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Abstract

Typically, one approaches a supervised machine learning problem by writing down an objective

function and finding a hypothesis that minimizes it. This is equivalent to finding the Maximum A

Posteriori (MAP) hypothesis for a Boltzmann distribution. However, MAP is not a robust statistic.

We present an alternative approach by defining a median of the distribution, which we show is both

more robust, and has good generalization guarantees. We present algorithms to approximate this

median.

One contribution of this work is an efficient method for approximating the Tukey median. The

Tukey median, which is often used for data visualization and outlier detection, is a special case

of the family of medians we define: however, computing it exactly is exponentially slow in the

dimension. Our algorithm approximates such medians in polynomial time while making weaker

assumptions than those required by previous work.
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1. Introduction

According to the PAC-Bayesian point of view, learning can be split into three phases. First, a prior

belief is introduced. Then, observations are used to transform the prior belief into a posterior belief.

Finally, a hypothesis is selected. In this study, we concentrate on the last step. This allows us to

propose methods that are independent of the first two phases. For example, the observations used to

form the posterior belief can be supervised, unsupervised, semi-supervised, or something entirely

different. The most commonly used method for selecting a hypothesis is to select the maximum a

posteriori (MAP) hypothesis. For example, many learning algorithms use the following evaluation

function (energy function):

E ( f ) =
n

∑
i=1

l ( f (xi) ,yi)+ r ( f ) , (1)

where l is a convex loss function, {(xi,yi)}n
i=1 are the observations and r is a convex regularization

term. This can be viewed as a prior P over the hypothesis class with density p( f ) = 1
Zp

e−r( f ) and

a posterior belief Q with density q( f ) = 1
Zq

e−E[ f ]. The common practice is then to select the hy-

pothesis that minimizes the evaluation function, that is, the MAP hypothesis. However, this choice

has two significant drawbacks. First, since it considers only the maximal point, it misses much of

the information encoded in the posterior belief. As a result it is straightforward to construct patho-
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logical examples: in Section 2.4 we give an example where the MAP classifier solution disagrees

with the Bayes optimal hypothesis on every point, and where the Bayes optimal hypothesis1 in fact

minimizes the posterior probability. Second, the MAP framework is sensitive to perturbations in

the posterior belief. That is, if we think of the MAP hypothesis as a statistic of the posterior, it

has a low breakdown point (Hampel, 1971): in fact, its breakdown point is zero as demonstrated in

Section 2.2.

This motivates us to study the problem of selecting the best hypothesis, given the posterior

belief. The goal is to select a hypothesis that will generalize well. Two well known methods for

achieving this are the Bayes optimal hypothesis, and the Gibbs hypothesis, which selects a random

classifier according to the posterior belief. However the Gibbs hypothesis is non-deterministic, and

in most cases the Bayes optimal hypothesis is not a member of the hypothesis class; these draw-

backs are often shared by other hypothesis selection methods. This restricts the usability of these

approaches. For example, in some cases, due to practical constraints, only a hypothesis from a given

class can be used; ensembles can be slow and can require large memory footprint. Furthermore

stochasticity in the predictive model can make the results non-reproducible, which is unacceptable

in many applications, and even when acceptable, makes the application harder to debug. Therefore,

in this work we limit the discussion to the following question: given a hypothesis class F distributed

according to a posterior belief Q, how can one select a hypothesis f ∈ F that will generalize well?

We further limit the discussion to the binary classification setting.

To answer this question we extend the notions of depth and the multivariate median, that are

commonly used in multivariate statistics (Liu et al., 1999), to the classification setting. The depth

function measures the centrality of a point in a sample or a distribution. For example, if Q is a

probability measure over R
d , the Tukey depth for a point x ∈ R

d , also known as the half-space

depth (Tukey, 1975), is defined as

TukeyDepthQ (x|Q) = inf
H s.t. x∈H and H is a halfspace

Q(H) . (2)

That is, the depth of a point x is the minimal measure of a half-space that contains it.2 The Tukey

depth also has a minimum entropy interpretation: each hyperplane containing x defines a Bernoulli

distribution by splitting the distribution Q in two. Choose that hyperplane whose corresponding

Bernoulli distribution has minimum entropy. The Tukey depth is then the probability mass of the

halfspace on the side of the hyperplane with the lowest such mass.

The depth function is thus a measure of centrality. The median is then simply defined as the

deepest point. It is easy to verify that in the univariate case, the Tukey median is indeed the standard

median. In this work we extend Tukey’s definition beyond half spaces and define a depth for any

hypothesis class which we call the predicate depth. We show that the generalization error of a

hypothesis is inversely proportional to its predicate depth. Hence, the median predicate hypothesis,

or predicate median, has the best generalization guarantee. We present algorithms for approximating

the predicate depth and the predicate median. Since the Tukey depth is a special case of the predicate

depth, our algorithms provide polynomial approximations to the Tukey depth and the Tukey median

as well. We analyze the stability of the predicate median and also discuss the case where a convex

evaluation function E ( f ) (see Equation (1)) is used to form the posterior belief. We show that in

1. The Bayes optimal hypothesis is also known as the Bayes optimal classifier. It performs a weighted majority vote on

each prediction according to the posterior.

2. Note that we can restrict the half spaces in (2) to those half spaces for which x lies on the boundary.
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Symbol Description

X a sample space

x an instance x ∈ X

µ a probability measure over X

S a sample of instances, S = {x1, . . . ,xu}.

F a function class. f ∈ F is a function f : X 7→ ±1.

f ,g functions in the function class F

P,Q,Q′ probability measures over F

T a sample of functions, T = { f1, . . . , fn}.

DQ ( f |x) The depth of the function f on the instance x with respect to the measure Q.

DQ ( f ) The depth of the function f with respect to the measure Q.

D
δ,µ
Q ( f ) The δ-insensitive depth of f with respect to Q and µ.

D̂T ( f |x) The empirical depth of f on the instance x with respect to the sample T

D̂S
T ( f ) The empirical depth of f with respect to the samples T and S.

ν A probability measure over X ×{±1}
S a sample {(xi,yi)}m

i=1 from (X ×{±1})m

Rν ( f ) The generalization error of f : Rν ( f ) = Pr(x,y)∼ν [ f (x) 6= y].

RS ( f ) The empirical error of f : RS ( f ) = Pr(x,y)∼S [ f (x) 6= y].

Table 1: A summary of the notation used in this work

this special case, the average hypothesis has a depth of at least 1/e, independent of the dimension.

Hence, it enjoys good generalization bounds.

In the first part of this work we introduce the notion of predicate depth. We discuss its prop-

erties and contrast them with the properties of the MAP estimator. In the second part we discuss

algorithmic aspects. We address both the issues of approximating depth and of approximating the

deepest hypothesis, that is, the predicate median. Table 1 contains a summery of the notation we

use.

2. The Predicate Depth: Definitions and Properties

In this study, unlike Tukey who used the depth function on the instance space, we view the depth

function as operating on the dual space, that is the space of classification functions. Moreover, the

definition here extends beyond the linear case to any function class. The depth function measures

the agreement of the function f with the weighted majority vote on x. A deep function is a function

that will always have a large agreement with its prediction among the class F .

Definition 1 Let F be a function class and let Q be a probability measure over F . The predicate

depth of f on the instance x ∈ X with respect to Q is defined as

DQ ( f |x) = Pr
g∼Q

[g(x) = f (x)] .

The predicate depth of f with respect to Q is defined as

DQ ( f ) = inf
x∈X

DQ ( f |x) = inf
x∈X

Pr
g∼Q

[g(x) = f (x)] .
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The Tukey-Depth is a special case of this definition as discussed in section 2.1. We can now

define the predicate median:

Definition 2 Let F be a function class and let Q be a probability measure over F . f ∗ is a predicate

median of F with respect to Q if

∀ f ∈ F , DQ ( f )≤ DQ ( f ∗) .

We show later, in Theorem 13, that if F is closed then the median always exists, for every

probability measure Q. The depth DQ ( f ) is defined as the infimum over all points x ∈ X . However,

for our applications, we can tolerate some instances x ∈ X which have small depth, as long as most

of the instances have large depth. Therefore, we define the δ-insensitive depth:

Definition 3 Let F be a function class and let Q be a probability measure over F . Let µ be a

probability measure over X and let δ ≥ 0. The δ-insensitive depth of f with respect to Q and µ is

defined as

D
δ,µ
Q ( f ) = sup

X ′⊆X ,µ(X ′)≤δ

inf
x∈X \X ′

DQ ( f |x) .

