
Journal of Machine Learning Research 13 (2012) 3177-3206 Submitted 1/12; Revised 10/12; Published 11/12

Quantum Set Intersection and its Application to Associative Memory

Tamer Salman TAMER@CS.TECHNION.AC.IL

Yoram Baram BARAM@CS.TECHNION.AC.IL

Department of Computer Science

Technion - Israel Institute of Technology

Haifa, 32000, Israel

Editor: Manfred Opper

Abstract

We describe a quantum algorithm for computing the intersection of two sets and its application

to associative memory. The algorithm is based on a modification of Grover’s quantum search

algorithm (Grover, 1996). We present algorithms for pattern retrieval, pattern completion, and

pattern correction. We show that the quantum associative memory can store an exponential number

of memories and retrieve them in sub-exponential time. We prove that this model has advantages

over known classical associative memories as well as previously proposed quantum models.

Keywords: associative memory, pattern completion, pattern correction, quantum computation,
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1. Introduction

The introduction of Shor’s algorithm for factoring numbers in polynomial time (Shor, 1994) has

demonstrated the ability of quantum computation to solve certain problems more efficiently than

classical computers. This perception was ratified two years later, when Grover (1996) introduced a

sub-exponential algorithm for quantum searching a database.

The field of quantum computation is based on the combination of computation theory and quan-

tum mechanics. Computation theory concerns the design of computational models and the study

of their time and space complexities. Quantum mechanics, on the other hand, concerns the study

of systems governed by the rules of quantum physics. The combination of the two fields addresses

the nature of computation in the physical world. However, there is still no efficient reduction of

quantum mechanical behavior to classical computation.

Quantum mechanics is a conceptual framework that mathematically describes physical sys-

tems. It is based on four postulates, known as the postulates of quantum mechanics (Nielsen and

Chuang, 2000), which provide a connection between the physical world and mathematical formal-

ism. Through these postulates, it is possible to better understand the nature of physical computation

and what can be physically computed.

The first postulate states that a physical system is completely described by a state in a Hilbert

space known as the state space. The second states that the evolution of a closed quantum system is

described by a unitary transformation. The third states that a quantum measurement is described by

a collection of measurement operators that satisfy the completeness equality, that is, the sum of all

possible measurements adds up to 1. The forth states that the state space of a composite physical

system is the tensor product of the state spaces of its components.

c©2012 Tamer Salman and Yoram Baram.



SALMAN AND BARAM

Next, we introduce the basic building blocks of quantum computation. The reader is referred to

Nielsen and Chuang (2000) for a detailed introduction.

1.1 States and Qubits

The basic entity of classical computation is the classical bit. Each classical bit can have one of two

values, 0 and 1. The state of any finite physical system that can be found in a finite number of states

can be described by a string of bits. A string of n bits represents one of 2n possible states of a system

enumerated 0, ..., 2n −1.

In quantum computation, the basic entity is called a qubit (quantum bit). The qubit can have the

analogue values |0〉 and |1〉, known as the computational basis states, where |·〉 is the Dirac notation.

Yet, the qubit can also have any other value that is a linear combination of |0〉 and |1〉:

|Ψ〉= α |0〉+β |1〉
where α and β are any complex numbers (called the amplitudes of the basis states 0 and 1, respec-

tively), such that |α|2 + |β|2 = 1. Consequently, the qubit can be in any one of an infinite number of

states described by unit vectors in a 2-dimensional complex vector space. The unary representation

of a qubit can be given as a vector of two values

|Ψ〉=
(

α

β

)

.

Analogously to the classical bit string, qubit strings (or quregisters) describe the state of a sys-

tem. A two qubit system comprising two qubits |a〉=α |0〉+β |1〉 and |b〉= γ |0〉+δ |1〉 is described

by the tensor product of the two qubits |a,b〉 ≡ |a〉⊗ |b〉= αγ |00〉+αδ |01〉+βγ |10〉+βδ |11〉.

1.2 Measurement

The measurement of a qubit reveals only one of two possible outcomes. The value of α and β cannot

be extracted from the measurement of a qubit. Instead, when measuring the qubit α |0〉+β |1〉 in

the computational basis, the result can be either 0 or 1 with probabilities |α|2 and |β|2 respectively.

For example, the state
(

1√
2
|0〉+ 1√

2
|1〉
)

, when measured, yields any of the two results 0 or 1 with

probability 1/2. The measurement operation is not reversible and, once made, the qubit no longer

exists in its state before the measurement. Measurements can be performed in different bases. For

example, measuring the qubit α |0〉+ β |1〉 in the Hadamard basis defined by the two basis states

|+〉 ≡
(

1√
2
|0〉+ 1√

2
|1〉
)

and |−〉 ≡
(

1√
2
|0〉− 1√

2
|1〉
)

gives |+〉 with probability
(α+β)2

2
and |−〉

with probability
(α−β)2

2
, since α |0〉+β |1〉= α+β√

2
|+〉+ α−β√

2
|−〉.

An n-qubit system can be either measured completely or partially. When measured partially, the

unmeasured subsystem can retain quantum superposition and further quantum manipulations can

be performed upon it. However, any measurement can be delayed to the end of the computation

process.

1.3 Operators

In quantum computation, a system changes its state under a unitary quantum operator U from |Ψ〉
to U |Ψ〉. An operator U can be described as a 2n ×2n matrix operating on the unary representation
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Figure 1: The 2-qubit Controlled-Not (CNOT) quantum gate.

Figure 2: The 3-qubit Toffoli quantum gate.

of the system state. A unitary operator satisfies UU† = I, where U† is the conjugate transpose of U

(transpose the matrix U then substitute the conjugate complex of each element in the matrix).

Quantum operators can be implemented using quantum gates, which are the analogue of the

classical gates that compose classical electrical circuits. In this analogy, the wires of a circuit carry

the information on the system’s state, while the quantum gates manipulate their contents to different

states. For example, the Hadamard operator

H =
1√
2

(

1 1

1 −1

)

transforms a qubit in the state |0〉 into the state |+〉 and the state |1〉 into the state |−〉.
Operators can also be quantum gates operating on multiple qubits. An n-qubit quantum oper-

ator has n inputs and n outputs. For example, the 2-qubit controlled-not (CNOT) gate depicted in

Figure 1, flips the target (second) qubit if the control qubit (first) has value |1〉 and leaves it un-

changed if the control qubit has the value |0〉. Specifically, the CNOT gate performs the following

transformations on the four computational basis states: |00〉 → |00〉, |01〉 → |01〉, |10〉 → |11〉, and

|11〉 → |10〉. It can be described as a unitary matrix operating on the unary representation of the

state as follows:

CNOT =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









.

