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Abstract

We consider the problem of classifying a test sample given incomplete information. This problem

arises naturally when data about a test sample is collected over time, or when costs must be incurred

to compute the classification features. For example, in a distributed sensor network only a fraction

of the sensors may have reported measurements at a certain time, and additional time, power, and

bandwidth is needed to collect the complete data to classify. A practical goal is to assign a class

label as soon as enough data is available to make a good decision. We formalize this goal through

the notion of reliability—the probability that a label assigned given incomplete data would be the

same as the label assigned given the complete data, and we propose a method to classify incomplete

data only if some reliability threshold is met. Our approach models the complete data as a random

variable whose distribution is dependent on the current incomplete data and the (complete) training

data. The method differs from standard imputation strategies in that our focus is on determining the

reliability of the classification decision, rather than just the class label. We show that the method

provides useful reliability estimates of the correctness of the imputed class labels on a set of ex-

periments on time-series data sets, where the goal is to classify the time-series as early as possible

while still guaranteeing that the reliability threshold is met.

Keywords: classification, sensor networks, signals, reliability

1. Introduction

In many applications there is a cost associated with collecting or computing the features necessary

to classify a test sample. For example, in medical applications, there are costs to subjecting a patient

to additional tests. Or, in distributed networks, the cost of aggregating all of the test data is power or

bandwidth. In many applications, there is simply a CPU or bandwidth cost to getting and processing
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raw data to produce a full set of classification features. Thus, it is desirable to know if one can make

a good decision without collecting all of the test data. Specifically, we wish to guarantee that a

decision made from incomplete test data has a high probability of being the same decision that

would be made given the complete test data.

In this paper, we focus on answering the question “With probability at least equal to τ, will the

classification decision from incomplete data be the same as that which would be made from the

complete data?” Our approach also makes it possible to answer the related question, “If we classify

based on the current incomplete data, what is the probability that the class decision will be the same

as classifying from the complete data?”

First, we propose optimal and practical decision rules for classifying incomplete data. In Sec-

tions 3, 4, and 5 we provide the details on how to efficiently and accurately implement the proposed

practical decision rule for classifiers that use linear or quadratic discriminants, such as linear sup-

port vector machines and linear or quadratic discriminant analysis (LDA and QDA). In Section 6,

we review related work on classifying with missing features and related work on early classification

of time-series data. Experiments in Section 7 show that the proposed incomplete decision rule con-

sistently provides enhanced reliability over the state of the art in classifying incomplete data. We

further discuss the results and some open questions in Section 8.

This paper significantly extends our prior work in the conference paper (Anderson et al., 2012),

where we tackled the same problem but proposed a more conservative decision rule. In this paper,

we propose a more tractable decision rule, show how it can be used with different kinds of classifiers,

show that our approach can be applied to different features, and provide substantially more analysis

and experimental results.

2. Incomplete Decision Rules

Let ĝ(x) be a classifier function that assigns a class label to test sample x. However, suppose that at

test time we do not have x, but instead have some incomplete information given as a vector z. We

wish to classify z if it gives us enough information about x to make a good decision, otherwise, we

delay making a decision until we have more information. To that end, we consider decision rules

that answer the question: “Can we classify z and know that we meet some minimum probability

threshold of making the same decision that we would make on x?” We use the term reliability to

mean the probability that the class label assigned to z matches that assigned to x.

To estimate reliability, we model the classification features derived from the complete data as a

random variable X , where X is jointly distributed with the random variable Z modeling the incom-

plete data. Given a desired reliability τ ∈ [0,1] and a realization of the incomplete information z, an

ideal incomplete decision rule is to classify as class g if

P(ĝ(X) = g|Z = z) =
∫

x s.t. ĝ(x)=g
p(x|z) dx

≥ τ, (1)

and otherwise to wait for more information. Figure 2 illustrates this rule.

The ideal rule given in (1) could be checked in several ways. A straightforward check would be

to compute the integral directly and see if it is greater than or equal to τ. An alternative check that we

find easier to approximate is to consider all sets A in the domain of X such that P(X ∈ A|Z = z)≥ τ,

3562



CLASSIFYING WITH CONFIDENCE

Figure 1: In this example, the available information is the incomplete time signal z, shown in green.

Assuming the complete signal is iid with the training signals, the complete signal can be

treated as a random signal (illustrated in pink), implying a conditional density on the

complete signal’s classification features, p(x|z). Given p(x|z) we can check whether or

not one can make a reliable classification.

and see if ĝ(x) maps all x in one such set to a single class g. In general, we expect both these checks

to be computationally intractable.

We propose that a more conservative, but computable, incomplete decision rule is to classify as

class g if

ĝ(x) = g for all x ∈ A for some set A such that P(X ∈ A|Z = z)≥ τ. (2)

Rule (2) differs from (1) in that only one set A that contains at least τ measure of X must be checked.

This rule is more conservative than (1) because it does not check all sets A, and thus (1) could be

satisfied without (2) being satisfied (but not vice-versa).

Implementing the proposed rule given in (2) requires three steps. First, we must estimate the

conditional density p(x|z). Second, we must construct an appropriate set A, and third, we must

check if the rule is satisfied. We first discuss the construction of a set A in Section 3, and show that

our construction only requires estimates of the first and second conditional moments of X . Then

in Section 4, we show how rule (2) can be efficiently checked for classifiers that have linear or

quadratic class discriminant functions. We delay the discussion of how to estimate the necessary

moments of X until Section 5.

3. Defining a Set A that Contains Measure τ of X

To implement the incomplete decision rule (2), one must be able to construct a set A that contains at

least τ measure of X given z. In this section we propose three ways to construct such a set A. Figure

3 compares these three constructions.

3.1 Chebyshev Construction for Set A

Suppose that we estimate only the first and second conditional moments of X , but make no assump-

tions about the distribution other than that it has finite first and second moments. Then a set A can
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Figure 2: Comparison of the ideal and proposed conservative but computable decision rule. Left:

A two-dimensional feature space and a linear class decision boundary. The probability

mass of X lies mostly to the left of the decision boundary. For desired reliability values τ

that are smaller than the probability mass of X that falls to the left of the decision bound-

ary, the ideal incomplete decision rule would choose to classify based on the incomplete

information z. Right: The entire probability mass of X falls on one side of the decision

boundary, and thus the ideal incomplete decision rule would choose to classify rather than

wait, for every value of τ. However, our computable incomplete decision rule constructs a

set A that captures a fraction τ of the mass of X and requires that entire set A to lie on one

side of the decision boundary. For the choice of A shown here in blue, the set A crosses

the decision boundary, and thus the computable decision rule would choose to wait for

more information before classifying.

be constructed using the multidimensional Chebyshev inequality, which states that for X ∈ R
d with

known mean m and covariance R, and any α > 0:

P
(

(X −m)T R−1(X −m)≤ α2
)

≥ 1− d

α2
.

