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Abstract

This paper is devoted to regret lower bounds in the classical model of stochastic multi-armed bandit.

A well-known result of Lai and Robbins, which has then been extended by Burnetas and Katehakis,

has established the presence of a logarithmic bound for all consistent policies. We relax the notion

of consistency, and exhibit a generalisation of the bound. We also study the existence of logarithmic

bounds in general and in the case of Hannan consistency. Moreover, we prove that it is impossible

to design an adaptive policy that would select the best of two algorithms by taking advantage of the

properties of the environment. To get these results, we study variants of popular Upper Confidence

Bounds (UCB) policies.
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1. Introduction and Notations

Multi-armed bandits are a classical way to illustrate the difficulty of decision making in the case

of a dilemma between exploration and exploitation. The denomination of these models comes

from an analogy with playing a slot machine with more than one arm. Each arm has a given (and

unknown) reward distribution and, for a given number of rounds, the agent has to choose one of

them. As the goal is to maximize the sum of rewards, each round decision consists in a trade-off

between exploitation (i.e., playing the arm that has been the more lucrative so far) and exploration

(i.e., testing another arm, hoping to discover an alternative that beats the current best choice). One

possible application is clinical trial: a doctor wants to heal as many patients as possible, the patients

arrive sequentially, and the effectiveness of each treatment is initially unknown (Thompson, 1933).

Bandit problems have initially been studied by Robbins (1952), and since then they have been

applied to many fields such as economics (Lamberton et al., 2004; Bergemann and Valimaki, 2008),

games (Gelly and Wang, 2006), and optimisation (Kleinberg, 2005; Coquelin and Munos, 2007;

Kleinberg et al., 2008; Bubeck et al., 2009).

∗. Also at Willow, CNRS/ENS/INRIA - UMR 8548.
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1.1 Setting

In this paper, we consider the following model. A stochastic multi-armed bandit problem is defined

by:

• a number of rounds n,

• a number of arms K ≥ 2,

• an environment θ = (ν1, · · · ,νK), where each νk (k ∈ {1, · · · ,K}) is a real-valued measure

that represents the distribution reward of arm k.

The number of rounds n may or may not be known by the agent, but this will not affect the present

study.

We assume that rewards are bounded. Thus, for simplicity, each νk is a probability on [0,1].
Environment θ is initially unknown by the agent but lies in some known set Θ. For the problem

to be interesting, the agent should not have great knowledges of its environment, so that Θ should

not be too small and/or only contain too trivial distributions such as Dirac measures. To make it

simple, we may assume that Θ contains all environments where each reward distribution is a Dirac

distribution or a Bernoulli distribution. This will be acknowledged as Θ having the Dirac/Bernoulli

property. For technical reason, we may also assume that Θ is of the form Θ1 × . . .×ΘK , meaning

that Θk is the set of possible reward distributions of arm k. This will be acknowledged as Θ having

the product property.

The game is as follows. At each round (or time step) t = 1, · · · ,n, the agent has to choose an

arm It in the set {1, · · · ,K}. This decision is based on past actions and observations, and the agent

may also randomize his choice. Once the decision is made, the agent gets and observes a reward

that is drawn from νIt independently from the past. Thus a policy (or strategy) can be described by

a sequence (σt)t≥1 (or (σt)1≤t≤n if the number of rounds n is known) such that each σt is a mapping

from the set {1, . . . ,K}t−1× [0,1]t−1 of past decisions and rewards into the set of arm {1, . . . ,K} (or

into the set of probabilities on {1, . . . ,K}, in case the agent randomizes his choices).

For each arm k and all time step t, let Tk(t) = ∑t
s=11Is=k denote the sampling time, that is, the

number of times arm k was pulled from round 1 to round t, and Xk,1,Xk,2, . . . ,Xk,Tk(t) the correspond-

ing sequence of rewards. We denote by Pθ the distribution on the probability space such that for

any k ∈ {1, . . . ,K}, the random variables Xk,1,Xk,2, . . . ,Xk,n are i.i.d. realizations of νk, and such that

these K sequences of random variables are independent. Let Eθ denote the associated expectation.

Let µk =
∫

xdνk(x) be the mean reward of arm k. Introduce µ∗ = maxk∈{1,...,K} µk and fix an arm

k∗ ∈ argmaxk∈{1,...,K} µk, that is, k∗ has the best expected reward. The agent aims at minimizing its

regret, defined as the difference between the cumulative reward he would have obtained by always

drawing the best arm and the cumulative reward he actually received. Its regret is thus

Rn =
n

∑
t=1

Xk∗,t −
n

∑
t=1

XIt ,TIt (t)
.

As most of the publications on this topic, we focus on the expected regret, for which one can check

that:

EθRn =
K

∑
k=1

∆kEθ[Tk(n)], (1)
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where ∆k is the optimality gap of arm k, defined by ∆k = µ∗ − µk. We also define ∆ as the gap

between the best arm and the second best arm, that is, ∆ := mink:∆k>0 ∆k.

Other notions of regret exist in the literature. One of them is the quantity

max
k

n

∑
t=1

Xk,t −XIt ,TIt (t)
,

which is mostly used in adversarial settings. Results and ideas we want to convey here are more

suited to expected regret, and considering other definitions of regret would only bring some more

technical intricacies.

1.2 Consistency and Regret Lower Bounds

Former works have shown the existence of lower bounds on the expected regret of a large class of

policies: intuitively, to perform well the agent has to explore all arms, and this requires a significant

amount of suboptimal choices. In this way, Lai and Robbins (1985) proved a lower bound of order

logn in a particular parametric framework, and they also exhibited optimal policies. This work has

then been extended by Burnetas and Katehakis (1996). Both papers deal with consistent policies,

meaning that they only consider policies such that:

∀a > 0, ∀θ ∈ Θ, Eθ[Rn] = o(na). (2)

Let us detail the bound of Burnetas and Katehakis, which is valid when Θ has the product property.

Given an environment θ = (ν1, · · · ,νK) and an arm k ∈ {1, . . . ,K}, define:

Dk(θ) := inf
ν̃k∈Θk:E[ν̃k]>µ∗

KL(νk, ν̃k),

where KL(ν,µ) denotes the Kullback-Leibler divergence of measures ν and µ. Now fix a consistent

policy and an environment θ ∈ Θ. If k is a suboptimal arm (i.e., µk 6= µ∗) such that 0 < Dk(θ)< ∞,

then

∀ε > 0, lim
n→+∞

P

[

Tk(n)≥
(1− ε) logn

Dk(θ)

]

= 1.

This readily implies that:

liminf
n→+∞

Eθ[Tk(n)]

logn
≥ 1

Dk(θ)
.

Thanks to Formula (1), it is then easy to deduce a lower bound of the expected regret.

