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Abstract

The cluster assumption had a significant impact on the reasoning behind semi-supervised classi-

fication methods in graph-based learning. The literature includes numerous applications where

harmonic functions provided estimates that conformed to data satisfying this well-known assump-

tion, but the relationship between this assumption and harmonic functions is not as well-understood

theoretically. We investigate these matters from the perspective of supervised kernel classification

and provide concrete answers to two fundamental questions. (i) Under what conditions do semi-

supervised harmonic approaches satisfy this assumption? (ii) If such an assumption is satisfied then

why precisely would an observation sacrifice its own supervised estimate in favor of the cluster?

First, a harmonic function is guaranteed to assign labels to data in harmony with the cluster as-

sumption if a specific condition on the boundary of the harmonic function is satisfied. Second, it

is shown that any harmonic function estimate within the interior is a probability weighted average

of supervised estimates, where the weight is focused on supervised kernel estimates near labeled

cases. We demonstrate that the uniqueness criterion for harmonic estimators is sensitive when the

graph is sparse or the size of the boundary is relatively small. This sets the stage for a third con-

tribution, a new regularized joint harmonic function for semi-supervised learning based on a joint

optimization criterion. Mathematical properties of this estimator, such as its uniqueness even when

the graph is sparse or the size of the boundary is relatively small, are proven. A main selling point

is its ability to operate in circumstances where the cluster assumption may not be fully satisfied

on real data by compromising between the purely harmonic and purely supervised estimators. The

competitive stature of the new regularized joint harmonic approach is established.

Keywords: harmonic function, joint training, cluster assumption, semi-supervised learning

1. Introduction

The problem under consideration is semi-supervised learning in the graph-based setting. Observa-

tions are vertices on a graph, and edges provide similarity associations between vertices. Classifi-

cation is required if vertices are labeled and the goal is to design a function to predict the labels.

Local classifiers like k-NN or more generally kernel regression are ideal in the graph-based set-

ting since they can operate directly on the similarity matrix and do not require X-data support

(Chapelle et al., 2006b; Lafferty and Wasserman, 2007). On the other hand, methods of predic-

tion for observations without labels are arguably more complicated and less understood than those

from classical supervised settings. A vertex corresponding to an observation without a label pro-

vides connections through it which are meaningful to the data structure, and unlabeled data increase
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performance if used during training (Culp et al., 2009). The need to extend locally smooth func-

tions into this graph-based setting is an important problem (Chapelle et al., 2006b; Abney, 2008).

Applications of graph-based learning include text classification (McCallum et al., 2000), protein

interaction (Yamanishi et al., 2004; Kui et al., 2002), chemogenomics in pharmaceuticals (Bredel

and Jacoby, 2004), biology and chemistry networks (Lundblad, 2004; Culp et al., 2009), and web

data/email (Koprinska et al., 2007). There are also applications where the edges of the graph were

constructed using a similarity function generated from feature data (Carreira-Perpiñán and Zemel,

2005; Chapelle et al., 2006b; Jebara et al., 2009).

Harmonic functions provide a natural solution to the problem of extending local classifiers into

semi-supervised learning. The definition of a harmonic function depends on two key terms, that

is, the boundary (observed labels) and the interior (unlabeled). The boundary choice defines the

harmonic function. With a given function estimate on the boundary, the harmonic solution achieves

an equilibrium on the interior. Each interior case is an average of its and its neighbors’ estimates,

so an estimate for an interior observation does not change if averaged a second time. Currently, the

authors are aware of only one harmonic approach in the semi-supervised literature. This estimator,

referred to as the clamped harmonic estimator, sets the boundary equal to its observed labeling.

The clamped harmonic estimator in semi-supervised learning was studied and applied to energy op-

timization (Chapelle et al., 2006b; Abney, 2008), graph-based smoothing (Culp et al., 2009), Gaus-

sian processes (Zhu, 2008), iterative algorithms with large data (Subramanya and Bilmes, 2011),

stability methods for transductive learning (Cortes et al., 2008), and other areas (Zhu and Goldberg,

2009).

The clamped harmonic estimator has known shortcomings. First, its performance degradation

due to sensitivity to noise in either the support or labeling is well-known. Also, there is no way

to estimate a residual, which renders the smoothing technique impossible to use for any inferential

analysis, outlier detection, or descriptive analysis. Recent work suggests that the clamped harmonic

solution also suffers in circumstances where the size of the boundary is much smaller than that of

the interior. The main argument is that the harmonic solution converges to the zero function with

spikes within the boundary as the size of the interior grows (Nadler et al., 2009; von Luxburg et al.,

2010).

Applications where semi-supervised learning has solid performance as well as an abstraction of

such applications into a set of mathematical assumptions is of recent interest (Lafferty and Wasser-

man, 2007; Azizyan et al., 2013). It is fairly well understood in semi-supervised learning that if two

points x1, x2 are close in the intrinsic geometry of the probability distribution of X then learning can

occur if the conditional probability distributions of y | x1 and y | x2 are similar. Such a characteriza-

tion is commonly assumed in semi-supervised learning and often referred to as the cluster assump-

tion (Chapelle et al., 2006b). Optimization problems involving minimax error bounds under the

cluster and other similar smoothness assumptions is of recent interest (Rigollet, 2007; Lafferty and

Wasserman, 2007; Singh et al., 2008). Lafferty and Wasserman (2007) further note the importance

of separating semi-supervised smoothness assumptions from other seemingly similar assumptions

in manifold learning (Hein et al., 2005; Aswani et al., 2010). The clamped harmonic estimator has

been empirically validated to satisfy the cluster assumption, but this, to our knowledge, has not been

established rigorously. A key contribution of this work is a condition on the boundary for when any

harmonic function is guaranteed to satisfy the cluster assumption.

How semi-supervised approaches compare to supervised alternatives is a looming and important

question. In the case of harmonic functions, we are primarily interested in articulating how these
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approaches compare to supervised local smoothing classifiers. A significant contribution of this

work is extensive analysis and development of harmonic functions in this capacity. In this regard,

we show that any harmonic function, no matter how the boundary estimator is generated, can be de-

composed as the reweighted average of soft local supervised estimates consisting only of unlabeled

predictions. Specifically, the estimate for an interior observation is a weighted average of all the

interior local supervised estimates. This work further establishes that interior observations nearest

to the boundary carry the weight in the prediction of interior cases.

Harmonic functions and supervised local estimators each use two types of information that de-

scribe relationships between the boundary states (labeled) and the interior states (unlabeled). The

first type, which we term labeled adjacent, involves direct kernel weighted distances from an unla-

beled observation to each labeled observation/case. Local supervised approaches essentially form

a weighted average of this labeled adjacent information even when an unlabeled case has small ad-

jacency to each labeled case. The second type of information, which we term labeled connective,

exploits interconnectivity within unlabeled cases to find other unlabeled cases that have stronger

adjacency to labeled cases. Harmonic functions propagate the local supervised estimates from un-

labeled cases with strong adjacency to some labeled cases to the other unlabeled cases. In short,

harmonic functions in semi-supervised learning are purely labeled connective, while local super-

vised approaches are purely labeled adjacent.

Another key contribution of this work is a new harmonic function approach based off of a joint

optimization criterion. The novel use of the joint optimization criterion allows for regularization

within semi-supervised learning. Settings of a single regularization parameter can reproduce the

extremes, that is, a labeled connective harmonic function estimator or the labeled adjacent soft local

supervised estimator, but can also be tuned to any one of a continuum of semi-supervised estimators

to compromise between the extremes. It is the only estimator to our knowledge that has been shown

to balance between supervised learning and semi-supervised learning in this manner. The benefits

of regularization in joint harmonic estimation are empirically assessed with strong results.

The paper is organized as follows. After a brief description of notational conventions in Section

2, the problem is formulated in Section 3. Care is taken to succinctly describe semi-supervised

block matrix results in terms of their supervised counterparts, so the stage is set for our main contri-

butions. General results on harmonic functions with regard to the cluster assumption and supervised

learning are in Section 4. Section 5 includes the definition of the new regularized joint harmonic

function approach and characterization of its mathematical properties. Sections 6 and 7 include

empirical tests of the new approach. Section 8 has concluding remarks, and a proof of each Lemma,

Proposition, and Theorem is in Appendix A.

2. Notational Conventions

It is common to let Ai j represent the entry of a matrix A in row i and column j. A generalization of

this Ai j notation that is particularly useful in semi-supervised learning is to replace i and j with a

list of rows and columns to represent the corresponding sub matrix, so if matrix A is n×n and sets

L = {1,2, . . . , l} and U = {l +1, l +2, . . . ,n}, then

A=

(
ALL ALU

AUL AUU

)
. (1)
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The usefulness of Partitioning (1) will become clear when attention turns back to discussion of the

sets of labeled L and unlabeled U cases in the semi-supervised learning context of Section 3. Denote

A∗
LL =ALL −ALUA

−1
UUAUL (AUU Block Schur Complement of A). (2)

Note the important distinction between ALL in Display (1) and A∗
LL in Display (2). Schur comple-

ments and some of their most basic properties given in Remark 1 play a key role in the methods to

come as well as in the Appendix A proofs. Table 1 summarizes all of our matrix algebra conventions

for future reference.

Notation Definition

N (A) Null space of matrix A.

A≥ 0 Matrix A with all nonnegative entries (> for positive).

A� 0 Positive semi-definite symmetric matrix A (≻ for positive definite).

ρ(i)(A) ith largest modulus of the eigenvalues of a square matrix A.

ρ(A) Spectral radius of a square matrix A, that is, ρ(A) = ρ(1)(A).
ALL Upper-left sub matrix in Partitioning (1) of a square matrix A.