Thus to satisfy P(X ∈ A|Z = z)≥ τ, define

A =

{

x s.t. (x−m)T R−1(x−m)≤ d

1− τ

}

. (3)

The set A defined by (3) is non-empty for τ ∈ (−∞,1], although τ ≤ 0 does not give a useful bound

for the incomplete classifier reliability.

3.2 Naive Bayes Constructions for Set A

The Chebyshev construction given in the previous section can be overly conservative, as it makes

no assumptions about the conditional distribution of X other than a finite mean and covariance. If

we assume more about the distribution, we can define a smaller constraint set A that results in a less

conservative decision rule, and therefore earlier classification for the same reliability requirement τ.
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Decision Boundary 

 

Conditional mean of X 

 

Chebyshev constraint set A 
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Figure 3: Example sets that contain mass τ of the conditional p.d.f. of X formed by the three

different construction methods for A proposed Section 3.

For example, if we assume that the conditional distribution is Gaussian,1 then a quadratic set A that

covers τ measure of X is

A =
{

x s.t. (x−m)T R−1(x−m)≤ erf(τ)
}

, (4)

where one must compute the inverse cdf to determine the value erf(τ) to achieve a set A with

measure τ. For a multi-dimensional Gaussian, computing the inverse cdf for (4) is non-trivial. We

can simplify (4) by making the conservative näive Bayes assumption that the components of X are

independent, and thus R is diagonal. Then the quadratic function in (4) becomes ∑d
ℓ=1

(

x(ℓ)−m(ℓ)√
R(ℓ,ℓ)

)2

.

Under the independent Gaussian assumption, ∑d
ℓ=1

(

X(ℓ)−m(ℓ)√
R(ℓ,ℓ)

)2

is a chi-squared random variable

with d degrees of freedom; thus, the erf(τ) function in (4) is easily computed using the inverse cdf

of a chi-squared random variable.

A related option is to force the set A to be a box. Again, make the näive Bayes assumption that

elements of X are independent, then p(x|z) = ∏d
ℓ=1 p(x(ℓ)|z). Therefore, we can define a set

A = {x s.t. x(ℓ) ∈ [m(ℓ)− sτ(ℓ),m(ℓ)+ sτ(ℓ)] ∀ ℓ= 1, ...,d} , (5)

where sτ is a vector defining the width of the box in each dimension such that the total measure of

the box is τ. In this paper, we implement this constraint by assigning each dimension equal measure

τ1/d while assume that each marginal distribution X(ℓ) is Gaussian.

The two options (4) and (5) make the same two assumptions about the conditional distribution

of X , but (4) finds the ellipsoidal footprint of the Gaussian that has measure τ, while (5) treats the

dimensions completely independently, giving each of the marginals measure τ1/d .

1. The Gaussian assumption is often justified by a central limit theorem argument, a maximum entropy argument, or a

simplicity argument.
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4. Efficient Solutions for Linear or Quadratic Discriminants

In this section, we show that the incomplete data classification rule (2) with the constraint sets A

proposed in Section 3 can be computed efficiently for classifiers of the form

ĝ(x) = argmax
g

fg(x), (6)

where fg(x) is a linear or quadratic discriminant function for the gth class, and according to (6), the

classifier assigns x to the class with the maximum discriminant. For example, the linear support

vector machine (SVM) has a linear discriminant, while the quadratic discriminant analysis (QDA)

classifier has a quadratic discriminant (Hastie et al., 2001).

Nearest-neighbor classifiers using an Euclidean (or Mahalanobis) distance have a discriminant

that over the set x ∈ A requires taking the minimum of a set of quadratic discriminants:

fg(x) = min
xi:yi=g

(x− xi)
T (x− xi).

An optimal method for checking the incomplete decision rule (2) for this discriminant is an open

question. A conservative reliability decision can be made by treating each sample as its own class

in (6). That is, let fi(x) = (x− xi)
T (x− xi), solve (6) for the resulting quadratic discriminant, and

then classify as the class yi. A computationally simpler approach (but one that is not strictly con-

servative), is to only consider each class’s nearest neighbor to the posterior mean, which produces

one quadratic discriminant per class. In experiments, we do something similar to the latter approach

using a local QDA classifier.

We begin with the two-class problem, and then show how this rule can be extended to multi-class

problems.

4.1 Two-class Problems

We first consider a two-class problem, where the set of class labels is G = {1,2}. Let f1(x) and

f2(x) be the discriminants for classes one and two, and define

f (x) = f2(x)− f1(x).

We can define an equivalent classifier to (6) using only f (x) by noting that f (x) = 0 defines the

decision boundary between classes 1 and 2. Therefore, classification rule (6) is equivalent to

ĝ(x) =

{

1 if f (x)≤ 0

2 if f (x)> 0.

Then the proposed incomplete data decision rule (2) is implemented:

ĝ(z) =











1 if max
x∈A

f (x)≤ 0

2 if min
x∈A

f (x)> 0

no decision otherwise.

(7)

Note that the decision rule (7) is dependent on the incomplete data through the dependence of A on

z. The three different conditions in (7) are shown for a quadratic discriminant (and hence quadratic

decision boundary) and a quadratic construction of the set A in Figure 4.
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Figure 4: Three different scenarios for incomplete data classification. In the leftmost plot, the clas-

sifier withholds making a decision. In the center and rightmost plots, A lies completely on

a single side of the decision boundary, so the classifier assigns a label to the incomplete

data.

4.1.1 LINEAR DISCRIMINANTS

In order to efficiently check (7), we must be able to efficiently compute the maximum and minimum

of f (x) over the set x ∈ A. If f1(x) and f2(x) are linear discriminants, then f (x) is also linear.

