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Abstract

The Neyman-Pearson (NP) paradigm in binary classification treats type I and type II errors with

different priorities. It seeks classifiers that minimize type II error, subject to a type I error con-

straint under a user specified level α. In this paper, plug-in classifiers are developed under the NP

paradigm. Based on the fundamental Neyman-Pearson Lemma, we propose two related plug-in

classifiers which amount to thresholding respectively the class conditional density ratio and the

regression function. These two classifiers handle different sampling schemes. This work focuses

on theoretical properties of the proposed classifiers; in particular, we derive oracle inequalities that

can be viewed as finite sample versions of risk bounds. NP classification can be used to address

anomaly detection problems, where asymmetry in errors is an intrinsic property. As opposed to a

common practice in anomaly detection that consists of thresholding normal class density, our ap-

proach does not assume a specific form for anomaly distributions. Such consideration is particularly

necessary when the anomaly class density is far from uniformly distributed.

Keywords: plug-in approach, Neyman-Pearson paradigm, nonparametric statistics, oracle in-

equality, anomaly detection

1. Introduction

Classification aims to identify which category a new observation belongs to, on the basis of labeled

training data. Applications include disease classification using high-throughput data such as mi-

croarrays, SNPs, spam detection and image recognition. This work investigates Neyman-Pearson

paradigm in classification with a plug-in approach.

1.1 Neyman-Pearson Paradigm

The Neyman-Pearson (NP) paradigm extends the objective of classical binary classification in that,

while the latter focuses on minimizing classification error that is a weighted sum of type I and type II

errors, the former minimizes type II error subject to an upper bound α on type I error, where the

threshold level α is chosen by the user. The NP paradigm is appropriate in many applications where

it is necessary to bring down one kind of error at the expense of the other. One example is medical

diagnosis: failing to detect a malignant tumor leads to loss of a life, while flagging a benign one

only induces some unnecessary medical cost. As healthy living and longer life expectancy cannot

be compensated by any amount of money, it is desirable to control the false negative rate of any

medical diagnosis, perhaps with some sacrifice in the false positive rate.
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A few commonly used notations in classification literature are set up to facilitate our discussion.

Let (X ,Y ) be a random couple where X ∈ X ⊂ IRd is a vector of covariates, and where Y ∈ {0,1}
is a label that indicates to which class X belongs. A classifier h is a mapping h : X → {0,1} that

returns the predicted class given X . An error occurs when h(X) 6=Y . It is therefore natural to define

the classification loss by 1I(h(X) 6= Y ), where 1I(·) denotes the indicator function. The expectation

of the classification loss with respect to the joint distribution of (X ,Y ) is called classification risk

(error) and is defined by

R(h) = IP(h(X) 6= Y ) .

The risk function can be expressed as a convex combination of type I and II errors:

R(h) = IP(Y = 0)R0(h)+ IP(Y = 1)R1(h) , (1)

where

R0(h) = IP(h(X) 6= Y |Y = 0)denotes the type I error,

R1(h) = IP(h(X) 6= Y |Y = 1)denotes the type II error.

Also recall that the regression function of Y on X is defined by

η(x) = E[Y |X = x] = IP(Y = 1|X = x) .

Let h∗(x) = 1I(η(x) ≥ 1/2). The oracle classifier h∗ is named the Bayes classifier, and it achieves

the minimum risk among all possible candidate classifiers. The risk of h∗, R∗ = R(h∗) is called the

Bayes risk. A certain classifier ĥ in classical binary classification paradigm is good if the excess risk

R(ĥ)−R∗ is small on average or with high probability.

In contrast to the classical paradigm, the NP classification seeks a minimizer φ∗ that solves

min
R0(φ)≤α

R1(φ) ,

where a small α (e.g., 5%) reflects very conservative attitude towards type I error.

The NP paradigm is irrelevant if we can achieve very small type I and type II errors simulta-

neously. This is often impossible as expected, and we will demonstrate this point with a stylized

example. Note that for most joint distributions on (X ,Y ), the Bayes error R∗ is well above zero.

Suppose in a tumor detection application, R∗ = 10%. Clearly by (1), it is not feasible to have both

type I error R0 and type II error R1 be smaller than 10%. Since we insist on lowering the false

negative rate as our priority, with a desirable false negative rate much lower than 10%, we have to

sacrifice some false positive rate.

Moreover, even if a classifier φ̂ achieves a small risk, there is no guarantee on attaining desirable

type I or type II errors. Take another stylized example in medical diagnosis. Suppose that type I

error equals 0.5, that is, with 50% of the chances, detector φ̂ fails to find the malignant tumor, and

that type II error equals 0.01. Also assume the chance that a tumor is malignant is only 0.001. Then

the risk of φ̂ is approximately 1%. This is low, but φ̂ is by no means a good detector, because it

misses a malignant tumor with half of the chances!

Empirical risk minimization (ERM), a common approach to classification, has been studied

in the NP classification literature. Cannon et al. (2002) initiated the theoretical treatment of the
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NP classification paradigm and an early empirical study can be found in Casasent and Chen (2003).

Several results for traditional statistical learning such as PAC bounds or oracle inequalities have been

studied in Scott (2005) and Scott and Nowak (2005) in the same framework as the one laid down

by Cannon et al. (2002). Scott (2007) proposed performance measures for NP classification that

weights type I and type II error in sensible ways. More recently, Blanchard et al. (2010) developed

a general solution to semi-supervised novelty detection by reducing it NP classification, and Han

et al. (2008) transposed several earlier results to NP classification with convex loss. There is a

commonality in this line of literature: a relaxed empirical type I error constraint is used in the

optimization program, and as a result, type I errors of the classifiers can only be shown to satisfy

a relaxed upper bound. Take the framework set up by Cannon et al. (2002) for example: for some

ε0 > 0 and let H be a set of classifiers with finite VC dimension. They proposed the program

min
φ∈H ,R̂0(φ)≤α+ε0/2

R̂1(φ) ,

where R̂0 and R̂1 denote empirical type I and type II errors respectively. It is shown that solution

to the above program φ̂ satisfies simultaneously with high probability, the type II error R1(φ̂) is

bounded from above by R1(φ
∗)+ ε1, for some ε1 > 0, and the type I error R0(φ̂) is bounded from

above by α+ ε0.

However, following the original spirit of NP classification, a good classifier φ̂ should respect

the chosen significance level α, rather than some relaxation of α, that is, we should be able to i).

satisfy the type I error constraint R0(φ̂)≤ α with high probability, while ii). establishing an explicit

diminishing rate for the excess type II error R1(φ̂)−R1(φ
∗). The simultaneous achievements of

i). and ii). can be thought of as counterpart of oracle inequality in classical binary classification,

and we believe they are a desirable formulation of theoretical properties of good classifiers in NP

classification. Considering this point, Rigollet and Tong (2011) propose a computationally feasible

classifier h̃τ, such that ϕ-type I error of h̃τ is bounded from above by α with high probability and the

excess ϕ-type II error of h̃τ converges to 0 with explicit rates, where ϕ-type I error and ϕ-type II error

are standard convex relaxations of type I and type II errors respectively. Most related to the current

context, they also proved a negative result. Loosely speaking, it is shown by counter examples

that under the original type I/II criteria, if one adopts ERM approaches (convexification or not), one

cannot guarantee diminishing excess type II error if one insists type I error of the proposed classifier

be bounded from above by α with high probability. Interested readers are referred to Section 4.4 of

that paper.