Another gate is the 3-qubit controlled-controlled-not gate also known as the Toffoli gate depicted

in Figure 2, which flips the target (third) qubit if the two control bits (first and second) both have

the values |1〉 and leaves it unchanged otherwise.

The Hadamard operator can also be seen as operating on n-qubits by the tensor product of n

single qubit Hadamard operators. Each qubit is then transformed according to the single qubit

Hadamard transform, that is,

H⊗n |xn−1, ...,x1,x0〉= H |xn1
〉⊗ ...⊗H |x1〉⊗H |x0〉 .
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Figure 3: A classical reversible Oracle.

Figure 4: A quantum Oracle.

1.4 Quantum Parallelism and Interference

Consider an oracle of an n-dimensional function f implemented by a classical circuit, which, for

every input x, produces f (x) at the output. The oracle can be made reversible by adding an additional

bit to the input, initialized by 0, and letting the output be x,0⊕ f (x) as depicted in Figure 3, where

⊕ is the addition modulo 2. Initializing the additional bit with 1 produced f (x) at the output.

A quantum oracle is a reversible oracle that accepts a superposition of inputs and produces a

superposition of outputs as depicted in Figure 4. When the additional qubit is initialized by |0〉, the

oracle performs the following transformation: |x〉 |0〉 → |x〉 |0⊕ f (x)〉. When the additional qubit is

initialized by |−〉 the oracle is called a quantum phase oracle that gives f (x) in the phase of the state

|x〉 as follows: |x〉 |−〉 → (−1) f (x) |x〉 |−〉.
Suppose that we have constructed a quantum circuit U f that implements a function f : {0,1}n →

{0,1}, such that when introduced with an input |x〉 |y〉, the output of the circuit would be |x〉 |y⊕ f (x)〉.
Quantum parallelism is the ability of the quantum circuit to process many inputs simultaneously and

receive all the outcomes at the output. Consider the case where |y〉= |0〉, and the |x〉= H⊗n |0〉⊗n
.

Applying the n-qubit Hadamard operator to the |0〉 state yields a superposition of all basis states
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1√
2n ∑ i = 02n |i〉. The superposition will be maintained through the quantum circuit and the result-

ing output would be 1√
2n ∑2n

i=0 |i〉 | f (i)〉. This can be computed as follows:

U⊗n+1
f

((

H⊗n ⊗ I
)

|0〉⊗n |0〉
)

=U⊗n+1
f

1√
2n

2n

∑
i=0

|i〉 |0〉= 1√
2n

2n

∑
i=0

|i〉 | f (i)〉 .

Although this computes f for all values of i simultaneously there is no immediate way of seeing

them all together, because once the output state is measured, only one value of f (i) is revealed

and the rest vanish. However, further quantum computation allows the different values to interfere

together and reveal some information concerning the function f .

It has been shown (Deutsch, 1985; Deutsch and Jozsa, 1992; Simon, 1994) that the revealed

information can be considerably more than what classical computation would achieve after one

query of the circuit that implements the function f . Deutsch and Jozsa (1992) showed that if a

binary n-dimensional function is guaranteed to be either constant or balanced, then determination

can be done using only one query to a quantum oracle implementing it, while a classical solution

would require an exponential number of queries. Another example of the advantage of quantum

algorithms over classical ones was presented by Simon (1994), in which a function is known to have

the property that there exists some s ∈ {0,1}n
for which for all x,y ∈ {0,1}n

it hold that f (x) = f (y)
if and only if x = y or x⊕ y = s. Simon (1994) proved that using quantum computations, s can be

found exponentially faster than with any classical algorithm, including probabilistic algorithms.

1.5 Solving Problems using Quantum Computation

According to the above definitions of a system state, measurement, and operators, a quantum com-

puter drives the dynamics of the quantum system through operators that change its state and mea-

sures the final state to reveal classical information. In the general case, one might think of the

process of quantum computation as a multi-phase procedure, which performs some classical compu-

tation on the data at hand, creates a quantum state describing the system, drives it through quantum

operators, which might depend on the data, to the target state, measures the outcome, and performs

some more classical computation to receive a result.

Consequently, we can describe a schematic process for solving problems using quantum com-

putation as follows:

A general solution scheme using quantum computations

Given:

Classical input data

1. Preliminary classical computation of the input

2. Create initial quantum state

3. Apply quantum circuit to the initial quantum state

4. Measure the resulting state

5. Apply classical computation to the measured state

1.6 Grover’s Quantum Search Algorithm

Given a database of N ≡ 2n unsorted elements of n bits each, any classical search would require

O(N) queries to find a desired element. In 1996, Grover presented a quantum computational algo-

rithm that searches an unsorted database with O(
√

N) operations (Grover, 1996; Boyer et al., 1996).
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The algorithm performs a series of O(
√

N) unitary operations on the superposition of all basis states

that amplify the solution states causing the probability of measuring one of the solutions at the end

of the computation to be close to 1.

Suppose that the search problem has a set X of r solutions and that we own an oracle function

fX that identifies the solution x ∈ X according to the following:

fX(x) =

{

1, x ∈ X

0, x /∈ X
.

Any classical algorithm that attempts to find the solution clearly needs to query the oracle N times

in the worst case. Grover’s algorithm shows that we can find the solution with the help of the oracle

by querying it only O(
√

N) times.

The quantum phase oracle of the function fX flips (rotates by π) the amplitude of the states of

X , while leaving all other states unchanged. This is done by the operator IX = I −2∑x∈X |x〉〈x|. In

matrix formulation, IX is similar to the identity matrix I except it has −1 on the xth elements of the

diagonal.

Grover’s algorithm starts with the superposition of all basis states created by applying the

Hadamard operator on the zero state, H⊗n |0〉⊗n
(shortened by H |0〉), and goes about perform-

ing multiple iterations, in which each iteration consists of applying the phase oracle followed by the

operator HI0H, where I0 flips the phase of the state |0〉⊗n
. Grover’s iterator is thus defined as

Q =−HI0HIX (1)

where the sign ”−” stands for the global phase flip that has no physical meaning and is performed

only for analytical convenience.

The operator in Equation 1 can be viewed in the space defined by the two basis states

|l1〉=
1√
r

∑
i∈X

|i〉

and

|l2〉=
1√

N − r
∑
i/∈X

|i〉

as the rotation








1− 2r
N

2

√
r(N−r)

N

−2

√
r(N−r)

N
1− 2r

N









which is depicted in Figure 5, where the rotation angle is

w = arccos

(

1− 2r

N − r

)

.