The δ-insensitive depth function relaxes the infimum in the depth definition. Instead of requiring

that the function f always have a large agreement in the class F , the δ-insensitive depth makes this

requirement on all but a set of the instances with probability mass δ.

With these definitions in hand, we next provide generalization bounds for deep hypotheses. The

first theorem shows that the error of a deep function is close to the error of the Gibbs classifier.

Theorem 4 Deep vs. Gibbs

Let Q be a measure on F . Let ν be a measure on X ×{±1} with the marginal µ on X . For every

f the following holds:

Rν ( f )≤ 1

DQ ( f )
Eg∼Q [Rν (g)] (3)

and

Rν ( f )≤ 1

D
δ,µ
Q ( f )

Eg∼Q [Rν (g)]+δ . (4)

Note that the term Eg∼Q [Rν (g)] is the expected error of the Gibbs classifier (which is not neces-

sarily the same as the expected error of the Bayes optimal hypothesis). Hence, this theorem proves

that the generalization error of a deep hypothesis cannot be large, provided that the expected error

of the Gibbs classifier is not large.

Proof For every x∗ ∈ X we have that

Pr
g∼Q,(x,y)∼ν

[g(x) 6= y |x = x∗]

≥ Pr
g∼Q,(x,y)∼ν

[ f (x) 6= yandg(x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗] Pr
g∼Q,(x,y)∼ν

[g(x) = f (x) |x = x∗ and f (x) 6= y]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗] Pr
g∼Q,(x,y)∼ν

[g(x) = f (x) |x = x∗]

= Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f |x∗)≥ Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f ) .
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First we prove (4). Define the set Z =
{

x : DQ ( f |x) < D
δ,µ
Q ( f )

}

. Clearly µ(Z)≤ δ. By slight

abuse of notation, we define the function Z (x) such that Z (x) = 1 if x ∈ Z and Z (x) = 0 if x /∈ Z.

With this definition we have

1

D
δ,µ
Q ( f )

Eg∼Q [Rν (g)]+δ ≥ Ex∗∼µ

[

1

D
δ,µ
Q ( f )

Pr
g∼Q,(x,y)∼ν

[g(x) 6= y |x = x∗]+Z (x∗)

]

≥ Ex∗∼µ

[

1

D
δ,µ
Q ( f )

Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]DQ ( f |x∗)+Z (x∗)

]

≥ Ex∗∼µ

[

Pr
(x,y)∼ν

[ f (x) 6= y|x = x∗]

]

= Rν ( f ) .

(3) follows in the same way by setting both Z and δ to be zero.

Theorem Deep vs. Gibbs (Theorem 4) bounds the ratio of the generalization error of the Gibbs

classifier and the generalization error of a given classifier as a function of the depth of the given

classifier. For example, consider the Bayes optimal classifier. By definition, the depth of this clas-

sifier is at least one half; thus Theorem 4 recovers the well-known result that the generalization

error of the Bayes optimal classifier is at most twice as large as the generalization error of the Gibbs

classifier.

Next, we combine Theorem Deep vs. Gibbs (Theorem 4) with PAC-Bayesian bounds (McAllester,

1999) to bound the difference between the training error and the generalization error. We use the

version of the PAC-Bayesian bounds in Theorem 3.1. of Germain et al. (2009).

Theorem 5 Generalization Bounds

Let ν be a probability measure on X ×{±1}, let P be a fixed probability measure on F chosen

a priori, and let δ,κ > 0. For a proportion 1−δ of samples S∼νm,

∀Q, ∀ f , Rν ( f )≤ 1

(1− e−κ)DQ ( f )

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

.

Furthermore, for every δ′ > 0, for a proportion 1−δ of samples S∼νm,

∀Q, ∀ f , Rν ( f )≤ 1

(1− e−κ)D
δ′,µ
Q ( f )

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

+δ′ ,

where µ is the marginal of ν on X .

Proof Applying the bounds in Theorem 4 to the PAC-Bayesian bounds in Theorem 3.1 of Germain

et al. (2009) yields the stated results.

The generalization bounds theorem (Theorem 5) shows that if a deep function exists, then it is

expected to generalize well, provided that the PAC-Bayes bound for Q is sufficiently smaller than

the depth of f . This justifies our pursuit to find the deepest function, that is, the median. However,

the question remains: are there any deep functions? In the following section we show that this

indeed the case for linear classifiers.
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2.1 Depth for Linear Classifiers

In this section we discuss the special case where the hypothesis class consists of linear classifiers.

Our goal is to show that deep functions exist and that the Tukey depth is a special case of the

predicate depth. To that end we use a variant of linear classifiers called linear threshold functions.

We denote by S=
{

x ∈ R
d : ‖x‖= 1

}

the unit sphere. In this setting F =R
d and X = S×R such

that f ∈ F operates on x = (xv, xθ) ∈ X by f (x) = sign( f · xv − xθ).
3 One can think of an instance

x ∈ X as a combination of a direction, denoted by xv, and an offset xθ.

Theorem 6 Let X = S×R and F be the class of linear threshold functions over X . Let Q be

a probability measure over F with density function q( f ) such that q( f ) = 1
Z

exp(−E ( f )) where

E ( f ) is a convex function. Let f ∗ = E f∼Q [ f ]. Then DQ ( f ∗)≥ 1/e.

Proof From the definition of q( f ) it follows that it is log-concave. Borell (1975) proved that Q is

log-concave if and only if q is log-concave. Hence, in the setting of the theorem, Q is log concave.

The Mean Voter Theorem of Caplin and Nalebuff (1991) shows that if f is the center of gravity of

Q then for every x, DQ ( f |x)≥ 1/e and thus the center of gravity of Q has a depth of at least 1/e (e is

Euler’s number). Note that since F = R
d then the center of gravity is in F .

Recall that it is common practice in machine learning to use convex energy functions E ( f ). For

example, SVMs (Cortes and Vapnik, 1995) and many other algorithms use energy functions of the

form presented in (1) in which both the loss function and the regularization functions are convex,

resulting in a convex energy function. Hence, in all these cases, the median, that is the deepest point,

has a depth of at least 1/e.4 This leads to the following conclusion:

Conclusion 1 In the setting of Theorem 6, let f ∗ = E f∼Q [ f ]. Let ν be a probability measure on

X ×{±1}, let P be a probability measure of F and let δ,κ > 0. With a probability greater than

1−δ over the sample S sampled from νm:

Rν ( f ∗)≤ e

(1− e−κ)

(

κEg∼Q [RS (g)]+
1

m

[

KL(Q||P)+ ln
1

δ

])

.

Proof This results follows from Theorem 5 and Theorem 6.

We now turn to show that the Tukey depth is a special case of the predicate depth. Again, we

will use the class of linear threshold functions. Since F = R
d in this case we will treat f ∈ F both

as a function and as a point. Therefore, a probability measure Q over F is also considered as a

probability measure over Rd . The following shows that for any f ∈ F , the Tukey-depth of f and

the predicate depth of f are the same.

Theorem 7 If F is the class of threshold functions then for every f ∈ F :

DQ ( f ) = TukeyDepthQ ( f ) .

3. We are overloading notation here: f is treated as both a point in R
dand a function f (x) :S×R→±1.

4. Note that optimization in general finds the MAP, which can be very different from (and less robust than) the median

(see Section 2.4).
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Proof Every closed half-space H in R
d is uniquely identified by a vector zH ∈ S orthogonal to its

hyperplane boundary and an offset θH such that

H = {g : g · zH ≥ θH} .

In other words, there is a 1− 1 correspondence between half-spaces and points in S×R such that

H 7→ (zH ,θH) and such that

g ∈ H ⇔ g((zH ,θH))≡ sign(g · zH −θH) = 1 .

The Tukey depth of f is the infimum measure of half-spaces that contain f :

TukeyDepthQ ( f ) = inf
H: f∈H

Q(H) = inf
x: f (x)=1

Q{g : g(x) = 1}

= inf
x: f (x)=1

DQ ( f |x)

≥ DQ ( f ) .

Hence, the Tukey depth cannot be larger than the predicate depth.

Next we show that the Tukey depth cannot be smaller than the predicate depth for if the Tukey

depth is smaller than the predicate depth then there exists a half space H such that its measure is

smaller than the predicate depth. Let x = (zH ,θH). Since f ∈ H then f (x) = 1 and thus

DQ ( f )> Q(H) = Q{g : g(x) = 1}= DQ ( f |x)≥ DQ ( f )

which is a contradiction. Therefore, the Tukey depth can be neither smaller nor larger than the

predicate depth and so the two must be equal.