One contribution of this paper is to generalize the study of regret lower bounds, by consid-

ering weaker notions of consistency: α-consistency and Hannan consistency. We will define α-

consistency (α ∈ [0,1)) as a variant of Equation (2), where equality Eθ[Rn] = o(na) only holds for

all a > α. We show that the logarithmic bound of Burnetas and Katehakis still holds, but coefficient
1

Dk(θ)
is turned into 1−α

Dk(θ)
. We also prove that the dependence of this new bound with respect to the

term 1−α is asymptotically optimal when n →+∞ (up to a constant).

We will also consider the case of Hannan consistency. Indeed, any policy achieves at most an

expected regret of order n: because of the equality ∑K
k=1 Tk(n) = n and thanks to Equation (1), one

can show that EθRn ≤ nmaxk ∆k. More intuitively, this comes from the fact that the average cost

of pulling an arm k is a constant ∆k. As a consequence, it is natural to wonder what happens when
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dealing with policies whose expected regret is only required to be o(n), which is equivalent to Han-

nan consistency. This condition is less restrictive than any of the previous notions of consistency.

In this larger class of policy, we show that the lower bounds on the expected regret are no longer

logarithmic, but can be much smaller.

Finally, even if no logarithmic lower bound holds on the whole set Θ, we show that there nec-

essarily exist some environments θ for which the expected regret is at least logarithmic. The latter

result is actually valid without any assumptions on the considered policies, and only requires a

simple property on Θ.

1.3 Selectivity

As we exhibit new lower bounds, we want to know if it is possible to provide optimal policies

that achieve these lower bounds, as it is the case in the classical class of consistent policies. We

answer negatively to this question, and for this we solve the more general problem of selectivity.

Given a set of policies, we define selectivity as the ability to perform at least as good as the policy

that is best suited to the current environment θ. Still, such an ability can not be implemented. As

a by-product it is not possible to design a procedure that would specifically adapt to some kinds

of environments, for example by selecting a particular policy. This contribution is linked with

selectivity in on-line learning problem with perfect information, commonly addressed by prediction

with expert advice (see, e.g., Cesa-Bianchi et al., 1997). In this spirit, a closely related problem is the

one of regret against the best strategy from a pool studied by Auer et al. (2003). The latter designed

an algorithm in the context of adversarial/nonstochastic bandit whose decisions are based on a given

number of recommendations (experts), which are themselves possibly the rewards received by a set

of given policies. To a larger extent, model selection has been intensively studied in statistics, and

is commonly solved by penalization methods (Mallows, 1973; Akaike, 1973; Schwarz, 1978).

1.4 UCB Policies

Some of our results are obtained using particular Upper Confidence Bound algorithms. These al-

gorithms were introduced by Lai and Robbins (1985): they basically consist in computing an index

for each arm, and selecting the arm with the greatest index. A simple and efficient way to design

such policies is as follows: choose each index as low as possible such that, conditional to past ob-

servations, it is an upper bound of the mean reward of the considered arm with high probability

(or, say, with high confidence level). This idea can be traced back to Agrawal (1995), and has been

popularized by Auer et al. (2002), who notably described a policy called UCB1. In this policy, each

index Bk,s,t is defined by an arm k, a time step t, an integer s that indicates the number of times arm

k has been pulled before round t, and is given by:

Bk,s,t = X̂k,s +

√

2log t

s
,

where X̂k,s is the empirical mean of arm k after s pulls, that is, X̂k,s =
1
s ∑s

u=1 Xk,u.

To summarize, UCB1 policy first pulls each arm once and then, at each round t > K, selects an

arm k that maximizes Bk,Tk(t−1),t . Note that, by means of Hoeffding’s inequality, the index Bk,Tk(t−1),t

is indeed an upper bound of µk with high probability (i.e., the probability is greater than 1−1/t4).

Another way to understand this index is to interpret the empiric mean X̂k,Tk(t−1) as an ”exploitation”
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term, and the square root
√

2log t/s as an ”exploration” term (because the latter gradually increases

when arm k is not selected).

Policy UCB1 achieves the logarithmic bound (up to a multiplicative constant), as it was shown

that:

∀θ ∈ Θ, ∀n ≥ 3, Eθ[Tk(n)]≤ 12
logn

∆2
k

and EθRn ≤ 12
K

∑
k=1

logn

∆k

≤ 12K
logn

∆
.

Audibert et al. (2009) studied some variants of UCB1 policy. Among them, one consists in changing

the 2log t in the exploration term into ρ log t, where ρ > 0. This can be interpreted as a way to

tune exploration: the smaller ρ is, the better the policy will perform in simple environments where

information is disclosed easily (for example when all reward distributions are Dirac measures). On

the contrary, ρ has to be greater to face more challenging environments (typically when reward

distributions are Bernoulli laws with close parameters).

This policy, that we denote UCB(ρ), was proven by Audibert et al. to achieve the logarithmic

bound when ρ > 1, and the optimality was also obtained when ρ > 1
2

for a variant of UCB(ρ).

Bubeck (2010) showed in his PhD dissertation that their ideas actually enable to prove optimality

of UCB(ρ) for ρ > 1
2
. Moreover, the case ρ = 1

2
corresponds to a confidence level of 1

t
(because

of Hoeffding’s inequality, as above), and several studies (Lai and Robbins, 1985; Agrawal, 1995;

Burnetas and Katehakis, 1996; Audibert et al., 2009; Honda and Takemura, 2010) have shown that

this level is critical.

We complete these works by a precise study of UCB(ρ) when ρ ≤ 1
2
. We prove that UCB(ρ)

is (1− 2ρ)-consistent and that it is not α-consistent for any α < 1− 2ρ (in view of the definition

above, this means that the expected regret is roughly of order n1−2ρ). Thus it does not achieve the

logarithmic bound, but it performs well in simple environments, for example, environments where

all reward distributions are Dirac measures.

Moreover, we exhibit expected regret bounds of general UCB policies, with the 2log t in the

exploration term of UCB1 replaced by an arbitrary function. We give sufficient conditions for such

policies to be Hannan consistent and, as mentioned before, find that lower bounds need not be

logarithmic any more.

1.5 Outline

The paper is organized as follows: in Section 2, we give bounds on the expected regret of general

UCB policies and of UCB(ρ) (ρ ≤ 1
2
), as preliminary results. In Section 3, we focus on α-consistent

policies. Then, in Section 4, we study the problem of selectivity, and we conclude in Section 5 by

general results on the existence of logarithmic lower bounds.

Throughout the paper ⌈x⌉ denotes the smallest integer not less than x whereas ⌊x⌋ denotes the

largest integer not greater than x, 1A stands for the indicator function of event A, Ber(p) is the

Bernoulli law with parameter p, and δx is the Dirac measure centred on x.

2. Preliminary Results

In this section, we estimate the expected regret of UCB policies. This will be useful for the rest of

the paper.
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2.1 Bounds on the Expected Regret of General UCB Policies

We first study general UCB policies, defined by:

• Draw each arm once,

• then, at each round t, draw an arm

It ∈ argmax
k∈{1,...,K}

Bk,Tk(t−1),t ,

where Bk,s,t is defined by Bk,s,t = X̂k,s +
√

fk(t)
s

and where functions fk (1 ≤ k ≤ K) are in-

creasing.