Coupled with a quadratic set A, such as the Chebyshev or näive Bayes quadratic sets A given in

Section 3, finding the maximum and minimum are the linear programs with quadratic constraints:

max
x∈A

f (x) =max
x

βT x+b (8)

s.t. (x−m)T R−1(x−m)≤ δ

min
x∈A

f (x) =min
x

βT x+b (9)

s.t. (x−m)T R−1(x−m)≤ δ.

These optimizations have closed-form solutions:

Proposition 1: The solutions to (8) and (9) are, respectively

max
x∈A

f (x) = βT m+
√

δ ‖ R1/2β ‖2 +b

min
x∈A

f (x) = βT m−
√

δ ‖ R1/2β ‖2 +b.
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Figure 5: The left figure shows the time required by the SDP vs gradient descent solutions. The

right figure verifies that the solution for the methods is identical.

For a linear set A such as the näive Bayes box constraint set given in (5), the maximum and

minimum are:

max
x∈A

f (x) =max
x

βT x+b (10)

s.t. m(ℓ)− sτ(ℓ)≤ x ≤ m(ℓ)+ sτ(ℓ) ∀ ℓ= 1, ...,d

min
x∈A

f (x) =min
x

βT x+b (11)

s.t. m(ℓ)− sτ(ℓ)≤ x ≤ m(ℓ)+ sτ(ℓ) ∀ ℓ= 1, ...,d.

The solution of (10) is βT m+ |βT |sτ +b, and the solution of (11) is βT m−|βT |sτ +b.

4.1.2 QUADRATIC DISCRIMINANTS

If the class discriminant functions are quadratic, then f (x) = f2(x)− f1(x) will also be quadratic

and, thus, can be written

f (x) = (x− v)TV (x− v)+b. (12)

Since (12) is the difference of two quadratics, V will generally be indefinite even if f2(x) and f1(x)
are both positive semi-definite.

First consider finding the maximum and minimum of (12), as required by the incomplete deci-

sion rule (7), over a quadratic constraint set A. Since V is indefinite, this is a non-convex optimiza-

tion problem; however, strong duality holds for finding the minimum or maximum of a quadratic

function subject to quadratic constraints (see, e.g., Boyd and Vandenberghe, 2008). The dual prob-

lem is a semi-definite program (SDP), and can therefore be solved using convex optimization such

as an interior point method. However, in our experiments, we found the SDP solution to be pro-

hibitively slow. Therefore, we instead propose to use the two-step gradient descent approach de-

scribed in Appendix B. Martinez (1994) showed that there is at most one local non-global solution

to this non-convex problem. Also, since we need only know if the minimum or maximum of f (x)
is less than or greater than zero, we can often stop the gradient descent before convergence. Figure

(5) shows a run-time comparison between the SDP solution solved using Sedumi and the gradient-

descent solution.
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Now consider finding the maximum and minimum of (12) over the box set A. An efficient

solution is obtained by first performing a change of variables that diagonalizes V . Define y =V 1/2x

and w = V 1/2v, then f (x) = f (y) =‖ y−w ‖2 +b. After this change of variables, we can greatly

simplify the maximum and minimum computations required by the incomplete decision rule (7)

by making the näive Bayes assumption on the random variable Y = V 1/2X as opposed to on X .

Defining the mean of Y as my =V 1/2m,

max
x∈A

f (x) = max
y∈A

‖ y−w ‖2 +b (13)

min
x∈A

f (x) = min
y∈A

‖ y−w ‖2 +b, (14)

with

A = {y s.t. y(ℓ) ∈ [my(ℓ)− sτ(ℓ), my(ℓ)+ sτ(ℓ)], ∀ ℓ= 1, ...,d} ,
where the sτ(ℓ) are determined by the inverse cdf of Y (ℓ).

After this change of variables, the y that maximizes (13) is found by assigning each y(ℓ) to the

edge of the box that maximizes the distance from w(ℓ). Similarly, the y that minimizes (14) assigns

y(ℓ) = w(ℓ) if w(ℓ) ∈ [my(ℓ)− sτ(ℓ), my(ℓ)+ sτ(ℓ)]. Otherwise, y(ℓ) is assigned to the edge of the

box that minimizes the distance to w(ℓ).

4.2 Multi-class Classifiers

We now extend the results of the previous section to multi-class classifiers. For multi-class classi-

fiers, the classification rule (6) can be expressed:

ĝ(x) = c if fc(x)− fh(x)≥ 0 for all h 6= c.

The proposed incomplete data classification rule (2) can be written:

ĝ(z) =

{

c if min
x∈A

fc(x)− fh(x)≥ 0 for all h 6= c

no decision otherwise.
(15)

That is, classify z as class c if the set A lies completely within the decision region for some class c,

and do not decide at the requested reliability if the set A straddles a decision boundary.

If there are G total classes, then (15) implies 2
(

G
2

)

possible checks of the form minx∈A fc(x)−
fh(x) ≥ 0. However, we show in the next section that regardless of the construction of set A, one

must compute at most 2(G− 1) of these checks. Furthermore, if the set A contains the posterior

mean m (as it does in all of our proposed constructions for A), then a decision can be made with at

most G−1 checks using this two-step procedure:

Step 1 - Guess: Let c = argmax
g

fg(m).

Step 2 - Check: Sequentially check if minx∈A fc(x)− fh(x) ≥ 0 for h = 1,2, . . . ,G, h 6= c. If the

check fails for any h, stop, and output the result no decision. If the check holds for all h, then

classify early as class c.

4.3 General Multiclass Decision Process

We provide a provably efficient multi-class decision process for arbitrary constructions of the con-

straint set A. We say that class c dominates class h and that class h is dominated by c if fc(x)−
fh(x)≥ 0 for all x ∈ A. If neither class dominates the other one, then the two classes are called tied.

To classify the incomplete data z early as class c, class c must dominate all other classes.

3569



PARRISH, ANDERSON, GUPTA AND HSAIO

4.3.1 PROPOSED DECISION PROCESS

Initialize: Begin with all G classes labelled candidate.

Compare: Choose any two classes c and h that are labelled candidate and check if minx∈A fc(x)−
fh(x) ≥ 0. If yes, then label h as dominated. If no, then perform a second check to see if

minx∈A fh(x)− fc(x) ≥ 0, and if so then label c as dominated, and otherwise label both classes

as tied. Continue this process until fewer than two classes are labelled candidate. If no classes

remain that are labelled candidate, then output no decision. If one class is labelled candidate,

then proceed to the Final Comparison.

