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Abstract

We describe aR package namelluge which provides easy-to-use functions for estimating high
dimensional undirected graphs from data. This packagesimg@hts recent results in the literature,
including Friedman et al. (2007), Liu et al. (2009, 2012) andet al. (2010). Compared with the
existing graph estimation packagkasso, thehuge package provides extra features: (1) instead
of usingFortan, it is written in C, which makes the code more portable and easier to modify; (2)
besides fitting Gaussian graphical models, it also providestions for fitting high dimensional
semiparametric Gaussian copula models; (3) more functikeslata-dependent model selection,
data generation and graph visualization; (4) a minor cgyarece problem of the graphical lasso
algorithm is corrected; (5) the package allows the user pdyapoth lossless and lossy screening
rules to scale up large-scale problems, making a tradedfidemn computational and statistical
efficiency.

Keywords: high-dimensional undirected graph estimation, glassgehsemiparametric graph
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1. Overview

Undirected graphs is a natural approach to describe the conditiongleéindence among many
variables. Each node of the graph represents a single variable amtfj@detween two variables
implies that they are conditional independent given all other variablethelpast decade, signif-
icant progress has been made on designing efficient algorithms to ledineaiad graphs from
high-dimensional observational data sets. Most of these methods & dragither the penalized
maximume-likelihood estimation (Friedman et al., 2007) or penalized regressioroasefhiein-
shausen andihimann, 2006). Existing packages inclydasso, Covpat h andCLI ME. In particu-
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lar, thegl asso package has been widely adopted by statisticians and computer scientisistdue
friendly user-inference and efficiency.

In this papet we describe a newly develop&package nameluge (High-dimensional Undi-
rected Graph Estimation) codeddn The package includes a wide range of functional modules and
addresses some drawbacks of the graphical lasso algorithm. To gairscatability, the package
supports two modes of screening, lossless (Witten et al., 2011) and loegngg. When using
lossy screening, the user can select the desired screening levelgaupctr high-dimensional
problems, but this introduces some estimation bias.

2. Software Design and I mplementation

The packagéiuge aims to provide a general framework for high-dimensional undirecteghgra
estimation. The package includes Six functional modules (M1-M6) facilitatexibfe pipeline for
analysis (Figure 1).

M1. Data Generator: The functionhuge. generator() can simulate multivariate Gaussian
data with different undirected graphs, including hub, cluster, baraledoee, and Erdk-Renyi
random graphs. The sparsity level of the obtained graph and sigmalige-ratio can also be set up
by users.

M2. Semiparametric Transformation: The functionhuge. npn() implements the nonparanor-
mal method (Liu et al., 2009, 2012) for estimating a semiparametric Gaussiatacopdel.The
nonparanormal family extends the Gaussian distribution by marginally tramisig the variables.
Computationally, the nonparanormal transformation only requires onglpasgh the data matrix.

M3. Graph Screening: Thescr argument in the main functidruge() controls the use of large-
scale correlation screening before graph estimation. The function gappe lossless screening
(Witten et al., 2011) and the lossy screening. Such screening pr@sedan greatly reduce the
computational cost and achieve equal or even better estimation by redbeingriance at the
expense of increased bias.

I No
Nonparanormal scr Graph estimation with the Model Visualization
‘ lossless screening rule selection

M1 M2 M3 Yes M5 M6
Graph estimation with the
lossy screening rule

M4

Figure 1:The graph estimation pipeline.

M4. Graph Estimation: Similar to thegl asso package, theet hod argument in théwuge()
function supports two estimation methods: (i) the neighborhood pursuititlgo(Meinshausen
and Bihlmann, 2006) and (ii) the graphical lasso algorithm (Friedman et al.,)200/& apply
the coordinate descent with active set and covariance update, assvaehex tricks suggested in
Friedman et al. (2010). We modified the warm start trick to address thetj@tinergence problem
of the graphical lasso algorithm (Mazumder and Hastie, 2011). Theisadwo memory-optimized
using the sparse matrix data structure when estimating and storing full iggtitar paths for large

1. This paper is only a summary of the packagge. For more details please refer to the online vignette.
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data sets. we also provide a complementary graph estimation method basedshwltling the
sample correlation matrix, which is computationally efficient and widely applieddmédical
research.