A∗
LL AUU Block Schur Complement (2) of matrix A with Partitioning (1).

Table 1: List of notational conventions.

Remark 1 Based on the Partitioning (1), it is well known that if AUU is invertible then A is in-

vertible if and only if A∗
LL is invertible. In the case that A � 0 (i.e., A is symmetric and positive

semi-definite), this result becomes if AUU ≻ 0 then A≻ 0 if and only if A∗
LL ≻ 0.

3. Problem Set-Up

In graph-based semi-supervised learning, partially labeled data are in the form of a weighted graph.

Vertices {1, · · · ,n} represent the n observations, and edges the values of a correspondence between

each pair of observations. The n× n symmetric matrix W with Wi j ≥ 0 is the adjacency matrix

of the weighted graph ({1, · · · ,n},W ) or graph W for brevity. For this particular weighted graph,

additionally assume Wi j ≤ 1 and Wii = 1. In some applications, W must be constructed from an

n× p data matrix X , for example,

Wi j = Kλ(xi,x j),

where kernel function Kλ(xi,x j) is applied to each pair of rows of X to form W . Experimental

Sections 6 and 7 include examples of each type, that is, W observed directly and W generated

from X . For now, simply assume that the symmetric matrix W is in hand.

The training response is

Y (YU) =

(
YL

YU

)
∈ IRn, where YU ∈ IR|U |, (3)

and the data partition into two observed subsets {1, · · · ,n} = L ∪U . Subset L is the set of all

boundary states, whereas U is that for interior states. The subsets are distinguished by the labeling
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function. The boundary states have an observed labeling vector YL, while the labelings for the

interior states go unobserved. We assert the missing at random assumption and assume that L was

initially a random subset of {1, · · · ,n}, but for ease of notation, the data were subsequently sorted so

that boundary observations are first in the indexing. The vector of latent variables YU is comprised

of the unknown labelings for the interior. Our joint optimization based method defined later in

Section 5 involves the training response. The solution to this joint optimization problem provides

the capacity for transductive or semi-supervised learning as will be illustrated later in Section 7.

Next, general graph theory results are discussed and applied to graph W . In particular, Lapla-

cian and stochastic smoother matrices corresponding to graph W are defined, and the relationships

between these three matrices are discussed briefly. It is fundamental to think about the general idea

being applied to graph W because later they will be applied to a particular graph with vertex set L

in each of the Sections 3.1-3.3. These three graphs on L to be introduced in Sections 3.1-3.3 help

one understand a semi-supervised technique through a decomposition of L to L connectivities in the

larger graph W on L∪U .

The Laplacian of W is ∆ = D−W , where D = diag(W~1) is the degree matrix of W .

Proposition 7 is a well-known result on ∆ (Belkin et al., 2006).

Proposition 7 Laplacian ∆� 0.

The square matrix S =D−1W is a stochastic smoother, that is, S ≥ 0 and S~1 =~1, so 1 is an

eigenvalue of S. Proposition 8 further establishes that ρ(S) = 1.

Proposition 8 If W � 0 then each eigenvalue of S =D−1W is an element of [0,1].

The identity ∆=D (I−S) helps demonstrate that

∆ν =~0 ⇐⇒ Sν = ν, (4)

that is, N (∆) equals the eigenspace of S corresponding to eigenvalue 1. An eigenvalue decom-

position of ∆ or S provides a way to compute the number of connected components in graph W .

One simply counts the multiplicity of eigenvalue 0 for ∆ by Remark 2 or equivalently eigenvalue 1

for S by Display (4).

The graphs in Sections 3.1-3.3 are based on partitioning the adjacency, stochastic smoother, and

Laplacian matrices of graph W by L and U . Using Section 2 notation and Display (1) in particular,

this is

W =

(
WLL WLU

WUL WUU

)
, S =

(
SLL SLU

SUL SUU

)
, ∆=

(
∆LL ∆LU

∆UL ∆UU

)
. (5)

The entries of WLL and WUU are similarities within the boundary and interior, respectively, while

WLU = W T
UL contain the similarities between boundary and interior observations. Analogous in-

terpretations extend to the other matrices partitioned in Display (5). For the diagonal degree matrix

D ≥ 0, define the |L|× |L| diagonal matrices D̃LL = diag(WLL
~1)≥ 0 and D̃LU = diag(WLU

~1)≥ 0

and the |U |× |U | diagonal matrices D̃UU = diag(WUU
~1)≥ 0 and D̃UL = diag(WUL

~1)≥ 0, so that

D =

(
DLL 000

000 DUU

)
=

(
D̃LL +D̃LU 000

000 D̃UL +D̃UU

)
.

Next, supervised, offset, and semi-supervised weighted graphs are studied in Sections 3.1-3.3 to

assist in a deep understanding of a semi-supervised boundary estimation method.
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Remark 2 Vertices i and j are adjacent in graph W if Wi j > 0, and are connected if there exists

a sequence of vertices starting with i and ending with j such that consecutive vertices throughout

the sequence are adjacent. The concept of connectedness partitions the vertices into some number

of connected components, and each vertex in a connected component is connected to any other

vertex in that component. Basic structure of a weighted graph includes the number of connected

components and whether or not any given pair of vertices is in the same connected component.

Both of these properties are encoded in particular eigenvectors of the graph’s Laplacian matrix and

stochastic smoother. Just take the binary vector in IRn that indicates observations in a connected

component of W . The set of all such binary vectors over all connected components is an orthog-

onal basis for N (∆), so the dimension of N (∆) equals the number of connected components.

Furthermore, it is obvious that the vectors in this basis sum to~1 ∈ N (∆).

3.1 The Supervised Case

The supervised local kernel smoother at any point xi is

f̃ (i) =
∑ j∈L Kλ(xi,x j)y j

∑ j∈L Kλ(xi,x j)
≈ E[Yi | Xi = xi]

and is often called a Nadaraya-Watson kernel regression estimator (Hastie et al., 2001, Chapter 6).

When applied to L∪U , this estimator is

f̃ =

(
f̃L

f̃U

)
=

(
S̃LL

S̃UL

)
YL =

(
D̃−1

LL DLLSLL

D̃−1
ULDUUSUL

)
YL, (6)

where S̃LL = D̃−1
LL WLL and S̃UL = D̃−1

ULWUL.

The supervised boundary estimator f̃L = S̃LLYL in Display (6) is based on the supervised graph

(L,WLL). The supervised graph is the subgraph of W on L and has

∆̃LL = D̃LL −WLL =∆LL −DLL (Supervised Laplacian),

S̃LL = D̃−1
LL WLL (Supervised Stochastic Smoother).

The supervised smoothed value f̃i for i ∈ L is the probability weighted average of YL with weights

from the ith row of S̃LL, so f̃i is based on relative strength of adjacencies within L, which might

be depicted by L → L. The supervised graph incorporates neither non-adjacent vertices nor U .

Estimator f̃L is also the solution to

min
fL

(YL − fL)
TWLL(YL − fL)+ f T

L ∆̃LL fL.

Supervised predictions of the interior from Display (6) are f̃U = S̃ULYL. If D̃ULii
= 0 for some

i ∈U then this supervised estimator is not defined for interior observation i, so this estimator exists

for all i ∈U if and only if D̃UL ≻ 0, that is,

νTD̃ULν > 0 for any non-zero ν ∈ IR|U |. (7)

Condition (7) holds if and only if each unlabeled observation is adjacent to a labeled observation.

This adjacency condition is a stringent requirement, especially when the proportion of labeled obser-

vations |L|/n is small, and one might correctly guess that such a rigid requirement is not necessary

if a semi-supervised harmonic function approach from Section 4 is taken.
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3.2 The Offset Case

In this section, three |L|×|L| matrices WLUL, ∆LUL, and SLUL are defined, and it is shown that they

correspond to the adjacency, Laplacian, and stochastic smoother matrices of a weighted graph on

vertex set L, which we call the offset graph. These matrices are

WLUL = ∆LU∆
−1
UU∆UL (Offset Graph with Vertex Set L),

∆LUL = D̃LU −∆LU∆
−1
UU∆UL (Offset Laplacian),

SLUL = D̃−1
LU∆LU∆

−1
UU∆UL (Offset Stochastic Smoother).

Recall the necessary and sufficient adjacency condition in Display (7) for the uniqueness of the

supervised estimator for all n observations. An intuitive condition for the uniqueness of a semi-

supervised estimator for all n observations is that each connected component of W includes an

observation from L, that is,

νTD̃ULν > 0 for any non-zero ν ∈ N
(
D̃UU −WUU

)
. (8)

Apply Remark 2 to subgraph (U,WUU) to justify this practical interpretation of Condition (8). The

connectedness to L condition in Display (8) is less restrictive than the adjacency to L condition in

Display (7), and Condition (8) implies that W has at most |L| connected components. Proposition

10 establishes that Condition (8) is equivalent to the existence of ∆−1
UU , a matrix involved in the

definition of the offset graph.

Proposition 10 If W � 0 then the following conditions are equivalent.

(a) ∆UU ≻ 0.

(b) ρ(SUU)< 1.

(c) νTD̃ULν > 0 for any non-zero ν ∈ N (D̃UU −WUU).

