Journal of Machine Learning Research 13 (2012) 555-559 Steah6/11; Revised 2/12; Published 3/12

ML-Flex: A Flexible Toolbox for Performing Classification Analyses

In Parallel
Stephen R. Piccolo STEPHENPICCOLO@HSC.UTAH.EDU
Department of Pharmacology and Toxicology, School of Plaagm
University of Utah
Salt Lake City, UT 84112, USA
Lewis J. Frey LEWIS.FREY@HSC.UTAH.EDU

Huntsman Cancer Institute

Department of Biomedical Informatics, School of Medicine
University of Utah

Salt Lake City, UT 84112, USA

Editor: Geoff Holmes

Abstract

Motivated by a need to classify high-dimensional, hetenegeis data from the bioinformatics do-
main, we developed ML-Flex, a machine-learning toolbox grables users to perform two-class
and multi-class classification analyses in a systematidlgrible manner. ML-Flex was writ-
ten in Java but is capable of interfacing with third-partylsges written in other programming
languages. It can handle multiple input-data formats apgaus a variety of customizations. ML-
Flex provides implementations of various validation gga&ts, which can be executed in parallel
across multiple computing cores, processors, and nodeditiéwhlly, ML-Flex supports aggre-
gating evidence across multiple algorithms and data satengemble learning. This open-source
software package is freely available framt p: // m f 1| ex. sour cef or ge. net.

Keywords: toolbox, classification, parallel, ensemble, reprodwciiekearch

1. Introduction

The machine-learning community has developed a wide array of classifiedgiorithms, but they
are implemented in diverse programming languages, have heterogentmtaces, and require
disparate file formats. Also, because input data come in assorted formstsnctransformations
often must precede classification. To address these challenges, glepdel/ML-Flex, a general-
purpose toolbox for performing two-class and multi-class classificatidgsesa Via command-line
interfaces, ML-Flex can invoke algorithms implemented in any programming égeguCurrently,
ML-Flex can interface with several popular third-party packages, dicaMeka(Hall et al., 2009),
Orange(Demsar et al., 2004%;5.0 Decision TreefRuleQuest Research, 2011), &(¢R Develop-
ment Core Team, 2011). In many cases, new packages can be integtht®t -Flex through only
minor modifications to configuration files. However, via a simple extension me&rhaML-Flex
also supports a great amount of flexibility for custom integrations. ML-Eéexparse input data in
delimited and ARFF formats, and it can easily be extended to parse datadstomctsources.

ML-Flex can perform systematic evaluations across multiple algorithms andsdega Fur-
thermore, it can aggregate evidence across algorithms and data setsemabénlearning. The

(©2012 Stephen R. Piccolo and Lewis J. Frey.

PiccoLo AND FREY

following ensemble learners currently are supported: majority vote (BplE3b), weighted ma-
jority vote (Littlestone and Warmuth, 1994), mean probability rule, weighted mezbability rule,
maximum probability rule, select-best rule, and stacked generalization éWo1992). (When en-
semble learners are applied, predictions from individual classifienseased from prior execution
steps, thus decreasing computational overhead.)

ML-Flex provides implementations of various validation strategies, includinglsitn@in-test
validation, K-fold cross validation, repeated random sampling validaticoh Jeave-one-out cross
validation. For each validation strategy, ML-Flex can also apply featueetg@n/ranking algo-
rithms and perform nested cross-validation within respective training Betmable shorter execu-
tion times for computationally intensive validation strategies, ML-Flex can beuted in parallel
across multiple computing cores/processors and multiple nodes on a nelmeividual computing
nodes may have heterogeneous hardware configurations so lorahaseda can access a shared file
system. In a recent analysis of a large biomedical data set, ML-Flex veasitex] simultaneously
across hundreds of cluster-computing cores (Piccolo, 2011).

Upon completing classification tasks, ML-Flex produces parsable textHidéégeport perfor-
mance metrics, confusion matrices, outputs from individual algorithms, aecbad of all configu-
ration settings used. A formatted HTML report with the same information is atsaged. These
features enable reproducibility and transparency about how a gieri eesults was obtained.

Available fromht t p: // m f 1 ex. sour cef or ge. net , ML-Flex is licensed under the GNU Gen-
eral Public License Version 3.0. The distribution contains extensiverdentation, including tuto-
rials and sample experiments.