M5. Model Selection: The functionhuge. sel ect () provides two regularization parameter
selection methods: the stability approach for regularization selection (StARSBgt al., 2010);
and rotation information criterion (RIC). We also provide a likelihood-basegnded Bayesian
information criterion.

M6. Graph Visualization: The plotting functiongiuge. pl ot () andpl ot () provide visualiza-
tions of the simulated data sets, estimated graphs and paths. The implementatsedi®tdhe
i gr aph package.

3. User Interface by Example

We illustrate the user interface by analyzing a stock market data which webtae to thehuge
package. We acquired closing prices from all stocks in the S&P 500 ftreatlays that the market
was open between Jan 1, 2003 and Jan 1, 2008. This gave us 1298sstonthe 452 stocks that
remained in the S&P 500 during the entire time period.

> |ibrary(huge)

> dat a( st ockdat a) # Load the data
> x = | og(stockdata$dat a[ 2: 1258, ]/ st ockdat a$dat a[ 1: 1257,]) # Preprocessing
> Xx.npn = huge. npn(x, npn.func="truncation") # Nonpar anor nal

> out.npn = huge(x.npn, nethod = "gl asso", nlanbda=40,|anbda. nin.ratio = 0.4)

Here the data have been transformed by calculating the log-ratio of thegpriceet to price at
timet — 1. The nonparanormal transformation is applied to the data, and a gragthmated using
the graphical lasso (the default is the Meinshaus&hhkBann estimator). The program automati-
cally sets up a sequence of 40 regularization parameters and estimatespti@ath. The lossless
screening method is applied by default.

4. Perfor mance Benchmark

To comparehuge with gl asso (ver 1.4), we consider four scenarios with varying sample sizes
and dimensionality, as shown in Table 1. We simulate the data from a normal distribution with
the Erdds-Renyi random graph structure (sparsity 1%). Timings (in seconds)ampuated over

10 values of the corresponding regularization parameter, and the caregilarization parameters

is chosen so that each method produced approximately the same numberzdracestimates.
The convergence threshold of bafhasso andhuge is chosen to be 1¢. For these simulations,
CLI ME (ver 1.0) andCovpat h (ver 0.2) were unable to obtain timing results due to their numerical
instability.

For the neighborhood pursuit, we can see blige achieves the best performance. In particular,
when the lossy screening rule is appliedge automatically reduces each individual lasso problem
from the original dimensiom to the sample size, therefore a better efficiency can be achieved
whend is much larger tham. Based on our experiments, the speed up due to the lossy screening
rule can be up to more than 500%.
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hod d =1000 d =2000 d = 3000 d =4000
Metho n= 100 n= 150 n = 200 n = 300
huge-neighborhood pursuit (lossy) 3.246 (0.147)| 13.47 (0.665)| 35.87 (0.97)| 247.2 (14.26)
huge-neighborhood pursuit 4.240 (0.288)| 42.41 (2.338)| 147.9 (4.102)| 357.8 (28.00)

gl asso-neighborhood pursuit
huge-graphical lasso (lossy)
huge-graphical lasso (lossless)
gl asso-graphical lasso

37.23 (0.516)
39.61 (2.391)
47.86 (3.583)
131.9 (5.816)

296.9 (4.533)
289.9 (17.54)
328.2 (30.09)
1054 (47.52)

850.7 (8.180)
905.6 (25.84)
1276 (43.61)
3463 (107.6)

3095 (150.5)
2370 (168.9)
2758 (326.2)
8041 (316.9)

Table 1: Experimental Results

Unlike the neighborhood pursuit, the graphical lasso estimates the inveragance matrix.
The screening rule (Witten et al., 2011) greatly reduces the computatiomaedpy the graphical
lasso algorithm and gains an extra performance boost.
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