2.2 Breakdown Point

We now turn to discuss another important property of the hypothesis selection mechanism: the

breakdown point. Any solution to the hypothesis selection problem may be viewed as a statistic of

the posterior Q. An important property of any such statistic is its stability: that is, informally, by

how much must Q change in order to produce an arbitrary value of the statistic? This is usually

referred to as the breakdown point (Hampel, 1971). We extend the definition given there as follows:

Definition 8 Let Est be a function that maps probability measures to F . For two probability mea-

sures Q and Q′ let δ(Q,Q′) be the total variation distance:

δ
(

Q,Q′)= sup
{∣

∣Q(A)−Q′ (A)
∣

∣ : Ais measurable
}

.

For every function f ∈ F let d (Est,Q, f ) be the distance to the closest Q′ such that Est(Q′) = f :

d (Est,Q, f ) = inf
{

δ
(

Q,Q′) : Est
(

Q′)= f
}

.

The breakdown Est at Q is defined to be

breakdown(Est,Q) = sup
f∈F

d (Est,Q, f ) .

3597



GILAD-BACHRACH AND BURGES

This definition may be interpreted as follows; if s = breakdown(Est,Q) then for every f ∈ F ,

we can force the estimator Est to use f as its estimate by changing Q by at most s in terms of total

variation distance. Therefore, the larger the breakdown point of an estimator, the more stable it is

with respect to perturbations in Q.

As mentioned before, our definition of the breakdown point for an estimator stems from the work

of Hampel (1971) who was the first to introduce the concept. Since then, different modifications

have been suggested to address different scenarios. Davies and Gather (2005) discuss many of these

definitions. He (2005) noted that one can make the breakdown point trivial, for instance, if Est

is a fixed estimator that is not affected by its input, it has the best possible breakdown point of 1.

Moreover, it suffices to have a single function f that cannot be produced as the output of Est to

make the above definition trivial. To prevent these pathologies, Definition 8 should only be used

when Est is such that for every f there exists Q′ for which Est(Q′) = f which is the case for the

estimators we study here.

The following theorem lower bounds the stability of the median estimator as a function of its

depth.

Theorem 9 Let Q be a posterior over F . Let

X ′ = {x ∈ X s.t. ∀ f1, f2 ∈ F , f1 (x) = f2 (x)} and

p = inf
x∈X \X ′,y∈{±1}

Q{ f : f (x) = y} .

If d is the depth of the median for Q then breakdown(median,Q)≥ d−p
2
.

Proof Let ε > 0. There exists f̂ and x̂ such that Q
{

f : f (x̂) = f̂ (x̂)
}

< p+ε. Let f ∗ be the median

of Q. Let Q′ be such that f̂ is the median of Q′, so that

DQ′ ( f ∗)≤ DQ′
(

f̂
)

.

Note that for every f we have that

|DQ ( f )−DQ′ ( f )| ≤ δ
(

Q,Q′) .

This follows since

|DQ ( f )−DQ′ ( f )|=
∣

∣

∣
inf

x

(

Q
{

f ′ : f ′ (x) = f (x)
})

− inf
x

(

Q′{ f ′ : f ′ (x) = f (x)
})

∣

∣

∣

≤ δ
(

Q,Q′) .

Since DQ

(

f̂
)

< p+ ε then

d −δ
(

Q,Q′)≤ DQ′ ( f ∗)≤ DQ′
(

f̂
)

< p+ ε+δ
(

Q,Q′) .

Hence

δ
(

Q,Q′)>
d − p− ε

2

and thus

breakdown(median,Q)>
d − p− ε

2
.

3598



PREDICATE DEPTH

Since this is true for every ε > 0 it follows that

breakdown(median,Q)≥ d − p

2
.

2.3 Geometric Properties of the Depth Function

In this section we study the geometry of the depth function. We show that the level sets of the depth

functions are convex. We also show that if the function class F is closed then the median exists.

First, we define the term convex hull in the context of function classes:

Definition 10 Let F be a function class and let g, f1, . . . , fn ∈ F . We say that g is in the convex-hull

of f1, . . . , fn if for every x there exists j ∈ 1, . . . ,n such that g(x) = f j (x).

Theorem 11 Convexity

Let F be a function class with a probability measure Q. If g is in the convex-hull of f1, . . . , fn

then

DQ (g)≥ min
j

DQ ( f j) .

Furthermore, if µ is a measure on X and δ ≥ 0 then

D
δ,µ
Q (g)≥ min

j
D

δ
n
,µ

Q ( f j) .

Proof Let g be a function. If g is in the convex-hull of f1, . . . , fn then for every x there exists j such

that g(x) = f j (x) and hence

DQ (g |x) = DQ ( f j |x)≥ min
j

DQ( f j) ,

thus DQ (g)≥ min j DQ ( f j) . For δ > 0 let

∆ =
{

x : DQ (g |x)≤ D
δ,µ
Q (g)

}

and for j = 1, . . . ,n
∆ j =

{

x ∈ ∆ : f j (x) = g(x)
}

.

Since g is in the convex-hull of f1, . . . , fn implies that ∪ j∆ j = ∆ and therefore

∑
j

µ(∆ j)≥ µ(∆)≥ δ .

Hence, there exists j such that µ(∆ j)≥ δ/n which implies that

D
δ,µ
Q (g)≥ D

δ
n
,µ

Q ( f j)≥ min
j

D
δ
n
,µ

Q ( f j) .

Next we prove the existence of the median when the function class is closed. We begin with the

following definition:
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Definition 12 A function class F is closed if for every sequence f1, f2, . . . ∈ F there exists f ∗ ∈ F

such that for every x ∈ X , if limn→∞ fn (x) exists then f ∗ (x) = limn→∞ fn (x).

With this definition in hand we prove the following:

Theorem 13 If F is closed then the median of F exists with respect to any probability measure Q.

Proof Let D = sup f DQ ( f ) and let fn be such that DQ ( fn) > D− 1/n. Let f ∗ ∈ F be the limit of

the series f1, f2, . . .. We claim that DQ ( f ∗) = D. Since D is the supermum of the depth values, it

is clear that DQ ( f ∗) ≤ D. Note that from the construction of f ∗ we have that for every x ∈ X and

every N there exists n > N such that f ∗ (x) = fn (x). Therefore, if DQ ( f ∗) < D then there exists x

such that DQ ( f ∗ |x)< D. Hence, there is a subsequence nk → ∞ such that fnk
(x) = f ∗ (x) and thus

DQ ( fnk
)≤ DQ ( fnk

|x) = DQ ( f ∗ |x)< D .

But this is a contradiction since limk→∞ DQ ( fnk
) = D. Hence, for every x, DQ ( f ∗ |x)≥ D and thus

DQ ( f ∗)≥ D which completes the proof.

2.4 The Maximum A Posteriori Estimator

So far, we have introduced the predicate depth and median and we have analyzed their properties.

However, the common solution to the hypothesis selection problem is to choose the maximum a

posteriori estimator. In this section we point out some limitations of this approach. We will show

that in some cases, the MAP method has poor generalization. We also show that it is very sensitive

in the sense that the breakdown point of the MAP estimator is always zero.

2.4.1 LEARNING AND REGULARIZATION

The most commonly used method for selecting a hypothesis is to select the maximum a posteriori

(MAP) hypothesis. For example, in Support Vector Machines (Cortes and Vapnik, 1995), one can

view the objective function of SVM as proportional to the log-likelihood function of an exponential

probability. From this perspective, the regularization term is proportional to the log-likelihood of

the prior. SVM, Lasso (Tibshirani, 1994) and other algorithms use the following evaluation function

(energy function):

E ( f ) =
n

∑
i=1

l ( f (xi) ,yi)+ r ( f ) ,

where l is a convex loss function, {(xi,yi)}n
i=1 are the observations and r is a convex regularization

term. This can be viewed as if there is a prior P over the hypothesis class with a density function

p( f ) =
1

Zp

e−r( f ) ,

and a posterior belief Q with a density function

q( f ) =
1

Zq

e−E[ f ] .

The common practice in these cases is to select the hypothesis that minimizes the evaluation

function. Hence these methods select the MAP hypothesis.
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2.4.2 THE MAP ESTIMATOR CAN GENERALIZE POORLY

Since the MAP estimator looks only at the peak of the distribution it can be very misleading. Here

we give an example for which the MAP estimator disagrees with the Bayes optimal hypothesis on

every instance while the median hypothesis agrees with the Bayes optimal hypothesis everywhere.