The initial state has an angle

φ = arctan

(√

r

N − r

)
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Figure 5: The effect of Grover’s rotation on the state |Ψ〉.

with |l2〉, and after some analysis one can find that applying the operator T times starting from the

initial state yields a solution state with a maximal probability that is very close to 1 upon measure-

ment when

T =

⌊

π

4

√

N

r

⌋

= O

(

√

N

r

)

.

The algorithm performs O
(
√

N
r

)

iterations, where r = |X | is the number of marked states.

Additional improvements were made by Boyer et al. (1996) and Brassard et al. (1998) coping with

an unknown number of marked states in complexity O
(
√

N
r

)

. Biham et al. (1999) introduced a

third improvement that outputs a marked state when initiated with a state of an arbitrary amplitude

distribution.

In the next sections, we present our algorithm for set intersection and its use in a quantum model

of associative memory. We focus our analysis on the auto-associative memory model. However,

presenting the algorithm with the quantum superposition of pairs xi and yi created by the use of the

oracle B makes it a model for general associative memory with no additional cost, as a quantum

search can yield yi upon measurement of xi.

1.7 Associative Memory

Associative memory stores and retrieves patterns with error correction or pattern completion of the

input. The task can be defined as memorizing m pairs of data
(

xi,yi
)

, where xi is an n dimensional

vector and yi is a q dimensional vector, and outputting yi when presented with x̃, which is a faulty

or a partial version of xi. A specific case of associative memory is the auto-associative memory,

in which yi ≡ xi, ∀i ∈ {1, . . . ,m}. Associative memory can be defined over a continuum, where
(

xi,yi
)

∈ Rn × Rq, or over a binary space, where
(

xi,yi
)

∈ {0,1}n × {0,1}q. In this paper, we

concentrate on the binary model.

3183



SALMAN AND BARAM

Algorithms for implementation of associative memory (Hopfield, 1982; Kanerva, 1993) have

been extensively studied in the neural networks literature. The Hopfield model (Hopfield, 1982)

consisting of n threshold neurons stores n-dimensional patterns x ∈ {±1}n
by the sum of outer

products and retrieves a stored pattern when presented with a partial or a noisy version of the pattern.

The maximal storage capacity for which the stored patterns will be retrieved correctly with high

probability (McEliece et al., 1987) is

Mmax =
n

2lnn
.

Sparse encoding has been shown to increase the storage capacity considerably (Baram, 1991).

A capacity exponential in the input dimension has been shown to result from a network size also

exponential in the input dimension (Baram and Sal’ee, 1992).

2. Quantum Intersection

Given a set of marked states K of size k, Grover’s quantum search algorithm for multiple marked

states yields any member of the set with probability O
(

k−1/2
)

when given a phase version IK of an

oracle fK of the form

fK(x) =

{

1, x ∈ K

0, x /∈ K
. (2)

Consequently, given a phase oracle IK , Grover’s algorithm chooses a member of the subset K.

Suppose that, in addition to the oracle fK , we have an oracle fM, such that

fM(x) =

{

1, x ∈ M

0, x /∈ M
(3)

where M is another set of size m of marked states.

We define the problem of quantum intersection as the choice of any member of the intersection

set K ∩M of size r with probability O
(

r−1/2
)

.

A straightforward algorithm for finding a member of the intersection between two sets of marked

states K and M, based on the oracles fK and fM involves the use of the intersection oracle, compris-

ing the oracles in Equation 2, Equation 3 in sequence, and a Toffoli gate as depicted in Figure 6.

When the input to the oracle is |x〉⊗ |0〉⊗ |0〉⊗ |0〉, then the output is |x〉⊗ | fK(x)〉⊗ | fM(x)〉⊗
| fK∩M(x)〉. The intersection phase oracle is realized when |b〉= |−〉, then, the input |x〉⊗|0〉⊗|0〉⊗
|−〉 will cause the output to be |x〉⊗ | fK(x)〉⊗ | fM(x)〉⊗

[

(−1) fK∩M(x) |−〉
]

.

Retrieving a state in the intersection between the two sets is accomplished by using Grover’s

quantum search algorithm with the phase version IK∩M of the oracle fM∩K .

However, under certain conditions, one might not have the two oracles at hand, and, thus, the

use of the intersection oracle might not be feasible. Another usage is when one constant oracle is

available and the second oracle needs to be changed with each activation. We present an algorithm

that applies a series of computations carried out by the two owners of the oracles in an alternating

fashion.

Algorithm 1 : Quantum Set Intersection

Given: Phase oracles IMand IK

Denote: QM ≡−HI0HIM, QK ≡−HI0HIK

1. Let |Ψ〉= H |0〉⊗n
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Figure 6: The intersection oracle FK∩M created using fM, fK , and To f f oli.

2. Repeat

|Ψ〉= QK |Ψ〉
|Ψ〉= QM |Ψ〉

T = O
(√

N
|K∩M|

)

times

3. Measure |Ψ〉

Algorithm 1 assumes that the size of the intersection set |K∩M| is known in order to determine

the number of iterations. In the more general case where |K ∩M| is unknown we apply the mod-

ification for an unknown number of marked states (Boyer et al., 1996). Alteratively, we can use

the quantum counting algorithm (Brassard et al., 1998) for the apriori estimation of the number of

marked states. In both cases the time complexity of the set intersection algorithm is sub-exponential.

Next, we present two theorems that prove that Algorithm 1 measures a member of the intersection

set with maximal probability and this probability is asymptotically close to 1.

Theorem 1 Let IK and IM be phase oracles that mark two sets of n-qubit states K and M with

|K|, |M|<< N. Let us denote |K|= k, |M|= m,|K ∩M|= r,

Q ≡ QMQK = (HI0HIMHI0HIK) (4)

and

|Ψ(t)〉= QT H |0〉 .
Then, the maximal probability of measuring a state in the intersection K ∩M is achieved at

T = argmax
t

∑
x∈K∩M

|〈x|Ψ(t)〉|2 =









π/2− arctan
(
√

r
N−r

)

arccos
(

4km
N2 − 4r

N
+Γ
)







 (5)

where

Γ =

√

1− 8rN3 +8kmN2 −16rkN2 −16rmN2 +32rkmN −16k2m2

N4
.
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Proof The Hilbert space spanned by all computational basis states of the n-qubit register can be

divided into four different subspaces: the subspace spanned by the states in K ∩M, the subspace

spanned by the states in K\M, the subspace spanned by the states in M\K, and the subspace spanned

by the states in K ∪M. Accordingly, we select an orthonormal basis for representing the operator,

in which the first four basis states are:

|l1〉 ≡ 1
√

|K ∩M| ∑
i∈K∩M

|i〉 , (6)

|l2〉 ≡ 1
√

|K\M| ∑
i∈K\M

|i〉 , (7)

|l3〉 ≡ 1
√

|M\K| ∑
i∈M\K

|i〉 , (8)

|l4〉 ≡ 1
√

|K ∪M| ∑
i∈K∪M

|i〉 (9)

and the rest of the basis consists of orthonormal extensions of these states, then

H |0〉=
√

r

N
|l1〉+

√

k− r

N
|l2〉+

√

m− r

N
|l3〉+

√

N −m− k+ r

N
|l4〉 .