Final Comparison: Check if the last class labelled candidate dominates every class labelled tied.

If yes, classify the incomplete data as the class labelled candidate, if no, output no decision.

Proposition 2: The above decision process correctly determines the dominating class or that there

is no dominating class.

Proposition 3: Given G classes, the above decision process requires at most 2(G− 1) minimum

problem calculations evaluations, and at least G−⌊G/2⌋ pairwise evaluations.

5. Estimation of the Complete Test Data Distribution

In order to construct the sets A in Section 3, we must estimate the mean m and covariance R of the

complete test data X . We do this by leveraging the incomplete information about the test signal

that is currently available along with the prior knowledge of the structure of the test signal gained

from the training data using the standard assumption that the training and test features are IID.

We present two estimation methods: 1) joint Gaussian estimation, and 2) Gaussian mixture model

(GMM) estimation. These approaches are similar to those used in missing feature imputation, for

example in speech recognition as described by Raj and Stern (2005). However, our approach differs

from that of missing feature imputation in that the latter constructs only a point estimate of the

unknown data, whereas we construct estimates of the mean and covariance of the unknown data.

5.1 Joint Gaussian Estimation

For joint Gaussian estimation, we assume that the complete data X is distributed jointly Gaussian

with the incomplete data Z. Therefore, the model is

[

X

Z

]

∼ N

([

x̄

z̄

]

,

[

Σx,x Σx,z

Σz,x Σz,z

])

. (16)

We estimate the model parameters in (16) from the training data. The mean and covariance param-

eters of X conditioned on the realization of the partial information Z = z are

m = ˆ̄x+ Σ̂x,zΣ̂
−1
z,z (z− ˆ̄z)

R = Σ̂x,x − Σ̂x,zΣ̂
−1
z,z Σ̂z,x.

5.2 GMM Based Estimation

We assume that the joint distribution of the complete data, X , and the incomplete data, Z, is a

Gaussian mixture model, where the elements of the Gaussian mixture are the class-conditional
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distributions. Under these assumptions the model is

[

X

Z

]

∼ ∑
g∈G

w(g)P

([

X

Z

]

∣

∣

∣
g

)

, (17)

where w(g) is the weight of the class g Gaussian and

P

([

X

Z

]

∣

∣

∣
g

)

= N

([

x̄g

z̄g

]

,

[

Σx,x(g) Σx,z(g)
Σz,x(g) Σz,z(g)

])

.

We can again estimate the parameters of the model (the means, covariances, and weights), from the

training data.

Define

mg = ˆ̄xg + Σ̂x,z(g)Σ̂
−1
z,z (g)(z− ˆ̄zg),

Rg = Σ̂x,x(g)− Σ̂x,z(g)Σ̂
−1
z,z (g)Σ̂z,x(g),

p(g|z) = p(G = g |Z = z)

=
wg p(Z = z |G = g)

∑h∈G wh p(Z = z |G = h)
.

Given a realization Z = z, we can compute the mean m of X as:

m = E[X |z] = ∑
g∈G

E[X ,G |z] = ∑
g∈G

mg p(g|z).

Furthermore, as shown in Appendix C, the covariance of X is

R = ∑
g∈G

p(g|z)
(

Rg +mgmT
g

)

− ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z).

6. Related Work

We detail the related work in early classification and missing features, then we contrast the proposed

with optimal stopping, feature selection, online and incremental learning, and sequential hypothesis

ratio testing.

6.1 Other Early Classification Work

Xing et al. (1998) considered the problem of making an early prediction on time-series data that

matches that of a full length one nearest-neighbor classifier. Suppose that the labelled training data

set is {(xi,gi)}n
i=1, where xi ∈R

d . Their approach, called early classification on time-series (ECTS),

is motivated by the idea of the minimum prediction length (MPL) of a training time-series xi. Define

xi(1 : t) ∈ R
t to be the first t samples of xi. Furthermore, define, RNN(xi(1 : t)) to be the reverse

nearest neighbors of xi(1 : t) which is the set of training samples that choose xi to be their nearest

neighbor at time t. The MPL of xi is the smallest time index k such that for all k ≤ ℓ ≤ d the

following holds RNN(xi(1 : ℓ)) = RNN(xi(1 : d)) 6= /0. By this definition, the MPL is the smallest

time index at which the reverse nearest neighbors of xi do not change as the rest of the time-series is
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revealed. At test time, a training point xi can be used to assign a label to a test sample x(1 : t) once

t ≥ MPL(xi), the minimum prediction length of xi.

The authors found that the above procedure was too conservative; therefore, they proposed a

slightly modified way to find the MPL for ECTS. They first clustered the training data using a

hierarchical clustering method and then selected the MPL for each training time-series depending on

its cluster membership. They also introduced a parameter to control the earliness of their approach

called minimum support—a ratio that varies between zero and one, with zero resulting in the earliest

classifier. However, the minimum support parameter is different from our τ parameter in that it does

not provide an explicit guarantee on the reliability of the early decision.

Xing et al. cite Rodriguez and Alonso (2002) as the only existing study mentioning early clas-

sification on time-series data. Rodriguez and Alonso (2002) propose to classify a time-series using

a literal based classifier, where a literal is a descriptor describing what happens during a specified

interval of the time-series. For example, the literal increases would be set to one if the time-series

increases during the specified interval, and would be set to zero otherwise. The authors mention

that for early classification of time-series some of the literals will not yet have a value because the

interval that they are measured in has not occurred yet. The authors propose to omit these literals

from the classifier in order to classifier early.

6.2 Related Work on Missing and Noisy Features

Another related body of work is imputing (estimating) missing features. If missing features occur in

the training data, then standard methods of classifier training cannot be used. One method of dealing

with this problem, called single imputation, is to fill in the missing features with their estimated

values. The missing features can be estimated using a multivariate regressor that is trained using

the subset of training data with no missing features. Schafer and Graham (2002) and Rogier et al.

(2006) review missing feature methods for training data.

When features are missing in the test data, there are three standard options (see, e.g., Saar-

Tsechansky and Provost, 2007): imputing a point estimate for the missing features, imputing a

distribution for the missing features, and the reduced-models approach. For the reduced models

approach, classifiers are trained for each set of potentially missing information (Friedman et al.,

1996; Schuurmans and Greiner, 2007; Saar-Tsechansky and Provost, 2007). Here, we do impute a

distribution over the missing features (conditioned on the given information about the test sample

and the training data statistics), but rather than just use that distribution to predict the best class label,

we use the distribution to measure the reliability of a classification decision with the incomplete data.