In this work, we will fulfill the original NP paradigm spirit with the plug-in approach. Theoreti-

cal properties of the classifiers under the NP paradigm will be derived. To the best of our knowledge,

our paper is the first to do so. It looks as if from a theoretical point of view, a plug-in approach is

more suitable than ERM for the NP paradigm. However, such a comparison is not fair because

the two approaches are based on different sets of assumptions. For the ERM approach, the main

assumption is on the complexity of candidate classifiers, leaving the class conditional distributions

unrestricted. While with the plug-in approach, we put restrictions on the joint distributions.

A related framework that also addresses asymmetry in errors is the cost-sensitive learning, which

assigns different costs as weights of type I and type II errors (see, e.g., Elkan 2001, Zadrozny et al.

2003). This approach has many practical values, but when it is hard to assign costs to errors, or in

applications such as medical diagnosis, where it is morally inappropriate to do the usual cost and

benefit analysis, the NP paradigm is a natural choice.
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1.2 Plug-in Approach Based on the Fundamental Neyman-Pearson Lemma

NP classification is closely related to the NP approach to statistical hypothesis testing. The punch

line is that the fundamental Neyman-Pearson lemma itself suggests a direct plug-in classifier. The

interested reader is referred to Lehmann and Romano (2005) for a comprehensive treatment of

hypothesis testing. Here we only review the central knowledge that brings up this connection.

Hypothesis testing bears strong resemblance with binary classification if we assume the follow-

ing model. Let P− and P+ be two known probability distributions on X ⊂ IRd . Let π ∈ (0,1) and

assume that Y is a random variable defined by

Y =

{

1 with probability π ,
0 with probability 1−π .

Assume further that the conditional distribution of X given Y is denoted by P2Y−1. Given such

a model, the goal of statistical hypothesis testing is to determine whether X was generated from

P− or from P+. To that end, we construct a randomized test φ : X → [0,1] and the conclusion

of the test based on φ is that X is generated from P+ with probability φ(X) and from P− with

probability 1−φ(X). Note that randomness here comes from an exogenous randomization process

such as flipping a biased coin. Two kinds of errors arise: type I error occurs when rejecting P−

when it is true, and type II error occurs when not rejecting P− when it is false. The Neyman-

Pearson paradigm in hypothesis testing amounts to choosing φ that solves the following constrained

optimization problem

maximize IE[φ(X)|Y = 1] ,
subject to IE[φ(X)|Y = 0]≤ α ,

where α∈ (0,1) is the significance level of the test. In other words, we specify a significance level α

on type I error, and minimize type II error. We call a solution to this constrained optimization prob-

lem a most powerful test of level α. The Neyman-Pearson Lemma gives mild sufficient conditions

for the existence of such a test.

Theorem 1 (Neyman-Pearson Lemma) Let P− and P+ be probability distributions possessing den-

sities p0 and p1 respectively with respect to some measure µ. Let fCα(x) = 1I(L(x)≥Cα), where

L(x) = p1(x)/p0(x) and Cα is such that P−(L(X)>Cα)≤ α and P−(L(X)≥Cα)≥ α. Then,

• fCα is a level α = IE [ fCα(X)|Y = 0] most powerful test.

• For a given level α, the most powerful test of level α is defined by

φ(X) =











1 if L(X)>Cα

0 if L(X)<Cα
α−P−(L(X)>Cα)

P−(L(X)=Cα)
if L(X) =Cα .

Notice that in the learning framework, φ cannot be computed since it requires knowledge of the

distributions P− and P+. Nevertheless, the Neyman-Pearson Lemma motivates a plug-in classifier.

Concretely, although we do not know p1 and p0, we can find the kernel density estimators p̂1 and

p̂0 based on data. Then if we can also detect the approximately right threshold level Ĉα, the plug-in

approach leads to a classifier 1I( p̂1(x)/ p̂0(x)≥ Ĉα). We expect that this simple classifier would have

good type I/II performance bounds, and this intuition will be verified in the following sections. It
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is worthy to note that our plug-in approach to NP classification leads to problems related to density

level set estimation (see Rigollet and Vert 2009 and reference therein), where the task is to estimate

{x : p(x) > λ}, for some level λ > 0. Density level set estimation has applications in anomaly

detection and unsupervised or semi-supervised classification. Plug-in methods for density level set

estimation, as opposed to direct methods, do not involve complex optimization procedure, and only

amounts to thresholding the density estimate at proper level. The challenges in our setting different

from Rigollet and Vert (2009) are two folds. First, the threshold level in our current setup needs to

be estimated, and secondly, we deal with density ratios rather than densities. Plug-in methods in

classical binary classification have been also studied in the literature. Earlier works seemed to give

rise to pessimism of plug-in approach to classification. For example, under certain assumptions,

Yang (1999) showed plug-in estimators cannot achieve classification error faster than O(1/
√

n).
But direct methods can achieve fast rates up to O(1/n) under margin assumption (Mammen and

Tsybakov, 1999; Tsybakov, 2004; Tsybakov and van de Geer, 2005; Tarigan and van de Geer, 2006).

However Audibert and Tsybakov (2007) combined a smoothness condition condition on regression

function with the margin assumption, and showed that plug-in classifiers 1I(η̂n ≥ 1/2) based on

local polynomial estimators can achieve rates faster than O(1/n). We will borrow the smoothness

condition on the regression function and margin assumption from Audibert and Tsybakov (2007).

However in that paper again, the threshold level is not estimated, so new techniques are called for.

1.3 Application to Anomaly Detection

NP classification is a useful framework to address anomaly detection problems. In anomaly detec-

tion, the goal is to discover patterns that are different from usual outcomes or behaviors. An unusual

behavior is named an anomaly. A variety of problems, such as credit card fraud detection, insider

trading detection and system malfunctioning diagnosis, fall into this category. There are many

approaches to anomaly detection; some serving a specific purpose while others are more generic.

Modeling techniques include classification, clustering, nearest neighbors, statistical and spectrum,

etc. A recent comprehensive review of anomaly detection literature is provided by Chandola et al.

(2009). Earlier review papers include Agyemang et al. (2006), Hodge and Austin (2004), Markou

and Singh (2003a), Markou and Singh (2003b), Patcha and Park (2007), etc.