Condition (b) from Proposition 10 guarantees the convergence of the geometric matrix series

with terms Sℓ
UU =OD

ℓ
O

−1, where ODO
−1 is the eigendecomposition of SUU , so

D−1
LL WLUL =D−1

LL ∆LU∆
−1
UU∆UL = SLU (I−SUU)

−1
SUL =

∞

∑
ℓ=0

SLUS
ℓ
UUSUL ≥ 0, (9)

where the inequality holds because SLUS
ℓ
UUSUL ≥ 0 for each ℓ = 0,1, . . .. Thus, WLUL ≥ 0 is a

valid weighted graph on L, since it’s symmetric by definition. By the Laplacian property ∆~1 =~0
and Partitioning (5), ∆UL

~1 = −∆UU
~1 and ∆LU

~1 = −D̃LU
~1, so the degree matrix of WLUL is

diag(WLUL
~1) = D̃LU . Thus, the Laplacian and stochastic smoother of offset graph WLUL are also

established as matrices ∆LUL and SLUL defined earlier.

The geometric matrix series in Display (9) provides a clear interpretation of each adjacency

in offset graph WLUL. A pair of labeled observations is adjacent in WLUL if and only if they are

connected in W through a sequence of unlabeled observations; this type of connectedness might

be depicted by L →U ↔U → L. The offset boundary estimator is (SLULYL)i for i ∈ L, that is, the

probability weighted average of YL with weights from the ith row of SLUL. The probability weight

on YL j
for j ∈ L is SLULi j

, and this weight will be relatively large if i has “strong” adjacencies to

vertices in a “strongly adjacent” U network that is “strongly adjacent” to j. These are the only types

of connectivity that matter in the offset case. For example, the adjacency between i and j simply

does not factor into the offset based estimator.

3727



CULP AND RYAN

3.3 The Semi-Supervised Case

The semi-supervised adjacency matrix is simply the sum of those from the supervised and offset

cases, that is,

WLL +WLUL (Semi-Supervised Graph with Vertex Set L).

The semi-supervised Laplacian is thus the sum of positive semi-definite Laplacians

∆
⋆
LL =

Supervised
Laplacian︷ ︸︸ ︷

D̃LL −WLL+

Offset Laplacian︷ ︸︸ ︷
D̃LU −∆LU∆

−1
UU∆UL (Semi-Supervised Laplacian) (10)

=∆LL −∆LU∆
−1
UU∆UL (∆UU Block Schur Complement of ∆).

Refer to Section 2 and Display (2) for Schur complements.

The semi-supervised stochastic smoother is MLL = D−1
LL (WLL +WLUL). For more insight,

first define the diagonal matrix QL =D−1
LL D̃LL ≻ 0, which stores the proportion of each case’s total

similarities over all cases L∪U that is within L, that is,

QLii
=

∑ j∈LWi j

∑ j∈L∪U Wi j

.

Matrix QL provides the case-by-case probability weighted average compromise between the super-

vised and offset stochastic smoothers that is the semi-supervised stochastic smoother

MLL =QLS̃LL +(I−QL)SLUL (Semi-Supervised Stochastic Smoother).

More factorization produces yet another equivalent form

MLL = SLL +SLU (I−SUU)
−1

SUL (SUU Stochastic Complement of S). (11)

Adjacencies accumulate in semi-supervised graph WLL +∆LU∆
−1
UU∆UL due to exactly two

types of connectedness among the labeled observations in graph W : (i) supervised L → L and

(ii) offset L → U ↔ U → L. The prediction for a case i ∈ L puts more weight on the supervised

prediction for large QLii
and on the offset prediction for large 1−QLii

, so MLL is always a practical

probability weighted average of the estimators based on graphs WLL and WLUL. The connectedness

of labeled vertices in the semi-supervised graph is the same as that in the full graph W , but types

of connectedness outside (i) and (ii) don’t get incorporated into semi-supervised predictions (see

Remark 3).

The decomposition of the semi-supervised graph into supervised and offset graphs is displayed

concisely in Figure 1. While it is not too hard to compute the Laplacian or stochastic smoother

from the weighted graph, no other offset or semi-supervised representation can be fully recovered

from just the Laplacian or just the smoother. However, it is possible to recover W from S because

Wii = 1 is known.

Additional insight into the inter-workings of the semi-supervised smoother is gleaned through

analytical eigenvalue results. First, ∆⋆
LL =DLL(I−MLL), so

∆
⋆
LLν =~0 ⇐⇒ MLLν = ν
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Labeled Structure Decomposition

S̃LL

WLL

∆̃LL

Supervised

L → L

SLUL

WLUL

∆LUL

Offset

L →U ↔U → L

MLL

WLL +WLUL

∆
⋆
LL

Semi-Supervised

{L → L}∪{L →U ↔U → L}

Figure 1: Matrix representations of weighted graphs each with vertex set L: adjacency (top),

stochastic smoother (bottom left), and Laplacian (bottom right). Each semi-supervised

labeled representation is a linear combination of the corresponding supervised and offset

representations. Harpoons indicate that the representation after the barb can be computed

from that on the other end.

provides a second example of the general relationship between a smoother and its Laplacian (refer-

ence Display (4) for that between ∆ and S). To analytically break down N (∆⋆
LL) (and hence the

eigenspace of MLL corresponding to eigenvalue 1), first recall the decomposition of Laplacian ∆
⋆
LL

in Equation (10) as the sum of positive semi-definite Laplacians. Thus,

N (∆⋆
LL) = N

(
∆̃LL

)
∩N (∆LUL)⊆ IR|L|.

Certainly~1 ∈ N (∆⋆
LL), and a particular orthogonal basis of binary vectors for N (∆⋆

LL) is given by

Remark 2. Each basis vector indicates vertices in a connected component of the semi-supervised

graph, and so they partition L and sum to~1. Similarly, partitions of L corresponding to the connected

components of the supervised and offset graphs correspond to orthogonal bases of binary vectors for

N (∆̃LL) and N (∆LUL). The operation of intersecting N (∆̃LL) and N (∆LUL) can never increase

the dimension of the resulting N (∆⋆
LL) and is equivalent to increasing connectivity by producing the

coarsest possible partition of L that can be made by both partitions (of L corresponding to N (∆̃LL)
and N (∆LUL)) via unions of their respective subsets.

Supervised graph WLL is a subgraph of W . They have the same adjacencies in L, but WLL can

only reduce connectivity in L relative to that in W . The addition of the offset WLUL to WLL achieves

the same level of connectedness in L as W , but more importantly introduces offset adjacencies in

the semi-supervised graph not found in the supervised graph. It is the adjacencies in the semi-

supervised graph that determine non-zero smoother weights (see Remark 3). In spite of this, the

connectedness structure of the semi-supervised graph is still important so that one understands the

smoother properties via its eigenvalue decomposition. If a condition from Proposition 10 holds,

then each connected component of W includes a vertex from L. In this case, the dimension of

N (∆⋆
LL) ⊆ IR|L| equals the dimension of N (∆) ⊆ IR|L∪U |. Intuitively, we view MLL as a labeled

stochastic smoother with respect to the observed response YL, while S is a stochastic smoother with

respect to the training response Y (YU).
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Remark 3 Semi-supervised graph WLL +WLUL on L keeps the meaningful connectedness struc-

ture of the full graph W on L ∪U. A pair of labeled observations are in the same connected

component of one of these graphs if and only if the same is true in the other graph. This follows

because adjacent boundary vertices in WLL +WLUL are connected in W via either a sequence of

labeled vertices (supervised) or a sequence of unlabeled vertices (offset), and sequences of these

two types of connectivities in W can build any type connectivity that exists in W from an i ∈ L to

j ∈ L. It follows that

ν =

(
νL

νU

)
∈ N (∆)⊆ IR|L∪U | =⇒ νL ∈ N (∆⋆

LL)⊆ IR|L| (12)

(refer to Remark 2).

Let i ∈ L and j ∈ L. Probability weight MLLi j
is that for YL j

in the semi-supervised smoothed

value for YLi
. It should come as no surprise that a sufficient condition for MLLi j

= 0 is that boundary

vertices i and j are not in the same connect component of W , but this condition is not necessary.

The necessary and sufficient condition for MLLi j
> 0 is that i and j are adjacent in at least one

graph WLL or WLUL. The hypothetical situation where i and j are in the same connect component

of W and MLLi j
= 0 is possible if boundary vertices i and j are connected in the full graph W but

not through a pure sequence of all boundary (or of all interior) vertices.

4. Harmonic Functions in Semi-Supervised Learning

Harmonic functions form the basis for the connection between electrical networks and random

walks (Doyle and Snell, 1984). The use of harmonic estimation in semi-supervised learning is

discussed extensively in its relation to random walks, electrical networks, and energy optimization

(Zhu et al., 2003).

A function h : V → IR is harmonic with respect to a stochastic matrix S if

fi = ∑
ℓ∈L∪U

Siℓ fℓ for each i ∈U, (13)

where fi = h(i) (Zhu et al., 2003; Abney, 2008). In matrix form, the implication of Equation (13)

on a resulting harmonic estimator f ∈ IRn is

S f =

(
SLL fL +SLU fU
SUL fL +SUU fU

)
=

(
(S f )L

fU

)
. (14)

In the case of a harmonic estimator in Display (14), it follows by Display (12) that (S f )L = fL if

and only if fL ∈ N (∆⋆
LL). In other words, S f = f holds for a harmonic estimator f if and only if

fL is constant within the connected components of W . This precise concept of when S f = f is in

tandem with the practical application of a judiciously chosen harmonic estimator under the cluster

assumption studied further in Section 4.1.