Thus, our contributions are in-part complementary to imputation methods, and different methods

than the ones we used in Section 5 can be easily substituted into the proposed approach.

If features are noisy rather than missing, then estimating the clean feature values can improve

test accuracy. This problem arises, for example, in automatic speech recognition (ASR) systems

when the test signal is masked by noise (Cooke et al., 2001; Raj et al., 2004; Raj and Stern, 2005).

Raj and Stern (2005) compare MAP estimates for noisy features in ASR systems using Gaussian

and GMM based estimators with models similar to those that we describe in Section 5.

6.3 Optimal Stopping Rules

Quoting Ferguson (2001), “The theory of optimal stopping is concerned with the problem of choos-

ing a time to take a given action based on sequentially observed random variables in order to maxi-

3572



CLASSIFYING WITH CONFIDENCE

mize an expected pay-off or to minimize an expected cost.” While the high-level goal is the same, the

optimal stopping perspective requires specification of misclassification costs and delay costs, which

are often difficult to specify. Given such costs, an optimal stopping rule approach would attempt to

estimate the probability of each class given the current incomplete information, and determine the

expected costs of making a decision or waiting.

6.4 Feature Selection

A related problem in classification is to determine the best subset of features to use in classifica-

tion. For example, the classic forward selection method sequentially adds in features based on their

marginal value. Different stopping rules have been proposed to decide when to stop sequentially

adding the features (Costanza and Afifi, 1979). Generally stopping rules are not applicable to the

problem we focus on because they assume that all increasing sets of features can be compared,

rather than that one only has the incomplete set of features and must make a decision. In addition,

stopping rules are based only on the training data statistics, and from our perspective are strictly

suboptimal in that they do not consider the current incomplete information.

6.5 Online and Incremental Learning

In this paper we assume that a fixed set of training data is given, and that incremental features of

a test sample become available. These assumptions differ from the usual set-up of online learning

(also known as incremental learning), which assumes that incrementally more training data becomes

available to train the classifier over time (e.g., Pang et al., 2005; Dredze et al., 2008; Crammer and

Singer, 2003). Also assuming the online learning set-up, Fu et al. (2005) propose a stopping rule

for deciding when enough training samples have been received to classify with confidence.

6.6 Sequential Hypothesis Testing

The sequential probability ratio test (SPRT) (Wald, 1947) is a greedy alternate to the proposed work,

designed for use with probabilistic models of two hypotheses. In the context of binary classification,

and a generative model p(y|xk), it accumulates the log-likelihood ratio:

Sk = Sk−1 + log p(y1|xk)− log(y2|xk), (18)

and if Sk exceeds a preset threshold t1, the signal would be called for class 1, and if Sk goes below a

preset negative threshold t2, the signal would be called for class 2. The thresholds are set to achieve

desired error levels on class 1 and class 2 respectively.

Armitage (1950) expanded SPRT for the multi-hypothesis case and applied it to linear discrim-

inant analysis classification (in which each class is assumed to be drawn from a distribution with

the same covariance matrix) for a different problem than the one treated here: given a sequence

of iid samples from one class, he prescribed how to use SPRT to give a rule for how and when to

determine the class.

A key difference between the proposed approach and the SPRT approach is that (18) is greedy:

new features do not change the contribution to the log-likelihood already made by previous features,

which stems from the standard SPRT assumption that successive observations are independent.

But the classifiers we consider in this paper are not trained to consider the features independently.

Further, we assume correlations between the features in order to estimate a probability distribution

over the unknown part of the feature vector, which we use to define a constraint set.
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Time-series Number of Training Test

Data set Length Classes Samples Samples

Chlorine Concentration 166 3 467 3840

Italy Power Demand 24 2 67 1029

Face (All) 131 14 560 1690

Medical Images 99 10 381 760

Non-Invasive Fetal ECG 1 750 42 1800 1965

Non-Invasive Fetal ECG 2 750 42 1800 1965

Starlight Curves 1024 3 1000 8236

Swedish Leaf 128 15 500 625

Synthetic Control 60 6 300 300

Two Patterns 128 4 1000 4000

U Wave Gesture Library X 315 8 896 3582

U Wave Gesture Library Y 315 8 896 3582

U Wave Gesture Library Z 315 8 896 3582

Wafer 152 2 1000 6174

Yoga 426 2 300 3000

Table 1: Time-series Data Sets

7. Experiments

Section 7.1 details the data sets, experimental set-up, and classifiers used. We first compare the

proposed methods to construct sets A of measure τ, reported in Section 7.2, and the proposed esti-

mation methods for the moments of PX |z, reported in Section 7.3. Then in Section 7.4, we show that

applying a dimensionality reduction method can greatly reduce the computation needed at test time.

Lastly, we compare our recommended reliable classifier to other approaches to early classification.

Research-grade code and the experimental data sets are available to download.2

7.1 Experimental Set-up and Details

We demonstrate performance using all of the time-series data sets available on the UCR Time-Series

Classification and Clustering Page (Keogh et al., 2006) that have at least five hundred test samples

and at least 15 training examples per class when this paper was written. We use the given training

and test splits, so all results can be reproduced. We also use the Synthetic Control data set from this

repository, a data set of Gaussian data that has only three hundred test samples, to further illustrate

the differences between the constraint sets and estimation methods that we have described for the

proposed incomplete decision rule. Table 1 gives details for the used data sets.

The time-series classification experiments are performed as follows. The test data set consists

of n sampled time-series vectors and corresponding labels {xi,gi}n
i=1, with xi ∈ R

d and g ∈ G . At

time t, the incomplete data for the ith test time-series is zi ∈ R
t , the first t samples of xi. At each

time t we check the proposed incomplete decision rule and classify zi if the reliability condition is

met for τ. We plot results for a set of choices of τ.

2. The code and data sets can be downloaded at http://www.mayagupta.org/publications/Early_

Classification_For_Web.zip.
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Local QDA Linear SVM

Chebyshev Quadratic Box Chebyshev Quadratic Box

Synthetic Control 1.8 0.7 0.4 0.4 0.3 0.3

Medical Images 27.1 2.7 1.4 1.9 1.0 0.8

Two Patterns 12.45 2.0 1.0 1.8 0.5 0.3

Table 2: Average test time per sample, in seconds, for the three different constraint sets.