When we have training data from the normal class, a common approach to anomaly detection is

to estimate the normal class density p0 and try to threshold at a proper level, but this is inappropriate

if the anomaly class is far from uniformly distributed. Indeed, to decide whether a certain point is

an anomaly, one should consider how likely it is for this point to be normal as opposed to abnormal.

The likelihood ratio p1/p0 or the regression function η are good to formalize such a concern. Our

main results in NP classification will be adapted for anomaly detection applications, where the

normal sample size n is much bigger than the anomaly sample size m.

The rest of the paper is organized as follows. In Section 2, we introduce a few notations and

definitions. In Section 3, oracle inequalities for a direct plug-in classifier are derived based on

the density ratio p1/p0. Section 4 investigates another related plug-in classifier, which targets on

the regression function η. Finally, proofs of two important technical lemmas are relegated to the

Appendix.
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2. Notations and Definitions

Following Audibert and Tsybakov (2007), some notations are introduced. For any multi-index

s = (s1, . . . ,sd)∈N
d and any x = (x1, . . . ,xd)∈R

d , define |s|= ∑d
i=1 si, s! = s1! · · ·sd!, xs = x

s1

1 · · ·xsd

d

and ‖x‖= (x2
1 + · · ·+ x2

d)
1/2. Let Ds be the differential operator Ds = ∂s1+···+sd

∂x1
s1 ···∂xd

sd .

Let β > 0. Denote by ⌊β⌋ the largest integer strictly less than β. For any x,x′ ∈ R
d and any

⌊β⌋ times continuously differentiable real valued function g on R
d , we denote by gx its Taylor

polynomial of degree ⌊β⌋ at point x:

gx(x
′) = ∑

|s|≤⌊β⌋

(x′− x)s

s!
Dsg(x) .

For L > 0, the (β,L, [−1,1]d)-Hölder class of functions, denoted by Σ(β,L, [−1,1]d), is the set

of functions g : Rd → R that are ⌊β⌋ times continuously differentiable and satisfy, for any x,x′ ∈
[−1,1]d , the inequality:

|g(x′)−gx(x
′)| ≤ L‖x− x′‖β .

The (β,L, [−1,1]d)-Hölder class of density is defined as

PΣ(β,L, [−1,1]d) =

{

p : p ≥ 0,
∫

p = 1, p ∈ Σ(β,L, [−1,1]d)

}

.

Denote respectively by IP and IE generic probability distribution and expectation. Also recall

that we have denoted by p0 the density of class 0 and by p1 that of class 1. For all the theoretical

discussions in this paper, the domain of densities p0 and p1 is [−1,1]d .

We will use β-valid kernels throughout the paper, which are a multi-dimensional analog of

univariate higher order kernels. The definition of β-valid kernels is as follows

Definition 1 Let K be a real-valued function on R
d with support [−1,1]d . For fixed β > 0, the

function K(·) is a β-valid kernel if it satisfies
∫

K = 1,
∫ |K|p < ∞ for any p ≥ 1,

∫ ‖t‖β|K(t)|dt < ∞,

and in the case ⌊β⌋ ≥ 1, it satisfies
∫

tsK(t)dt = 0 for any s = (s1, . . . ,sd) ∈ N
d such that 1 ≤

s1 + . . .+ sd ≤ ⌊β⌋.

One example of β-valid kernels is the product kernel whose ingredients are kernels of order β in 1

dimension:

K̃(x) = K(x1)K(x2) · · ·K(xd)1I(x ∈ [−1,1]d),

where K is a 1-dimensional β-valid kernel and is constructed based on Legendre polynomials. We

refer interested readers to Section 1.2.2 of Tsybakov (2009). These kernels have been considered

in the literature, such as Rigollet and Vert (2009). When the β-valid kernel K is constructed out of

Legendre polynomials, it is also Lipschitz and bounded. Therefore, such a kernel satisfies conditions

for Lemma 1. For simplicity, we assume that all the β-valid kernels considered in this paper are

constructed from Legendre polynomials.

The next low noise condition helps characterize the difficulty of a classification problem.

Definition 2 (Margin Assumption) A function p satisfies the margin assumption of order γ̄ with

respect to probability distribution P at the level C∗ if there exist positive constants C0 and γ̄, such

that ∀δ ≥ 0,

P(|p(X)−C∗| ≤ δ)≤C0δγ̄ .
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The above condition for densities was first introduced in Polonik (1995), and its counterpart in

the classical binary classification was called margin condition (Mammen and Tsybakov, 1999),

from which we borrow the same terminology for discussion. A classification problem is less noisy

by requiring most data be further away from the optimal decision boundary. Recall that the set

{x : η(x) = 1/2} is the decision boundary of the Bayes classifier in the classical paradigm, and the

margin condition in the classical paradigm is a special case of Definition 2 by taking p = η and

C∗ = 1/2.

3. Plug-in Based on Ratio of Class Conditional Densities

In this section, we investigate a plug-in classifier motivated by the Neyman-Pearson Lemma based

on the density ratio p1/p0. Both the p0 known and the p0 unknown cases will be discussed. Al-

though assuming precise knowledge on class 0 density is far from realistic, the subtlety of the

plug-in approach in the NP paradigm, as opposed to in the classical paradigm, is revealed through

the comparison of the two cases. Most importantly, we formulate some detection condition to detect

the right threshold level in plug-in classifiers under the NP paradigm.

3.1 Class 0 Density p0 Known

In this subsection, suppose that we know the class 0 density p0, but have to estimate the class

1 density p1. It is interesting to note that this setup is essentially a dual of generalized quantile

(minimum volume) set estimation problems, where the volume and mass defining measures are

interchanged. Denote by p̂1 the kernel density estimator of p1 based on an i.i.d. class 1 sample

S1 = {X+
1 , . . . ,X+

m }, that is,

p̂1(x0) =
1

mhd

m

∑
i=1

K

(

X+
i − x0

h

)

,

where h is the bandwidth. For a given level α, define respectively Ĉα and C∗
α as solutions of

P0

(

p̂1(X)

p0(X)
≥ Ĉα

)

= α and P0

(

p1(X)

p0(X)
≥C∗

α

)

= α .

Note that for some α, Ĉα and C∗
α might not exist. In such cases, randomization is needed to achieve

the exact level α. For simplicity, we assume that Ĉα and C∗
α exist and are unique. Note that since p0

is known, the threshold Ĉα is detected precisely for each sample S1. The Neyman-Pearson Lemma

says that under mild regularity conditions, φ∗(x) = 1I(p1(x)/p0(x)≥C∗
α) is the most powerful test of

level α. Therefore, we have a plug-in classifier naturally motivated by the Neyman-Pearson Lemma:

φ̂(x) = 1I

(

p̂1(x)

p0(x)
≥ Ĉα

)

, (2)

where we plug in estimates p̂1 and Ĉα respectively for the class 1 density p1 and the threshold

level C∗
α. We are interested in the theoretical properties of φ̂. In particular, we will establish oracle

inequalities regarding the excess type I and type II errors. Note that since Ĉα is constructed to meet

the level α exactly, the excess type I error of φ̂ vanishes, that is,

R0(φ̂)−R0(φ
∗) = 0 .