2. Architecture

Execution of ML-Flex revolves around the concept of an “experiméfur’a given experiment, the
user specifies one or more sets of independent (predictor) variatdesdependent variable (class)
as well as any algorithm(s) that should be applied to the data. Various etiiegs (for example,
number of cross-validation folds, number of iterations, random seed)ealtered optionally.

To configure an experiment, users can specify three types of settintgmarter templates, 2)
algorithm parameters, and 3) experiment-specific preferences. Borpé if a user wanted to
apply theWekaimplementation of thé&ne Ruleclassification algorithm, with a minimum bucket
size of 6, to the classic Iris data set, she would first create a learner temptatassthe following
(simplified for brevity):

wekac; m fl ex. | earners. WekaLearner;java -classpath |ib/weka.jar {ALGORI THV}
-t {INPUT_TRAINING FILE} -T {INPUT_TEST_FILE} -p O -distribution

The above template contains three items, separated by semicolons: 1) a keygq@ the
name of a Java class that supports interfacing with Weka, and 3) a templatedeshmand for
invoking Weka on that system. (When ML-Flex executes a command, pliaezke-for example,
“{ALGORITHM }"—are replaced with relevant values.) Having specified this template, the use
would specify the following in an algorithm-parameters file:

one_r;wekac; weka.classifiers.rules.neR -B 6

This entry indicates 1) a unique key, 2) a reference to the learner tenwiait8) the parameters
that should be passed to Weka. Finally, the user would include the followigug @xperiment file:

556

ML-FLEX

CLASSI FI CATI ON_ALGORI THVS=0ne_r
DATA PROCESSORS=mi f | ex. dat aprocessors. ArffDataProcessor("iris.arff")

The first line references the algorithm-parameters entry, and the skeermodicates the name
of a Java class that can parse the input data. (Example files and detgiledations of all config-
uration settings are provided.)

At each stage of an experiment, ML-Flex can execute in parallel, using ¢sicgarse-grained
architecture. Independent computing tasks—for example, parsingea giput file, classifying
a given combination of data set and algorithm and cross-validation foldutputting results—
are packaged by each computing node into uniquely defined Java objjeets thread(s) on each
computing node compete to execute each task via a locking mechanism. Initieliyhead checks
for a status file that would indicate whether a given task has been exemddtie corresponding
result has been stored. If the task has not yet been processedeihe thecks the file system for
a correspondingly named “lock file” that indicates whether the task is milyrbeing processed
by another thread. If no lock file exists, the thread attempts to create the fikcatly. Having
successfully created the lock file, the thread executes the task, stomesuiteon the file system,
and deletes the lock file. If a system error or outage occurs, the lock ifli@evsist for a user-
configurable period of time, after which it will be deleted and the task reatteimpte

Because this parallel-processing approach requires many input/oygxattions and because
individual computing nodes do not communicate with each other directly, mieirdiencies may
arise. However, the simplicity of the approach offers many advantagew third-party software
package is necessary for interprocess communication, 2) individogluating nodes may run dif-
ferent operating systems and/or have different hardware configniga3) the number of computing
nodes that can be employed simultaneously is scalable, 4) if an individuguting node goes of-
fline, remaining nodes are unaffected, 5) additional computing nodesesssigned after a job has
already begun processing, and 6) experiments are restartable. Théhlagefeatures are particu-
larly desirable in cluster-computing environments where server reliability radgds than optimal
and where computing nodes may become available incrementally.

3. Related Work

Machine-learning toolboxes likearet, Weka Orange andKNIME implement a broad range of clas-
sification algorithms, but many useful algorithms are not included in thed@gas, perhaps due to
licensing restrictions, resource constraints, or programming-languafgrences. LikSHOGUN
(Sonnenburg et al., 2010), ML-Flex provides a harness that allowedajeers to implement algo-
rithms natively in the language of their choice. Because no languagéispeierfaces are nec-
essary in ML-Flex, integration can often occur with no change to the Mk-&teirce code. This
approach also empowers algorithm developers to take the lead in integritinglwFlex and thus
benefit from its other features, including model evaluation and parallelizatio

KNIME andRapidMiner(Mierswa et al., 2006) support various input-file formats, transforma-
tion procedures, and data-filtering modules. In an alternative apprdéciirlex provides an ex-
tension mechanism, which allows users to preprocess data using custooodayv {Vekasupports
similar functionality.) This approach may be especially useful in reseatthgsewhere unusual
data formats are prevalent, advanced transformations are desiretiaonast be accessed remotely
(for example, via Web services, including those that require authentigation