Let ti(τ) be the minimum time at which the ith test signal can be classified with reliability

constraint τ, and let ĝ(zi(τ)) be the class label assigned to zi at this time. We measure the test

reliability as 1
n ∑n

i=1 I(ĝ(zi(τ)) = ĝ(xi)), where ĝ(xi) is the label assigned to the complete data and

I(·) is one if the argument is true and zero otherwise. We also measure the average classification time

as the mean of the ti(τ). Ideally, we would like to classify with the smallest average classification

time while still meeting reliability requirement τ.

We perform incomplete classification experiments with two different discriminant classifiers.

The first classifier is local QDA (Garcia et al., 2010). Local QDA learns the mean and covariance

for the class g discriminant function for test point x, fg(x), by estimating them using the k nearest

class g training points to test point x. We choose k ∈ {1, 2, 4, 8, 16, 32, 64, 128} by cross-validation

on the training data. In our implementation of local QDA, we use a diagonal covariance matrix, and

we regularize the covariance estimate by adding 10−4I, where I is the identity matrix. Since we do

not have the complete data x, we instead estimate the mean and covariance for fg(x) by finding the

nearest class g neighbors to the mean of X . The second classifier that we use is a linear SVM which

we implement using LibSVM (Chang and Lin, 2011) with default settings.

7.2 Comparison of Construction of Sets of Measure τ

We first compare the three set construction methods proposed Section 3, the Chebyshev set (3), the

Gaussian näive Bayes quadratic set (4), and the Gaussian näive Bayes box set (5).

We vary the reliability parameter between four values τ= [0.001, 0.1, 0.25, 0.9], and we perform

prediction using the jointly Gaussian model (16). Figure 6 plots the results for the Synthetic Control,

Medical Images, and Two Patterns data sets. In all cases, the empirical reliability rate exceeds

the reliability requirement τ. Additionally, these plots verify that the Chebyshev set is the most

conservative, as it waits the longest to classify the test data, and the näive Bayes quadratic set is the

least conservative.

Table 2 compares the average testing time per test sample for the three different constraint sets

when τ = 0.9. This table shows that the näive Bayes box set is the least computationally complex,

followed by the näive Bayes quadratic set, and finally the Chebyshev set.

7.3 Comparison of Estimation Methods

In this section we compare the performance of reliable incomplete classification using jointly Gaus-

sian estimation (16) to that using GMM estimation (17). We use the same classifiers and values for

τ as given in the previous section.

Figure 7 plots the average classification time vs. test reliability for the jointly Gaussian and

GMM estimation methods using the näive Bayes quadratic constraint set. The figure shows that on

the Synthetic Control and Medical Images data sets, the GMM method dominates the jointly Gaus-
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Figure 6: Average classification time vs test reliability for local QDA (left column) and linear SVM

(right column) using jointly Gaussian prediction. The symbols correspond to choices of

τ ∈ {0.001, 0.1, 0.25, 0.9}.
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Figure 7: Average classification time vs test reliability for local QDA (left column) and linear

SVM (right column) using the näive Bayes quadratic constraint set with τ varied between

[0.001, 0.1, 0.25, 0.9].
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Local QDA Linear SVM

Joint Gaussian GMM Joint Gaussian GMM

Synthetic Control 0.7 0.9 0.3 0.7

Medical Images 2.7 5.5 1.0 2.7

Two Patterns 2.0 3.4 0.5 0.8

Table 3: Average test time per sample, in seconds, for the two different estimation methods.

sian over all τ values for both classifiers. On the Two Patterns data set with local QDA classification,

the GMM method is not uniformly better than the jointly Gaussian method.

Table 3 compares the total testing time of the two approaches, and as expected, the GMM

method requires more test time than the simpler jointly Gaussian method.

7.4 Dimensionality Reduction Features

An advantage of our reliable incomplete classification approach is that it can use any features derived

from the data for which we can estimate the mean and covariance. As an example alternative to

using the time-series samples as the features, we select a smaller feature set by first preprocessing

the time-series using supervised linear dimensionality reduction. Linear dimensionality reduction

finds a matrix B ∈ R
ℓ× d , ℓ < d that maps the data from d-dimensional to ℓ-dimensional space.

Supervised dimensionality reduction uses the label information in the training data to find a reduced

space where the data is also separated by class. In the context of incomplete data classification, the

complete data becomes the vector Bx ∈ R
ℓ as opposed to x ∈ R

d .

Linear dimensionality reduction can provide two advantages over classifying the time-series

features. First, it can diminish the impact of noisy or non-discriminative features in the time-series

data, thus providing increased accuracy. Second, reducing the number of features reduces the com-

putational complexity. For a time-series with d samples, there are d − t unknown samples at time

t. Thus, if we simply use the time-series samples as the features for classification, the optimization

problem that the reliable incomplete classifier must solve has d − t free variables. For a long time

series, this can cause the computational complexity to become extreme when t is small. However,

performing linear dimensionality reduction reduces the number of unknowns to ℓ which can greatly

reduce the number of variables in the optimization for reliable classification.

We use local discriminative Gaussian (LDG) dimensionality reduction (Parrish and Gupta,

2012) to learn B. We choose LDG dimensionality reduction because 1) it can separate multi-modal

data, 2) the solution is fast, requiring only a maximal eigenvalue decomposition, and 3) it has been

shown to work well even when few training samples are provided and the input dimensionality is

large. Furthermore, we can choose the best input dimensionality by performing cross-validation

on the training data set to find a reduced space that is both small and accurate. Table 4 shows the

dimensionality of the training data after LDG dimensionality reduction. The table also compares

the testing time required to perform reliable local QDA classification with the näive Bayes quadratic

constraint set with jointly Gaussian estimation at time t = 1 with and without LDG dimensionality

reduction. On the data sets with more than three hundred time-series samples, using LDG dimen-

sionality reduction results in an orders of magnitude decrease in the testing time.
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Time-series Number of Test time LDG test time

Data set length LDG features at t=1 (ms) at t=1 (ms)

Chlorine Concentration 166 42 76 4

Italy Power Demand 24 2 2 1

Face (All) 131 30 40 2

Medical Images 99 11 18 2

Non-Invasive Fetal ECG 1 750 30 6,107 4

Non-Invasive Fetal ECG 2 750 23 5,789 3

Starlight Curves 1024 26 15,697 2

Swedish Leaf 128 20 35 2

Synthetic Control 60 7 9 1

Two Patterns 128 22 31 2

U Wave Gesture Library X 315 12 418 2

U Wave Gesture Library Y 315 6 382 1

U Wave Gesture Library Z 315 10 393 2

Wafer 152 17 55 2

Yoga 426 26 945 2

Table 4: Time-series length and the number of features after LDG dimensionality reduction as well

as a comparison of the testing time, in milliseconds, required to perform reliable local

QDA classification with the näive Bayes quadratic constraint set and jointly Gaussian es-

timation. The test time shown measures the average time, per test sample, to perform

reliable classification at time t = 1. Therefore, this is a worst case test time in terms of

real-time performance as the number of unknowns in the optimization problem for reliable

classification is maximized at time t = 1.