This definition is inspired by popular UCB1 algorithm, for which fk(t) = 2log t for all k.

The following lemma estimates the performances of UCB policies in simple environments, for

which reward distributions are Dirac measures.

Lemma 1 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa,δb), the random variable T2(n) is uniformly

upper bounded by 1
∆2 f2(n) + 1. Consequently, the expected regret of UCB is upper bounded by

1
∆ f2(n)+1.

Proof In environment θ, best arm is arm 1 and ∆ = ∆2 = a−b. Let us first prove the upper bound

of the sampling time. The assertion is true for n = 1 and n = 2: the first two rounds consists in

drawing each arm once, so that T2(n)≤ 1 ≤ 1
∆2 f2(n)+1 for n ∈ {1,2}. If, by contradiction, the as-

sertion is false, then there exists t ≥ 3 such that T2(t)>
1

∆2 f2(t)+1 and T2(t −1)≤ 1
∆2 f2(t −1)+1.

Since f2(t) ≥ f2(t − 1), this leads to T2(t) > T2(t − 1), meaning that arm 2 is drawn at round t.

Therefore, we have a +
√

f1(t)
T1(t−1) ≤ b +

√

f2(t)
T2(t−1) , hence a − b = ∆ ≤

√

f2(t)
T2(t−1) , which implies

T2(t −1) ≤ 1
∆2 f2(t) and thus T2(t) ≤ 1

∆2 f2(t)+1. This contradicts the definition of t, and this ends

the proof of the first statement. The second statement is a direct consequence of Formula (1).

Remark: throughout the paper, we will often use environments with K = 2 arms to provide bounds

on expected regrets. However, we do not lose generality by doing so, because all corresponding

proofs can be written almost identically to suit to any K ≥ 2, by simply assuming that the distribution

of each arm k ≥ 3 is δ0.

We now give an upper bound of the expected sampling time of any arm such that ∆k > 0. This

bound is valid in any environment, and not only those of the form (δa,δb).

Lemma 2 For any θ ∈ Θ and any β ∈ (0,1), if ∆k > 0 the following upper bound holds:

Eθ[Tk(n)]≤ u+
n

∑
t=u+1

(

1+
log t

log( 1
β)

)

(

e−2β fk(t)+ e−2β fk∗ (t)
)

,

where u =
⌈

4 fk(n)

∆2
k

⌉

.
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An upper bound of the expected regret can be deduced from this lemma thanks to Formula 1.

Proof The core of the proof is a peeling argument and the use of Hoeffding’s maximal inequality

(see, e.g., Cesa-Bianchi and Lugosi, 2006, section A.1.3 for details). The idea is originally taken

from Audibert et al. (2009), and the following is an adaptation of the proof of an upper bound of

UCB(ρ) in the case ρ > 1
2

which can be found in S. Bubeck’s PhD dissertation.

First, let us notice that the policy selects an arm k such that ∆k > 0 at time step t ≤ n only if at

least one of the three following equations holds:

Bk∗,Tk∗ (t−1),t ≤ µ∗, (3)

X̂k,t ≥ µk +

√

fk(t)

Tk(t −1)
, (4)

Tk(t −1)<
4 fk(n)

∆2
k

. (5)

Indeed, if none of the equations is true, then:

Bk∗,Tk∗ (t−1),t > µ∗ = µk +∆k ≥ µk +2

√

fk(n)

Tk(t −1)
> X̂k,t +

√

fk(t)

Tk(t −1)
= Bk,Tk(t−1),t ,

which implies that arm k can not be chosen at time step t.

We denote respectively by ξ1,t ,ξ2,t and ξ3,t the events corresponding to Equations (3), (4) and

(5).

We have:

Eθ[Tk(n)] = Eθ

[

n

∑
t=1

1It=k

]

= Eθ

[

n

∑
t=1

1{It=k}∩ξ3,t

]

+Eθ

[

n

∑
t=1

1{It=k}\ξ3,t

]

.

Let us show that the sum ∑n
t=11{It=k}∩ξ3,t

is almost surely lower than u := ⌈4 fk(n)/∆2
k⌉. We assume

by contradiction that ∑n
t=11{It=k}∩ξ3,t

> u. Then there exists m < n such that ∑m−1
t=1 1{It=k}∩ξ3,t

<

4 fk(n)/∆2
k and ∑m

t=11{It=k}∩ξ3,t
= ⌈4 fk(n)/∆2

k⌉. Therefore, for any s > m, we have:

Tk(s−1)≥ Tk(m) =
m

∑
t=1

1{It=k} ≥
m

∑
t=1

1{It=k}∩ξ3,t
=

⌈

4 fk(n)

∆2
k

⌉

≥ 4 fk(n)

∆2
k

,

so that 1{Is=k}∩ξ3,s
= 0. But then

n

∑
t=1

1{It=k}∩ξ3,t
=

m

∑
t=1

1{It=k}∩ξ3,t
=

⌈

4 fk(n)

∆2
k

⌉

≤ u,

which is the contradiction expected.

We also have ∑n
t=11{It=k}\ξ3,t

= ∑n
t=u+11{It=k}\ξ3,t

: since Tk(t − 1) ≤ t − 1, event ξ3,t always

happens at time step t ∈ {1, . . . ,u}.

And then, since event {It = k} is included in ξ1,t ∪ξ2,t ∪ξ3,t :

Eθ

[

n

∑
t=u+1

1{It=k}\ξ3,t

]

≤ Eθ

[

n

∑
t=u+1

1ξ1,t∪ξ2,t

]

≤
n

∑
t=u+1

Pθ(ξ1,t)+Pθ(ξ2,t).
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It remains to find upper bounds of Pθ(ξ1,t) and Pθ(ξ2,t). To this aim, we apply the peeling argument

with a geometric grid over the time interval [1, t]:

Pθ(ξ1,t) = Pθ

(

Bk∗,Tk∗ (t−1),t ≤ µ∗
)

= Pθ

(

X̂k∗,Tk∗ (t−1)+

√

fk∗(t)

Tk∗(t −1)
≤ µ∗

)

≤ Pθ

(

∃s ∈ {1, · · · , t}, X̂k∗,s +

√

fk∗(t)

s
≤ µ∗

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt}, X̂k∗,s +

√

fk∗(t)

s
≤ µ∗

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt},
s

∑
l=1

(Xk∗,l −µ∗)≤−
√

s fk∗(t)

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

∃s : {β j+1t < s ≤ β jt},
s

∑
l=1

(Xk∗,l −µ∗)≤−
√

β j+1t fk∗(t)

)

=

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

max
β j+1t<s≤β jt

s

∑
l=1

(µ∗−Xk∗,l)≥
√

β j+1t fk∗(t)

)

≤

⌊

log t

log(1/β)

⌋

∑
j=0

Pθ

(

max
s≤β jt

s

∑
l=1

(µ∗−Xk∗,l)≥
√

β j+1t fk∗(t)

)

.