Moreover, the Bayes optimal hypothesis happens to be a member of the hypothesis class. Therefore,

it is also the predicate median. Hence, in this case, the MAP estimator fails to represent the belief.

The rest of this sub-section is devoted to explaining the details of this example.

Assume that the sample space X is a set of N discrete elements indexed by integers 1, ...,N.
To simplify the exposition we will collapse notation and take X = {1, ...,N}. The function class F

consists of N+1 functions defined as follows: for every i ∈ {1, . . . ,N−1} the function fi is defined

to be

fi (x) =

{

1 ifx ≡ i or x ≡ i+1

0 otherwise
.

Additionally, F contains the constant functions f− and f+ that assign the values 0 and 1, respec-

tively, to every input. Furthermore, assume that there is ε random label noise in the system for

some 0 < ε < 1/2, and that no further information is available. Thus, the prior is the non-informative

uniform prior over the N +1 functions.

Assume that a training set consisting of just two examples is available, where the examples

are (x1 = 1,y1 = 1) and (x2 = 3,y2 = 1). Given the ε random label noise, the posterior is easily

computed as

Q{ f+}=
(1− ε)2

Z
, Q( f−) =

ε2

Z
, Q{ fi=1,2,3}=

ε(1− ε)

Z
, Q{ fi>3}=

ε2

Z

where Z is the partition function. Note that under this posterior, for every x,

Pr
f∼Q

[ f (x) = 1]≤ (1− ε)2 +2ε(1− ε)

Z
=

1− ε2

Z

while

Pr
f∼Q

[ f (x) = 0]≥ (N −2)ε2

Z
.

Therefore, if N > 1+ 1/ε2, for any x, the probability that it is assigned class 0 is larger than the

probability that it is assigned class 1. Therefore the Bayes classifier is the function f−. Since the

Bayes classifier is in the function class, it is also the predicate median. However, the MAP estimator

is the function f+. Thus in this case the MAP estimator disagrees with the Bayes optimal hypothesis

(and the predicate median) on the entire sample space. Note also that the Bayes optimal hypothesis

f0 has the lowest density in the distribution Q. Hence, in this case, the minimizer of the posterior is

a better estimator than the maximizer of the posterior.

2.4.3 THE BREAKDOWN POINT OF THE MAP ESTIMATOR

In Definition 8 we defined the breakdown point of an estimator. We showed in Theorem 9 that the

breakdown point of the median hypothesis is lower bounded by a function of its depth. We would

like to contrast this with the breakdown point of the MAP estimator. We claim that the breakdown

point of the MAP estimator is zero, for continuous concept classes.
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Algorithm 1 Depth Estimation Algorithm

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ X

• A sample T = { f1, . . . , fn} such that f j ∈ F

• A function f

Output:

• D̂S
T ( f ) - an approximation for the depth of f

Algorithm:

1. for i = 1, . . . ,u compute D̂T ( f |xi) =
1
n ∑ j 1 f j(xi)= f (xi)

2. return D̂S
T ( f ) = mini D̂( f |xi)

In order for the MAP estimator to be well defined, assume that Q is a Lebesgue measure such

that q is the density function of Q and q is bounded by some finite M. Let f0 ∈ F and consider

Q′with the density function:

q′ ( f ) =

{

M+1 if f = f0

q( f ) otherwise
.

While the total variation distance between Q and Q′ is zero, the MAP estimator for Q′ is f0.

Therefore, for every f0 we can introduce a zero measure change to Q that will make f0 the MAP

estimator. Hence, the breakdown point of the MAP estimator is zero.

3. Measuring Depth

So far, we have motivated the use of depth as a criterion for selecting a hypothesis. Finding the deep-

est function, even in the case of linear functions, can be hard but some approximation techniques

have been presented (see Section 4.5). In this section we focus on algorithms that measure the depth

of functions. The main results are an efficient algorithm for approximating the depth uniformly over

the entire function class and an algorithm for approximating the median.

We suggest a straightforward method to measure the depth of a function. The depth estimation

algorithm (Algorithm 1) takes as inputs two samples. One sample, S = {x1, . . . ,xu}, is a sample of

points from the domain X . The other sample, T = { f1, . . . , fn}, is a sample of functions from F .

Given a function f for which we would like to compute the depth, the algorithm first estimates its

depth on the points x1, . . . ,xu and then uses the minimal value as an estimate of the global depth.

The depth on a point xi is estimated by counting the fraction of the functions f1, . . . , fn that make

the same prediction as f on the point xi. Since samples are used to estimate depth, we call the value

returned by this algorithm, D̂S
T ( f ), the empirical depth of f .

Despite its simplicity, the depth estimation algorithm can provide good estimates of the true

depth. The following theorem shows that if the xi’s are sampled from the underlying distribution

over X , and the f j’s are sampled from Q, then the empirical depth is a good estimator of the true
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depth. Moreover, this estimate is uniformly good over all the functions f ∈ F . This will be an

essential building block when we seek to find the median in Section 3.1.

Theorem 14 Uniform convergence of depth

Let Q be a probability measure on F and let µ be a probability measure on X . Let ε,δ > 0. For

every f ∈ F let the function fδ be such that fδ (x) = 1 if DQ ( f |x)≤ D
δ,µ
Q ( f ) and fδ (x) =−1 other-

wise. Let Fδ = { fδ} f∈F .Assume Fδ has a finite VC dimension d < ∞ and define φ(d, k) = ∑d
i=0

(

k
i

)

if d < k, φ(d, k) = 2k otherwise. If S and T are chosen at random from µu and Qn respectively such

that u ≥ 8/δ then with probability

1−uexp
(

−2nε2
)

−φ(d, 2u)21−δu/2

the following holds:

∀ f ∈ F , DQ ( f )− ε ≤ D
0,µ
Q ( f )− ε ≤ D̂S

T ( f )≤ D
δ,µ
Q ( f )+ ε

where D̂S
T ( f ) is the empirical depth computed by the depth measure algorithm.

First we recall the definition of ε-nets of Haussler and Welzl (1986):

Definition 15 Let µ be a probability measure defined over a domain X . Let R be a collection of

subsets of X . An ε-net is a finite subset A ⊆ X such that for every r ∈ R, if µ(r)≥ ε then A∩ r 6= /0.

The following theorem shows that a random set of points forms an ε-net with high probability

if the VC dimension of R is finite.

Theorem 16 Haussler and Welzl, 1986, Theorem 3.7 therein Let µ be a probability measure de-

fined over a domain X . Let R be a collection of subsets of X with a finite VC dimension d. Let

ε > 0 and assume u ≥ 8/ε. A sample S = {xi}u
i=1 selected at random from µu is an ε-net for R with a

probability of at least 1−φ(d,2u)21−εu/2 .

Proof of Theorem 14

By a slight abuse of notation, we use fδ to denote both a function and a subset of X that includes

every x ∈ X for which DQ ( f |x) ≤ D
δ,µ
Q ( f ). From Theorem 16 it follows that with probability

≥ 1−φ(d,2u)21−δu/2 a random sample S = {xi}u
i=1 is a δ-net for { fδ} f∈F . Since for every f ∈ F

we have µ( fδ)≥ δ we conclude that in these cases,

∀ f ∈ F , ∃i ∈ [1, . . . ,u] s.t. xi ∈ fδ .

Note that xi ∈ fδ implies that DQ ( f |xi)≤D
δ,µ
Q ( f ). Therefore, with probability 1−φ(d,2u)21−δu/2

over the random selection of x1, . . . ,xu:

∀ f ∈ F , DQ ( f )≤ min
i

D( f |xi)≤ D
δ,µ
Q ( f ) .

Let f1, . . . , fn be an i.i.d. sample from Q. For a fixed xi, using Hoeffding’s inequality,

Pr
f1,..., fn

[∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) = 1
∣

∣−µ{ f : f (xi) = 1}
∣

∣

∣

∣

> ε

]

≤ 2exp
(

−2nε2
)

.
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Hence, with a probability of 1−uexp
(

−2nε2
)

,

∀i,

∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) = 1
∣

∣−µ{ f ∈ F : f (xi) = 1}
∣

∣

∣

∣

≤ ε .

Clearly, in the same setting, we also have that

∀i,

∣

∣

∣

∣

1

n

∣

∣ f j : f j (xi) =−1
∣

∣−µ{ f ∈ F : f (xi) =−1}
∣

∣

∣

∣

≤ ε .