7.5 Comparison to Other Methods

In this section, we compare the performance of our reliable incomplete data classifier to ECTS

(Xing et al., 1998) and several baselines. For all experiments in this section, we use the näive Bayes

quadratic constraint set because it proved to be uniformly better than the box constraint set across

all experiments in Section 7.2, while not being as overly conservative as the Chebyshev set. We

also use the jointly Gaussian estimation method as it is faster to compute than the GMM method,

particularly for the long time-series with many classes (the three U Wave Gesture Library data sets

and two Non-Invasive Fetal ECG data sets). We also only show results for local QDA, as the reliable

local QDA classifier classified earlier than reliable SVM in all experiments of Sections 7.2 and 7.3.

ECTS trades off between the objectives of classifying early and ensuring that early labels meet

final labels by using a parameter that varies between zero and one, with zero resulting in the earliest

classification time. However, we emphasize that this parameter is not the same as our reliability

parameter τ, in that it provides no guarantee on reliability of the early predictions, but is instead a

knob that the user can tune to trade off between earliness and reliability. Xing et al. (1998) set this

parameter to 0 in the majority of their experiments. We compare to ECTS by varying this parameter

MS ∈ {0,0.05,0.1,0.2,0.4,0.8}.
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Figure 8: Average classification time vs test reliability for reliable incomplete local QDA classifica-

tion (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG

Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Figure 9: Average classification time vs test reliability for reliable incomplete local QDA classifica-

tion (Rel. Class.), reliable incomplete local QDA classification with LDG features (LDG

Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.

We also compare to the performance of two baseline methods that we call Fixed-time local QDA

and Fixed-time 1-NN. These methods use no predictive power, but instead classify all test signals at

some user specified time: t samples.

The reliability results are shown in Figures 8 and 9. Reliable incomplete local QDA classi-

fication and reliable incomplete local QDA classification with LDG features perform well across

all experiments. The only times that these methods do not dominate all other methods are when

τ = 0.001 on the Italy Power Demand, U Wave Gesture Library Y, and Wafer data sets. For the

Starlight Curves and Non-invasive Fetal ECG 1 and 2 data sets, the result of reliable local QDA

classification using the raw time-series samples as the features is not shown due to the excessive
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Figure 10: Average classification time vs test accuracy for reliable incomplete local QDA classi-

fication (Rel. Class.), reliable incomplete local QDA classification with LDG features

(LDG Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.
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Figure 11: Average classification time vs test accuracy for reliable incomplete local QDA classi-

fication (Rel. Class.), reliable incomplete local QDA classification with LDG features

(LDG Rel. Class.), ECTS, Fixed-time local QDA, and Fixed-time 1-NN.

run time. However, reliable classification with LDG features performs well on these data sets and

is fast, as shown in Table 4.

We also note that the leftmost pink circle in these plots is the earliest possible average classi-

fication time that ECTS can achieve, as MS = 0 is the smallest possible value for the minimum

support parameter. On the other hand, reliable early classification can achieve earlier times than

those shown in the figures by setting τ < 0.001 (in fact, setting τ = 0 would result in classifying

every signal at time one). Therefore, if someone wanted to set τ by cross-validation on the training

data set, the reliable incomplete classifier offers more flexibility than ECTS.
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Finally, Figures 10 and 11 plot the test accuracy of the various approaches. The accuracy plots

show that local QDA achieves higher accuracy than 1-NN on most of the data sets; therefore, ECTS

suffers in comparison to reliable local QDA due to the fact that it attempts to match a less accurate

classifier.

The accuracy plots also show that although ECTS is typically more reliable than fixed-time

1-NN, it is less accurate for at least one value of MS on twelve of the fourteen data sets. On the

other hand, reliable local QDA using the time-series samples as features is less accurate than fixed-

time local QDA on only the Medical Images and Chlorine Concentration data sets. However, on

the Chlorine Concentration data sets, reliable local QDA with LDG features greatly exceeds the

accuracy of fixed-time local QDA. Furthermore, although it is not shown in the figure, reliable local

QDA classification using GMM based estimation exceeds the accuracy of fixed-time local QDA on

the Medical Images data set. In fact, the proposed reliable classification approach can be used with

a wide variety of features, classifiers, and estimation methods in order to maximize accuracy for a

particular application.

8. Discussion and Some Open Questions

We have proposed a practical incomplete decision rule that is a conservative approximation of the

optimal rule. Experiments on a set of time-series data showed consistently earlier and more reliable

predictions on average than other approaches. We showed that for linear or quadratic classifiers the

proposed decision rule can be checked either with an analytic solution or using convex optimization.

We only touched on applying the proposed rule to nearest neighbor classifiers, and it is an open

question how to apply this approach efficiently to other classification strategies. In particular, we

suspect the proposed approach could also be implemented efficiently with decision trees that use a

cascade of linear discriminants.

This paper has focused on answering the question “With probability τ, will the classification

decision from this incomplete data be the same as from the complete data?” The presented tools

can also be used to answer the related question: “If we classify based on the current incomplete

data, what is the probability that assigned label will match that which would be chosen using the

complete data?” The answer can be computed by finding the largest τ that makes the first question a

“Yes,” which may require guessing a τ, solving the first question, refining τ up or down depending

on the answer, and iterating.

Another related question that can be answered is, “Can we reliably classify as class g with this

incomplete data?” That is, there may be only one class (or a subset of classes) which we would

like to identify with incomplete data. For example, in determining if a cyst is cancerous or benign,

doctors will often have a patient come back every few months to see how it changes over time.