We summarize as follows assumptions on class conditional densities that we will reply upon.
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Condition 1 Suppose that the class conditional densities p0 and p1 satisfy:

i) There exists a positive constant µmin, such that p0 ≥ µmin,

ii) The class 1 density p1 ∈ PΣ(β,L, [−1,1]d),

iii) The ratio of class conditional densities p1/p0 satisfies the margin assumption of order γ̄ with

respect to probability distribution P0 at the level C∗
α.

Note that part i) in Condition 1 is the same as assuming p0 > 0 on the compact domain [−1,1]d , as

long as p0 is continuous. Part ii) is a global smoothness condition, which is stronger than the local

smoothness conditions used in Rigollet and Vert (2009), in which different smoothness conditions

for a neighborhood around the interested level λ and for the complement of the neighborhood are

formulated. Rigollet and Vert (2009) emphasized on the smoothness property for a neighborhood

around level λ, as only this part affects the rate of convergence. However, as Ĉα is not known a

priori in our setup, we rely upon a global smoothness condition as opposed to a local one.

The following theorem addresses the excess type II error of φ̂: R1(φ̂)−R1(φ
∗).

Proposition 1 Let φ̂ be the plug-in classifier defined by (2). Assume that the class conditional

densities p0 and p1 satisfy the Condition 1 and that the kernel K is β-valid and L′-Lipschitz. Then

for any δ ∈ (0,1), and any class 1 sample size m is such that

√

log(m/δ)
mhd < 1, where the bandwidth

h = ( logm
m

)1/(2β+d), the excess type II error is bounded, with probability 1−δ, by

R1(φ̂)−R1(φ
∗)≤ 22+γ̄C0C1+γ̄

(µmin)1+γ̄

(

log(m/δ)

mhd

)

1+γ̄
2

,

where the constant C is the same as in Lemma 1 applied to density p1. In particular, there exists a

positive C̄, such that for any m ≥ 1/δ,

R1(φ̂)−R1(φ
∗)≤ C̄

(

logm

m

)

β(1+γ̄)
2β+d

.

Note that the dependency of the upper bound for the excess type II error on parameters β, L,

and L′ is incorporated into the constant C, whose explicit formula is given in Lemma 1, which

has an important role in the proof. Lemma 1 is a finite sample uniform deviation result on kernel

density estimators. Here we digress slightly and remark that theoretical properties of kernel density

estimators have been studied intensively in the literature. A result of similar flavor was obtained

in Lei et al. (2013). Readers are referred to Wied and Weiβbach (2010) and references therein

for a survey on consistency of kernel density estimators. Convergence in distribution for weighted

sup norms was derived in Giné et al. (2004). Lepski (2013) studied expected sup-norm loss of

multivariate density estimation with an oracle approach. We have the technical Lemma 1 and it

proof in the appendix, as none of previous results is tailored to our use. Another phenomenon

worth mentioning is that the upper bound does not explicitly depend on the significance level α.

This results from the way we formulate the margin assumption. Suppose we were to allow γ̄ in

the margin assumption to depend on α, that is, γ̄ = γ̄(α), or let C0 depend on α, the upper bound

would have explicit dependency on α. Also from the upper bound, we can see that the larger the

parameter γ̄, the sharper the margin assumption, and then the faster the rate of convergence for the
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excess type II error. Also, we re-emphasize that the feature dimension d considered in this paper is

fixed and does not increase with sample sizes.

Proof

First note that the excess type II error can be represented by

R1(φ̂)−R1(φ
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ,

where G∗ =
{

p1

p0
<C∗

α

}

and Ĝ =
{

p̂1

p0
< Ĉα

}

, and G∗△Ĝ = (G∗∩ Ĝc)∪ (G∗c∩ Ĝ) is the symmetric

difference between G∗ and Ĝ. Indeed,

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0

=
∫

G∗∩Ĝc

(

C∗
α −

p1

p0

)

dP0 +
∫

G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0

=
∫

G∗

(

C∗
α −

p1

p0

)

dP0 +
∫

Ĝ

(

p1

p0

−C∗
α

)

dP0

= C∗
αP0(G

∗)−P1(G
∗)−C∗

αP0(Ĝ)+P1(Ĝ)

= P1(Ĝ)−P1(G
∗) .

Define an event regarding the sample S1: E = {‖ p̂1− p1‖∞ < δ1

2
µmin}, where δ1 =

2C
µmin

√

log(m/δ)
mhd ,

and C is the same as in Lemma 1 (with p replaced by p1). From this point to the end of the proof,

we restrict ourselves to the event E .

Since G∗c ∩ Ĝ and G∗∩ Ĝc are disjoint, we can handle the two parts separately. Decompose

G∗c ∩ Ĝ =

{

p1

p0

≥C∗
α,

p̂1

p0

< Ĉα

}

= A1 ∪A2 ,

where

A1 =

{

C∗
α +δ1 ≥

p1

p0

≥C∗
α,

p̂1

p0

< Ĉα

}

,

and

A2 =

{

p1

p0

>C∗
α +δ1,

p̂1

p0

< Ĉα

}

.

Then, ∫
A1

(

p1

p0

−C∗
α

)

dP0 ≤ δ1P0(A1)≤C0(δ1)
1+γ̄ .

We can control the distance between Ĉα and C∗
α. Indeed,

α = P0

(

p̂1(X)

p0(X)
≥ Ĉα

)

= P0

(

p1(X)

p0(X)
≥C∗

α

)

≥ P0

(

p̂1(X)

p0(X)
≥C∗

α +
|p1(X)− p̂1(X)|

p0(X)

)

≥ P0

(

p̂1(X)

p0(X)
≥C∗

α +
δ1µmin

2µmin

)

= P0

(

p̂1(X)

p0(X)
≥C∗

α +
δ1

2

)

.
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This implies that Ĉα <C∗
α +

δ1

2
. Therefore,

A2 ⊂ A3 :=

{

p1

p0

≥C∗
α +δ1,

p̂1

p0

<C∗
α +δ1/2

}

.

It is clear that on the event E , P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0 ≤C0(δ1)
1+γ̄ .

Similarly, it can be shown that
∫

G∗∩Ĝc

(

C∗
α − p1

p0

)

dP0 ≤C0(δ1)
1+γ̄. Therefore,

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0(δ1)
1+γ̄ .

Finally, Lemma 1 implies IP(E)≥ 1−δ. This completes the proof.

Although it is reasonable to assume that the class 0 density p0 can be approximated well, as-

suming p0 known exactly is not realistic for most applications. Next, we consider the unknown p0

case.