As the range of the random variables (Xk∗,l)1≤l≤s is [0,1], Hoeffding’s maximal inequality gives:

Pθ(ξ1,t) ≤

⌊

log t

log(1/β)

⌋

∑
j=0

exp






−

2
(

√

β j+1t fk∗(t)
)2

β jt






≤
(

log t

log(1/β)
+1

)

e−2β fk∗ (t).

Similarly, we have:

Pθ(ξ2,t)≤
(

log t

log(1/β)
+1

)

e−2β fk(t),

and the result follows from the combination of previous inequalities.

2.2 Bounds on the Expected Regret of UCB(ρ), ρ ≤ 1
2

We study the performances of UCB(ρ) policy, with ρ ∈ (0, 1
2
]. We recall that UCB(ρ) is the UCB

policy defined by fk(t) = ρ log(t) for all k, that is, Bk,s,t = X̂k,s +
√

ρ log t

s
. Small values of ρ can be

interpreted as a low level of experimentation in the balance between exploration and exploitation.

Precise regret bound orders of UCB(ρ) when ρ ∈ (0, 1
2
] are not documented in the literature.

We first give an upper bound of expected regret in simple environments, where it is supposed to

perform well. As stated in the following proposition (which is a direct consequence of Lemma 1),

the order of the bound is
ρ logn

∆ .

194



LOWER BOUNDS, WEAK CONSISTENCY AND SELECTIVITY IN BANDIT PROBLEMS

Lemma 3 Let 0 ≤ b < a ≤ 1 and n ≥ 1. For θ = (δa,δb), the random variable T2(n) is uniformly

upper bounded by
ρ

∆2 log(n)+1. Consequently, the expected regret of UCB(ρ) is upper bounded by
ρ
∆ log(n)+1.

One can show that the expected regret of UCB(ρ) is actually equivalent to
ρ logn

∆ as n goes to

infinity. These good performances are compensated by poor results in more complex environments,

as showed in the following theorem. We exhibit an expected regret upper bound which is valid for

any θ ∈ Θ, and which is roughly of order n1−2ρ. We also show that this upper bound is asymptot-

ically optimal. Thus, with ρ ∈ (0, 1
2
), UCB(ρ) does not perform enough exploration to achieve the

logarithmic bound, as opposed to UCB(ρ) with ρ ∈ ( 1
2
,+∞).

Theorem 4 For any ρ ∈ (0, 1
2
], any θ ∈ Θ and any β ∈ (0,1), one has

Eθ[Rn]≤ ∑
k:∆k>0

4ρ logn

∆k

+∆k +2∆k

(

logn

log(1/β)
+1

)

n1−2ρβ

1−2ρβ
.

Moreover, if Θ has the Dirac/Bernoulli property, then for any ε > 0 there exists θ ∈ Θ such that

lim
n→+∞

Eθ[Rn]

n1−2ρ−ε
=+∞.

The value ρ = 1
2

is critical, but we can deduce from the upper bound of this theorem that UCB( 1
2
)

is consistent in the classical sense of Lai and Robbins (1985) and of Burnetas and Katehakis (1996).

Proof We set u =
⌈

4ρ logn

∆2
k

⌉

. By Lemma 2 we get:

Eθ[Tk(n)] ≤ u+2
n

∑
t=u+1

(

log t

log(1/β)
+1

)

e−2βρ log(t)

= u+2
n

∑
t=u+1

(

log t

log(1/β)
+1

)

1

t2ρβ

≤ u+2

(

logn

log(1/β)
+1

)

n

∑
t=1

1

t2ρβ

≤ u+2

(

logn

log(1/β)
+1

)

(

1+
n

∑
t=2

1

t2ρβ

)

≤ u+2

(

logn

log(1/β)
+1

)(

1+
∫ n−1

1

1

t2ρβ
dt

)

≤ u+2

(

logn

log(1/β)
+1

)

n1−2ρβ

1−2ρβ
.

As usual, the upper bound of the expected regret follows from Formula (1).

Now, let us show the lower bound. The result is obtained by considering an environment θ of the

form
(

Ber( 1
2
),δ 1

2
−∆

)

, where ∆ lies in (0, 1
2
) and is such that 2ρ(1+

√
∆)2 < 2ρ+ε. This notation is

obviously consistent with the definition of ∆ as an optimality gap. We set Tn := ⌈ρ logn

∆ ⌉, and define

the event ξn by:

ξn =

{

X̂1,Tn
<

1

2
− (1+

1√
∆
)∆

}

.
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When event ξn occurs, one has for any t ∈ {Tn, . . . ,n}

X̂1,Tn
+

√

ρ log t

Tn

≤ X̂1,Tn
+

√

ρ logn

Tn

<
1

2
− (1+

1√
∆
)∆+

√
∆

≤ 1

2
−∆,

so that arm 1 is chosen no more than Tn times by UCB(ρ) policy. Consequently:

Eθ [T2(n)]≥ Pθ(ξn)(n−Tn).

We will now find a lower bound of the probability of ξn thanks to Berry-Esseen inequality. We

denote by C the corresponding constant, and by Φ the c.d.f. of the standard normal distribution. For

convenience, we also define the following quantities:

σ :=

√

√

√

√

E

[

(

X1,1 −
1

2

)2
]

=
1

2
, M3 := E

[

∣

∣

∣

∣

X1,1 −
1

2

∣

∣

∣

∣

3
]

=
1

8
.

Using the fact that Φ(−x) = e
− x2

2√
2πx

β(x) with β(x)−−−−→
x→+∞

1, we have:

Pθ(ξn) = Pθ

(

X̂1,Tn
− 1

2

σ

√
Tn ≤−2

(

1+
1√
∆

)

∆
√

Tn

)

≥ Φ
(

−2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥
exp
(

−2(∆+
√

∆)2Tn

)

2
√

2π(∆+
√

∆)
√

Tn

β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥
exp
(

−2(∆+
√

∆)2(ρ logn

∆ +1)
)

2
√

2π(∆+
√

∆)
√

Tn

β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

≥ n−2ρ(1+
√

∆)2

√
Tn

exp
(

−2(∆+
√

∆)2
)

2
√

2π(∆+
√

∆)
β
(

2(∆+
√

∆)
√

Tn

)

− CM3

σ3
√

Tn

.