A question not addressed in the above discussion is the existence and uniqueness of a harmonic

estimator f . This mathematical matter is solved in two cases ρ(SUU) < 1 and ρ(SUU) = 1, which

are collectively exhaustive by Lemma 9 in Appendix A. First, consider the case of ρ(SUU)< 1 (or

any other equivalent condition from Proposition 10), so that (I−SUU)
−1

exists. In this case, the

unique estimator for the interior fU = (I−SUU)
−1

SUL fL is a linear transformation of the boundary
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estimate. If one uses this unique solution for the interior as well as the stochastic complement

representation of MLL from Equation (11), then Equation (14) simplifies to

S f =

(
(S f )L

fU

)
=

(
MLL

(I−SUU)
−1

SUL

)
fL. (15)

The left of Equation (15) is an n×n times n×1 matrix multiplication, whereas the right is an n×|L|
times an |L|×1. Next, the case of ρ(SUU) = 1 implies that at least one connected component in W

contains all interior observations, that is, Condition (8) does not hold. So with given estimate fL,

a harmonic estimate fU exists, but is not unique because there is an arbitrary choice for a constant

labeling within each pure interior connected component. The assumption ρ(SUU)< 1 used through-

out most of Sections 3 and 4 avoids this arbitrary nature of harmonic estimators when ρ(SUU) = 1.

The subtlety in the case of ρ(SUU) = 1 is directly overcome by methods of regularization presented

later in Section 5.

The maximum principle states that a harmonic solution is bounded above and below by the

boundary estimate (Doyle and Snell, 1984). The uniqueness principle, which applies in the case of

ρ(SUU) < 1, states that if two harmonic functions are applied with the same boundary estimate fL

then they must produce the same interior estimate fU . One thing that is clear from each of these

principles is that a harmonic estimate fU of the interior is a function of the boundary estimate fL.

While the semi-supervised boundary estimator fL = MLLYL was thoroughly developed in Section

3, the plethora of competing boundary estimators is a focus of Section 4.1.

4.1 The Cluster Assumption and Boundary Estimation

The cluster assumption states that observations close in proximity should have similar labels. Our

main objective is to understand how this concept relates to classifiers. Let ψ be an arbitrary classifier

trained with weighted graph W and arbitrary response YL. We say that ψ is a cluster assumption

classifier if ψ is guaranteed to satisfy

ψ ∈ N (∆) and ψL = YL ⇐⇒ YL ∈ N (∆⋆
LL). (16)

Suppose the response is constant within the connected components of W . Condition (16) guar-

antees that a cluster assumption classifier classifies each interior observation with the unique label

observed within its connected component (refer to Remarks 2 and 3).

Let f be a harmonic function trained from the weighted graph W and response YL. In order for

f to also be a cluster assumption classifier, the boundary must be estimated with fL =YL for any YL ∈
N (∆⋆

LL), that is, YL ∈ N (∆⋆
LL) =⇒ S f = f and f ∈ N (∆). Harmonic functions that are cluster

assumption classifiers are also useful in circumstances when W has only one connected component.

Suppose there are weak adjacencies less than some small ε/n > 0 between clusters, and pairs within

clusters are connected by an edge path with adjacencies exceeding ε. Then decomposition W =
Wweak +Wstrong, where Wweaki j

= min{ε/n,Wi j}, produces connected components in the strong

graph that correspond to clusters. The cluster assumption holds on the strong graph. Now, for any

f ∈ N (∆strong), S f ≈ Sstrong f ∈ N (∆strong) because the smoother S is a row wise probability

weighted average of the strong and weak smoothers that puts a low weight on the weak smoother.

If fL = YL ∈ N
(
∆

⋆
LLstrong

)
such that YLi

= 1 on a connected component of Wstrong and YLi
= −1

elsewhere, then sign(S f ) ∈ N (∆strong), so the hard labels classify in accordance with the cluster
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assumption, which is consistent with the empirical evidence in the literature (Chapelle et al., 2006b;

Abney, 2008).

The simplest boundary estimate for a harmonic estimator is the clamped harmonic estimator

fL = YL (Zhu et al., 2003; Abney, 2008). The clamped harmonic estimator can be motivated as

solving

min
fL

(YL − fL)
T (YL − fL)

to obtain the boundary estimator fL = YL and then enforcing Equation (15) to define a harmonic

estimator by setting fU = (I−SUU)
−1

SUL fL.

This is not the only possible harmonic estimator because one can use any boundary estimator to

develop a harmonic estimator. For example, consider

min
f
(YL − fL)

T (WLL +WLUL)(YL − fL)+ f T
∆ f , (17)

where the loss function is based off of the semi-supervised graph developed in Section 3. The so-

lution to Optimization (17) is a harmonic function with the boundary estimate fL = MLLYL from

Section 3.3. The reason why Optimization (17) produces a harmonic function can be seen by study-

ing the optimization of a generalized labeled loss function with penalty

min
f

L(YL, fL)+η f T
∆ f , (18)

where L(YL,YL) ≤ L(YL, fL) for any fL. Since this loss function is independent of fU , the optimal

estimate for the interior for any η > 0 is

argmin
fU

f T
∆ f = (I−SUU)

−1
SUL fL,

which is harmonic. For any harmonic function f ,

f T
∆ f = f T

L ∆LL fL +2 f T
L ∆LU fU + f T

U ∆UU fU

= f T
L ∆LL fL −2 f T

L ∆LU∆
−1
UU∆UL fL + f T

L ∆LU∆
−1
UU∆UL fL

= f T
L ∆

⋆
LL fL,

so Optimization (18) produces a harmonic function with boundary solving

min
fL

L(YL, fL)+η f T
L ∆

⋆
LL fL, (19)

or equivalently

min
fL

L(YL, fL)+η f T
L ∆̃LL fL︸ ︷︷ ︸

Supervised Objective

+η f T
L ∆LUL fL︸ ︷︷ ︸
Offset

.

Furthermore, under Optimization (19) with a finite loss L(·, ·), the clamped estimate of fL = YL is

optimal for all η > 0 if and only if YL ∈ N (∆⋆
LL). In general, the clamped harmonic estimator is not

necessarily optimal among harmonic estimators.
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Cluster Simulation
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Figure 2: A “two moons” data set with |L|= 6 and |U |= 200. Label  =−1 and �= 1.

4.2 Impact of Supervised Kernel Smoothing on Harmonic Estimators

Further examination of the cluster assumption is had by comparing the supervised kernel smoother

(Section 3.1) to the semi-supervised harmonic estimator (Section 3.3). A goal is to understand

why an observation i ∈ U would sacrifice its own supervised estimate in favor of the cluster. Take

the “two moons” example in Figure 2 that includes supervised and semi-supervised boundaries

(see Remark 5). Focus on observation 38 in the downward pointing horn on right. According

to the supervised rule this observation is � with probability 1. The semi-supervised prediction

fU38
= −0.42 is  with probability 0.7, so the supervised estimate is overturned in favor of the

cluster.

Any harmonic estimator with boundary fL has the form fU = (I−SUU)
−1

SUL fL. Assume

D̃UL ≻ 0, so the supervised estimator exists (see Remark 4). Also, generalize the supervised pre-

dictions to f̃U = S̃UL fL, which we refer to as soft supervised estimates. Matrix (I−SUU)
−1

SUL is

the product of the |U |× |U | stochastic matrix (I−SUU)
−1

D−1
UUD̃UL and the |U |× |L| supervised

prediction matrix S̃UL = D̃−1
ULWUL, that is,

fU = (I−SUU)
−1

SUL fL (20)

= (I−SUU)
−1

D−1
UUD̃ULS̃UL fL

= (I−SUU)
−1

D−1
UUD̃UL f̃U . (21)

Equation (21) shows that any semi-supervised harmonic function is a probability weighted average

of the soft supervised estimators of U , that is,

fUi
= ∑

j∈U

Pi j f̃ j,

where the weights come from the stochastic matrix

P = (I−SUU)
−1

D−1
UUD̃UL. (22)
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Determining which soft supervised predictions f̃U get the larger probability weights in the semi-

supervised predictions fU makes practical sense. Such a determination is possible if one relates the

stochastic matrix P in Equation (22) to an absorbing Markov chain probability model (Doyle and

Snell, 1984).

Consider the |U |+1 state Markov chain with transition matrix

(
SUU (I−SUU)~1
~0T ~1

)
.

Boundary L is treated as an absorbing state, and the harmonic estimator of the interior is

fUi
= eT

i fU =

(
∞

∑
k=0

eT
i S

k
UUD

−1
UUD̃UL

)
f̃U with elementary vector ei. (23)

Each term in geometric series from Display (23) is the probability of a particular sequence of tran-

sitions with a given starting point in the absorbing Markov Chain probability model.

1: The first transition absorption to L starting from i ∈U is the 1×|U | row vector eT
i D

−1
UUD̃UL,

which has one non-zero entry. This non-zero, column i entry is the probability that a chain

starting at unlabeled state i is absorbed into L at the first transition. This probability is large

if unlabeled case i ∈U has more total similarity with cases in L than that with cases in U .

2: The second transition absorption to L from j ∈ U starting from i ∈ U is the row vector

eT
i SUUD

−1
UUD̃UL. Its jth column entry is the probability that a chain starting at unlabeled

state i goes to unlabeled state j at first transition and is absorbed into L at the second transi-

tion.

· · ·

k: The k’th transition absorption to L from j ∈ U starting from i ∈ U is the jth column entry

of row vector eT
i S

k−1
UU D−1

UUD̃UL. It is the probability that a chain starting at i ∈U goes k−1

transitions in U ending at some state j ∈U before being absorbed into L at the kth transition.

By Equation (23), the probability weight on soft supervised prediction j ∈ U in semi-supervised

prediction i ∈U is just the probability that a chain starting at i ∈U is absorbed from j ∈U . There-

fore, the soft supervised predictions for j ∈U that are “strongly adjacent” to observations in L carry

the majority of the weight.