3.2 Class 0 Density p0 Unknown

Assume that both the class 0 density p0 and the class 1 density p1 are unknown. Knowledge on class

conditional densities is passed to us through samples. Because data from class 0 is needed to esti-

mate both the class 0 density and the threshold level, we split the class 0 data into two pieces. There-

fore, suppose available data include class 0 samples S0 =
{

X−
1 , . . . ,X−

n

}

, S̃0 =
{

X−
n+1, . . . ,X

−
2n

}

, and

a class 1 sample S1 =
{

X+
1 , . . . ,X+

m

}

. Also assume that given samples S0 and S1, the variables in S̃0

are independent. Our mission is still to construct a plug-in classifier based on the optimal test output

by the Neyman-Pearson Lemma and to show that it has desirable theoretical properties regarding

type I and II errors.

First estimate p0 and p1 respectively from S0 and S1 by kernel estimators,

p̂0(x) =
1

nhd
n

n

∑
i=1

K

(

X−
i − x

hn

)

and p̂1(x) =
1

mhd
m

m

∑
i=1

K

(

X+
i − x

hm

)

,

where hn and hm denote the bandwidths. Since p0 is unknown, Ĉα can not be defined trivially as in

the p0 known case. And, it turns out that detecting the right threshold level is important to proving

theoretical properties of the plug-in classifier. There is one essential piece of intuition. We know

that having fast diminishing excess type II error demands a low noise condition, such as the margin

assumption. On the other hand, if there are enough sample points around the optimal threshold

level, we can approximate the threshold C∗
α accurately. Approximating the optimal threshold level

is not a problem in the classical setting, because in that setting, the Bayes classifier is 1I(η(x) ≥
1/2), and the threshold level 1/2 on the regression function η is known. Therefore, estimating the

optimal threshold with the NP paradigm introduces new technical challenges. The following level

α detection condition addresses this concern.
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Condition 2 (level α detection condition) The function f satisfies the level α detection condition

(with respect to P0 (X ∼ P0)) if there exist positive constants C1 and γ
−
, such that for any δ in a small

right neighborhood of 0,

P0 (C
∗
α −δ ≤ f (X)≤C∗

α)∧P0 (C
∗
α ≤ f (X)≤C∗

α +δ)≥C1δ
γ− .

Definition 3 Fix δ ∈ (0,1), for dn = 2

√

2
log(2en)+log(2/δ)

n
, let Ĉα be the smallest C such that

1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥C

)

≤ α−dn.

Having p̂1, p̂0 and Ĉα, we propose a plug-in classifier motivated by the Neyman-Pearson Lemma in

statistical hypothesis testing:

φ̂(x) = 1I

(

p̂1(x)

p̂0(x)
≥ Ĉα

)

. (3)

Unlike the previous setup where p0 was known, we now need to bound the type I error of φ̂ first.

Proposition 2 With probability at least 1− δ regarding the samples S0, S̃0 and S1, type I error of

the plug-in classifier φ̂ defined in (3) is bounded from above by α, that is,

R0(φ̂)≤ α .

Proof Note that R0(φ̂) = P0

(

p̂1(X)
p̂0(X) ≥ Ĉα

)

and 1
n ∑2n

i=n+1 1I
(

p̂1(X
−
i )

p̂0(X
−
i )

≥ Ĉα

)

≤ α−dn. Let

At =

{

sup
c∈R

∣

∣

∣

∣

∣

P0

(

p̂1(X)

p̂0(X)
≥ c

)

− 1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥ c

)

∣

∣

∣

∣

∣

≥ t

}

.

Then it is enough to show that, IP(Adn
)≤ δ .

Note that IP(At) = IE(IP(At |S0,S1)) . Keep S0 and S1 fixed, and define f̂ (x) = p̂1(x)
p̂0(x)

. Let Q

be the conditional distribution of Z = f̂ (X) given S0 and S1, where X ∼ P0, and Qn denote the

conditional joint distribution of (Z−
n+1, . . . ,Z

−
2n) = ( f̂ (X−

n+1), . . . , f̂ (X−
2n)). Because half lines in R

have VC dimension 1, by taking t = dn = 2

√

2
log(2en)+log(2/δ)

n
, the VC inequality1 implies that

IP(Adn
|S0,S1) = Qn

(

supc |Q(Z ≥ c)− 1
n ∑2n

i=n+1 1I(Z−
i ≥ c)| ≥ dn

)

≤ δ .

Therefore,

IP(Adn
) = IE(IP(Adn

|S0,S1))≤ δ .

The next theorem addresses the excess type II error of φ̂.

1. For the readers’ convenience, a simple corollary of VC inequality is quoted: let G be a class of classifiers with VC

dimension l, then with probability at least 1− δ, supg∈G |R(g)−Rn(g)| ≤ 2

√

2
l log(2en/l)+log(2/δ)

n , where n is the

sample size and Rn denotes the empirical risk.
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Theorem 2 Let φ̂ be the plug-in classifier defined as in (3). Assume that the class conditional

densities p0 and p1 satisfy Condition 1, p0 ∈ PΣ(β,L, [−1,1]d) and the kernel K is β-valid and L′-
Lipschitz. Also assume that the likelihood ratio p1/p0 satisfies the level α detection condition for

some γ
−
≥ γ̄. Then for any δ ∈ (0,1) and any sample sizes m,n such that

max

(
√

log(m/δ)

mhd
m

,

√

log(n/δ)

nhd
n

)

< 1 ,

where the bandwidths hn = ( logn
n
)

1
2β+d and hm = ( logm

m
)

1
2β+d , it holds with probability 1−3δ,

R1(φ̂)−R1(φ
∗)≤ 2C0

[

(2dn/C1)
1/γ−+2Tm,n

]1+γ̄

+2C∗
αdn ,

where dn = 2

√

2
log(2en)+log(2/δ)

n
, Tm,n =

δ1+‖p1‖∞δ0/µmin

µmin−δ0
, δ0 =C2

√

log(n/δ)
nhd

n
,

δ1 =C3

√

log(m/δ)
mhd

m
, C2 and C3 are the same as C in Lemma 1 applied to p0 and p1 respectively.

In particular, there exists some positive C̄, such that for all n,m ≥ 1/δ,

R1(φ̂)−R1(φ
∗)≤ C̄







(

logn

n

)min

(

1
2
, 1+γ̄

2 γ−
, β(1+γ̄)

2β+d

)

+

(

logm

m

)

β(1+γ̄)
2β+d






. (4)

Proof

Denote by G∗ =
{

p1

p0
<C∗

α

}

and Ĝ =
{

p̂1

p̂0
< Ĉα

}

. Then

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0

=
∫

G∗∩Ĝc

(

C∗
α −

p1

p0

)

dP0 +
∫

G∗c∩Ĝ

(

p1

p0

−C∗
α

)

dP0

=
∫

G∗

(

C∗
α −

p1

p0

)

dP0 +
∫

Ĝ

(

p1

p0

−C∗
α

)

dP0

= P1(Ĝ)−P1(G
∗)+C∗

α

[

P0(G
∗)−P0(Ĝ)

]

.