Thus, with a probability of at least 1−uexp
(

−2nε2
)

−φ(d,2u)21−εu/2 over the random selection

of x1, . . . ,xu and f1, . . . , fn we have that

∀ f ∈ F , D̂S
T ( f )≤ D

δ,µ
Q ( f )+ ε .

Note also, that with probability 1 there will be no i in the sample such that DQ ( f |xi)< D
0,µ
Q ( f ).

Therefore, it is also true that

∀ f ∈ F , D
0,µ
Q ( f )− ε ≤ D̂S

T ( f )

while it is always true that DQ ( f )≤ D
0,µ
Q ( f ).

In Theorem 14 we have seen that the estimated depth uniformly converges to the true depth.

However, since we are interested in deep hypotheses, it suffices that the estimate is accurate for

these hypotheses, as long as “shallow” hypotheses are distinguishable from the deep ones. This is

the motivation for the next theorem:

Theorem 17 Let Q be a probability measure on F and let µ be a probability measure on X .

Let ε,δ > 0. Assume F has a finite VC dimension d < ∞ and define φ(d, k) as before. Let

D = sup f∈F DQ ( f ). If S and T are chosen at random from µu and Qn respectively such that u ≥ 8/δ

then with probability

1−uexp
(

−2nε2
)

−φ(d, 2u)21−δu/2

the following holds:

1. For every f such that D
δ,µ
Q ( f )< D we have that D̂T

S ( f )≤ D
δ,µ
Q ( f )+ ε

2. For every f we have that D̂T
S ( f )≥ D

0,µ
Q ( f )≥ DQ ( f )− ε

where D̂S
T ( f ) is the empirical depth computed by the depth measure algorithm.

The proof is very similar to the proof of Theorem 14. The key however, is the following lemma:

Lemma 18 Let D = sup f∈F DQ ( f ). For every f ∈ F let fδ be such that fδ (x) = 1 if DQ ( f |x)< D

and fδ (x) =−1 otherwise. Let Fδ be

Fδ = { fδ} f :D
δ,µ
Q ( f )<D

.

Then the VC dimension of Fδ is upper bounded by the VC dimension of F .
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Proof Assume that x1, . . . ,xm are shattered by Fδ. Therefore, for every sequence y ∈ {±1}m
there

exists f y such that f
y

δ induces the labels y on x1, . . . ,xm. We claim that for every y 6= y′, the function

f y and f y′ induce different labels on x1, . . . ,xm and hence this sample is shattered by F . Let y 6= y′

and assume, w.l.o.g. that yi = 1 and y′i =−1. Therefore xi is such that

DQ ( f y |xi)< D ≤ DQ

(

f y′ |xi

)

.

From the definition of the depth on the point xi, it follows that DQ ( f y |xi) 6= DQ

(

f y′ |xi

)

if and only

if f y (xi) 6= f y′ (xi). Therefore, the sample x1, . . . ,xm being shattered by Fδ implies that it is also

shattered by F . Hence, the VC dimension of Fδ is bounded by the VC dimension of F .

Proof of Theorem 17.

From the theory of ε-nets (see Theorem 16), and Lemma 18 it follows that with probability

1− φ(d,2u)21−δu/2 over the sample S, for every f ∈ F such that D
δ,µ
Q ( f ) < D there exists xi such

that

DQ ( f |xi)≤ D
δ,µ
Q ( f )< D .

Therefore, with probability greater than 1−φ(d,2u)21−δu/2, for every f such that D
δ,µ
Q ( f ) < D

we have that D̂T
S ( f )≤ D

δ,µ
Q ( f )+ ε.

To prove the second part, note that with probability 1, for every x and every f , DQ ( f |x) ≥
D

0,µ
Q ( f ). Thus if D̂T

S ( f ) < DQ ( f ) it is only because the inaccuracy in the estimation D̂T ( f |xi) =
1
n ∑ j 1 f j(xi)= f (xi). We already showed, in the proof of Theorem 14, that with probability of 1 −
uexp

(

−2nε2
)

over the sample T ,

∀i, f ,

∣

∣

∣

∣

∣

1

n
∑

j

1 f j(xi)= f (xi)−DQ ( f |x)
∣

∣

∣

∣

∣

< ε .

Hence,

∀ f , D̂T
S ( f )≥ D

0,µ
Q ( f )− ε .

3.1 Finding the Median

So far we discussed ways to measure the depth. We have seen that if the samples S and T are large

enough then with high probability the estimated depth is accurate uniformly for all functions f ∈ F .

We use these findings to present an algorithm which approximates the predicate median. Recall

that the predicate median is a function f which maximizes the depth, that is f = argmax f∈F DQ ( f ).
As an approximation, we will present an algorithm which finds a function f that maximizes the

empirical depth, that is f = argmax f∈F D̂S
T ( f ).

The intuition behind the algorithm is simple. Let S= {xi}u
i=1. A function that has large empirical

depth will agree with the majority vote on these points. However, it might be the case that such a

function does not exist. If we are forced to find a hypothesis that does not agree with the majority on
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Algorithm 2 Median Approximation (MA)

Inputs:

• A sample S = {x1, . . . ,xu} ∈ X u and a sample T = { f1, . . . , fn} ∈ F n.

• a learning algorithm A that given a sample returns a function consistent with it if such a

function exists.

Outputs:

• a function f ∈F which approximates the predicate median, together with its depth estimation

D̂S
T ( f )

Details:

1. Foreach i = 1, . . . ,u compute p+i = 1
n

∣

∣

{

j : f j (xi) = 1
}∣

∣ and qi = min
{

p+i ,1− p+i
}

.

2. Sort x1, . . . ,xu such that q1 ≥ q2 ≥ . . .≥ qm

3. Foreach i = 1, . . . ,u let yi = 1 if p+i ≥ 0.5 otherwise, let yi =−1.

4. Use binary search to find i∗, the smallest i for which A can find a consistent function f with

the sample Si = {(xk,yk)}u
k=i

5. If i∗ ≡ 1 return f and depth D̂ = 1−q1 else return f and depth D̂ = qi∗−1.

some instances, the empirical depth will be higher if these points are such that the majority vote on

them wins by a small margin. Therefore, we take a sample T =
{

f j

}n

j=1
of functions and use them

to compute the majority vote on every xi and the fraction qi of functions which disagree with the

majority vote. A viable strategy will first try to find a function that agrees with the majority votes on

all the points in S. If such a function does not exist, we remove the point for which qi is the largest

and try to find a function that agrees with the majority vote on the remaining points. This process

can continue until a consistent function5 is found. This function is the maximizer of D̂S
T ( f ). In

the Median Approximation algorithm, this process is accelerated by using binary search. Assuming

that the consistency algorithm requires O(uc) for some c when working on a sample of size u, then

the linear search described above requires O
(

nu+u log(u)+uc+1
)

operations while invoking the

binary search strategy reduces the complexity to O(nu+u log(u)+uc log(u)).

The Median Approximation (MA) algorithm is presented in Algorithm 2. One of the key advan-

tages of the MA algorithm is that it uses a consistency oracle instead of an oracle that minimizes the

empirical error. Minimizing the empirical error is hard in many cases and even hard to approximate

(Ben-David et al., 2003). Instead, the MA algorithm requires only access to an oracle that is capable

of finding a consistent hypothesis if one exists. For example, in the case of a linear classifier, finding

a consistent hypothesis can be achieved in polynomial time by linear programming while finding a

hypothesis which approximates the one with minimal empirical error is NP hard. The rest of this

section is devoted to an analysis of the MA algorithm.

5. A function is defined to be consistent with a labeled sample if it labels correctly all the instances in the sample.
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Theorem 19 The MA Theorem

The MA algorithm (Algorithm 2) has the following properties:

1. The algorithm will always terminate and return a function f ∈ F and an empirical depth D̂.

2. If f and D̂ are the outputs of the MA algorithm then D̂ = D̂S
T ( f ).

3. If f is the function returned by the MA algorithm then f = argmax f∈F D̂S
T ( f ).

4. Let ε,δ > 0 . If the sample S is taken from µu such that u ≥ 8/δ and the sample T is taken from

Qn then with probability of at least

1−uexp
(

−2nε2
)

−φ(d,2u)21−δu/2 (5)

the f returned by the MA algorithm is such that

D
δ,µ
Q ( f )≥ sup

g∈F

D
0,µ
Q (g)−2ε ≥ sup

g∈F

DQ (g)−2ε

where d is the minimum between the VC dimension of F and the VC dimension of the class

Fδ defined in Theorem 14.

To prove the MA Theorem we first prove a series of lemmas. The first lemma shows that the

MA algorithm will always find a function and will return it.