The operator QK affects only the four states (|l1〉 , |l2〉 , |l3〉 , |l4〉) as follows:

QK |l1〉= −HI0HIK |l1〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|
)

|l1〉=

(

1− 2r

N

)

|l1〉+
(

−2
√

r(k− r)

N

)

|l2〉

+

(

−2
√

r(m− r)

N

)

|l3〉+
(

−2
√

r(N −m− k+ r)

N

)

|l4〉 ,

QK |l2〉= −HI0HIK |l2〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|
)

|l2〉=
(

−2
√

r(k− r)

N

)

|l1〉+
(

1− 2(k− r)

N

)

|l2〉

+

(

−2
√

(k− r)(m− r)

N

)

|l3〉+
(

−2
√

(k− r)(N −m− k+ r)

N

)

|l4〉 ,
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QK |l3〉= −HI0HIK |l3〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|
)

|l3〉=
(

2
√

r(m− r)

N

)

|l1〉+
(

2
√

(k− r)(m− r)

N

)

|l2〉

+

(

2(m− r)

N
−1

)

|l3〉+
(

2
√

(m− r)(N −m− k+ r)

N

)

|l4〉 ,

QK |l4〉= −HI0HIK |l4〉=−H (I −2 |0〉〈0|)H

(

I −2 ∑
i∈K

|i〉〈i|
)

|l4〉=
(

2
√

r(N −m− k+ r)

N

)

|l1〉+
(

2
√

(k− r)(N −m− k+ r)

N

)

|l2〉

+

(

2
√

(m− r)(N −m− k+ r)

N

)

|l3〉+
(

2(N −m− k−+r)

N
−1

)

|l4〉

yielding QK in matrix form

QK =













1− 2r
N

−2
√

r
√

k−r

N

2
√

r
√

m−r

N

2
√

r
√

N−k−m+r

N
−2

√
r
√

k−r

N
1− 2(k−r)

N
2
√

k−r
√

m−r
N

2
√

k−r
√

N−k−m+r
N

−2
√

r
√

m−r

N
−2

√
k−r

√
m−r

N

2(m−r)
N

−1
2
√

m−r
√

N−k−m+r
N

−2
√

r
√

N−k−m+r

N
−2

√
k−r

√
N−k−m+r

N
2
√

m−r
√

N−k−m+r
N

2(N−k−m+r)
N

−1













. (10)

Similarly, we obtain the matrix form of QM

QM =













1− 2r
N

2
√

r
√

k−r

N

−2
√

r
√

m−r

N

2
√

r
√

N−k−m+r

N
−2

√
r
√

k−r

N

2(k−r)
N

−1
−2

√
k−r

√
m−r

N
2
√

k−r
√

N−k−m+r
N

−2
√

r
√

m−r

N
2
√

k−r
√

m−r
N

1−2(m−r)
N

2
√

m−r
√

N−k−m+r
N

−2
√

r
√

N−k−m+r

N
2
√

k−r
√

N−k−m+r
N

−2
√

m−r
√

N−k−m+r
N

2(N−k−m+r)
N

−1













. (11)

Substituting Equation 10 and Equation 11 into Equation 4 yields

Q =













1− 8r(N−m)
N2

−4
√

r
√

k−r(N−2m)
N2 0 0

−4
√

r
√

k−r(N−2m)
N2

8m(k−r)
N2 −1 0 0

−8
√

r
√

m−r(N−m)
N2

−4
√

k−s
√

m−r(N−2m)
N2 0 0

−4
√

r
√

N−k−m+r(N−2m)
N2

8m
√

k−r
√

N−k−m+r
N2 0 0













+













0 0
8
√

r
√

m−r(N−m)
N2

4
√

r
√

N−k−m+r(N−2m)
N2

0 0
4
√

k−r
√

m−r(N−2m)
N2

−8m
√

k−r
√

N−k−m+r
N2

0 0
8(N−m)(m−r)

N2 −1
4
√

m−r
√

N−k−m+r(N−2m)
N2

0 0
4
√

m−r
√

N−k−m+r(N−2m)
N2 1− 8m(N−k−m+r)

N2













.
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The compound operator Q is a rotation in the 4-dimensional space spanned by Equations 6 -

Equation 9. Finding the rotation angles requires the diagonalized matrix of Q. Let V be the matrix

whose columns are the eigenvectors of Q, then QD = V−1QV is a diagonal matrix whose diagonal

components are the eigenvalues of Q as follows:

QD =









e−iw1 0 0 0

0 eiw1 0 0

0 0 e−iw2 0

0 0 0 eiw2









where

e−iw1 =
4km

N2
− 4r

N
+Γ−∆

eiw1 =
4km

N2
− 4r

N
+Γ+∆

e−iw2 =
4km

N2
− 4r

N
−Γ−∆

eiw2 =
4km

N2
− 4r

N
−Γ+∆

and Γ and ∆ are given by

Γ =

√

1− 8rN3 +8kmN2 −16rkN2 −16rmN2 +32rkmN −16k2m2

N4
,

∆ = 2

√

2N2r(r+ k+m)−N3r(1+Γ)+N2kmΓ−N2km−8Nkmr+4k2m2

N4

which implies

w1 = arccos

(

4km

N2
− 4r

N
+Γ

)

,

w2 = arccos

(

4km

N2
− 4r

N
−Γ

)

.

The amplitude of |l1〉 is given by

a(t) = Asin(w1t +φ) (12)

where A is the maximal amplitude, to be found, and φ is the angle between the initial state H |0〉⊗n

and |l1〉:

φ = arctan

√

r

N − r
.