557

PiccoLo AND FREY

Other toolboxes support the ability to distribute workloads across multiple comspiter ex-
ample, a client machine executing téekaExperimenter module can distribute its workload via
Java Remote Method Invocation. TharetR package (Kuhn, 2008) uses tNetWorkSpacé¥
technology to distribute workloads. The commercial versioKNfME (Berthold et al., 2007) can
distribute its workload to cluster servers runni@gacle® Grid Engine And Apache Mahout”
(Ingersol, 2009) uses the map/reduce paradigm to enable executiduster-computing environ-
ments. ML-Flex differentiates itself from these tools by 1) supporting hg&reous configurations
among computing nodes, 2) allowing recovery from system outages doestogie point of failure
(assuming redundant disk storage), and 3) supporting restartabilitinareimental node alloca-
tions.

Many toolboxes—includingVeka Orange KNIME, caret SHOGUN and Waffles(Gashler,
2011)—support experimental reproducibility via application programmingrfages (API),
command-line interfaces (CLI), and/or visual workflow pipelines. Usarswrite client tools that
invoke APIs and that can later be re-executed. Scripts that invoked@hblbe repeated; and visual
pipelines typically encapsulate execution logic. In ML-Flex, users enath@denfiguration settings
in text files. With this approach, users are not required to write codextensve scripts. How-
ever, with a modest scripting effort, it is possible to generate configuréitesndynamically, an
approach that may not be feasible with visual workflows. Because yaaoelevant configura-
tion files accompany the results of each experiment, subsequent replichtesults is straightfor-
ward. Additionally, in experiments that use repeated random sampling vahdstio Flex encap-
sulates sampling and summarization logic, which may be burdensome to replicatdteiitfative
approaches.

Acknowledgments

While developing this software, SRP was funded by a U.S. National Lilnikedicine training
fellowship (1T15-LM007124). We gratefully acknowledge an allocatiorcahputer time from
the Fulton Supercomputing Lab at Brigham Young University. We also thla@keviewers for
thoughtful, detailed feedback.

References

M. Berthold, N. Cebron, F. Dill, T. Gabriel, T. &ter, T. Meinl, P. Ohl, C. Sieb, K. Thiel, and
B. Wiswedel. KNIME: The Konstanz information miner. Btudies in Classification, Data
Analysis, and Knowledge Organization (GfKL 2003pringer, 2007.

P. Boland. Majority systems and the condorcet jury theorEme. Statistician38(3):181-189, 1989.

J. Demsar, B. Zupan, G. Leban, and T. Curk. Orange: From expetaineachine learning to
interactive data mining. IiKnowledge Discovery in Databases: PKDD 20@4ges 537-539,
Berlin, 2004.

M. Gashler. Waffles: A machine learning toolkitJournal of Machine Learning Reseatch
12(Jul):2383-2387, 2011.

558

ML-FLEX

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. Wittee. WEKA data mining
software.ACM SIGKDD Explorations Newslettet1(1):10, 2009.

G. Ingersol. Introducing Apache MahouBM developerWorks Technical Librgr2009. Available
electronically at http://www.ibm.com/developerworks/java/library/j-mahout/.

M. Kuhn. Building predictive models in R using the caret packagewrnal of Statistical Software
28(5), 2008.

N. Littlestone and M. Warmuth. The weighted majority algorithimformation and Computatign
108(2):212-261, 1994.

I. Mierswa, M. Wurst, R. Klinkenberg, M. Scholz, and T. Euler. YALEapid prototyping for
complex data mining tasks. KDD ’'06: Proceedings of the 12th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (August 2@G&\, 2006.

S. Piccolo.Informatics Framework For Evaluating Multivariate Prognosis Models: Kgqaiion to
Human Glioblastoma MultiformePhD dissertation, University of Utah, Salt Lake City, Utah,
2011.

R Development Core TearR: A Language and Environment For Statistical ComputRdrounda-
tion for Statistical Computing, Vienna, Austria, 2011. Available electronicallytigp://www.R-
project.org.

Rulequest Research. Data mining tools See5 and C5.0. Available -elecliyonata
http://mww.rulequest.com/see5-info.html.

S. Sonnenburg, G. Ratsch, S. Henschel, C. Widmer, J. Behr, A. Ei&ugna, A. Binder, C. Gehl
and V. Franc. The SHOGUN machine learning toolbdournal of Machine Learning Research
11(Jun):1799-1802, 2010.

D. Wolpert. Stacked generalizatioNeural Networks5(2):241-259, 1992.

559

