Journal of Machine Learning Research 13 (2012) 2995-2998 bm&ted 9/11; Revised 7/12; Published 10/12

Oger: Modular Learning Architectures For Large-Scale Sequential

Process ng
David Verstraeten DAVID .VERSTRAETEN@QUGENT.BE
Benjamin Schrauwen BENJAMIN.SCHRAUWEN@UGENT.BE
Sander Dieleman SANDER.DIELEMAN @UGENT.BE
Philemon Brakel PHILEMON.BRAKEL @UGENT.BE
Pieter Buteneers PIETERBUTENEERS®@UGENT.BE

Department of Electronics and Information Systems
Ghent University
Ghent, Belgium

Dejan Pecevski DEJAN@IGI.TUGRAZ.AT
Institute for Theoretical Computer Science

Graz University of Technology

Graz, Austria

Editor: Cheng Soon Ong

Abstract

Oger (OrGanic Environment for Reservoir computing) is ahBgttoolbox for building, train-
ing and evaluating modular learning architectures on lalgt sets. It builds on MDP for its
modularity, and adds processing of sequential data seddjegit descent training, several cross-
validation schemes and parallel parameter optimizatiothaus. Additionally, several learning
algorithms are implemented, such as different reservgilémentations (both sigmoid and spik-
ing), ridge regression, conditional restricted Boltzmanachine (CRBM) and others, including
GPU accelerated versions. Oger is released under the GNUL L& is available fromnt t p:
/lorganic.elis.ugent.beloger.

Keywords: Python, modular architectures, sequential processing

1. Introduction

The Oger toolbox originated from the need to rapidly implement, investigateangdare complex
architectures built from state-of-the-art sequential processingitidgay, focused on but not limited
to reservoir computing, and to apply these architectures to large real4askisl Reservoir comput-
ing (RC) is a learning framework (\erstraeten et al., 2007) wherebgmaora non-linear dynamical
system (usually a recurrent neural network) is left untrained and asenput to a simple learn-
ing algorithm such as linear regression. A number of smaller toolboxes$arvroir computing
are available, written in C++, Java and Matlablowever, these are generally focused on specific
implementations of RC (echo state networks or liquid state machines) and c#eitdgibility in
creating and evaluating complex architectures.

Rather than contribute yet another toolbox which reimplements many staridariihems, one
of our design choices for Oger was to incorporate existing packageevwlossible. Because mod-

1. An overview can be found attp: //organic. el i s. ugent. be/ sof t var e.

(©2012 David Verstraeten, Benjamin Schrauwen, Sander DielgRtalemon Brakel, Pieter Buteneers and Dejan Pecevski.

VERSTRAETEN SCHRAUWEN, DIELEMAN, BRAKEL, BUTENEERS ANDPECEVSKI

Parallellization and optimization
(Validation)
Nodes Training and
Reservoir architecture
PYNN
T/CRBM Gradient descent
Logistic regression FreerunFlow
\ Y,

Figure 1: A schematic overview of the structure of Oger. The basic psioug blocks (nodes) are
combined with methods for constructing and training architectures. TheBieatures
can then be evaluated in a validation and optimization framework.

ularity was one of the key requirements for Oger, it has been based arethlenown and widely
used Modular Data Processing toolkit (MDP), which provides this moduliariyldition to a wide
variety of machine learning algorithms (Zito et al., 2008). Oger uddsla as its basic building
block: a (optionally trainable) data processing algorithm. These nodethearbe combined into
an arbitrary feedforward graph structure calleBl aw. Much of the error- and type-checking is
abstracted away through the object-oriented interface, such that telgdercan focus on imple-
menting the actual algorithm.

Python was chosen as the development language because it is a higbrtese platform and
open-source interpreted language offering flexibility and rapid dewsdop, while interfaces to op-
timized numerical linear algebra packages such as BLAS are providadythtbe NumPy package
so that the speed sacrifice remains limited. Mature and feature-completgpadhr plotting (mat-
plotlib) and general scientific computing (SciPy) that in many respects corse twocommercial
alternatives are available, along with a plethora of smaller libraries provagiagific functions.

2. Features

In this section we describe the main features of Oger and give a usaggplexa

2.1 Algorithms

MDP implements several standard supervised and unsupervised leargingds for operating on
stationary inputs, such as principal component analysis, indepermapboent analysis and factor
analysis? Oger adds several new methods to this set:

— Several reservoir implementations : a basic reservoir with customizableemnfunction
and weight topologies, a leaky integrator reservoir, and a GPU-optiméseavoir using CUDA.

— Wrappers for creating spiking reservoirs using PyNN-compatibleah@atwork simulators
(Davison et al., 2008).

— A logistic regression node trainable with different optimizers such as |R&§ugate gradi-
ent, BFGS and others.

2. We refer to the MDP websitg t p: / / ntp- t ool ki t. sour cef or ge. net/ for an exhaustive list.

2996

OGER: MODULAR LEARNING ARCHITECTURESFOR LARGE-SCALE SEQUENTIAL PROCESSING

— A conditional restricted Boltzmann machine: a standard RBM with an additmoraext
vector.

— Several ‘utility’ signal processing methods: a resampling node, a timesidf, a winner-
take-all node, and others.