Therefore the excess type II error can be decomposed in two parts,

P1(Ĝ)−P1(G
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +C∗
α

[

P0(G
∗c)−P0(Ĝ

c)
]

. (5)

Recall that P0(G
∗c) = α and P0(Ĝ

c) is type I error of φ̂. From the above decomposition, we see

that to control the excess type II error, type I error of φ̂ should be not only smaller than the level α,

but also not far from α. This is intuitively correct, because having a small type I error amounts to

having a very tight constraint set, which leads to significant deterioration in achievable type II error.

Fortunately, this is not the case here with high probability. Note that by the definition of Ĉα, for any

positive number l, the following holds for all n ≥ 1,

1

n

2n

∑
i=n+1

1I

(

p̂1(X
−
i )

p̂0(X
−
i )

≥ Ĉα − l

)

> α−dn .
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By the same argument as in the proof of Proposition 2, there exists an event Ēl regarding the samples

S0, S̃0 and S1 with IP(Ēl)≥ 1−δ, such that on this event,

P0

(

p̂1(X)

p̂0(X)
≥ Ĉα − l

)

≥ α−2dn . (6)

To control the second part of R.H.S. in(5), let Ĝl = { p̂1

p̂0
< Ĉα − l}, then

P0(G
∗c)−P0(Ĝ

c) = inf
l>0

[

P0(G
∗c)−P0(Ĝ

c
l )
]

≤ α− (α−2dn) = 2dn , (7)

on the event Ē := ∩l>0Ēl , and IP(Ē) = liml→0 IP(Ēl)≥ 1−δ.

Therefore, it remains to control the first part of R.H.S. in (5). Define an event regarding samples

S0 and S1:

E = {‖ p̂0 − p0‖∞ < δ0,‖ p̂1 − p1‖∞ < δ1} .

Lemma 1 implies that IP(E)≥ 1−2δ . We restrict ourselves to E ∩ Ē for the rest of the proof. Note

that the first part of R.H.S. in (5) can be decomposed by

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 =
∫

G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +
∫

G∗∩Ĝc

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 .

We will focus on bounding the integral over G∗ ∩ Ĝc, because that over G∗c ∩ Ĝ can be bounded

similarly. Note that,

∣

∣

∣

∣

p̂1

p̂0

− p1

p0

∣

∣

∣

∣

≤
∣

∣

∣

∣

p̂1

p̂0

− p1

p̂0

∣

∣

∣

∣

+

∣

∣

∣

∣

p1

p̂0

− p1

p0

∣

∣

∣

∣

≤ 1

| p̂0|
| p̂1− p1|+

∣

∣

∣

∣

p1

p0

∣

∣

∣

∣

· |p0 − p̂0|
| p̂0|

<
‖p1‖∞δ0/µmin +δ1

µmin −δ0

= Tm,n .

The above inequality together with (6) implies that

α−2dn ≤ P0

(

p̂1(X)

p̂0(X)
≥ Ĉα − l

)

≤ P0

(

p1(X)

p0(X)
≥ Ĉα − l −Tm,n

)

. (8)

We need to bound Ĉα in terms of C∗
α. This is achieved through the following steps. First, we

determine some cn > 0 such that

P0

(

p1(X)

p0(X)
≥C∗

α + cn

)

≤ α−2dn ,

which follows if the next inequality holds

2dn ≤ P0

(

C∗
α <

p1(X)

p0(X)
<C∗

α + cn

)

.

By the level α detection condition, it is enough to take cn = (2dn/C1)
1/γ−

. Therefore in view of

inequality (8),

P0

(

p1(X)

p0(X)
≥C∗

α +(2dn/C1)
1/γ−
)

≤ α−2dn ≤ P0

(

p1(X)

p0(X)
≥ Ĉα − l −Tm,n

)

.
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This implies that

Ĉα ≤C∗
α +(2dn/C1)

1/γ−+ l +Tm,n .

Since the above holds for all l > 0, we have

Ĉα ≤C∗
α +(2dn/C1)

1/γ−+Tm,n .

For any positive Lm,n, we can decompose G∗c ∩ Ĝ by

G∗c ∩ Ĝ =

{

p1

p0

≥C∗
α,

p̂1

p̂0

< Ĉα

}

= A1 ∩A2 ,

where

A1 =

{

C∗
α +Lm,n >

p1

p0

≥C∗
α,

p̂1

p̂0

< Ĉα

}

, and A2 =

{

p1

p0

≥C∗
α +Lm,n,

p̂1

p̂0

< Ĉα

}

.

By the margin assumption,

∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ Lm,nP0(A1)≤C0(Lm,n)
1+γ̄ .

Note that

A2 ⊂ A3 :=

{

p1

p0

≥C∗
α +Lm,n,

p̂1

p̂0

<C∗
α +(2dn/C1)

1/γ−+Tm,n

}

.

Take Lm,n = (2dn/C1)
1/γ−+2Tm,n, then P0(A2) = P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤C0(Lm,n)
1+γ̄ .

Similarly, we can bound the integral over G∗∩ Ĝc, so

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0(Lm,n)
1+γ̄ . (9)

Finally, note that IP(E ∩ Ē)≥ 1−3δ. So (5), (7) and (9) together conclude the proof.

Now we briefly discuss the above result. Same as the p0 known setup, the coefficient γ̄ from the

margin assumption has influence on the convergence rate of the excess type II error. The larger the γ̄,

the easier the classification problem, and hence the faster the convergence of the excess type II error.

The coefficient γ
−

in the detection condition works differently. The larger the γ
−
, the more difficult

it is to detect the optimal decision boundary, and hence the harder the classification problem. Take

it to the extreme γ
−
→ ∞ (keep γ̄ fixed), which holds when the amount of data around the optimal

threshold level goes to zero,
(

logn

n

)

1+γ̄
2 γ− →

(

logn

n

)0

= 1 .
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In other words, the upper bound in (4) is uninformative when we have a null level α detection

condition.

In anomaly detection applications, let class 0 represent the normal class, and class 1 represent

the anomaly class. We have in mind n ≫ m, that is, the normal sample size is much bigger than

that of the anomaly, and so logn/n is dominated by logm/m. Therefore, the right hand side of (4)

is of the order

[

( logn
n
)

min(1/2,(1+γ̄)/(2γ−))+( logm
m

)β(1+γ̄)/(2β+d)

]

. Compared with the p0 known setup,

the extra term
(

logn
n

)min(1/2,(1+γ̄)/(2γ−))
arises from estimating the threshold level C∗

α. Let n → ∞,

which amounts to knowing p0, this term vanishes, and the upper bound reduces to the same as in

the previous subsection. When γ
−
< 1+ γ̄, we have 1/2 < (1+ γ̄)/(2γ

−
), so γ

−
does not show up in

the upper bound. Finally, for fixed γ
−
(≥ 1+ γ̄), β and d, we can calculate explicitly an order relation

between m and n, such that ( logm
m

)
β

2β+d ≥ ( logn
n
)

1
2 γ−

. A sufficient condition for this inequality is that

n ≥
(

m
logm

)βγ−/(4β+2d)
. Intuitively, this says that if the normal class sample size is large enough

compared to the anomaly class sample size, lack of precise knowledge on normal class density p0

does not change the type II error rate bound, up to a multiplicative constant.