Back to Figure 2 for case 38. The top ten cases, that is, 72, 129, 84, 69, 74, 71, 36, 108, 20,

and 59, carry 68% of the weight in the semi-supervised prediction of case 38, and each is close to a

labeled observation. This “top ten” provides the approximation ∑200
i=1P38, j f̃U j

≈ ∑10
i=1P38( j) f̃U( j)

=
−0.38 of the semi-supervised estimate, where ( j) is the column of P containing its jth largest value

in the 38th row. Hence the label prediction for observation 38 is already determined as −1 from this

“top 10” because the combined weight of the other 190 cases at 32% is not enough to reverse the

sign −0.38 given a ±1 labeling. Furthermore, the supervised estimate for observation 38 is 68’th in

the order with weight of only 0.002 or 0.2% in its very own semi-supervised prediction.

Remark 4 “Assumption” D̃UL ≻ 0 is not necessary. If D̃UL 6≻ 0, there exists i ∈ U such that

D̃ULii
= 0, and the supervised estimate does not exist for such i. This does not affect Equation
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(20), but is required in Factorization (21). Let D̃+
UL be the diagonal generalized inverse of D̃UL

with the same number of zero entries. If D̃+
UL is substituted in place of the nonexistent D̃−1

UL so that

nonexistent soft supervised estimators are set to f̃Ui
=
(
D̃+

ULWUL fL

)
i
= 0, Factorization (21) and

its ensuing interpretation hold.

5. Regularized Joint Harmonic Functions

Briefly consider the case when the response y is observed for all n observations. The Nadaraya-

Watson kernel estimator f = Sy results if functional (y− f )TW (y− f )+ f T
∆ f is minimized. In

the semi-supervised setting when YU is missing, we replace y with the training response Y (YU) from

Display (3) and jointly optimize for both f and YU . In particular, the regularized joint harmonic

estimator is the solution to

min
YU , f

(Y (YU)− f )TW (Y (YU)− f )+ f T
∆ f + γY T

U YU (Joint Optimization Problem). (24)

The regularized joint harmonic estimator, given in Proposition 12, includes an estimator for both YU

and f . The form of the f portion of this estimator is established as harmonic when γ = 0 in Section

5.1. Discussion of the stabilizing effect due to the additional term γY T
U YU in the context of the Joint

Optimization Problem (24) when γ > 0 is deferred until Section 5.2.

Proposition 12 Let W � 0. Assume (∆S)UU ≻ 0 when one selects γ = 0; this additional as-

sumption is not required when one selects some γ > 0. The unique solution to the Joint Harmonic

Optimization Problem (24) is (YU , f ) =
(
ŶUγ ,SY

(
ŶUγ

))
, where

ŶUγ =−((∆S)UU + γI)−1 (∆S)UL YL.

Matrix ∆S has many of the properties of ∆ from Section 3, for example, ∆~1 =~0 and ∆S~1 =~0.

Moreover, it is easy to verify that N (∆S) = N (∆). Proposition 11 establishes a result for the

positive semi-definiteness of ∆S, which is analogous to ∆ and Proposition 7.1

Proposition 11 If W � 0 then ∆S � 0.

By Proposition 11, W � 0 is a sufficient condition for the uniqueness of the joint harmonic estimator

when γ> 0, but the added condition (∆S)UU ≻ 0 from Proposition 12 is needed if γ= 0. Case γ= 0

is discussed further in Section 5.1, and case γ > 0 in Section 5.2.

Remark 5 The prediction of a novel case given its nonnegative similarities (w1, · · · ,wn) and re-

sponse estimate ŶUγ is computed from the Nadaraya-Watson kernel based function

h̆(w1, · · · ,wn) =
∑i∈L∪U wiYi

(
ŶUγ

)

∑i∈L∪U wi

,

where h̆ : IRn → IR. Finding the points in IRn that satisfy h̆(w1, · · · ,wn) = 0 is how one finds bound-

aries like those superimposed on Figure 2.

1. Proposition 11 is used to prove Proposition 12 in Appendix A, but order was reversed here for presentation.
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5.1 Joint Harmonic Estimator γ = 0

Here the joint harmonic function requires (∆S)UU ≻ 0 for its uniqueness (see Proposition 12).

Results to come later in this section show that its boundary estimator is built on the unlabeled-

unlabeled Schur complements of W and ∆ (refer to Section 2). First, Proposition 16 establishes an

equivalence between these Schur complements and (∆S)UU ≻ 0.

Proposition 16 If W � 0 then

(∆S)UU ≻ 0 ⇐⇒ WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

Conditions from Proposition 16 are necessary and sufficient for the existence of the smoother

ΓLL = (W ⋆
LL +∆

⋆
LL)

−1W ⋆
LL (Joint Harmonic Smoother), (25)

and Theorem 18 states that smoother ΓLL is that for the joint harmonic estimator.

Theorem 18 Let W � 0, and assume that ΓLL exists. The solution to the Joint Harmonic Opti-

mization Problem (24) with γ = 0 has

f =

(
fL

(I−SUU)
−1

SUL fL

)
=

(
ΓLL

(I−SUU)
−1

SULΓLL

)
YL,

so f is in-fact harmonic.

The work connecting the interior of a harmonic estimator to supervised estimators in Section 4.2

now applies to the joint harmonic estimator, that is, in particular recall fU = PS̃ULΓLLYL with

P from Display (22). One can view ΓLL as a filter between the response YL and the supervised

prediction smoother S̃UL, which provides additional robustness for misspecified responses over that

of using YL directly to form supervised predictions.

The boundary estimator is equivalently expressed as the solution to

min
fL

(YL − fL)
TW ⋆

LL(YL − fL)+ f T
L ∆

⋆
LL fL. (26)

Optimization (26) provides an interesting example of the labeled loss optimization problem from

Display (18), where W ⋆
LL allows unlabeled data to influence the weighted squared error loss func-

tional independent of fU . Hence, the harmonic result for labeled loss is still preserved, but the

loss function is not independent of the unlabeled data. This also shows how this estimator gen-

eralizes the supervised case by replacing WLL with W ⋆
LL and ∆̃LL with ∆

⋆
LL. Furthermore, since

ΓLL = I− (W ⋆
LL +∆

⋆
LL)

−1
∆

⋆
LL,

∆
⋆
LLν =~0 ⇐⇒ ΓLLν = ν,

so the joint harmonic estimator is a cluster assumption classifier (refer to Section 4.1). Proposition

19 provides further insight on the smoothing properties of ΓLL.

Proposition 19 If W � 0 and ΓLL exists then each eigenvalue of ΓLL is an element of [0,1].
The above results for smoother ΓLL are weaker than those for the stochastic semi-supervised smoother

MLL from Figure 1. In general, ΓLL is not stochastic, although it was stochastic in nearly every

numerical example we considered. In cases when ΓLL is stochastic, the stronger condition that

|eT
i fU | ≤ |eT

i YL| holds, by the maximum principle of harmonic functions (Doyle and Snell, 1984).
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In applications such as those in Sections 6 and 7, assumptions for the uniqueness of the γ = 0

joint harmonic estimator are not likely to be satisfied. These assumptions are especially sensitive to

circumstances where W is generated from X with a kernel function set to small λ. The breakdown

tends to worsen when |L|/n is small. On the other hand, the γ > 0 regularized joint harmonic

estimators in Section 5.2 elegantly relax these assumptions by modifying the Schur complements

on the right of Display (25).

5.2 Regularized Joint Harmonic Estimators γ > 0

If the Joint Optimization Problem (24) is regularized with some γ > 0, the resulting joint estimator

is unique. This estimator is built off of “regularized Schur complements”

W ⋆
LLγ

= WLL −WLUW
−

UUγ
WUL, (27)

∆
⋆
LLγ

= ∆LL −∆LU∆
−
UUγ

∆UL, (28)

where the “regularized inverses”

W−
UUγ

= (∆UUSUU + γI)−1 (I−SUU)
T , (29)

∆
−
UUγ

= (∆UUSUU + γI)−1
ST

UU . (30)

If γ = 0, ρ(SUU)< 1, and ρ(I−SUU)< 1, then W−
UU0

=W−1
UU and ∆

−
UU0

=∆
−1
UU , so regularized

Schur complements in Displays (27) and (28) simplify to the Schur complements on the right of

Display (25). It is also easily verified that

ΓLLγ =
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LLγ

(Regularized Joint Smoother)

exists for any γ > 0. Theorem 21 extends Theorem 18 from γ = 0 to γ > 0.

Theorem 21 Let W � 0. Let fγ denote the solution to the Joint Harmonic Optimization Problem

(24) with γ > 0. Then

fγ =




ΓLLγ

−
(
∆

−
UUγ

)T

∆ULΓLLγ +

(
I−

(
∆

−
UUγ

)T

∆UU

)
SUL


YL.

The Theorem 21 decomposition is a compromise between the semi-supervised harmonic estimator

(labeled connective) and supervised kernel estimator (labeled adjacent)

fUγ =−
(
∆

−
UUγ

)T

∆UL fLγ

︸ ︷︷ ︸
Harmonic Part

+

(
I−

(
∆

−
UUγ

)T

∆UU

)
SULYL

︸ ︷︷ ︸
Supervised Part

.

In the case of γ = 0, the harmonic part reduces to the harmonic estimator, and the supervised part

equals zero. On the other extreme, as γ → ∞, the harmonic part converges to zero, while the super-

vised part has limit

fγ → f∞ = SY
(
~0
)
=

(
SLL

SUL

)
YL =

(
QLS̃LL

(I−QU) S̃UL

)
YL =

(
QL f̃L

(I−QU) f̃U

)
, (31)
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Regularized Joint Harmonic
 Spectrum Boundary Plot
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Figure 3: The “two moons” data from Figure 2 with regularized joint harmonic classification

boundary curves on left. Noise degradation study on right. Black: gamma = 0 (harmonic

extreme). Gray: γ = ∞ (supervised extreme). Rainbow spectrum: ordered by γ ∈ (0,∞).

where diagonal matrix QU has QUii
= ∑ j∈U Wi j/∑ j∈L∪U Wi j for i ∈ U and QL is defined anal-

ogously on L (apply Remark 4 when entries in f̃U do not exist). Each estimator is a multiple of

the supervised case by the right of Equation (31), so limγ→∞ sign( fγi
) = sign( f̃i) for every i in the

context of a classification problem with YL ∈ {−1,1}|L|.