The maximal probability A2 that a measurement of the system will produce a state in K∩M will

be obtained at time

T = argmax
t

A2sin2 (w1t +φ)
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yielding

T =









π/2− arctan
(
√

r
N−r

)

arccos
(

4km
N2 − 4r

N
+Γ
)









as asserted (Equation 5).

Theorem 1 suggests a way for approximating the time complexity of the algorithm when m,k<<
N. Employing the Taylor series, the second order approximation of the rotation angle is

w1 = O

(√

r

N

)

and the number of iterations can be approximated by

T ≈ O





π/2−
√

r
N−r

√

r
N



= O

(

√

N

r

)

. (13)

Theorem 2 The maximal probability, A2 from Equation 12, of measuring a marked state in K ∩M

from Theorem 1 is approximately 1 when |K| , |M|<< N and N is large.

Proof The amplitude a(t) of |l1〉 behaves as in Equation 12 and the maximal amplitude A can be

obtained from

Asin(w1 +φ) =

√

r

N

(

1− 8r(N −m)

N2

)

+

√

k− r

N

(−4
√

r
√

k− r(N −2m)

N2

)

+

√

m− r

N

(

8
√

r
√

m− r(N −m)

N2

)

+

√

N −m− k+ r

N

(

4
√

r
√

N −m− k+ r(N −2m)

N2

)

. (14)

Substituting w1 and φ in the left hand side of Equation 14 yields

3189



SALMAN AND BARAM

A ≈
√

r
N

(

1− 8r(N−m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N
+
√

r
N−r

+

√

k−r
N

(

−4
√

r
√

k−r(N−2m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N
+
√

r
N−r

+

√

m−r
N

(

8
√

r
√

m−r(N−m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N
+
√

r
N−r

+

√

N−m−k+r
N

(

4
√

r
√

N−m−k+r(N−2m)
N2

)

√

2−2Γ− 8km
N2 + 8r

N
+
√

r
N−r

which, under the assumption r,k,m << N, is close to 1.

3. Quantum Associative Memory

In this section we introduce our associative memory model and the retrieval procedure with pattern

completion and correction abilities. We present the concept of memory as a quantum operator that

flips the phase of the memory patterns. The operator is based on an oracle that identifies, or ”marks”,

memory patterns. This allows the initial state of our algorithm to be independent of the memory set.

The input of our algorithms is an n-qubit register that contains the superposition of all basis states.

This input is created by applying the Hadamard operation on an n-qubit register set to zeros, H |0〉.

3.1 Pattern Completion

Let IM be a phase oracle on a set M, called the memory set, of m n-qubit patterns and let x′

be a version of a memory pattern x ∈ M with d missing bits. We are required to output the

pattern x based on IM and x′. The partial pattern is given as a string of binary values 0 and

1 and some unknown bits marked ’?’. Denoting the set of possible completions of the partial

pattern K and its size k, the completion problem can be reduced to the problem of retrieving

a member x of the intersection between two sets K and M, x ∈ K ∩ M. For example, let M =
{0101010,0110100,1001001,1111000,1101100,1010101,0000111,0010010} be a 7-bit memory

set of size 8 and let ”0110?0?” be a partial pattern with 2 missing bits, so the completion set is

K = {0110000,0110001,0110100,0110101}. Pattern completion is the computation of the inter-

section between K and M, which is the memory pattern 0110100.

Pattern completion can use either the intersection oracle presented in Figure 6 or the quantum

intersection presented in Algorithm 1. In either case, we need to create the completion operator fK

or its phase version IK that marks the states of the set K, which can be implemented by checking

whether a state is a completion of the partial patterns x′ represented by the set K. Such an implemen-

tation is shown in Figure 7, where for each given bit in the pattern an appropriate control is added
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Figure 7: An implementation of a completion operator with an up to n+1 dimensional controlled-

not operator.

to the corresponding qubit. The dark circle means that the control is activated when the bit value is

1 and the empty circle means that the control is activated when the bit value is 0. For each missing

bit, no control is added for the corresponding qubit. A single n qubit operator can be implemented

by O(n) 2 and 3-qubit operators (Barenco et al., 1995).

The algorithm for pattern completion through the quantum intersection algorithm is

Algorithm 2 : Quantum Pattern Completion

Given: A memory operator IMand a pattern x′ ∈ {0,1}n, which is a partial version

of some memory pattern with up to d missing bits

1. Create the completion operator IK .

2. Apply Algorithm 1 with IM and IK

3.2 Pattern Correction

Let IM be a phase oracle of a memory set M of size m and let x′ be a version of a memory

pattern x ∈ M with up to d faulty bits. We are required to output the pattern x based on IM

and x′. The set K of possible corrections of the faulty pattern consists of all patterns in Ham-

ming distance up to d from x′. The correction problem can be reduced to the problem of re-

trieving a member x of the intersection between two sets K and M, x ∈ K ∩ M. For example,

let M = {0101010,0110100,1001001,1111000,1101100,1010101,0000111,0010010} be a 7-bit

memory set and let ”0110001” be the input pattern with 2 possible errors. The correction set K
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Figure 8: An implementation of a correction operator with a ⌈logn⌉ additional bits, n controlled

operators that add 1, and a threshold operator.

consists of all patterns that are in Hamming distance up to 2 from x′. Pattern correction should then

retrieve the memory pattern 0110100.

Pattern correction can be solved using the quantum intersection algorithm, which requires the

creation of the correction operator fK or its phase version IK . This can be implemented by checking

whether the number of different bits between any given state and the faulty pattern x′ is less or equal

to d. Such an implementation is shown in Figure 8. The operator applies a linear threshold on the

hamming distance between x′ and any input x. The operator consists of n input qubits, ⌈logn⌉ qubits

for the hamming distance of x from x′, and an additional qubit for the output. The operator adds 1

for each bit in x that is not equal to the corresponding bit in x′, then applies a controlled not operator

if the hamming distance does not exceed the threshold d. The operator can, thus, be implemented

using O(n logn) 2 and 3-qubit operators.

Algorithm 3 : Quantum Pattern Correction

Given: A memory operator IMand a pattern x′ ∈ {0,1}n, which is a faulty version

of some memory pattern with up to d faulty bits

1. Create the correction operator IK .

2. Apply Algorithm 1 with IM and IK

A generalization of both Algorithm 2 and Algorithm 3 for the case of unknown number of possi-

ble corrections is straight forward using quantum search for an unknown number of marked states

(Boyer et al., 1996) or quantum counting (Brassard et al., 1998).
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Algorithm 3 finds a memory pattern that is in Hamming distance up to d from x′. If the memory

is within the correction capacity bounds, Algorithm 3 finds the correct pattern x with high probabil-

ity, as will be proved in Section 4. However, if we are interested in ensuring that we find the closest

memory pattern to x′, with no dependence on the capacity bound, then we can apply Algorithm 3

for i = 0 bits and increase it up to i = d bits. In this case we ensure that we find a pattern x, such

that
{

x : (x ∈ M)∧
(

∀x′′ ∈ M : dist(x′′,x)≥ dist(x′,x)
)}

where dist(·, ·) is the Hamming distance.