4. Plug-in Based on the Regression Function

In this section, instead of plugging in class conditional densities p1 and p0, we target the regression

function η(x) = IE(Y |X = x) directly. As will be illustrated, this version of plug-in estimator allows

us to handle a different assumption on sampling scheme. Recall that the rationality behind plugging

in for p1/p0 lies in the Neyman-Pearson Lemma for hypothesis testing. A simple derivation shows

that a thresholding rule on p1/p0 can be translated into a thresholding rule on η. Indeed, let π =
IP(Y = 1), then we have

η(x) = IP(Y = 1|X = x) =
π · p1/p0(x)

π · p1/p0(x)+(1−π)
.

When π < 1, the function x 7→ πx
πx+(1−π) is strictly monotone increasing on R

+. Therefore, there

exists a positive constant D∗
α depending on α, such that

{

x ∈ [−1,1]d :
p1(x)

p0(x)
≥C∗

α

}

= {x ∈ [−1,1]d : η(x)≥ D∗
α} .

Moreover, the oracle thresholds C∗
α and D∗

α are related by D∗
α = πC∗

α

πC∗
α+(1−π) . Parallel to the previous

section, we address both the p0 known and p0 unknown setups. In both setups, we assume that we

have access to an i.i.d. sample S̄ = {(X1,Y1), . . . ,(Xm,Ym)}.

4.1 Class 0 Density p0 Known

This part is similar to the p0 known setup in Section 3. The essential technical difference is that

we need a uniform deviation result on the Nadaraya-Watson estimator η̂ (based on the sample S̄ )

instead of those on p̂0 and p̂1. Recall that η̂ = ∑m
i=1YiK

(

Xi−x
h

)

/∑m
i=1 K

(

Xi−x
h

)

can written as f̂/ p̂,
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where

p̂(x) =
1

mhd

m

∑
i=1

K

(

Xi − x

h

)

and f̂ (x) =
1

mhd

m

∑
i=1

YiK

(

Xi − x

h

)

,

in which h is the bandwidth. Denote by p = πp1 +(1−π)p0 and f = η · p, then η = f/p. For a

given level α, define D̂α and D∗
α respectively by

P0(η̂(X)≥ D̂α) = α and P0(η(X)≥ D∗
α) = α .

For simplicity, we assume that D̂α and D∗
α exist and are unique. Note that the oracle classifier of

level α is φ∗(x) = 1I(η(x)≥ D∗
α), so a plug-in classifier motivated by the Neyman-Pearson Lemma

is

φ̃(x) = 1I(η̂(x)≥ D̂α) . (10)

Since D̂α is constructed to meet the level α exactly, the excess type I error of φ̃ vanishes, that is,

R0(φ̃)−R0(φ
∗) = 0 .

The following theorem addresses type II error of φ̃.

Condition 3 Suppose that p the marginal density of X and η the regression function satisfy:

(i) There exist positive constants µ′min and ν′
max(< 1), such that p ≥ µ′min and η ≤ ν′

max,

(ii) f = η · p ∈ PΣ(β,L, [−1,1]d) and p ∈ PΣ(β,L, [−1,1]d),

(iii) The regression function η satisfies the margin assumption of order γ̄ with respect to probability

distribution P0 at the level D∗
α.

Proposition 3 Let φ̃ be the plug-in classifier defined by (10). Assume that p and η satisfy condition

3 and that the kernel K is β-valid and L′-Lipschitz. Then there exists a positive D̃, such that for any

δ ∈ (0,1) and any sample size m satisfying

√

log(m/δ)
mhd < 1, it holds with probability 1−δ,

R1(φ̃)−R1(φ
∗)≤ D̃

(

log(3m/δ)

mhd

)

1+γ̄
2

,

where h =
(

logm
m

)
1

2β+d
. Furthermore, there exists a positive D such that for any m ≥ 1/δ, it holds

with probability 1−δ,

R1(φ̃)−R1(φ
∗)≤ D

(

logm

m

)

β(1+γ̄)
2β+d

.

Proof First note that the excess type II error

R1(φ̃)−R1(φ
∗) =

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 = P1(Ĝ)−P1(G
∗) ,
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where G∗ = {η < D∗
α} and Ĝ =

{

η̂ < D̂α

}

, and G∗△Ĝ = (G∗∩ Ĝc)∪ (G∗c ∩ Ĝ).
Define an event regarding the sample S̄ ,

E = {‖η̂−η‖∞ < δ1/2} ,

where δ1 = D1

√

log(3m/δ)
mhd and D1 is a constant chosen as in Lemma 2. From this point to the end of

the proof, we restrict ourselves to E . Decompose

G∗c ∩ Ĝ =
{

η ≥ D∗
α, η̂ < D̂α

}

= A1 ∪A2 ,

where

A1 =
{

D∗
α +δ1 ≥ η ≥ D∗

α, η̂ < D̂α

}

,

and

A2 =
{

η > D∗
α +δ1, η̂ < D̂α

}

.

Now we need to control the distance of

∣

∣

∣

p1

p0
−C∗

α

∣

∣

∣
in terms of |η−D∗

α|. This can be achieved by

recalling

η =
πp1/p0

πp1/p0 +1−π
and D∗

α =
πC∗

α

πC∗
α +1−π

,

and the assumption that η ≤ ν′
max(< 1) (also D∗

α ≤ ν′
max should follow). Indeed, let

f (x) =
πx

πx+(1−π)
,0 < x < ν′

max .

Then,

g(x) = f−1(x) =
1−π

π

x

1− x
,0 < x <

πν′
max

πν′
max +1−π

.

Since |g′(x)| ≤ π
1−π

(

πµ′max+1−π
πν′max

)2

=: U , g is Lipschitz with Lipschitz constant U . Therefore,

|η−D∗
α| ≤ δ1 =⇒

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤Uδ1 .

This implies ∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤Uδ1P0(A1)≤C0Uδ
1+γ̄
1 ,

where the second inequality follows from the margin assumption. To bound the integral over A2,

we control the distance between D̂α and D∗
α. Indeed,

α = P0(η̂(X)≥ D̂α) = P0(η(X)≥ D∗
α)

≥ P0(η̂(X)≥ D∗
α +δ1/2) .

This implies that D̂α ≤ D∗
α +δ1/2. So

P0(A2)≤ P0(η > D∗
α +δ1, η̂ < D∗

α +δ1/2) = 0 .

Therefore, ∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤C0Uδ
1+γ̄
1 .
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Similarly bound the integral over G∗∩ Ĝc, then

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤ 2C0Uδ
1+γ̄
1 .

