble learners are applied, predictions from individual classifiers arereused from prior execution
steps, thus decreasing computational overhead.)

ML-Flex provides implementations of various validation strategies, including simple train-test
validation, K-fold cross validation, repeated random sampling validation, and leave-one-out cross
validation. For each validation strategy, ML-Flex can also apply feature selection/ranking algo-
rithms and perform nested cross-validation within respective training sets.To enable shorter execu-
tion times for computationally intensive validation strategies, ML-Flex can be executed in parallel
across multiple computing cores/processors and multiple nodes on a network.Individual computing
nodes may have heterogeneous hardware configurations so long as each node can access a shared file
system. In a recent analysis of a large biomedical data set, ML-Flex was executed simultaneously
across hundreds of cluster-computing cores (Piccolo, 2011).

Upon completing classification tasks, ML-Flex produces parsable text filesthat report perfor-
mance metrics, confusion matrices, outputs from individual algorithms, and arecord of all configu-
ration settings used. A formatted HTML report with the same information is also provided. These
features enable reproducibility and transparency about how a given set of results was obtained.

Available fromhttp://mlflex.sourceforge.net, ML-Flex is licensed under the GNU Gen-
eral Public License Version 3.0. The distribution contains extensive documentation, including tuto-
rials and sample experiments.

2. Architecture

Execution of ML-Flex revolves around the concept of an “experiment.”For a given experiment, the
user specifies one or more sets of independent (predictor) variables and a dependent variable (class)
as well as any algorithm(s) that should be applied to the data. Various other settings (for example,
number of cross-validation folds, number of iterations, random seed) can be altered optionally.

To configure an experiment, users can specify three types of settings: 1) learner templates, 2)
algorithm parameters, and 3) experiment-specific preferences. For example, if a user wanted to
apply theWekaimplementation of theOne Ruleclassification algorithm, with a minimum bucket
size of 6, to the classic Iris data set, she would first create a learner template such as the following
(simplified for brevity):

wekac;mlflex.learners.WekaLearner;java -classpath lib/weka.jar {ALGORITHM}
-t {INPUT_TRAINING_FILE} -T {INPUT_TEST_FILE} -p 0 -distribution

The above template contains three items, separated by semicolons: 1) a uniquekey, 2) the
name of a Java class that supports interfacing with Weka, and 3) a templated shell command for
invoking Weka on that system. (When ML-Flex executes a command, placeholders—for example,
“{ALGORITHM}”—are replaced with relevant values.) Having specified this template, the user
would specify the following in an algorithm-parameters file:

one_r;wekac;weka.classifiers.rules.OneR -B 6

This entry indicates 1) a unique key, 2) a reference to the learner template,and 3) the parameters
that should be passed to Weka. Finally, the user would include the following inan experiment file:

556



ML-FLEX

CLASSIFICATION_ALGORITHMS=one_r
DATA_PROCESSORS=mlflex.dataprocessors.ArffDataProcessor("iris.arff")

The first line references the algorithm-parameters entry, and the secondline indicates the name
of a Java class that can parse the input data. (Example files and detailed explanations of all config-
uration settings are provided.)

At each stage of an experiment, ML-Flex can execute in parallel, using a simple, coarse-grained
architecture. Independent computing tasks—for example, parsing a given input file, classifying
a given combination of data set and algorithm and cross-validation fold, oroutputting results—
are packaged by each computing node into uniquely defined Java objects.Then thread(s) on each
computing node compete to execute each task via a locking mechanism. Initially, each thread checks
for a status file that would indicate whether a given task has been executedand the corresponding
result has been stored. If the task has not yet been processed, the thread checks the file system for
a correspondingly named “lock file” that indicates whether the task is currently being processed
by another thread. If no lock file exists, the thread attempts to create the file atomically. Having
successfully created the lock file, the thread executes the task, stores theresult on the file system,
and deletes the lock file. If a system error or outage occurs, the lock file will persist for a user-
configurable period of time, after which it will be deleted and the task reattempted.

Because this parallel-processing approach requires many input/output operations and because
individual computing nodes do not communicate with each other directly, minor inefficiencies may
arise. However, the simplicity of the approach offers many advantages: 1) no third-party software
package is necessary for interprocess communication, 2) individual computing nodes may run dif-
ferent operating systems and/or have different hardware configurations, 3) the number of computing
nodes that can be employed simultaneously is scalable, 4) if an individual computing node goes of-
fline, remaining nodes are unaffected, 5) additional computing nodes may be assigned after a job has
already begun processing, and 6) experiments are restartable. The latter three features are particu-
larly desirable in cluster-computing environments where server reliability may be less than optimal
and where computing nodes may become available incrementally.