4. Analysis of the Quantum Associative Memory

In this section we analyze the time complexity and memory capacity of the proposed quantum as-

sociative memory. We first show that the time complexity of retrieval operations is sub-exponential

in the number of bits. Then we show that the number of memory patterns that can be stored while

the model retains its correction and completion abilities is exponential in the number of bits.

4.1 Time Complexity Analysis

The time complexity of the retrieval procedure with either pattern completion or correction ability

is determined by the complexity of the quantum intersection algorithm and the complexity of the

completion and correction operators. The two operators can be implemented by a number of oper-

ations which is linear in n or in n logn. According to Equation 13, the completion and correction

operations are performed in

T ≈ n logn+O

(√

N

|K ∩M|

)

= O

(√

N

|K ∩M|

)

operations, which is sub-exponential in number of bits.

4.2 Capacity Analysis

We consider three different capacity measures. The first is the equilibrium capacity Meq, which is

the maximal memory size that ensures that all memory patterns are equilibrium points of the model.

An Equilibrium point is a pattern that, when presented to the model as an input, is also retrieved

as an output with high probability. The second is the pattern completion capacity Mcom, which is

the maximal memory size that allows the completion of any partial pattern with up to d missing

bits with high probability. The third is the pattern correction capacity Mcor, which is the maximal

memory size that allows the correction of any pattern with up to d faulty bits with high probability.

Equilibrium is a special case of completion and correction with neither missing nor faulty bits.

Therefore, the equilibrium capacity should be equal to the completion and correction capacities for

d = 0.

4.2.1 EQUILIBRIUM CAPACITY

The equilibrium capacity of the quantum associative memory is

Meq = N
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because every memory state of an n-bit associative memory M of any size m ≤ N is an equilibrium

state, that is, if Qx =−(HI0HIx), T =
⌊

π
4

√
N
⌋

, and |Ψ(T )〉= QT
x H |0〉, then

∀x ∈ M : |〈x|Ψ(T )〉|2 → 1 as n → ∞.

This is a direct consequence of Grover’s algorithm (Grover, 1996) and the results obtained by

Boyer et al. (1996) concerning the ability to find any member of the size N database with probability

close to 1.

4.2.2 COMPLETION CAPACITY

Given a pattern x′, which is a partial version of some memory pattern xc with d missing bits, we

seek the maximal memory size, for which the pattern can be completed with high probability from a

random uniformly distributed memory set (McEliece et al., 1987; Baram, 1991; Baram and Sal’ee,

1992).

The completion capacity is bounded from above by two different bounds. The first is a result

of Grover’s quantum search algorithm limitations and the second is a result of the probability of

correct completion.

A Bound on Memory Size due to Grover’s Quantum Search Limitations. Grover’s operator flips the

marked states around the zero amplitude (negating their amplitudes) then flips all amplitudes around

the average of all amplitudes (Biham et al., 1999). Amplification of the desired amplitudes occurs

only when the average of all amplitudes is closer to the amplitudes of the non-marked states than to

the marked states. This imposes the following upper bound on the memory size:

m < N/2.

This can be observed in the first iteration of the quantum search algorithm on a number of

marked states. The initial amplitude of all basis states in H |0〉 is 1/
√

N. Flipping the phase of m

marked states by IM to −1/
√

N yields an average amplitude of

(N −m)∗
(

1/
√

N
)

−m∗
(

1/
√

N
)

=
N −2m√

N
.

Then, flipping the phases of all basis states around this average by HI0H yields two values of

amplitudes. The amplitudes of marked and unmarked states become

2

(

N −2m√
N

)

± 1√
N

=

(

2N −4m±1√
N

)

(15)

where ± correspond to marked and unmarked states respectively.

A necessary condition for the amplification of marked states is that the absolute value of their

amplitudes after an iteration of the algorithm is higher than the absolute value of the amplitude of

unmarked states. The condition is satisfied if and only if the two equations given in Equation 15

satisfy

∣

∣

∣

∣

(

2N −4m+1√
N

)∣

∣

∣

∣

>

∣

∣

∣

∣

(

2N −4m−1√
N

)∣

∣

∣

∣
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which holds true if and only if m < N/2. Therefore, if m ≥ N/2 the amplitudes of the marked states

will not increase, which gives the following upper bound on the completion capacity:

Mcom < N/2. (16)

However, this is a very loose bound and the success probability of the completion will impose a

tighter bound.

A Bound on Memory Size due to Pattern Completion. The bound on memory size that ensures a high

probability of correct completion depends on the definition of the pattern completion procedure. If

one defines pattern completion as the process of outputting any of a number of possible memory

patterns when given a partial input, then the capacity bound of our memory is the amplification

bound given in Equation 16. However, this is not always the case. Pattern completion capacity is

usually defined as the maximal size of a random uniformly distributed memory set that, given a

partial version x′ of a memory xc ∈ M with d missing bits, outputs xc. The following theorem gives

an upper bound on the capacity for pattern completion with high probability:

Theorem 3 An n-bit associative memory with m random patterns can complete up to d missing bits

on average when

m ≤ 2n−d

with probability higher than

v

ev −1

m

∑
i=1

vi−1

ii
(17)

as n grows to infinity, where

v =
m

2n−d
.

Proof Let M be a random uniformly distributed memory set of size m = v2n−d , where 0 < v < 1.