The “two moons” data from Figure 2 are now revisited in Figure 3. The black joint harmonic

function (γ = 0) and the gray supervised extreme (γ = ∞) borders in the left panel of Figure 3

correspond to the harmonic and supervised borders in Figure 2 as expected. The rainbow spectrum

of borders rely less on the interior network and more on local supervised estimates as γ increases.

Now, suppose the “two moons” data were instead observed with noise around each observation.

Independent random samples from N(0,σ2) were added to each coordinate after scaling each axis

in the left panel to sample standard deviation one. The regularized joint harmonic estimate was

computed for each γ and σ over a grid, and unlabeled errors were recorded over this grid assuming

the “truth” of a constant labeling by moon in the σ = 0 noiseless data on left. This was repeated 50

times, and average unlabeled error rates versus noise variation σ are plotted by γ in the right panel

of Figure 3. While the joint harmonic function and the supervised solution are optimal for small

and large σ, compromise solutions are best for data with an intermediate level of noise. Overall,

the regularized joint harmonic estimator is a compromise between the harmonic estimator (which

emphasizes unlabeled connectivity to labeled cases) and the supervised estimator (which requires

unlabeled adjacency to labeled cases).
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Figure 4: Regularized joint harmonic analyses of the protein data. Left: Uniqueness condition (top)

and performance measure (bottom) versus regularization parameter log(γ) with a labeled

set of size |L| = 100. Right: Uniqueness measure (top) and performance (bottom) for

each of 50 replicates at each |L| tested.

5.3 Joint Training Connections

The regularized joint harmonic estimator is the solution to a particular version of a generalized joint

training optimization problem

min
YU , f

L(Y (YU), f )+ηJ1( f )+ γJ2(YU) (32)

with L(y, f ) a loss function, J1( f )≥ 0 a penalty term independent of YU with η ≥ 0, and J2(YU)≥ 0

a penalty term independent of f with γ ≥ 0. It is clear how to choose L(·, ·), J1(·), and J2(·) so

that the generalized problem from Display (32) simplifies to the problem in Display (24). The

S3V M (Chapelle et al., 2006a) is approximated by setting L(·, ·) as a diagonally weighted hinge loss

function with L(Y (YU), f ) = c1 ∑i∈L(1+Yi fi)++ c2 ∑i∈U(1+Yi fi)+ for c1,c2 ∈ IR+, optimizing YU

in a binary space, setting J1( f ) as a quadratic ambient penalty, and forcing γ = 0. In this case,

∑i∈U(1+Yi fi)+ is referred to as an interplay penalty between YU and fU . The SSVM and SPSI al-

gorithms are also construed as approximations of Optimization (32) (Wang and Shen, 2007). Lastly,

linear joint training was proposed in Culp (2013) to extend the elastic net and other linear approaches

into the semi-supervised setting.

6. Protein Interaction Data

Data on n = 1237 proteins from yeast organisms were collected. Each of 13 systems was used to

detect the presence of protein-to-protein interactions (Kui et al., 2002). Adjacencies in W are taken
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to be the proportion of systems detecting an interaction, so

Wi j =

{
1

13 ∑s I{system s detected an interaction between proteins i, j} i 6= j

1 i = j.

An important yet difficult problem is to classify whether or not a protein is located on the nucleus

of a cell (Yamanishi et al., 2004). A number of analyses of W using the regularized joint har-

monic estimator are presented in Figure 4. All 1237 proteins were included in each analysis, but the

definition of the boundary was altered. The clamped harmonic and joint harmonic approaches are

singular in each of these analyses, whereas the regularization strategy posed for the joint harmonic

estimator provides the practical benefit of a well-defined classifier with a unique solution. Further-

more, the protein interaction graph W was observed directly, so there is no tuning parameter for

either harmonic estimator.

Boundary L is 100 randomly selected proteins in the left panels of Figure 4. Since ρ(SUU) = 1,

any harmonic estimator is singular. On the other hand, the regularized joint harmonic estimator is

applicable with large enough γ so that (∆S)UU + γI is invertible, that is, when ρ(|U |)((∆S)UU +
γI)> 0 in the top panel. The corresponding unlabeled error performance as a function of log(γ) is

plotted in the bottom panel.

Consider now the analyses in the right panels of Figure 4. Proportion |L|/n was varied from

0.1 to 0.9 by 0.1, and an analysis like that on the left was run for each of 50 randomly selected

boundary sets at each |L|. The top right panel shows that the spectral radius uniqueness assumption

was violated for any harmonic estimator, for example, the clamped or γ = 0, whereas regularization

of the joint harmonic approach identified a well-defined classifier. The corresponding testing errors

indicate a trend toward improved performance as the size of the labeled set increases in the bottom

panel.

7. Machine Learning Data Sets

A comparison of procedures was based on three data sets from the UCI repository (Frank and

Asuncion, 2010), that is, the ionosphere data set with n = 351 observations, thyroid data n = 215,

and breast cancer data n = 699, and a publicly available pharmaceutical solubility data set with n =
5631 (Izenman, 2008). Missing values within the solubility data were handled by mean imputation.

The |L∪U | × |L∪U | matrix W was computed from X feature data using the Gaussian kernel

function, that is, Wi j = Kλ(xi,x j). Five-fold cross-validation was used to estimate (λ̂, γ̂) for the

regularized joint harmonic function and λ̂ for the clamped harmonic estimator. A semi-supervised

SVM (S3V M) with a linear kernel was also fit; its cost and gamma parameters were estimated using

cross-validation with the svm.tune function from R library e1071 (R Core Team, 2012; Meyer et al.,

2012).

A transductive comparison is provided by Figure 5. The ionosphere and thyroid data were each

randomly partitioned into L and U sets 50 times for each |L|= 10,20,30,40,50, and the techniques

were all run on the same L and U partitions. The top and middle panels of Figure 5 summarize

a particular example with |L| = 20 from the corresponding bottom panel. The clamped harmonic

estimator is computationally singular and cannot be computed when ρ(SUU) ≈ 1 (see Remark 6).

This occurs for any λ < 0.3, that is, log(λ) < −1.2, in the ionosphere application and for any

λ < 0.2, that is, log(λ) < −1.6, in the thyroid application. The joint harmonic estimator (γ = 0)

requires the more stringent assumption (∆S)UU ≻ 0, and it was singular for all λ in the ionosphere
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Figure 5: Transductive results for the ionosphere (left) and thyroid (right) data sets. Uniqueness

measure (top) and unlabeled error performance (middle) each versus kernel parameter

log(λ) for a particular analysis with |L|= 20 from the bottom panels. Unlabeled error rate

performance (bottom) of the regularized joint harmonic, clamped harmonic, and S3V M

estimators for 50 randomly selected labeled sets L of each size |L|= 10,20,30,40,50.

application. However, estimates γ̂ = 0.5 and γ̂ = 0.04 in the ionosphere and thyroid applications

were obtainable with the regularized joint harmonic estimator. Its access to a wider range of values

λ, especially small λ, may yield substantial improvement in performance in other applications,

like that seen in the bottom panels of Figure 5. As expected, a substantial performance gap exists

between the regularized joint harmonic estimator and the clamped harmonic estimator. The S3V M

also outperformed the clamped harmonic estimator.

A semi-supervised comparison is provided by Figure 6. The data were first randomly partitioned

into “seen” (25%) and “unseen” (75%) cases. The seen cases L∪U were then randomly partitioned

into sets L and U of each size |L| = 10,20,30,40,50. The techniques were all run on the same
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Figure 6: Semi-supervised out-of-sample error rate performance of the regularized joint harmonic

and S3V M estimators on four publicly available data sets. Each randomly obtained out-of-

sample extension was 75% of cases. The other 25% were treated as L∪U . Labeled sets L

of each size |L|= 10,20,30,40,50 were also obtained randomly prior to cross-validation.

This entire process was repeated 50 times.

“unseen,” L, and U partitions, and the entire process was repeated 50 times. The clamped harmonic

estimator is no longer applicable. Semi-supervised performance comparisons (Figure 6) of the

regularized joint harmonic approach to the S3V M are consistent with the transductive case (Figure

5), and the variability of the error measure increased in the out-of-sample extension as expected.

In short, Figures 5 and 6 include real, low labeled sample size, transductive and semi-supervised

applications, and the competitive stature of our proposed regularized joint harmonic estimator holds.

Remark 6 Assumptions for the uniqueness of the clamped harmonic and the regularized joint har-

monic approaches depend on the denseness or sparseness of the WUL component of similarity graph

W . Sparseness makes the needed eigenvalue conditions more difficult to satisfy. One might expect a
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more sparse WUL component when the labeled set size |L| is small relative to the unlabeled set size

|U |. As kernel parameter λ decreases, the off-diagonal elements of W approach 0, and this forces

computational zeros in matrix WUL leading to less stable estimators for any harmonic estimator.

This follows since S~1 =~1, and so if SUL
~1 ≈~0, then SUU

~1 ≈~1. Hence, ρ(SUU) ≈ 1 in the sparse

case. On the other hand, larger values of λ allow the potential for a denser WUL component which

potentially makes the eigenvalue assumptions less stringent. The parameter λ is estimated using

five-fold cross-validation, which does not account for assumptions on WUL. Regularization within

the joint harmonic approach has the key advantage of a unique estimator for any λ > 0.