Lemma 20 The MA algorithm will always return a hypothesis f and a depth D̂

Proof It is sufficient to show that the binary search will always find i∗ ≤ u. Therefore, it is enough

to show that there exists i such that A will return a consistent function f with respect to Si. To

see that, recall that Su = {(xu,yu)}. Therefore, the sample contains a single point xu with the label

yu such that at least half of the functions in T are such that f j (xu) = yu. Therefore, there exists a

function f consistent with this sample.

The next lemma proves that the depth computed by the MA algorithm is correct.

Lemma 21 Let f be the hypothesis that MA returned and let D̂ be the depth returned. Then D̂ =
D̂S

T ( f ).

Proof For any function g, denote by Y (g) = {i : g(xi) = yi} the set of instances on which g agrees

with the proposed label yi. D̂S
T (g), the estimated depth of g, is a function of Y (g) given by:

D̂S
T (g) = min

(

min
i∈Y (g)

(1−qi) , min
i/∈Y (g)

qi

)

.

Since the qi’s are sorted, we can further simplify this term. Letting i∈ = min{i : i ∈ Y (g)} and

i/∈ = max{i : i /∈ Y (g)}, then

D̂S
T (g) = min

(

(1−qi∈) ,qi/∈

)

.

3607



GILAD-BACHRACH AND BURGES

In the above term, if Y (g) includes all i’s we consider the term qi/∈ to be one. Similarly, if Y (g)
is empty, we consider qi∈ to be zero.

Let f be the hypothesis returned by MA and let D̂ be the returned computed depth. If i∗is the

index that the binary search returned and if i∗ = 1 then Y ( f ) = [1, . . . ,u] and D̂S
T ( f ) = 1−q1 which

is exactly the value returned by MA. Otherwise, if i∗ > 1 then i∗−1 /∈ Y ( f ) but [i∗, . . . ,u]⊆ Y ( f ).
Since qi∗−1 ≤ 0.5 but for every i′ it holds that 1−qi′ ≥ 0.5 so we have that D̂S

T ( f ) = qi∗−1 which is

exactly the value returned by FMA.

The next lemma shows that the MA algorithm returns the maximizer of the empirical depth.

Lemma 22 Let f be the function that the MA algorithm returned. Then

f = argmax
f∈F

D̂S
T ( f ) .

In the proof of Lemma 21 we have seen that the empirical depth of a function is a function of

the set of points on which it agrees with the majority vote. We use this observation in the proof of

this lemma too.

Proof Let i∗ be the value returned by the binary search and let f be the function returned by the

consistency oracle. If i∗ = 1 then the empirical depth of f is the maximum possible. Hence we may

assume that i∗ > 1 and D̂S
T ( f ) = qi∗−1.

For a function g ∈ F , if there exists i > i∗ such that g(xi) 6= yi then D̂S
T (g) ≤ qi−1 ≤ qi∗−1 ≤

D̂S
T ( f ). However, if g(xi) = yi for every i ≥ i∗ it must be that g(xi∗−1) 6= yi∗−1 or else the binary

search phase in the MA algorithm would have found i∗ − 1 or a larger set. Therefore, D̂S
T (g) =

qi∗−1 = D̂S
T ( f ).

Finally we are ready to prove Theorem 19.

Proof of the MA Theorem (Theorem 19)

Parts 1, 2 and 3 of the theorem are proven by Lemmas 20, 21 and 22 respectively. Therefore,

we focus here on the last part.

Let f be the maximizer of D̂S
T ( f ) and let D= sup f D

0,µ
Q ( f ). From Theorems 14 and 17 it follows

that if d is at least the smaller of the VC dimension of F and the VC dimension of Fδ, then with the

probability given in (5) we have that

D̂S
T ( f )≥ max

g
D̂S

T (g)≥ sup
g

D
0,µ
Q (g)− ε = D− ε .

Moreover, if D
δ,µ
Q ( f )< D then D̂S

T ( f )≤ D
δ,µ
Q ( f )+ ε. Therefore, either

D
δ,µ
Q ( f )≥ D

or

D
δ,µ
Q ( f )≥ D̂S

T ( f )− ε ≥ D−2ε

which completes the proof.

3608



PREDICATE DEPTH

3.2 Implementation Issues

The MA algorithm is straightforward to implement provided that one has access to three oracles:

(1) An oracle capable of sampling unlabeled instances x1, . . . ,xu. (2) An oracle capable of sampling

hypotheses f1, . . . , fn from the belief distribution Q. (3) A learning algorithm A that returns a

hypothesis consistent with the sample of instances (if such a hypothesis exists).

The first requirement is usually trivial. In a sense, the MA algorithm converts the consistency

algorithm A to a semi-supervised learning algorithm by using this sample. The third requirement is

not too restrictive. In a sense, many learning algorithms would be much simpler if they required a

hypothesis which is consistent with the entire sample as opposed to a hypothesis which minimizes

the number of mistakes (see, for example, Ben-David et al., 2003). The second requirement, that is

sampling hypotheses, is challenging.

Sampling from continuous hypothesis classes is hard even in very restrictive cases. For ex-

ample, even if Q is uniform over a convex body, sampling from it is challenging but theoretically

possible (Fine et al., 2002). A closer look at the MA algorithm and the depth estimation algo-

rithm reveals that these algorithms use the sample of functions in order to estimate the marginal

Q [Y = 1|X = x] = Prg∼Q [g(x) = 1]. In some cases, it is possible to directly estimate this value.

For example, many learning algorithms output a real value such that the sign of the output is the

predicted label and the amplitude is the margin. Using a sigmoid function, this can be viewed as

an estimate of Q [Y = 1|X = x]. This can be used directly in the above algorithms. Moreover, the

results of Theorem 14 and Theorem 19 apply with ε = 0. Note that the algorithm that is used for

computing the probabilities might be infeasible for run-time applications but can still be used in the

process of finding the median.

Another option is to sample from a distribution Q′ that approximates Q (Gilad-Bachrach et al.,

2005). The way to use a sample from Q′ is to reweigh the functions when computing D̂T ( f |x).
Note that computing D̂T ( f |x) such that it is close to DQ ( f |x) is sufficient for estimating the depth

using the depth measure algorithm (Algorithm 1) and for finding the approximated median using

the MA algorithm (Algorithm 2). Therefore, in this section we will focus only on computing the

empirical conditional depth D̂T ( f |x). The following definition provides the estimate for DQ ( f |x)
given a sample T sampled from Q′:

Definition 23 Given a sample T and the relative density function dQ
dQ′ we define

D̂
T, dQ

dQ′
( f ) =

1

n
∑

j

dQ( f j)

dQ′ ( f j)
1 f j(x)= f (x) .

To see the intuition behind this definition, recall that DQ ( f |x)= Prg∼Q [g(x) = f (x)] and D̂T ( f |x)=
1
n ∑ j 1 f j(x)= f (x) where T =

{

f j

}n

j=1
. If T is sampled from Qn we have that

ET∼Qn

[

D̂T ( f |x)
]

=
1

n
∑

j

E
[

1 f j(x)= f (x)

]

=
1

n
∑

j

Pr [ f j (x) = f (x)] = DQ ( f |x) .

Therefore, we will show that D̂
T, dQ

dQ′
( f ) is an unbiased estimate of DQ ( f |x) and that it is con-

centrated around its expected value.

Theorem 24 Let Q and Q′ be probability measures over F . Then:
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1. For every f , ET∼Q′n

[

D̂
T, dQ

dQ′
( f )

]

= DQ ( f |x)

2. If dQ
dQ′ is bounded such that dQ

dQ′ ≤ c then

Pr
T∼Q′n

[∣

∣

∣

∣

D̂
T, dQ

dQ′
( f )−DQ ( f |x)

∣

∣

∣

∣

> ε

]

< 2exp

(

−2nε2

c2

)

.

Proof To prove the first part we note that

ET∼Q′n

[

D̂
T, dQ

dQ′
( f )

]

= ET∼Q′n

[

1

n
∑

j

dQ( f j)

dQ′ ( f j)
1 f j(x)= f (x)

]

= Eg∼Q′

[

dQ(g)

dQ′ (g)
1g(x)= f (x)

]

=

ˆ

g

dQ(g)

dQ′ (g)
1g(x)= f (x)dQ′ (g)

=

ˆ

g

1g(x)= f (x)dQ(g) = DQ ( f |x) .

The second part is proved by combining Hoeffding’s bound with the first part of this theorem.