Let x′ be a partial pattern of xc ∈ M with d missing bits. x′ induces the set

K =
{

x
∣

∣x is a completion o f x′
}

where |K|= 2d . Let Zi be random indicator variables representing the existence of the ith member

of M in K. Denoting p = Pr(Zi = 1) = 2d

2n = 1
2n−d , we have

m = v/p. (18)

Let us denote |Ψ(T )〉= QT H |0〉 and S = ∑m
i=1 Zi. If there is only one possible memory completion,

then it is xc, and if there are two, then xc is one of the two, and so on. Therefore, the probability of

successfully outputting xc from the partial pattern x′ is the sum of the conditional probabilities that

there are i memory completions divided by i:

|〈xc|Ψ(T )〉|2 =
m

∑
i=1

Pr (S = i | S ≥ 1)

i

=
m

∑
i=1

Pr (S = i)

iPr (S ≥ 1)

=
m

∑
i=1

(

m
i

)

pi (1− p)m−i

i(1− (1− p)m)
. (19)
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Now, this probability can be lower-bounded by

|〈xc|Ψ(T )〉|2 ≥
m

∑
i=1

(

m
i

)i
pi (1− p)m−i

i(1− (1− p)m)
. (20)

Substituting Equation 18 in Equation 20 we have

|〈xc|Ψ(T )〉|2 ≥
m

∑
i=1

(

vi

ii

)

(1− p)v/p−i

i
(

1− (1− p)v/p
)

≥
m

∑
i=1

(

vi

ii

)

e−v 1
(1−p)i

i(1− e−v)

≥ 1

ev −1

m

∑
i=1

vi

(i(1− p))i

>
v

ev −1

m

∑
i=1

vi−1

ii
. (21)

Figure 9 shows that the lower bound with approximation by only three terms of the sum in

Equation 17 as a function of v is higher than 75% for all possible sizes of a non-empty memory

within the capacity limits.

Theorem 3 implies that Mcom(d) = 2n−d , which agrees with the result concerning the equilib-

rium capacity, since Mcom(0) = 2n−0 = 2n = N = Meq.

4.2.3 CORRECTION CAPACITY

A bound on the correction capacity of Algorithm 3 is given be the following theorem:

Theorem 4 An n-bit associative memory with m random patterns can correct up to d faulty bits on

average when

m ≤ 2n−d/

(

n

d

)

with probability higher than

v

ev −1

m

∑
i=1

vi−1

ii

as n grows to infinity, where

v =
m

2n−d
.

Proof Let M be a random uniformly distributed memory set of size

m = v2n−d/

(

n

d

)
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Figure 9: Success probability of pattern completion vs. memory size divided by the maximal com-

pletion capacity v for an associative memory with n = 30 qubits.

where 0 < v < 1. Let x′ be a pattern xc ∈ M with d faulty bits. x′ induces a set

D =
{

x
∣

∣dist(x,x′)≤ d
}

where |D|=
(

n
d

)

2d . Let Zi be random indicator variables representing the existence of the ith mem-

ber of M in D. Denoting p = Pr(Zi = 1) =
(

n
d

)

2d−n, we have

m = v/p.

Let us denote |Ψ(T )〉= QT H |0〉 and S = ∑m
i=1 Zi. The probability of successfully retrieving xc from

the pattern x′ is then

|〈xc|Ψ(T )〉|2 =
m

∑
i=1

Pr (S = i | S ≥ 1)

i

which, according to Equations 19 - 21, also satisfies

|〈xc|Ψ(T )〉|2 ≥ v

ev −1

m

∑
i=1

vi−1

ii
.

Theorem 4 yields Mcor(d) =
(

n
d

)

2n−d , which also agrees with the result concerning the equilib-

rium capacity, since Mcor(0) =
(

n
0

)

2n−0 = 2n = N = Meq.

For example, let M be a memory set over {0,1}100, then, as long as |M|< 280, we can complete

up to d = 100− log |M|= 20 bits and correct up to d = 13 bits.
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Figure 10: Pattern completion or correction probability vs. the memory size divided by the maximal

completion capacity v. For 0< v< 1, the probability is above 75% and for v< 2 is above

50%.

4.2.4 INCREASING MEMORY SIZE BEYOND THE CAPACITY BOUNDS

The various capacities presented above are exponential in n under the assumption d << n. However,

an increase of m beyond the capacity bound results in a decay of the correct completion probability

as depicted in Figure 10. It can be seen that it is more likely to find the correct completion than not

to find it as long as v < 2.

In addition, the model can also output a superposition of a number of possible outputs, by

skipping the measurement operation in Algorithm 1. This is not true for most classical memory

models where spurious memories arise and the output is usually not a memorized pattern, but, rather,

some spurious combination of multiple memory patterns (Hopfield, 1982; Bruck, 1990; Goles and

Martı́nez, 1990).

5. Comparison to Previous Works

Quantum computation was previously applied to associative memory by Ventura and Martinez

(2000), Ezhov et al. (2000), Howell et al. (2000), and, subsequently, by others. An algorithm based

on the model developed by Ventura and Martinez (2000) was proposed by Arima et al. (2008). It

was further developed by Arima et al. (2009) and analyzed by Miyajima et al. (2010). We analyze

the two main algorithms (Ventura and Martinez, 2000; Arima et al., 2009) and show their differences

with respect to our algorithm. These algorithms are given below.

3198



QUANTUM SET INTERSECTION AND ITS APPLICATION TO ASSOCIATIVE MEMORY

0 N/4 N
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

|M|

S
u
cc

es
s

P
ro

b
a
b
il
it
y

Figure 11: Memory size vs. success probability of Algorithm 4. Optimal results are achieved only

when the memory size is close to N
4

.

Algorithm 4 The algorithm proposed by Ventura and Martinez (2000)

Given: Phase oracles IMand IK

1. Denote QM =−HI0HIM and QK =−HI0HIK

2. Let |Ψ〉= 1
m ∑m

i=1 |i〉.
3. Apply QMQK on |Ψ〉
4. Apply QK on |Ψ〉 for T =

⌊

π/4
√

N/|K ∩M|
⌋

-2 times.

5. Measure |Ψ〉.

Algorithm 5 The algorithm proposed by Arima et al. (2009)

Given: Phase oracles IMand IK

1. Denote QM =−HI0HIM and QK =−HI0HIK

2. Let |Ψ〉= 1
m ∑m

i=1 |i〉.
3. Apply QMQK on |Ψ〉 for T times. (Twas not found by Arima et al., 2009)

4. Measure |Ψ〉.

Algorithm 4 can find only a single marked state with high probability when the memory size m

is close to N
4
− 2, as shown by the solid line in Figure 11. The probability of measuring this state

reduces by a half when there are two marked states and only one of them is a memory pattern, as

shown by the dashed line in Figure 11, and so on.
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Figure 12: Memory size vs. success probability in Algorithm 5. Satisfactory results are achieved

only when the memory size exceeds N
4

.

Algorithm 5 gives satisfying results only when the memory size exceeds N
4

, which is exponential

in the number of qubits, leaving the possibility of effective pattern completion only for 2 qubits or

less. It is therefore not helpful for associative memory with pattern completion and correction

abilities. The success probability of Algorithm 5 vs. the memory size is depicted in Figure 12.