Previous calculations and Formula (1) give

Eθ[Rn] = ∆Eθ[T2(n)]≥ ∆Pθ(ξn)(n−Tn),

so that we finally obtain a lower bound of Eθ[Rn] of order n1−2ρ(1+
√

∆)2√
logn

. Therefore,
Eθ[Rn]
n1−2ρ−ε is at least

of order n2ρ+ε−2ρ(1+
√

∆)2√
logn

. Since 2ρ+ ε− 2ρ(1+
√

∆)2 > 0, the numerator goes to infinity, faster than√
logn. This concludes the proof.
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3. Bounds on the Class α-consistent Policies

In this section, our aim is to find how the classical results of Lai and Robbins (1985) and of Burnetas

and Katehakis (1996) can be generalised if we do not restrict the study to consistent policies. As a

by-product, we will adapt their results to the present setting, which is simpler than their parametric

frameworks.

We recall that a policy is consistent if its expected regret is o(na) for all a> 0 in all environments

θ ∈ Θ. A natural way to relax this definition is the following.

Definition 5 A policy is α-consistent if

∀a > α, ∀θ ∈ Θ, Eθ[Rn] = o(na).

For example, we showed in the previous section that, for any ρ∈ (0, 1
2
], UCB(ρ) is (1−2ρ)-consistent

and not α-consistent if α < 1−2ρ.

Note that the relevant range of α in this definition is [0,1): the case α = 0 corresponds to the

standard definition of consistency (so that throughout the paper the term ”consistent” also means

”0-consistent”), and any value α ≥ 1 is pointless as any policy is then α-consistent. Indeed, the

expected regret of any policy is at most of order n. This also lead us to wonder what happens if we

only require the expected regret to be o(n):

∀θ ∈ Θ, Eθ[Rn] = o(n).

This requirement corresponds to the definition of Hannan consistency. The class of Hannan consis-

tent policies includes consistent policies and α-consistent policies for any α ∈ [0,1). Some results

about this class will be obtained in Section 5.

We focus on regret lower bounds on α-consistent policies. We first show that the main result of

Burnetas and Katehakis can be extended in the following way.

Theorem 6 Assume that Θ has the product property. Fix an α-consistent policy and θ ∈ Θ. If

∆k > 0 and if 0 < Dk(θ)< ∞, then

∀ε > 0, lim
n→+∞

Pθ

[

Tk(n)≥ (1− ε)
(1−α) logn

Dk(θ)

]

= 1.

Consequently

liminf
n→+∞

Eθ[Tk(n)]

logn
≥ 1−α

Dk(θ)
.

Remind that the lower bound of the expected regret is then deduced from Formula (1), and that

coefficient Dk(θ) is defined by:

Dk(θ) := inf
ν̃k∈Θk:E[ν̃k]>µ∗

KL(νk, ν̃k),

where KL(ν,µ) denotes the Kullback-Leibler divergence of measures ν and µ.

Note that, as opposed to Burnetas and Katehakis (1996), there is no optimal policy in general

(i.e., a policy that would achieve the lower bound in all environment θ). This can be explained

intuitively as follows. If by contradiction there existed such a policy, its expected regret would be

of order logn and consequently it would be (0-)consistent. Then the lower bounds in the case of
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0-consistency would necessarily hold. This can not happen if α > 0 because 1−α
Dk(θ)

< 1
Dk(θ)

.
Nevertheless, this argument is not rigorous because the fact that the regret would be of order logn

is only valid for environments θ such that 0 < Dk(θ)< ∞. The non-existence of optimal policies is

implied by a stronger result of the next section (yet, only if α > 0.2).

Proof We adapt Proposition 1 in Burnetas and Katehakis (1996) and its proof. Let us denote

θ = (ν1, . . . ,νK). We fix ε > 0, and we want to show that:

lim
n→+∞

Pθ

(

Tk(n)

logn
<

(1− ε)(1−α)

Dk(θ)

)

= 0.

Set δ > 0 and δ′ > α such that 1−δ′
1+δ > (1− ε)(1−α). By definition of Dk(θ), there exists ν̃k such

that E[ν̃k]> µ∗ and

Dk(θ)< KL(νk, ν̃k)< (1+δ)Dk(θ).

Let us set θ̃ = (ν1, . . . ,νk−1, ν̃k,νk+1, . . . ,νK). Environment θ̃ lies in Θ by the product property and

arm k is its best arm. Define Iδ = KL(νk, ν̃k) and

Aδ′
n :=

{

Tk(n)

logn
<

1−δ′

Iδ

}

, Cδ′′
n :=

{

logLTk(n) ≤
(

1−δ′′
)

logn
}

,

where δ′′ is such that α < δ′′ < δ′ and Lt is defined by logLt = ∑t
s=1 log

(

dνk

dν̃k
(Xk,s)

)

.

Now, we show that Pθ(A
δ′
n ) = Pθ(A

δ′
n ∩Cδ′′

n )+Pθ(A
δ′
n \Cδ′′

n )−−−−→
n→+∞

0.

On the one hand, one has:

Pθ(A
δ′
n ∩Cδ′′

n ) ≤ n1−δ′′
Pθ̃(A

δ′
n ∩Cδ′′

n ) (6)

≤ n1−δ′′
Pθ̃(A

δ′
n ) = n1−δ′′

Pθ̃

(

n−Tk(n)> n− 1−δ′

Iδ
logn

)

≤ n1−δ′′
Eθ̃[n−Tk(n)]

n− 1−δ′

Iδ logn
(7)

=
n−δ′′

Eθ̃

[

∑K
l=1 Tℓ(n)−Tk(n)

]

n− 1−δ′

Iδ

logn
n

≤ ∑ℓ 6=k n−δ′′
Eθ̃[Tℓ(n)]

1− 1−δ′

Iδ

logn
n

−−−−→
n→+∞

0. (8)

Equation (6) results from a partition of Aδ′
n into events {Tk(n) = a}, 0≤ a<

⌈

1−δ′

Iδ logn
⌉

. Each event

{Tk(n) = a}∩Cδ′′
n equals {Tk(n) = a}∩

{

∏a
s=1

dνk

dν̃k
(Xk,s)≤ n1−δ′′

}

and is measurable with respect

to Xk,1, . . . ,Xk,a and to Xℓ,1, . . . ,Xℓ,n (ℓ 6= k). Thus, 1{Tk(n)=a}∩Cδ′′
n

can be written as a function f of

the latter r.v. and we have:

Pθ

(

{Tk(n) = a}∩Cδ′′
n

)

=
∫

f
(

(xk,s)1≤s≤a,(xℓ,s)ℓ 6=k,1≤s≤n

)

∏
ℓ 6= k

1 ≤ s ≤ n

dνℓ(xℓ,s) ∏
1≤s≤a

dνk(xk,s)

≤
∫

f
(

(xk,s)1≤s≤a,(xℓ,s)ℓ 6=k,1≤s≤n

)

∏
ℓ 6= k

1 ≤ s ≤ n

dνℓ(xℓ,s)n
1−δ′′ ∏

1≤s≤a

dν̃k(xk,s)

= n1−δ′′
Pθ̃

(

{Tk(n) = a}∩Cδ′′
n

)

.
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Equation (7) is a consequence of Markov’s inequality, and the limit in (8) is a consequence of

α-consistency.