8. Conclusion

Semi-supervised harmonic estimation for graph-based semi-supervised learning was examined the-

oretically and empirically. A cluster assumption classifier was also defined, and it was shown that

such classifiers assign labels to data that conform to the cluster assumption in the logical manner.

Harmonic functions with a well-chosen boundary are examples of cluster assumption classifiers. In

addition, harmonic functions were shown to be weighted averages of local supervised estimators

applied to the interior. This work further established that harmonic estimators rely primarily on

connectivity within the unlabeled network to form predictions using local supervised estimators;

supervised estimates near labeled cases are up-weighted while supervised estimates deep within the

network are down-weighted. Another key contribution, the development of the regularized joint

harmonic function approach, used a joint optimization criterion with regularization to automate the

trade-off between labeled connectivity versus labeled adjacency. Empirical results demonstrated the

practical benefit gained by regularization of joint harmonic estimation.
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Appendix A. Proofs

Proofs of Lemmas, Propositions, and Theorems follow.

A.1 Problem Set-Up

Proposition 7 Laplacian ∆� 0.

Proof Matrix ∆ satisfies ∆ii = ∑n
k=1WikI{i6=k} ≥Wi j = −∆i j ≥ 0 for each i 6= j, and such sym-

metric, diagonally dominant Z-matrices are positive semi-definite.

Proposition 8 If W � 0 then each eigenvalue of S =D−1W is an element of [0,1].
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Proof Matrices S and D−1/2WD−1/2 � 0 have the same eigenvalues, so the eigenvalues of S

are bounded below by 0. Proposition 7 implies D−1/2
∆D−1/2 = I−D−1/2WD−1/2 � 0, so the

eigenvalues of D−1/2WD−1/2 and hence S are also bounded above by 1.

Lemma 9 If W � 0 then each eigenvalue of SUU is an element of [0,1].

Proof Define IU = diag
(
1{i∈U}

)
based on the binary vector 1{i∈U} ∈ IR|L∪U |. Matrices SUU and(

D−1/2WD−1/2
)

UU
= IUD

−1/2WD−1/2IU � 0 have the same eigenvalues, so

ρ(SUU) = ρ
(
IUD

−1/2WD−1/2IU

)
≤ ρ

(
D−1/2WD−1/2

)
≤ 1,

where the second inequality was justified during the proof of Proposition 8.

Proposition 10 If W � 0 then the following conditions are equivalent.

(a) ∆UU ≻ 0.

(b) ρ(SUU)< 1.

(c) νTD̃ULν > 0 for any non-zero ν ∈ N (D̃UU −WUU).

Proof [(a) ⇐⇒ (b)]: This equivalence follows by taking inverses of ∆UU =DUU (I−SUU). Con-

dition (a) implies N (∆UU) =
{
~1
}

, so condition (b) follows because the Lemma 9 upper bound

of 1 for the largest eigenvalue of SUU cannot be achieved. Condition (b) implies the existence of

(I−SUU)
−1 by a geometric matrix series, and so condition (a) follows.

[(a) ⇐⇒ (c)]: Proposition 7 implies ∆UU � 0, so if ν ∈ N
(
D̃UU −WUU

)
,

νT
∆UU ν = νTD̃ULν+νT

(
D̃UU −WUU

)
ν > 0 ⇐⇒ νTD̃ULν > 0.

A.2 Regularized Joint Harmonic Functions

Proposition 11 If W � 0 then ∆S � 0.

Proof Define the matrix

V =

(
W W

W D

)
, and let ν =

(
ν1

ν2

)
∈ IR2|L∪U | with ν 6=~0. (33)

Since νTV ν = νT
1 W ν1+νT

1 W ν2+νT
2 W ν1+νT

2 Dν2 = (ν1+ν2)
TW (ν1+ν2)+νT

2 ∆ν2 ≥ 0, the

D block Schur complement of V is positive semi-definite, that is, W −WD−1W =∆S � 0.
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Proposition 12 Let W � 0. Assume (∆S)UU ≻ 0 when one selects γ = 0; this additional as-

sumption is not required when one selects some γ > 0. The unique solution to the Joint Harmonic

Optimization Problem (24) is (YU , f ) =
(
ŶUγ ,SY

(
ŶUγ

))
, where

ŶUγ =−((∆S)UU + γI)−1 (∆S)UL YL.

Proof The solution is unique if the scores of the quadratic in (YU , f ) objective function are non-

degenerate. After some rearrangement, the scores with respect to YU and f are

SUU(ŶUγ − fU)+SUL(YL − fL)+ γD−1
UUŶUγ = ~0 (34)

f (YU) = SY (YU), (35)

and plugging the fU portion of Vector (35) into Unlabeled Score (34) produces

D−1
UU (γI+∆UUSUU +∆ULSLU)ŶUγ = −D−1

UU (∆UUSUL +∆ULSLL)YL

ŶUγ = −((∆S)UU + γI)−1 (∆S)UL YL.

Matrix (∆S)UU + γI ≻ 0 by Proposition 11 when γ > 0 and by assumption when γ = 0, so its

inverse exists. Substitution of YU = ŶUγ into Equation (35) results in f = SY
(
ŶUγ

)
.

A.3 Joint Harmonic Estimator γ = 0

Lemma 13 If W � 0 then ∆UUSUU =DUU (I−SUU)SUU � 0. In addition,

∆UUSUU ≻ 0 ⇐⇒ ρ(SUU)< 1 and ρ(I−SUU)< 1.

Proof In Display (33), substitute WUU for W and DUU for D and take ν ∈ IR2|U |. Then

∆UUSUU � 0 ⇐⇒ (ν1 +ν2)
TWUU(ν1 +ν2)+νT

2 ∆UU ν2 ≥ 0. (36)

One can set ν2 =~0 or ν1 +ν2 =~0 such that ν 6=~0, so both inequalities in Display (36) are strict if

and only if ∆UU ≻ 0 and WUU ≻ 0. Furthermore, ∆UU ≻ 0 ⇐⇒ ρ(SUU)< 1 by Proposition 10,

and WUU ≻ 0 ⇐⇒ ρ(I−SUU)< 1 by Lemma 9.

Lemma 14 Let W � 0. Also, assume ∆UUSUU ≻ 0, so A= SLUS
−1
UU (I−SUU)

−1
SUL exists by

Lemma 13. Then each eigenvalue of A is an element of [0,1].

Proof Each eigenvalue of SUU is an element of (0,1) by Lemma 9, since WUU ≻ 0 rules out

eigenvalues of 0 and ∆UU ≻ 0 eigenvalues of 1 by Proposition 10. Furthermore, the UU block

Schur complements ∆⋆
LL and W ⋆

LL are each positive semi-definite, so

B1 =D
−1/2
LL (W ⋆

LL +∆
⋆
LL)D

−1/2
LL � 0. (37)

By assumption (and application of Lemma 13), DUU (I−SUU)
−1

S−1
UU ≻ 0, so since a row of WUL

could be all zeros,

B2 =D
−1/2
LL WLU (∆UUSUU)

−1
WULD

−1/2
LL � 0.
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Although tedious to establish, there is a simple relationship between B1 and B2; that is,

B2 = D
−1/2
LL WLUS

−1
UU (I−SUU)

−1
SULD

−1/2
LL

= D
−1/2
LL WLUS

−1
UUSULD

−1/2
LL +D

−1/2
LL WLU (I−SUU)

−1
SULD

−1/2
LL (38)

= D
−1/2
LL WLUW

−1
UUWULD

−1/2
LL +D

−1/2
LL ∆LU∆

−1
UU∆ULD

−1/2
LL

= I−D
−1/2
LL

((
DLL −WLL −∆LU∆

−1
UU∆UL

)
+
(
WLL −WLUW

−1
UUWUL

))
D

−1/2
LL

= I−B1,

where equality holds in Display (38) because S−1
UU (I−SUU)

−1 = S−1
UU +(I−SUU)

−1
.

The eigenvalues of B2 are bounded below by 0 because B2 � 0 and bounded above by 1 be-

cause B1 � 0 and B2 = I−B1 � 0. This proof concludes by noting that B2 and A have the same

eigenvalues since B2φ = λφ ⇐⇒ Aφ̆ = λφ̆, where φ̆ =D
−1/2
LL φ.

Lemma 15 If W � 0 then the following conditions are equivalent.

(a) (∆S)UU ≻ 0.

(b) ρ(SUU)< 1, ρ(I−SUU)< 1, and ρ(A)< 1, where A= SLUS
−1
UU (I−SUU)

−1
SUL.

(c) WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

(d) ΓLL = (W ⋆
LL +∆

⋆
LL)

−1W ⋆
LL exists.

Proof [(a) ⇐⇒ (b)]: Matrix (∆S)UU � 0 by Proposition 11. Also,

(∆S)UU =∆UUSUU −WULD
−1
LL WLU

is the DLL block Schur complement of

V2 =

(
DLL WLU

WUL ∆UUSUU

)
,

so condition (a) ⇐⇒ V2 ≻ 0. Hence, it suffices to show V2 ≻ 0 ⇐⇒ condition (b). This follows

because V2 ≻ 0 ⇐⇒ the ∆UUSUU block Schur complement of V2 is positive definite, that is,(
DLL −WLU (∆UUSUU)

−1
WUL

)
= DLL(I −A) ≻ 0. Recall (∆UUSUU)

−1 ⇐⇒ ρ(SUU) < 1

and ρ(I−SUU) < 1 by Lemma 13. Furthermore, the existence of (I −A)−1 ⇐⇒ ρ(A) < 1 by

Lemma 14 because Aν = λν ⇐⇒ (I−A)ν = (1−λ)ν.