3.3 Tukey Depth and Median Algorithms

To complete the picture we demonstrate how the algorithms presented here apply to the problems

of computing Tukey’s depth function and finding the Tukey median. In section 2.1 we showed how

to cast the Tukey depth as a special case of the predicate depth. We can use this reduction to use

Algorithm 1 and Algorithm 2 to compute the Tukey depth and approximate the median respectively.

To compute these values, we assume that one has access to a sample of points in R
d , which we

denote by f1, . . . , fn. We also assume that one has access to a sample of directions and biases of

interest. That is, we assume that one has access to a sample of xi’s such that xi ∈ S×R where S

is the unit sphere. Hence, we interpret xi as a combination of a d-dimensional unit vector xv
i and

an offset term xθ
i . Algorithm 3 shows how to use these samples to estimate the Tukey depth of a

point f ∈ R
d . Algorithm 4 shows how to use these samples to approximate the Tukey median. The

analysis of these algorithms follows from Theorems 17 and 19 recalling that the VC dimension of

this problem is d.

Computing the Tukey depth requires finding the infimum over all possible directions. As other

approximation algorithm do (see Section 4.5) the algorithm presented here finds a minimum over

a sample of possible directions represented by the sample S. When generating this sample, it is

natural to select xv
i uniformly from the unit sphere. According to the algorithms presented here

one should also select xθ
i at random. However, for the special case of the linear functions we study

here, it is possible to find the minimal depth over all possible selections of xθ
i once xv

i is fixed. This

can be done by counting the number of f j’s such that f j · xv
i > f · xv

i and the number of f j’s such

that f j · xv
i < f · xv

i and taking the minimal value between these two. We use this in the algorithm

presented here.

Algorithm 4 selects a set of random directions x1, . . . ,xu. The median f should be central in

every direction. That is, if we project f1, . . . , fn and f on xi then the projection of f should be close
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Algorithm 3 Tukey Depth Estimation

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ S

• A sample T = { f1, . . . , fn} such that f j ∈ R
d

• A point f ∈ R
d

Output:

• D̂S
T ( f ) - an approximation for the depth of f

Algorithm:

1. for i = 1, . . . ,u compute D̂T ( f |xi) =
1
n

min
(∣

∣ f j : f j · xi > f · xi

∣

∣ ,
∣

∣ f j : f j · xi < f · xi

∣

∣

)

2. return D̂S
T ( f ) = mini D̂( f |xi)

Algorithm 4 Tukey Median Approximation

Inputs:

• A sample S = {x1, . . . ,xu} such that xi ∈ S

• A sample T = { f1, . . . , fn} such that f j ∈ R
d

• A linear programs solver A that given a set of linear constraints finds a point that is consistent

with the constraints if such a point exists.

Outputs:

• A point f ∈ R
d and its depth estimation D̂S

T ( f )

Details:

1. Foreach i = 1, . . . ,u and j = 1, . . . ,n compute f j · xi

2. Let s1
i , . . .s

n
i be the sorted values of f j · xi.

3. Use binary search to find the smallest k = 0, . . . , n/2 for which A can find f such that

∀i s
⌊ n

2⌋−k

i ≤ f · xi < s
⌈ n

2⌉+k

i

4. Return the f that A found for the smallest k in (3).
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to the median of the projection, that is, it should have high one dimensional depth. Therefore, we

can start by seeking f with the highest possible depth in every direction. If such f does not exist we

can weaken the depth requirement in each direction and try again until we can find a candidate f .

Algorithm 4 accelerates this process by using binary search. Note that since the above procedures

use only inner products, kernel versions are easily constructed.

4. Relation to Previous Work

In this section we survey the relevant literature. Since depth plays an important role in multivariate

statistics it has been widely studied, see Liu et al. (1999), for example, for a comprehensive intro-

duction to statistical depth and its applications in statistics and the visualization of data. We focus

only on the part that is related to the work presented here. To make this section easier to follow, we

present each related work together with its contexts. Note however that the rest of this work does

not build upon information presented in this section and thus a reader can skip this section if he

wishes to do so.

4.1 Depth for Functional Data

López-Pintado and Romo (2009) studied depth for functions. The definitions of depth used therein

is closer in spirit to the simplicial depth in the multivariate case (Liu, 1990). As a consequence it is

defined only for the case where the measure over the function space is an empirical measure over

a finite set of functions. Zuo (2003) studied the projection based depth. For a point x in R
d and a

measure ν over Rd ×R, the depth of x with respect to ν is defined to be

Dν (x) =

(

1+ sup
‖u‖=1

φ(u,x,ν)

)−1

where

φ(u,x,ν) ≡ |u · x−µ(ν|x)|
σ(ν|x)

where µ is a measure of dislocation and σ is a measure of scaling. The functional depth we present

in this work can be presented in similar form by defining, for a function f ,

D( f ,ν) =

(

1+ sup
x∈X

φ( f ,x,ν)

)−1

where

φ( f ,x,ν) = | f (x)−Eg∼ν [g(x)]| .

Fraiman and Muniz (2001) introduced an extension of univariate depth to function spaces. For

a real function f , the depth of f is defined to be Ex [D( f (x))] where D(·) is the univariate depth

function. It is not clear how to use this definition in the binary classification setting. Since the range

of the functions contains only two possible values, the univariate rank is of limited utility. However,

if we choose the rank function such that the rank of a value is the probability that a function will

assign this value, we arrive at a similar definition to the one we propose. The main difference is that

Fraiman and Muniz (2001) define the depth as an average over all x’s, while in our setting we take

the infimum. This plays a key role in our analysis.
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4.2 Depth and Classification

Ghosh and Chaudhuri (2005a) used depth for classification purposes. Given samples of data from

the different classes, one creates depth functions for each of the classes. At inference time, the depth

of a point x is computed with respect to each of the samples. The algorithm associates an instance x

with the class in which x is deepest. Ghosh and Chaudhuri (2005a) prove generalization bounds in

the case in which each class has a elliptic distribution. Cuevas et al. (2007) used a similar approach

and compared the performance of different depth functions empirically. Jörnsten (2004) used a

similar approach with an L1 based depth function. Billor et al. (2008) proposed another variant of

this technique.

Ghosh and Chaudhuri (2005b) introduced two variants of depth functions to be used for learning

linear classifiers. Let {(xi,yi)}n
i=1 be the training data such that xi ∈ R

d and yi ∈ ±1. In the first

variant, the depth of a linear classifier α ∈ R
d is defined to be

U (α) =
1

n+n− ∑
i:yi=1

∑
j:y j=−1

I [α · (xi − x j)> 0]

where n+ and n− are the numbers of positive (and negative) examples, and I is the indicator function.

The regression based depth function is defined to be

∆(α,β) =
π+

n+
∑

i:yi=1

I [α · xi +β > 0]+
π−

n− ∑
i:yi=−1

I [α · xi +β < 0]

where π+ and π− are positive scalars that sum to one. It is easy to see that the regression based depth

defined here is the balanced misclassification probability. The authors showed that as the sample

size goes to infinity, the maximal depth classifier is the optimal linear classifier. However, since

minimizing this quantity is known to be hard, the authors suggesting using the logistic function as

a surrogate to the indicator function. Therefore, these methods are very close (and in some cases

identical) to logistic regression.

Gilad-Bachrach et al. (2004) used the Tukey depth to analyze the generalization performance of

the Bayes Point Machine (Herbrich et al., 2001). This work uses depth in a similar fashion to the

way we use it in the current study. However, the definition of the Bayes depth therein compares the

generalization error of a hypothesis to the Bayes classifier in a way that does not allow the use of

the PAC-Bayes theory to bound the gap between the empirical error and the generalization error. As

a result the analysis in Gilad-Bachrach et al. (2004) was restricted to the realizable case in which

the empirical error is zero.

4.3 Regression Depth

Rousseeuw and Hubert (1999) introduced the notion of regression depth. They discussed linear

regression but their definition can be extended to general function classes in the following way: Let

F = { f : X 7→ R} be a function class and let S = {(xi,yi)}n
i=1 be a sample such that xi ∈ X and

yi ∈ R. We say that the function f ∈ F has depth zero (“non-fit” in Rousseeuw and Hubert, 1999)

if there exists g ∈ F that is strictly better than f on every point in S. That is, for every point (xi,yi)
one of the following applies:

i. f (xi)< g(xi)≤ yi

ii. f (xi)> g(xi)≥ yi .
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A function f ∈ F is said to have a depth d if d is the minimal number of points that should be

removed from S to make f a non-fit.