Miyajima et al. (2010) added a control parameter to tune the algorithm, changing the memory size

for which the maximal amplitude is achieved. The algorithm is presented only for one marked state

with no completion and correction abilities. The time complexity and stopping criteria were not

stated by Arima et al. (2008) and were later found to be O
(√

N
)

(Arima et al., 2009; Miyajima

et al., 2010).

Our algorithm, on the other hand achieves high success probability up to memory size N
4

, as

depicted in Figure 13.

Furthermore, both Algorithm 4 and Algorithm 5 need to initialize the system at a superposition

of the memory states:

|Ψ〉= 1√
m

m

∑
i=1

|i〉

which is a shortcoming for two reasons: the time complexity of initialization when the memory size

is large and the need for repeated initialization upon every application of the memory. The latter is

important as it adds an exponential factor to the query time, for either completion or correction, and

an exponential addition to the single query time when amplitude amplification is needed. Amplitude

amplification ensures that we pick the correct pattern with probability 1 by performing the algorithm
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Figure 13: Memory size vs. success probability in Algorithms 2 and 3.

a multiple number of times. Our algorithm’s initialization, on the other hand, does not depend on

the memory patterns.

6. Numerical Examples and Simulations

Let us first consider an associative memory of 10 qubits. We have randomly chosen a set of 50

patterns M out of the possible 1024 to be stored in memory. We also chose two partial patterns, each

with 4 missing qubits, yielding two completion sets K1 and K2 of 16 possible completions each. We

chose K1 and K2 such that they have one and two completions in memory respectively. Figure 14(a)

shows the memory set, where each vertical line represents a memory pattern, and Figure 14(b)

shows the completion set K1 in the same manner. The amplitudes of the final state of the completion

algorithm are shown in Figure 14(c), where the only possible memory completion has amplitude

close to 1. Figure 15 shows the high amplitudes of the two possible memory completions when the

completion set is K2.

As can be seen, applying our algorithm to both completion sets amplified the states that are

possible completions in memory. The amplitudes of the desired states reached up to 96.76% in the

first case and 68.44% in the second case for each one of the two high amplitudes. Therefore, the

probability of measuring the correct completion in the first case is 93.62% and the probability of

measuring one of the two correct completions in the second case is 93.67%.

Another simulation was carried out on a 10 qubits associative memory with 27 memory patterns

and completion queries with 3 missing bits. The behavior of the different subgroups of the basis

states is schematically described in Figure 16 for a series of iterations with the completion operator

Q of Equation 4. Each amplitude value indicated represents the amplitudes of all the basis states

that belong to the corresponding subgroup. It shows the amplification of states in the intersection
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Figure 14: (a) A set of memory patterns M (b) a set of possible completions K1 to a partial pattern,

and (c) the memory completion result in amplitudes.
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Figure 15: (a)A set of memory patterns M (b) a set of possible completions K2 to a partial pattern,

and the memory completion result in amplitudes.
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Figure 16: Simulation of a series of iterations of the completion algorithm. The graph shows the

different behavior of the different subgroups of basis states. K is the completion set and

M is the memory set. The memory completions and the non completions or memories

are amplified alternatingly, while the amplitudes of K\M and M\K subgroups stay close

to zero.

group K ∩M and in NOT (K ∪M) alternatingly, while the amplitudes of states in K\M and M\K

stay close to zero.

We have also tested our algorithms with a larger number of qubits in order to verify that the

success rate of retrieval grows asymptotically to 1 as the number of qubits grows. For instance,

we tested a 30 qubit system with 225 memory patterns and a completion query that has 8 missing

bits. We tested different completions of 8 missing bits so that the intersection set size varied from

1 to 10 patterns. Our algorithm found a member of the memory completion set with probability

96.8%. Increasing the memory size to 226 and 227, and thereby bringing the capacity close to its

limit resulted in completion probabilities of 93.5% and 86.7% respectively. Figure 17 depicts the

success rates of pattern completion in a 30 qubit system. An explanation of the different graphs can

be found in Table 1. The solid line in Figure 17 depicts the success probability vs. the logarithm

of the size of memory with completion queries set to 8 missing bits and the number of possible

memory completions set to 1. The dashed line depicts the success probability vs. the logarithm of

the completion query size when the memory size is set to 225 patterns and the number of possible

memory completions set to 1. The dotted line depicts the success probability vs. the logarithm of

the number of possible memory completions when both the memory size and the completion query

size are set to 225. The dash-dotted line depicts the success probability vs. the number of qubits in

the system (growing from 5 to 30 qubits) when the memory size, the completion query size, and the

number of possible memory completions are small constants.

Figure 17 shows that the deterioration of the success probability vs. the memory size or the

completion query size is very slow. For instance, deterioration starts at memory size 226. Further-
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Graph |N| |M| |K| |K ∩M||
Solid constant varying constant constant

—— 230 23 −227 23 1

Dashed constant constant varying constant

– – – 230 225 23 −225 1

Dotted constant constant constant varying

· · · 230 225 225 1−225

Dash-dotted varying constant constant constant

– · – · – 25 −230 23 23 1

Table 1: Properties of the four simulations depicted in Figure 17. The x axis in Figure 17 represents

the varying set size, while the other set sizes are constant in each simulation.
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Figure 17: Success probability of measuring a desired memory completion vs. the log of the mem-

ory size (solid), completion query size (dashed), possible memory completions (dotted),

and number of qubits (dash-dotted).
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more, the success probability increases when the number of possible memory completions (the size

of the intersection set) grows towards the sizes of the completion query and the memory, which

indicates that choosing a member of the intersection becomes easy (by randomly choosing a possi-

ble completion). Finally, the figure also shows that, as the number of qubits in the system grows,

the success probability becomes asymptotically 1, which indicates that, practically, our algorithm

produces the intersection when n >> 1.

7. Conclusion

We have presented a quantum computational algorithm that computes the intersection between two

subsets of n-bit strings. The algorithm is based on a modification of Grover’s quantum search. Us-

ing the intersection algorithm, we have presented a set of algorithms that implement a model of

associative memory via quantum computation. We introduced the notion of memory as a quantum

operator, thus avoiding the dependence of the initial state of the system on the memory set. We have

shown that our algorithms have both speed and capacity advantages with respect to classical asso-

ciative memory models, consuming sub-exponential time, and are able to store a number of memory

patterns which is exponential in the number of bits. Pattern retrieval algorithms with completion

and correction abilities were presented. Bounds relating memory capacity to the maximal allowed

signal to noise ratio were found.
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