[(b) ⇐⇒ (c)]: By Lemma 13, ρ(SUU) < 1 and ρ(I−SUU) < 1 ⇐⇒WUU ≻ 0 and ∆UU ≻ 0.

Either set of these equivalent conditions implies

DLL (I−A) = DLL

(
I−SLUS

−1
UU (I−SUU)

−1
SUL

)

= DLL

(
I−SLUS

−1
UUSUL −SLU (I−SUU)

−1
SUL

)

= DLL

(
I−SLU (I−SUU)

−1
SUL −SLL

)
+DLL

(
SLL −SLUS

−1
UUSUL

)
(39)

=
(
∆LL −∆LU∆

−1
UU∆UL

)
+
(
WLL −WLUW

−1
UUWUL

)

= W ⋆
LL +∆

⋆
LL,
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so (W ⋆
LL +∆

⋆
LL)

−1
exists ⇐⇒ ρ(A)< 1.

[(c) ⇐⇒ (d)]: This follows automatically.

Proposition 16 If W � 0 then

(∆S)UU ≻ 0 ⇐⇒ WUU ≻ 0, ∆UU ≻ 0, and (W ⋆
LL +∆

⋆
LL)≻ 0.

Proof This is a special case of Lemma 15.

Lemma 17 Let W � 0, and assume that ΓLL exists. An equivalent form to that in Proposition 12

for the labeled solution to the joint training problem in Display (24) with γ = 0 is fL = ΓLLYL.

Proof By Proposition 12 with γ = 0, the joint training labeled estimator is

fL =
(
SLL −SLU (∆S)−1

UU (∆S)UL

)
YL. (40)

Now, it follows from some matrix algebra that

−(∆S)−1
UU (∆S)UL = ((I−SUU)SUU −SULSLU)

−1 (SULSLL − (I−SUU)SUL)

= (I−F )−1 (E−S−1
UUSUL), (41)

where

E = S−1
UU (I−SUU)

−1
SULSLL,

F = S−1
UU (I−SUU)

−1
SULSLU .

Further simplification is based on an identity involving A from Lemma 14 and F , that is,

SLU (I−F )−1 = SLU

(
∞

∑
ℓ=0

(
S−1

UU (I−SUU)
−1

SULSLU

)ℓ
)

(42)

=

(
∞

∑
ℓ=0

(
SLUS

−1
UU (I−SUU)

−1
SUL

)ℓ
)
SLU (43)

= (I−A)−1SLU .

The geometric matrix series in Display (43) converges because ρ(A) < 1 by Lemma 15. Since

F ν = λν =⇒ASLU ν = λSLU ν and νTA= λνT =⇒ νTSLUF = λνTSLU , F and A have the same

non-zero eigenvalues, so the infinite series in Display (42) is also well-defined.

Substitutions of Display (41) and SLU (I−F )−1 = (I−A)−1
SLU produce

SLL −SLU (∆S)−1
UU (∆S)UL = SLL +SLU (I−F )−1 (E−S−1

UUSUL)

= SLL +(I−A)−1 (SLUE−SLUS
−1
UUSUL)

= SLL +(I−A)−1 (ASLL −SLUS
−1
UUSUL)

=
(
I+(I−A)−1

A
)
SLL − (I−A)−1

SLUS
−1
UUSUL

= (I−A)−1
S⋆

LL.

3747



CULP AND RYAN

Therefore, the equivalent form fL = ΓLLYL = (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LLYL for Equation (40) is estab-

lished using DLL (I−A) =W ⋆
LL +∆

⋆
LL from Display (39) and S⋆

LL =D−1
LL W

⋆
LL.

Theorem 18 Let W � 0, and assume that ΓLL exists. The solution to the Joint Harmonic Opti-

mization Problem (24) with γ = 0 has

f =

(
fL

(I−SUU)
−1

SUL fL

)
=

(
ΓLL

(I−SUU)
−1

SULΓLL

)
YL,

so f is in-fact harmonic.

Proof The optimal ŶU satisfies the derivative score in Display (34) with γ = 0, so

ŶU = fU −S−1
UUSUL (YL − fL)

after rearrangement. Finally, since the optimal f satisfies f = SY (ŶU), fU satisfies

fU = SULYL +SUUŶU

= SULYL +SUU fU −SUL (YL − fL)

= (I−SUU)
−1

SUL fL,

and the optimal fL satisfies fL = ΓLLYL by Lemma 17.

Proposition 19 If W � 0 and ΓLL exists then each eigenvalue of ΓLL is an element of [0,1].

Proof Since WUU ≻ 0 by Lemma 15, W � 0 ⇐⇒W ⋆
LL � 0, so it is well-defined to set

V3 =

(
I W ⋆

LL
1/2

W ⋆
LL

1/2 W ⋆
LL +∆

⋆
LL

)
.

The I block Schur complement of V3 is ∆⋆
LL � 0, so the other block is positive semi-definite, that

is,

I−W ⋆
LL

1/2 (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LL
1/2 � 0,

and ΓLL and W ⋆
LL

1/2 (W ⋆
LL +∆

⋆
LL)

−1
W ⋆

LL
1/2 � 0 have the same eigenvalues.

A.4 Regularized Joint Harmonic Estimators γ > 0

Lemma 20 Let W � 0 and γ > 0 and define

ΓLLγ =
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LLγ

.

The labeled solution to the Joint Optimization Problem (24) is equivalently given by fLγ = ΓLLγYL.
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Proof The sum of “regularized inverses” in Displays (29) and (30)

Cγ =W−
UUγ

+∆
−
UUγ

= (∆UUSUU + γI)−1

is positive definite by Proposition 11, and

((∆S)UU + γI)−1 (∆S)UL = Gγ +Hγ, (44)

where

Gγ =
(
I−CγWULSLU

)−1
Cγ∆ULSLL,

Hγ =
(
I−CγWULSLU

)−1
Cγ∆UUSUL.

Thus, by Proposition 12, labeled estimator fL depends on

SLL −SLU ((∆S)UU + γI)−1 (∆S)UL = SLL −SLUGγ −SLUHγ. (45)

Simplification of terms on the right of Equation (45) is based on

(
I−SLUCγWUL

)−1
D−1

LL =
(
DLL −WLUCγWUL

)−1

=
(
DLL −∆LU∆

−
UUγ

∆UL −WLUW
−

UUγ
WUL

)−1

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

and on

SLU

(
I−CγWULSLU

)−1
=
(
I−SLUCγWUL

)−1
SLU

if ρ
(
SLUCγWUL

)
< 1 by a geometric matrix series argument similar to that used to establish Dis-

plays (42) and (43). Because γ > 0 is shrinking the eigenvalues of Cγ, ρ
(
SLUCγWUL

)
< 1 as

a consequence of a generalization of Lemma 14 since B1 is unique even if arbitrary generalized

inverses are used to compute the Schur complements in Display (37). Now, terms on the right of

Equation (45) reduce to

SLL −SLUGγ =
(
I+SLU

(
I−CγWULSLU

)−1
CγWUL

)
SLL

=
(
I+

(
I−SLUCγWUL

)−1
SLUCγWUL

)
SLL

=
(
I−SLUCγWUL

)−1
D−1

LL WLL

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLL (46)

and

SLUHγ = SLU

(
I−CγWULSLU

)−1
Cγ∆UUSUL

=
(
I−SLUCγWUL

)−1
SLUCγ (I−SUU)

T
WUL

=
(
I−SLUCγWUL

)−1
D−1

LL

(
WLUW

−
UUγ

WUL

)

=
(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLUW
−

UUγ
WUL. (47)

The right of Equation (45) simplifies to ΓLLγ based on Equations (46) and (47).
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Theorem 21 Let W � 0. Let fγ denote the solution to the Joint Harmonic Optimization Problem

(24) with γ > 0. Then

fγ =




ΓLLγ

−
(
∆

−
UUγ

)T

∆ULΓLLγ +

(
I−

(
∆

−
UUγ

)T

∆UU

)
SUL


YL.

Proof Matrix definitions and techniques from the proof of Lemma 20 are used here. Let

Rγ =
(
∆

−
UUγ

)T

WUL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLUW
−

UUγ
WUL

=
(
∆

−
UUγ

)T {
WUL

(
I−SLUCγWUL

)−1
SLUCγ

}
(I−SUU)

T
WUL

=
(
∆

−
UUγ

)T {(
I−WULSLUCγ

)−1
WULSLUCγ

}
∆UUSUL. (48)

Then

SUUGγ = SUU

(
I−CγWULSLU

)−1
Cγ∆ULSLL

= SUUCγ∆UL

(
I−SLUCγWUL

)−1
SLL

=
(
∆

−
UUγ

)T

∆UL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

WLL

=
(
∆

−
UUγ

)T

∆UL

(
W ⋆

LLγ
+∆

⋆
LLγ

)−1

W ⋆
LL +Rγ

=
(
∆

−
UUγ

)T

∆ULΓLLγ +Rγ. (49)

Equation (48) and SUUHγ =
(
∆

−
UUγ

)T {(
I−WULSLUCγ

)−1
}
∆UUSUL imply

SUL −
(
SUUHγ +Rγ

)
=

(
I−

(
∆

−
UUγ

)T

{I}∆UU

)
SUL. (50)

Proposition 12 and Equation (44) result in the unlabeled estimator smoother

SUL −SUU(Gγ +Hγ) = SUL −
(
SUUHγ +Rγ

)
− (SUUGγ −Rγ), (51)

and substitutions based on Equations (49) and (50) into the right of Equation (51) produce its de-

sired form. The labeled estimator smoother ΓLLγ is given by Lemma 20.
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