Additionally, Oger supports backpropagation training using various metbhbdradient de-
scent, such as stochastic gradient descent, RPROP and others. RikadgrunFlow allows easy
training and execution of architectures with feedback, for instance forgeries generation tasks
(see the usage example below).

2.2 Validation, Optimization and Parallel Execution

Around the data processing algorithms described above, Oger afiectidnality for large-scale
validation and optimization. The validation automates the process of constrtretinigg and test
sets, and the actual training and evaluation. Several standard validetiemas are provided (n-
fold, leave-one-out (LOO) cross-validation and others), but thisceacustomized (for example, if
a fixed training and test set is defined).

Oger provides an Optimizer class. This class allows both exploration oftaircgrarame-
ter space and optimization of a vector of parameters according to a logofufwhich can be
user-defined, or one of the several provided by Oger). The optimizésielf can be done using
grid-searching, or using an interface to any of the algorithmscimpy. opti nm ze or the Python
CMA-ES module (Hansen, 2006). Finally, a variety of error measurdsutlity classes such as a
ConfusionMatrix are included.

Oger allows two modes of parallel execution, both local (multi-threaded or pratess) and
on a computing grid. The first mode is inherited from MDP, where the trainimjexecution of
a flow on a data set consisting of different chunks can be done in ggiaittee nodes in the flow
support this). The second mode is the parallel evaluation of parametds fairgrid-searching
and CMA-ES (thesci py. opt i m ze functions as yet do not support this). Both modes use runtime
overloading of class methods by their parallel versions, which makes tigtioa from sequential
to parallel execution very user-friendly and possible using a couple of 6heode (see the usage
example below).

3. Usage Example

As an illustrative example, we construct and train a reservoir and réaétup with output feedback
for generating the Mackey-Glass time-series. We refer to the Oger wabsitihe Oger installation
package for more usage examples.

1 from scipy import *

2 import Oger, mdp

3 signals = Oger.datasets. mackey glass(n_samples=4, sample_|en=3000)

4 res = Oger.nodes. LeakyReservoirNode(output_di m=400, reset_states=False)

5 readout = Oger.nodes. Ri dgeRegressi onNode()

6 flow = Oger.nodes. FreerunFl ow([res, readout], freerun_steps=300)

7 parameters = {res:{'input_scaling :arange(.1, 1, .1), 'bias_scaling’
arange(0, .5, .1), 'leak_rate’:arange(.1,.5,.1)}}

8 internal _params = {readout:{’ridge_param : 10. ** arange(-4, 0, .5)}}

9 opt = Oger.evaluation.Optimzer(parameters, Oger.utils.nrnse)

10 opt.schedul er = mdp. parallel.ProcessSchedul er(n_processes=None)

11 mdp. activate_extension('parallel’)

2997

VERSTRAETEN SCHRAUWEN, DIELEMAN, BRAKEL, BUTENEERS ANDPECEVSKI

12 opt.grid_search([[], signals[:-1]], flow, Oger.evaluation.|eave_one_out,
internal _params)

13 opt _flow = opt.get_optiml _flow(verbose=True)

14 opt _flow. train([[], signals[:-1]])

15y = opt_flow. execute(signals[-1][0])

On line 3, the data set is generated, which in this case consists of fourelt&lkss time-
series generated from different initial states. In the next two lines, eav@is node and a linear
readout node trained with ridge regression are created. Line 6 coatedethese nodes into a
FreerunFlow, which provides one-step ahead prediction during traamdgeeeds the output back
to the input of the flow during execution. Lines 7 and 8 define a searatedpa the reservoir
parameters and the regularization constant of the readout node whiptinszed separately for
each set of reservoir parameters. On line 9 an Optimizer object is instantiaietd will optimize
these parameters using the provided error measure (normalized rootsoueamed error). Lines
10 and 11 ensure that the optimization is done in parallel, using separagsgesc On line 12,
the actual optimization is performed using LOO cross-validation on the fourgeres, while for
each fold the regularization constant for the ridge regression is optimgadd asing LOO cross-
validation. This can take a few minutes. On line 13 the Optimizer is queried to réteimptimal
flow, which is subsequently trained using all the training signals and appleduaseen test signal
in lines 14 and 15 respectively.

Acknowledgments

This work was funded by the European Commission FP7 project ORGARRZ31267). De-
jan Pecevski has been additionally partially supported by the Europeian project FP7-506778
(PASCAL?2).

References

A.P. Davison, D. Biaderle, J. Eppler, J. Kremkow, E. Muller, D. Pecevski, L. Perrinad, RrYger.
Pynn: A common interface for neuronal network simulatdfsontiers in Neuroinformatics, 2,
2008.

N. Hansen. The CMA evolution strategy: A comparing review.Tdwards a New Evolutionary
Computation, pages 75-102. Springer, 2006.

D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt.i&ing comparison of reservoir
computing methodsNeural Networks, 20:391-403, 2007.

T. Zito, N. Wilbert, L. Wiskott, and P. Berkes. Modular toolkit for data peesing (mdp): A python
data processing frameworkrontiers in Neuroinformatics, 2, 2008.

2998