On the other hand, we set bn := 1−δ′

Iδ logn, so that

Pθ(A
δ′
n \Cδ′′

n ) ≤ P

(

max
j≤⌊bn⌋

logL j > (1−δ′′) logn

)

≤ P

(

1

bn

max
j≤⌊bn⌋

logL j > Iδ 1−δ′′

1−δ′

)

.

This term tends to zero, as a consequence of the law of large numbers.

Now that Pθ(A
δ′
n ) tends to zero, the conclusion results from

1−δ′

Iδ
>

1−δ′

(1+δ)Dk(θ)
≥ (1− ε)(1−α)

Dk(θ)
.

The previous lower bound is asymptotically optimal with respect to its dependence in α, as

claimed in the following proposition.

Proposition 7 Assume that Θ has the Dirac/Bernoulli property. There exist θ ∈ Θ and a constant

c > 0 such that, for any α ∈ [0,1), there exists an α-consistent policy such that:

liminf
n→+∞

Eθ[Tk(n)]

(1−α) logn
≤ c,

for any k satisfying ∆k > 0.

Proof In any environment of the form θ = (δa,δb) with a 6= b, Lemma 3 implies the following

estimate for UCB(ρ):

liminf
n→+∞

EθTk(n)

logn
≤ ρ

∆2
,

where k 6= k∗.

Because 1−α
2

∈ (0, 1
2
) and since UCB(ρ) is (1− 2ρ)-consistent for any ρ ∈ (0, 1

2
] (Theorem 4), we

obtain the result by choosing the α-consistent policy UCB( 1−α
2

) and by setting c = 1
2∆2 .

4. Selectivity

In this section, we address the problem of selectivity. By selectivity, we mean the ability to adapt to

the environment as and when rewards are observed. More precisely, a set of two (or more) policies

is given. The one that performs the best depends on environment θ. We wonder if there exists an

adaptive procedure that, given any environment θ, would be as good as any policy in the given set.

Two major reasons motivate this study.

On the one hand this question was answered by Burnetas and Katehakis within the class of

consistent policies. They exhibits an asymptotically optimal policy, that is, that achieves the regret
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lower bounds they have proven. The fact that a policy performs as best as any other one obviously

solves the problem of selectivity.

On the other hand, this problem has already been studied in the context of adversarial bandit by

Auer et al. (2003). Their setting differs from our not only because their bandits are nonstochastic,

but also because their adaptive procedure takes only into account a given number of recommen-

dations, whereas in our setting the adaptation is supposed to come from observing rewards of the

chosen arms (only one per time step). Nevertheless, one can wonder if an ”exponentially weighted

forecasters” procedure like EXP4 could be transposed to our context. The answer is negative, as

stated in the following theorem.

To avoid confusion, we make the notations of the regret and of sampling time more precise by

adding the considered policy: under policy A , Rn and Tk(n) will be respectively denoted Rn(A) and

Tk(n,A).

Theorem 8 Let Ã be a consistent policy and let ρ be a real number in (0,0.4). If Θ has the

Dirac/Bernoulli property and the product property, there is no policy which can both beat Ã and

UCB(ρ), that is:

∀A , ∃θ ∈ Θ, limsup
n→+∞

Eθ[Rn(A)]

min(Eθ[Rn(Ã)],Eθ[Rn(UCB(ρ))])
> 1.

Thus the existence of optimal policies does not hold when we extend the notion of consistency.

Precisely, as UCB(ρ) is (1− 2ρ)-consistent, we have shown that there is no optimal policy within

the class of α-consistent policies, with α > 0.2. Consequently, there do not exist optimal policies in

the class of Hannan consistent policies either.

Moreover, Theorem 8 shows that methods that would be inspired by related literature in adver-

sarial bandit can not apply to our framework. As we said, this impossibility may come from the fact

that we can not observe at each time step the decisions and rewards of more than one algorithm. If

we were able to observe a given set of policies from step to step, then it would be easy to beat them

all: it would be sufficient to aggregate all the observations and simply pull the arm with the greater

empiric mean. The case where we only observe decisions (and not rewards) of a set of policies may

be interesting, but is left outside of the scope of this paper.

Proof Assume by contradiction that

∃A , ∀θ ∈ Θ, limsup
n→+∞

un,θ ≤ 1,

where un,θ =
Eθ[Rn(A)]

min(Eθ[Rn(Ã)],Eθ[Rn(UCB(ρ))])
.

For any θ, we have

Eθ[Rn(A)] =
Eθ[Rn(A)]

Eθ[Rn(Ã)]
Eθ[Rn(Ã)]≤ un,θEθ[Rn(Ã)], (9)

so that the fact that Ã is a consistent policy implies that A is also consistent. Consequently the lower

bound of Theorem 6 also holds for policy A .

For the rest of the proof, we focus on environments of the form θ = (δ0,δ∆) with ∆ > 0. In this

case, arm 2 is the best arm, so that we have to compute D1(θ). On the one hand, we have:

D1(θ) = inf
ν̃1∈Θ1:E[ν̃1]>µ∗

KL(ν1, ν̃1) = inf
ν̃1∈Θ1:E[ν̃1]>∆

KL(δ0, ν̃1) = inf
ν̃1∈Θ1:E[ν̃1]>∆

log

(

1

ν̃1(0)

)

.
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As E[ν̃1]≤ 1− ν̃1(0), we get:

D1(θ)≥ inf
ν̃1∈Θ1:1−ν̃1(0)≥∆

log

(

1

ν̃1(0)

)

≥ log

(

1

1−∆

)

.

One the other hand, we have for any ε > 0:

D1(θ)≤ KL(δ0,Ber(∆+ ε)) = log

(

1

1−∆− ε

)

Consequently D1(θ) = log
(

1
1−∆

)

, and the lower bound of Theorem 6 reads:

liminf
n→+∞

Eθ[T1(n,A)]

logn
≥ 1

log
(

1
1−∆

) .

Just like Equation (9), we have:

Eθ[Rn(A)]≤ un,θEθ[Rn(UCB(ρ))].

Moreover, Lemma 3 provides:

Eθ[Rn(UCB(ρ))]≤ 1+
ρ logn

∆
.

Now, by gathering the three previous inequalities and Formula (1), we get:

1

log
(

1
1−∆

) ≤ liminf
n→+∞

Eθ[T1(n,A)]

logn
= liminf

n→+∞

Eθ[Rn(A)]

∆ logn

≤ liminf
n→+∞

un,θEθ[Rn(UCB(ρ))]

∆ logn
≤ liminf

n→+∞

un,θ

∆ logn

(

1+
ρ logn

∆

)

≤ liminf
n→+∞

un,θ

∆ logn
+ liminf

n→+∞

ρun,θ

∆2
=

ρ

∆2
liminf
n→+∞

un,θ ≤
ρ

∆2
limsup
n→+∞

un,θ

≤ ρ

∆2
.