3. Related Work

Machine-learning toolboxes likecaret, Weka, Orange, andKNIME implement a broad range of clas-
sification algorithms, but many useful algorithms are not included in these packages, perhaps due to
licensing restrictions, resource constraints, or programming-language preferences. LikeSHOGUN
(Sonnenburg et al., 2010), ML-Flex provides a harness that allows developers to implement algo-
rithms natively in the language of their choice. Because no language-specific interfaces are nec-
essary in ML-Flex, integration can often occur with no change to the ML-Flex source code. This
approach also empowers algorithm developers to take the lead in integrating with ML-Flex and thus
benefit from its other features, including model evaluation and parallelization.

KNIME andRapidMiner(Mierswa et al., 2006) support various input-file formats, transforma-
tion procedures, and data-filtering modules. In an alternative approach, ML-Flex provides an ex-
tension mechanism, which allows users to preprocess data using custom Java code. (Wekasupports
similar functionality.) This approach may be especially useful in research settings where unusual
data formats are prevalent, advanced transformations are desired, or data must be accessed remotely
(for example, via Web services, including those that require authentication).

557



PICCOLO AND FREY

Other toolboxes support the ability to distribute workloads across multiple computers. For ex-
ample, a client machine executing theWekaExperimenter module can distribute its workload via
Java Remote Method Invocation. Thecaret R package (Kuhn, 2008) uses theNetWorkSpacesTM

technology to distribute workloads. The commercial version ofKNIME (Berthold et al., 2007) can
distribute its workload to cluster servers runningOracleR© Grid Engine. And Apache MahoutTM

(Ingersol, 2009) uses the map/reduce paradigm to enable execution on cluster-computing environ-
ments. ML-Flex differentiates itself from these tools by 1) supporting heterogeneous configurations
among computing nodes, 2) allowing recovery from system outages due to no single point of failure
(assuming redundant disk storage), and 3) supporting restartability andincremental node alloca-
tions.

Many toolboxes—includingWeka, Orange, KNIME, caret, SHOGUN, andWaffles(Gashler,
2011)—support experimental reproducibility via application programming interfaces (API),
command-line interfaces (CLI), and/or visual workflow pipelines. Userscan write client tools that
invoke APIs and that can later be re-executed. Scripts that invoke CLIscan be repeated; and visual
pipelines typically encapsulate execution logic. In ML-Flex, users encodeall configuration settings
in text files. With this approach, users are not required to write code nor extensive scripts. How-
ever, with a modest scripting effort, it is possible to generate configurationfiles dynamically, an
approach that may not be feasible with visual workflows. Because a copy of relevant configura-
tion files accompany the results of each experiment, subsequent replicationof results is straightfor-
ward. Additionally, in experiments that use repeated random sampling validation, ML-Flex encap-
sulates sampling and summarization logic, which may be burdensome to replicate withalternative
approaches.

Acknowledgments

While developing this software, SRP was funded by a U.S. National Libraryof Medicine training
fellowship (1T15-LM007124). We gratefully acknowledge an allocation ofcomputer time from
the Fulton Supercomputing Lab at Brigham Young University. We also thankthe reviewers for
thoughtful, detailed feedback.

References

M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. K̈otter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and
B. Wiswedel. KNIME: The Konstanz information miner. InStudies in Classification, Data
Analysis, and Knowledge Organization (GfKL 2007), Springer, 2007.

P. Boland. Majority systems and the condorcet jury theorem.The Statistician, 38(3):181–189, 1989.

J. Demsar, B. Zupan, G. Leban, and T. Curk. Orange: From experimental machine learning to
interactive data mining. InKnowledge Discovery in Databases: PKDD 2004, pages 537–539,
Berlin, 2004.

M. Gashler. Waffles: A machine learning toolkit.Journal of Machine Learning Research,
12(Jul):2383–2387, 2011.

558



ML-FLEX

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Witten.The WEKA data mining
software.ACM SIGKDD Explorations Newsletter, 11(1):10, 2009.

G. Ingersol. Introducing Apache Mahout.IBM developerWorks Technical Library, 2009. Available
electronically at http://www.ibm.com/developerworks/java/library/j-mahout/.

M. Kuhn. Building predictive models in R using the caret package.Journal of Statistical Software,
28(5), 2008.

N. Littlestone and M. Warmuth. The weighted majority algorithm.Information and Computation,
108(2):212–261, 1994.

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALE:Rapid prototyping for
complex data mining tasks. InKDD ’06: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (August 2006), ACM, 2006.

S. Piccolo.Informatics Framework For Evaluating Multivariate Prognosis Models: Application to
Human Glioblastoma Multiforme. PhD dissertation, University of Utah, Salt Lake City, Utah,
2011.

R Development Core Team.R: A Language and Environment For Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2011. Available electronically at http://www.R-
project.org.

Rulequest Research. Data mining tools See5 and C5.0. Available electronically at
http://www.rulequest.com/see5-info.html.

S. Sonnenburg, G. Ratsch, S. Henschel, C. Widmer, J. Behr, A. Zien,F. Bona, A. Binder, C. Gehl
and V. Franc. The SHOGUN machine learning toolbox.Journal of Machine Learning Research,
11(Jun):1799–1802, 2010.

D. Wolpert. Stacked generalization.Neural Networks, 5(2):241–259, 1992.

559