There is generally no rush to call it benign, but one would like to classify it as cancerous as soon

as that is a reliable class label. This question can be answered by applying the incomplete decision

rule given in (2) only to the class of interest.
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Appendix A. Proofs

Proof of Proposition 1: For the minimum problem (9), the Lagrange dual function is g(λ) =

βT m− 1
4λ BT RB+ b− λδ, a concave function of λ, and g(λ) is maximized for λ∗ =

√

1
4δ BT RB.

Since λ∗ ≥ 0, it is dual feasible. Since the objective function is convex, strong duality holds, and

thus the maximum of the dual problem equals the minimum of the primal problem. A similar

analysis can be performed for the maximum problem.

Proof of Proposition 2: First, note that each pairwise check reduces the number of classes labelled

candidate by either two classes if the classes tie, or by one class (the loser) if one class dominates.

Second, once a class has tied with another class or has been dominated, it cannot be the correct

dominating class. Thus the proposed decision process eventually reduces the number of classes

labelled candidate to either zero or one. If there are zero classes left labelled candidate, then all

classes have either tied or been dominated, and the above process correctly chooses not to classify.

If there is one class remaining that is labelled candidate it must be compared to all the classes that

tied on their first comparison. It is not necessary to also compare to the classes labelled dominated

by the transitivity of the domination rule.

Proof of Proposition 3: We first note that in the Compare step, the pairwise comparison between

classes c and h requires a single minimum computation if c dominates h, and two computations if the

classes tie or if h dominates c. Furthermore, we define T to be the number of pairwise comparisons

that result in ties during the Compare step, and D as the number of pairwise comparisons that

do not result in a tie in the Compare step (such evaluations necessarily result in one class that

was labelled candidate being re-labelled dominated). Thus, the compare step requires at most

2T +2D minimum calculations.

On the other hand, each pairwise comparison in the Final Comparison check requires only a

single minimum computation.

There are two cases to consider

Case 1: Consider the case that the Compare step in the decision process results in one class left

labelled candidate. Immediately prior to the Final Comparison step, there are G− 1 classes that

have been re-labelled tied or dominated, and since each tie results in two classes being re-labelled

tied, it must be that

G−1 = D+2T. (19)

In the Final Comparison step, the Gth class must be compared to at most the 2T classes labelled

tied, each of which requires one minimum calculation. Thus the maximum number of calculations

needed is

2T +2D+2T = 2(G−1) by (19).

Conversely, the best case is that there are no ties, and that each pairwise check requires only a single

minimum calculation. This case requires G−1 minimum calculations.
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Case 2: The second case is that at the end of the Compare step there are zero classes labelled

candidate. Therefore,

G = D+2T, (20)

and the total number of comparisons required is

2T +2D = G+D by (20).

There can be at most G− 2 comparisons that result in one class dominating the other (otherwise,

one class would remain labelled candidate after the Compare step), so the maximum number of

minimum calculations is again 2(G−1).
Since it requires at least one minimum calculation change a class label from candidate to

dominated or tied, the minimum number of calculations is G.

Appendix B. Gradient Descent Solution for the Quadratic Min and Max Problems

The min problem with quadratic f (x) subject to a quadratic constraint set is written as

min
x∈A

f (x) =min
x

(x− v)TV (x− v)+b (21)

s.t. (x−m)R−1(x−m)≤ δ,

where V is indefinite and R is positive semi-definite. We propose to solve this problem using the

two-step gradient descent approach described in Tao and An (1997).

We first reformulate (21) as the trust region subproblem (TRSP). Define

z = R
−1
2 (x−m),

A = 2R
1
2 V R

1
2 ,

y = 2R
1
2 V (m− v),

btsrp = b+ vTV v+mTV m−2mTV v.

Then rewrite (21) as

min
x∈A

f (x) =min
z

1

2
zT Az+ yT z+btsrp (22)

s.t. ‖ z ‖≤
√

δ.

Let ρ equal the largest eigenvalue of A. The following two-step iteration converges to a z∗ that

is a local minimum of the TRSP (22):

Step 1 : zk+1 = zk −
1

ρ
(Azk + y),

Step 2 : zk+1 = min

[

zk+1,
‖ zk+1 ‖√

δ
zk+1

]

,

where Step 1 computes a gradient step, and Step 2 projects the zk+1 found in Step 1 onto the con-

straint set in (22).
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The TRSP has been shown to have at most one local minimum that is not also the global mini-

mum (Martinez, 1994), and thus the above algorithm has proven to be robust in finding the minimum

of (22).

Furthermore, for the incomplete data decision rule (7), it is not necessary to find the true mini-

mum over A of f (x), but it is instead sufficient to know only whether or not it is less than or equal

to zero. Therefore, the iteration can be stopped early if zT
k Azk + yT zk +btsrp ≤ 0.

Appendix C. Derivation of the Variance for GMM Based Estimation

Let mg = E[X |g,z], Rg = COV[X |g,z], and p(g|z) be defined as in Section 5.2.

R =
∫

x
(x−m)(x−m)T p(x|z) dx

=
∫

x
∑

g∈G

(x−m)(x−m)T p(x,g|z) dx

= ∑
g∈G

p(g|z)
∫

x
(x−m)(x−m)T p(x|g,z) dx

= ∑
g∈G

p(g|z)
∫

x

(

xxT −2x ∑
h∈G

mT
h p(h|z)+ ∑

q∈G
∑

h∈G

mqmT
h p(q|z)p(h|z)

)

p(x|g,z) dx

= ∑
g∈G

p(g|z)
(∫

x
xxT −2xmT

g +mgmT
g p(x|g,z) dx+

∫
x
2xmT

g −2x ∑
h∈G

mT
h p(h|z) p(x|g,z) dx

−mgmT
g + ∑

q∈G
∑

h∈G

mqmT
h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)
(

Rg +2mgmT
g −2mg ∑

h∈G

mT
h p(h|z)−mgmT

g + ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

)

= ∑
g∈G

p(g|z)
(

Rg +mgmT
g −2mg ∑

h∈G

mT
h p(h|z)

)

+ ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z)

= ∑
g∈G

p(g|z)
(

Rg +mgmT
g

)

− ∑
q∈G

∑
h∈G

mqmT
h p(q|z)p(h|z).
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