This means that ρ has to be lower bounded by ∆2

log( 1
1−∆)

, but this is greater than 0.4 if ∆ = 0.75, hence

the contradiction.

Note that this proof gives a simple alternative to Theorem 4 to show that UCB(ρ) is not consistent

(if ρ ≤ 0.4). Indeed if it were consistent, then in environment θ = (δ0,δ∆) the same contradiction

between the lower bound of Theorem 6 and the upper bound of Lemma 3 would hold.

5. General Bounds

In this section, we study lower bounds on the expected regret with few requirements on Θ and on

the class of policies. With a simple property on Θ but without any assumption on the policy, we

show that there always exist logarithmic lower bounds for some environments θ. Then, still with a
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simple property on Θ, we show that there exists a Hannan consistent policy for which the expected

regret is sub-logarithmic for some environment θ.

Note that the policy that always pulls arm 1 has a 0 expected regret in environments where arm

1 has the best mean reward, and an expected regret of order n in other environments. So, for this

policy, expected regret is sub-logarithmic in some environments. Nevertheless, this policy is not

Hannan consistent because its expected regret is not always o(n).

5.1 The Necessity of a Logarithmic Regret in Some Environments

The necessity of a logarithmic regret in some environments can be explained by a simple sketch

proof. Assume that the agent knows the number of rounds n, and that he balances exploration and

exploitation in the following way: he first pulls each arm s(n) times, and then selects the arm that

has obtained the best empiric mean for the rest of the game. Denote by ps(n) the probability that the

best arm does not have the best empiric mean after the exploration phase (i.e., after the first Ks(n)
rounds). The expected regret is then of the form

c1(1− ps(n))s(n)+ c2 ps(n)n. (10)

Indeed, if the agent manages to match the best arm then he only suffers the pulls of suboptimal arms

during the exploration phase. That represents an expected regret of order s(n). If not, the number

of pulls of suboptimal arms is of order n, and so is the expected regret.

Now, let us approximate ps(n). It has the same order as the probability that the best arm gets

an empiric mean lower than the second best mean reward. Moreover,
Xk∗,s(n)−µ∗

σ

√

s(n) (where σ is

the variance of Xk∗,1) has approximately a standard normal distribution by the central limit theorem.

Therefore, we have:

ps(n) ≈ Pθ(Xk∗,s(n) ≤ µ∗−∆) = Pθ

(

Xk∗,s(n)−µ∗

σ

√

s(n)≤−∆
√

s(n)

σ

)

≈ 1√
2π

σ

∆
√

s(n)
exp



−1

2

(

∆
√

s(n)

σ

)2




≈ 1√
2π

σ

∆
√

s(n)
exp

(

−∆2s(n)

2σ2

)

.

It follows that the expected regret has to be at least logarithmic. Indeed, to ensure that the second

term c2 ps(n)n of Equation (10) is sub-logarithmic, s(n) has to be greater than logn. But then first

term c1(1− ps(n))s(n) is greater than logn.

Actually, the necessity of a logarithmic regret can be written as a consequence of Theorem 6.

Indeed, if we assume by contradiction that limsupn→+∞
EθRn

logn
= 0 for all θ (i.e., EθRn = o(logn)),

the considered policy is consistent. Consequently, Theorem 6 implies that

limsup
n→+∞

EθRn

logn
≥ liminf

n→+∞

EθRn

logn
> 0.

Yet, this reasoning needs Θ having the product property, and conditions of the form 0 < Dk(θ)< ∞

also have to hold.

The following proposition is a rigorous version of our sketch, and it shows that the necessity of

a logarithmic lower bound can be based on a simple property on Θ.
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Proposition 9 Assume that there exist two environments θ= (ν1, . . . ,νK)∈Θ, θ̃= (ν̃1, . . . , ν̃K)∈Θ,

and an arm k ∈ {1, . . . ,K} such that

1. k has the best mean reward in environment θ,

2. k is not the winning arm in environment θ̃,

3. νk = ν̃k and there exists η ∈ (0,1) such that

∏
ℓ 6=k

dνℓ

dν̃ℓ
(Xℓ,1)≥ η Pθ̃ −a.s. (11)

Then, for any policy, there exists θ̂ ∈ Θ such that

limsup
n→+∞

Eθ̂Rn

logn
> 0.

Let us explain the logic of the three conditions of the proposition. If νk = ν̃k, and in case νk

seems to be the reward distribution of arm k, then arm k has to be pulled often enough for the

regret to be small if the environment is θ. Nevertheless, one has to explore other arms to know

whether the environment is actually θ̃. Moreover, Inequality (11) makes sure that the distinction

between θ and θ̃ is tough to make: it ensures that pulling any arm ℓ 6= k gives a reward which is

likely in both environments. Without such an assumption the problem may be very simple, and

providing a logarithmic lower bound is hopeless. Indeed, the distinction between any pair of tricky

environments (θ, θ̃) may be solved in only one pull of a given arm ℓ 6= k, that would almost surely

give a reward that is possible in only one of the two environments.

The third condition can be seen as an alternate version of condition 0 < Dk(θ)< ∞ in Theorem

6, though there is no logical connection with it. Finally, let us remark that one can check that any

set Θ that has the Dirac/Bernoulli property satisfies the conditions of Proposition 9.

Proof The proof consists in writing a proper version of Expression (10). To this aim we compute a

lower bound of Eθ̃Rn, expressed as a function of EθRn and of an arbitrary function g(n).

In the following, ∆̃k denotes the optimality gap of arm k in environment θ̃. As event
{

∑ℓ 6=k Tℓ(n)≤ g(n)
}

is measurable with respect to Xℓ,1, . . . ,Xℓ,⌊g(n)⌋ (ℓ 6= k) and to Xk,1, . . . ,Xk,n,

we also introduce the function q such that

1{∑ℓ 6=k Tℓ(n)≤g(n)} = q
(

(Xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(Xk,s)s=1..n

)

.
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We have:

Eθ̃Rn ≥ ∆̃kEθ̃[Tk(n)]≥ ∆̃k(n−g(n))Pθ̃ (Tk(n)≥ n−g(n)) (12)

= ∆̃k(n−g(n))Pθ̃

(

n− ∑
ℓ 6=k

Tℓ(n)≥ n−g(n)

)

= ∆̃k(n−g(n))Pθ̃

(

∑
ℓ 6=k

Tℓ(n)≤ g(n)

)

= ∆̃k(n−g(n))
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

∏
ℓ 6= k

s = 1..⌊g(n)⌋

dν̃ℓ(xℓ,s)∏
s=1..n

dν̃k(xk,s)

≥ ∆̃k(n−g(n))
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

η⌊g(n)⌋∏
ℓ 6= k

s = 1..⌊g(n)⌋

dνℓ(xℓ,s)∏
s=1..n

dνk(xk,s) (13)

≥ ∆̃k(n−g(n))ηg(n)
∫

q
(

(xℓ,s)ℓ 6=k, s=1..⌊g(n)⌋,(xk,s)s=1..n

)