Christmann (2006) applied the regression depth to the classification task. He used the logit

function to convert the classification task to a regression problem. He showed that in this setting

the regression depth is closely related to the logistic regression problem and the well known risk

minimization technique.

4.4 An Axiomatic Definition of Depth

Most of the applications of depth for classification define the depth of a classifier with respect

to a given sample. This is true for the regression depth as well. In that respect, the empirical

accuracy of a function is a viable definition of depth. However, in this study we define the depth of

a function with respect to a probability measure over the function class. Following Zuo and Serfling

(2000) we introduce a definition of a depth function for the classification setting. Our definition has

four conditions, or axioms. The first condition is an invariance requirement, similar to the affine

invariance requirement in multivariate depth functions. In our setting, we require that if there is a

symmetry group acting on the hypothesis class then the same symmetry group acts on the depth

function too. The second condition is a symmetry condition: it requires that if the Bayesian optimal

hypothesis happens to be a member of the hypothesis class then the Bayesian optimal hypothesis is

the median hypothesis. The third condition is the monotonicity condition. This requires that if f1

and f2 are two hypotheses such that f1 is strictly closer to the Bayesian optimal hypothesis than f2,
then f1 is deeper than f2. The final requirement is that the depth function is not trivial, that is, that

the depth is not a constant value.

Definition 25 Let F = { f : X 7→ ±1} and let Q be a probability measure over F . DQ : F 7→ R
+

is a depth function if it has the following properties:

1. Invariance: If σ : X 7→ X is a symmetry of F in the sense that for every f ∈ F there exists

fσ ∈ F such that f (σ(x)) = fσ (x) then for every Q and f : DQ ( f ) = DQσ ( fσ). Here, Qσ is

such that for every measurable set A ⊆ F we let Aσ = { fσ : f ∈ A} and have that Q(A) =
Qσ (Aσ).

2. Symmetry: if there exists f ∗ ∈F such that ∀x∈X , Q{ f : f (x) = f ∗ (x)}≥ 1/2 then DQ ( f ∗)=
sup f DQ ( f ).

3. Monotonicity: if there exists f ∗ ∈ F such that DQ ( f ∗) = sup f DQ ( f ) then for every f1, f2 ∈
F , if f1 (x) 6= f ∗ (x) =⇒ f2 (x) 6= f ∗ (x) then DQ ( f1)≥ DQ ( f2).

4. Non-trivial: for every f ∈ F , there exist Q such that f is the unique maximizer of DQ.

Our definition attempts to capture the same properties that Zuo and Serfling (2000) considered,

with a suitable adjustment for the classification setting. It is a simple exercise to verify that the

predicate depth meets all of the above requirements.

4.5 Methods for Computing the Tukey Median

Part of the contribution of this work is the proposal of algorithms for approximating the predicate

depth and the predicate median. The Tukey depth is a special case of the predicate depth and there-

fore we survey the existing literature for computing the Tukey median here. Chan (2004) presented
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optimal algorithms for computing the Tukey median. Chan presented a randomized algorithm that

can find the Tukey median for a sample of n points with expected computational complexity of

O(n logn) when the data is in R
2 and O

(

nd−1
)

when the data is in R
d for d > 2. It is conjectured

that these results are optimal for finding the exact median. Massé (2002) analyzed the asymptotic be-

havior of the empirical Tukey depth. The empirical Tukey depth is the Tukey depth function when it

is applied to an empirical measure sampled from the true distribution of interest. He showed that the

empirical depth converges uniformly to the true depth with probability one. Moreover, he showed

that the empirical median converges to the true median at a rate that scales as 1/
√

n. Cuesta-Albertos

and Nieto-Reyes (2008) studied the random Tukey depth. They proposed picking k random direc-

tions and computing the univariate depth of each candidate point for each of the k directions. They

defined the random Tukey depth for a given point to be the minimum univariate depth of this point

with respect to the k random directions. In their study, they empirically searched for the number

of directions needed to obtain a good approximation of the depth. They also pointed out that the

random Tukey depth uses only inner products and hence can be computed in any Hilbert space.

Note that the empirical depth of Massé (2002) and the random Tukey depth of Cuesta-Albertos

and Nieto-Reyes (2008) are different quantities. In the empirical depth, when evaluating the depth

of a point x, one considers every possible hyperplane and evaluates the measure of the corresponding

half-space using only a sample. On the other hand, in the case of random depth, one evaluates only

k different hyperplanes. However, for each hyperplane it is assumed that the true probability of

the half-space is computable. Therefore, each one of these approaches solves one of the problems

involved in computing the Tukey depth. However, in reality, both problems need to be solved

simultaneously. That is, since scanning all possible hyperplanes is computationally prohibited, one

has to find a subset of representative hyperplanes to consider. At the same time, for each hyperplane,

computing the measure of the corresponding half-space is prohibitive for general measures. Thus,

an approximation is needed here as well. The solution we present addresses both issues and proves

the convergence of the outcome to the Tukey depth, as well as giving the rate of convergence.

Since finding the deepest point is hard, some studies focus on just finding a deep point. Clarkson

et al. (1996) presented an algorithm for finding a point with depth Ω(1/d2) in polynomial time.

For the cases in which we are interested, this could be insufficient. When the distribution is log-

concave, there exists a point with depth 1/e, independent of the dimension (Caplin and Nalebuff,

1991). Moreover, for any distribution there is a point with a depth of at least 1/d+1 (Carathèodory’s

theorem).

4.6 PAC-Bayesian Bounds

Our works builds upon the PAC-Bayesian theory that was first introduced by McAllester (1999).

These results were further improved in a series of studies (see, for example, Seeger, 2003; Am-

broladze et al., 2007; Germain et al., 2009). These results bound, with high probability, the gap

between the empirical error of a stochastic classifier based on a posterior Q to the expect error of

this classifier in terms of the KL-divergence between Q and the prior P. Some of these studies

demonstrate how this technique can be applied to the class of linear classifier and how to improve

the bounds by using parts of the training data to learn a prior P to further tighten the generalization

bounds.

In the current study we use different approaches which result in different type of bounds. The-

orem 4 shows a multiplicative bound on the error of a classifier with respect to the error of the
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Gibbs classifier. For example, if the posterior is log-concave and the hypothesis is the mean of the

posterior, then the multiplicative factor is e ∼= 2.71. This bound contains no additive components,

therefore, if the generalization error of the Gibbs classifier is small, this new bound may be supe-

rior compared to bounds which have additive components (Ambroladze et al., 2007; Germain et al.,

2009). The structure of this bound is closer to the consistency bounds for the Nearest Neighbor

algorithm (Fix and Hodges Jr, 1951). However, unlike consistency bounds, the bound of Theorem 4

applies to any sample size and any method of obtaining the data.

Another aspect of Theorem 4 is that the bound applies to any classification function. That means

that it does not assume that the classifier comes from the same class on which the Gibbs classifier

is defined, neither does it make any assumptions on the training process. For example, the training

error does not appear in this bound.

Theorem 5 uses the PAC-Bayesian theory to relate the training error of the Gibbs classifier to

the generalization error of a deep classifier. In Ambroladze et al. (2007) and Germain et al. (2009)

the posterior Q is chosen to be a unit variance Gaussian around the linear classifier of interest.

Using the same posterior in Theorem 5 will result in inferior results since there is an extra penalty

of factor 2 due to the 1/2 depth of the center of the Gaussian. However, our bound provides more

flexibility in choosing the posterior Q in the tradeoff between the empirical error, the KL divergence

and the depth. It is left as an open problem to determine if one can derive better bounds by using

this flexibility.

5. Discussion

In this study we addressed the hypothesis selection problem. That is, given a posterior belief over

the hypothesis class, we examined the problem of choosing the best hypothesis. To address this

challenge, we defined a depth function for classifiers, the predicate depth, and showed that the gen-

eralization of a classifier is tied to its predicate depth. Therefore, we suggested that the deepest

classifier, the predicate median, is a good candidate hypothesis to select. We analyzed the break-

down properties of the median and showed it is related to the depth as well. We contrasted these

results with the more commonly used maximum a posteriori classifier.

In the second part of this work we discussed the algorithmic aspects of our proposed solution.

We presented efficient algorithms for uniformly measuring the predicate depth and for finding the

predicate median. Since the Tukey depth is a special case of the depth presented here, it also

follows that the Tukey depth and the Tukey median can be approximated in polynomial time by our

algorithms.

Our discussion was limited to the binary classification case. It will be interesting to see if this

work can be extended to other scenarios, for example, regression, multi-class classification and

ranking. These are open problems at this point.
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