∏
ℓ 6= k

s = 1..⌊g(n)⌋

dνℓ(xℓ,s)∏
s=1..n

dνk(xk,s)

= ∆̃k(n−g(n))ηg(n)
Pθ

(

∑
ℓ 6=k

Tℓ(n)≤ g(n)

)

= ∆̃k(n−g(n))ηg(n)

(

1−Pθ

(

∑
ℓ 6=k

Tℓ(n)> g(n)

))

≥ ∆̃k(n−g(n))ηg(n)

(

1− Eθ

(

∑ℓ 6=k Tℓ(n)
)

g(n)

)

(14)

≥ ∆̃k(n−g(n))ηg(n)

(

1− Eθ

(

∑ℓ 6=k ∆ℓTℓ(n)
)

∆g(n)

)

(15)

≥ ∆̃k(n−g(n))ηg(n)

(

1− EθRn

∆g(n)

)

,

where the first inequality of (12) is a consequence of Formula (1), the second inequality of (12)

and inequality (14) come from Markov’s inequality, Inequality (13) is a consequence of (11), and

Inequality (15) results from the fact that ∆ℓ ≥ ∆ for all ℓ.

Now, let us conclude. If EθRn

logn
−−−−→
n→+∞

0, we set g(n) = 2EθRn

∆ , so that

g(n)≤ min
(

n
2
, − logn

2logη

)

for n large enough. Then, we have:

Eθ̃Rn ≥ ∆̃k

n−g(n)

2
ηg(n) ≥ ∆̃k

n

4
η

− logn
2logη = ∆̃k

√
n

4
.

In particular,
Eθ̃Rn

logn
−−−−→
n→+∞

+∞, and the result follows.
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5.2 Hannan Consistency

We will prove that there exists a Hannan consistent policy such that there can not be a logarithmic

lower bound for every environment θ of Θ. To this aim, we make use of general UCB policies again

(cf. Section 2.1). Let us first give sufficient conditions on the fk for UCB policy to be Hannan

consistent.

Proposition 10 Assume that fk(n) = o(n) for all k ∈ {1, . . . ,K}. Assume also that there exist γ > 1
2

and N ≥ 3 such that fk(n)≥ γ log logn for all k ∈ {1, . . . ,K} and for all n ≥ N. Then UCB is Hannan

consistent.

Proof Fix an arm k such that ∆k > 0 and choose β ∈ (0,1) such that 2βγ > 1. By means of Lemma

2, we have for n large enough:

Eθ[Tk(n)]≤ u+2
n

∑
t=u+1

(

1+
log t

log( 1
β)

)

e−2βγ log log t ,

where u =
⌈

4 fk(n)

∆2
k

⌉

.

Consequently, we have:

Eθ[Tk(n)]≤ u+2
n

∑
t=2

(

1

(log t)2βγ
+

1

log( 1
β)

1

(log t)2βγ−1

)

. (16)

Sums of the form ∑n
t=2

1
(log t)c with c > 0 are equivalent to n

(logn)c as n goes to infinity. Indeed, on

the one hand we have
n

∑
t=3

1

(log t)c
≤

∫ n

2

dx

(logx)c
≤

n

∑
t=2

1

(log t)c
,

so that ∑n
t=2

1
(log t)c ∼

∫ n
2

dx
(logx)c . On the other hand, we have

∫ n

2

dx

(logx)c
=

[

x

(logx)c

]n

2

+ c

∫ n

2

dx

(logx)c+1
.

As both integrals are divergent we have
∫ n

2
dx

(logx)c+1 = o
(∫ n

2
dx

(logx)c

)

, so that
∫ n

2
dx

(logx)c ∼ n
(logn)c .

Combining the fact that ∑n
t=2

1
(log t)c ∼ n

(logn)c with Equation (16), we get the existence of a

constant C > 0 such that

Eθ[Tk(n)]≤
⌈

4 fk(n)

∆2

⌉

+
Cn

(logn)2βγ−1
.

Since fk(n) = o(n) and 2βγ− 1 > 0, the latter inequality shows that Eθ[Tk(n)] = o(n). The result

follows.

We are now in the position to prove the main result of this section.

Theorem 11 If Θ has the Dirac/Bernoulli property, there exist Hannan consistent policies for which

the expected regret can not be lower bounded by a logarithmic function in all environments θ.
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Proof If f1(n) = f2(n) = log logn for n ≥ 3, UCB is Hannan consistent by Proposition 10. Accord-

ing to Lemma 1, the expected regret is then of order log logn in environments of the form (δa,δb),
a 6= b. Hence the conclusion on the non-existence of logarithmic lower bounds.

Thus we have obtained a lower bound of order log logn. This order is critical regarding the

methods we used. Yet, we do not know if this order is optimal.
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2010.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvari. Online optimization in X-armed bandits. In

Advances in Neural Information Processing Systems 21, pages 201–208. 2009.

A.N. Burnetas and M.N. Katehakis. Optimal adaptive policies for sequential allocation problems.

Advances in Applied Mathematics, 17(2):122–142, 1996.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,

New York, NY, 2006.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D.P. Helmbold, R.E. Schapire, and M.K. Warmuth. How

to use expert advice. Journal of the ACM (JACM), 44(3):427–485, 1997.

206



LOWER BOUNDS, WEAK CONSISTENCY AND SELECTIVITY IN BANDIT PROBLEMS

P.A. Coquelin and R. Munos. Bandit algorithms for tree search. In Uncertainty in Artificial Intelli-

gence, 2007.

S. Gelly and Y. Wang. Exploration exploitation in go: UCT for Monte-Carlo go. In Online Trad-

ing between Exploration and Exploitation Workshop, Twentieth Annual Conference on Neural

Information Processing Systems (NIPS 2006), 2006.

J. Honda and A. Takemura. An asymptotically optimal bandit algorithm for bounded support mod-

els. In Proceedings of the Twenty-Third Annual Conference on Learning Theory (COLT), 2010.

R. Kleinberg, A. Slivkins, and E. Upfal. Multi-armed bandits in metric spaces. In Proceedings of

the 40th Annual ACM Symposium on Theory of Computing, pages 681–690, 2008.

R. D. Kleinberg. Nearly tight bounds for the continuum-armed bandit problem. In Advances in

Neural Information Processing Systems 17, pages 697–704. 2005.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in Applied

Mathematics, 6:4–22, 1985.

D. Lamberton, G. Pagès, and P. Tarrès. When can the two-armed bandit algorithm be trusted?

Annals of Applied Probability, 14(3):1424–1454, 2004.

C.L. Mallows. Some comments on cp. Technometrics, pages 661–675, 1973.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the American Math-

ematics Society, 58:527–535, 1952.

G. Schwarz. Estimating the dimension of a model. The Annals of Statistics, 6(2):461–464, 1978.

W.R. Thompson. On the likelihood that one unknown probability exceeds another in view of the

evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

207