Lemma 2 implies that IP(E)≥ 1−δ. This concludes the proof.

Note that Lemma 2 is a uniform deviation result on the Nadaraya-Watson estimator, and it is the

first result of such kind to the best of our knowledge.

4.2 Class 0 Density p0 Unknown

In this subsection, the assumption of knowledge on p0 is relaxed. Suppose in addition to the mixed

sample S̄ = {(X1,Y1), . . . ,(Xm,Ym)}, we have access to a class 0 sample S0 = {X−
1 , . . . ,X−

n }. More-

over, assume that variables in S0 are independent given S̄ . As in the p0 known case, the notation

η̂ denotes the Nadaraya-Watson estimator based on the sample S̄ . Just like Ĉα in Definition 3, we

need to define the threshold level D̂α carefully.

Definition 4 Fix δ ∈ (0,1), for dn = 2

√

2
log(2en)+log(2/δ)

n
, let D̂α be the smallest L such that

1

n

n

∑
i=1

1I
(

η̂(X−
i )≥ L

)

≤ α−dn .

Unlike the previous setup where p0 is known, we now bound the excess type I error.

Proposition 4 With probability at least 1−δ, type I error of the plug-in classifier φ̃ defined in (10)

is bounded from above by α, that is,

R0(φ̃)≤ α .

The proof is omitted due to similarity to that of Proposition 2. A similar α level detection condition

can be formulated can be formulated for the regression function, but we omit it as C∗
α is simply

replaced by D∗
α. The next theorem address the excess type II error of φ̃: R1(φ̃)−R1(φ

∗).

Theorem 3 Let φ̃ = 1I(η̂ ≥ D̂α) be defined as in (10). Assume condition 3 and the regression

function η satisfies the level α detection condition for some γ
−
(≥ γ̄). Take the bandwidth h =

( logm
m

)1/(2β+d) in the Nadaraya-Watson estimator η̂, where the kernel K is β-valid and L′-Lipschitz.

Then there exists a positive constant C̄, such that for any δ ∈ (0,1) and any m,n ≥ 1/δ, it holds with

probability 1−2δ,

R1(φ̃)−R1(φ
∗)≤ C̄







(

logn

n

)min

(

1
2
, 1+γ̄

2 γ−

)

+

(

logm

m

)

β(1+γ̄)
2β+d






.

Proof Let G∗ = {η < D∗
α} and Ĝ = {η̂ < D̂α}, then the excess type II error of φ̃ can be decomposed

by

P1(Ĝ)−P1(G
∗) =

∫
G∗△G∗

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +C∗
α +
[

P0(G
∗c)−P0(Ĝ

c)
]

. (11)
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Recall that P0(G
∗c) = α and P0(Ĝ

c) is type I error of φ̃. By the definition of D̂α, for any positive

number l, the following holds for all n ≥ 1,

1

n

n

∑
i=1

1I(η̂(X−
i )≥ D̂α − l)> α−dn ,

where dn = 2

√

2
log(2en)+log(2/δ)

n
. By the same argument as in the proof of Proposition 2, there exists

an event Ēl regarding the samples S0, S̃0 and S1 with IP(Ēl)≥ 1−δ, such that on this event,

P0

(

η̂ ≥ D̂α − l
)

≥ α−2dn .

To control the second part of R.H.S. in(11), let Ĝl = {η̂ < D̂α − l}, then

P0(G
∗c)−P0(Ĝ

c) = inf
l>0

[

P0(G
∗c)−P0(Ĝ

c
l )
]

≤ α− (α−2dn) = 2dn , (12)

on the event Ē := ∩l>0Ēl , and IP(Ē) = liml→0 IP(Ēl) ≥ 1− δ. Therefore, it remains to control the

first part of R.H.S. in (11). Define an event regarding the sample Ē ,

E = {‖η̂−η‖∞ < δ1/2} ,

where δ1 = D1

√

log(3m/δ)
mhd and D1 is a constant chosen as in Lemma 2. Lemma 2 implies that

IP(E) ≥ 1− δ. We restrict ourselves to E ∩ Ē for the rest of the proof. Note that the first part of

R.H.S. of (11) can be decomposed by

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 =
∫

G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 +
∫

G∗∩Ĝc

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 .

We will focus the integral over G∗ ∩ Ĝc, as that over G∗c ∩ Ĝ can be bounded similarly. Because

|η̂−η|< δ1/2, for all l > 0,

α−2dn ≤ P0

(

η̂ ≥ D̂α − l
)

≤ P0

(

η ≥ D̂α − l −δ1/2
)

.

We need to bound D̂α in terms of D∗
α. This is achieved through the following steps. First, we

determine some cn > 0 such that

P0 (η ≥ D∗
α + cn)≤ α−2dn ,

which follows if the next inequality holds

2dn ≤ P0 (D
∗
α < η < D∗

α + cn) .

By the level α detection condition, it is enough to take cn = (2dn/C1)
1/γ−

. Therefore,

P0

(

η ≥ D∗
α +(2dn/C1)

1/γ−
)

≤ α−2dn ≤ P0

(

η ≥ D̂α − l −δ1/2
)

.

This implies that

D̂α ≤ D∗
α +(2dn/C1)

1/γ−+ l +δ1/2 .
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Since the above holds for all l > 0, we have

D̂α ≤ D∗
α +(2dn/C1)

1/γ−+δ1/2 .

We can decompose G∗c ∩ Ĝ by

G∗c ∩ Ĝ =
{

η ≥ D∗
α, η̂ < D̂α

}

= A1 ∩A2 ,

where

A1 =

{

D∗
α +(2dn/C1)

1/γ−+δ1 > η ≥ D∗
α, η̂ < D̂α

}

, and

A2 =

{

η ≥ D∗
α +(2dn/C1)

1/γ−+δ1, η̂ < D̂α

}

.

Let U := π
1−π

(

πµ′max+1−π
πν′max

)2

, through the same derivation as the p0 known case,

|η−D∗
α| ≤ (2dn/C1)

1/γ−+δ1 =⇒
∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

≤U

(

(2dn/C1)
1/γ−+δ1

)

.

By the margin assumption,

∫
A1

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤U

(

(2dn/C1)
1/γ−+δ1

)

P0(A1)≤C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

.

Note that

A2 ⊂ A3 :=

{

η ≥ D∗
α +(2dn/C1)

1/γ−+δ1, η̂ < D∗
α +(2dn/C1)

1/γ−+δ1/2

}

,

but |η− η̂|< δ1/2 on E ∩ Ē , so P0(A2) = P0(A3) = 0. Therefore,

∫
G∗c∩Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

.

Similarly, the integral over G∗∩ Ĝc can be bounded, so we have

∫
G∗△Ĝ

∣

∣

∣

∣

p1

p0

−C∗
α

∣

∣

∣

∣

dP0 ≤ 2C0U

[

(2dn/C1)
1/γ−+δ1

]1+γ̄

. (13)

Finally, note that IP(E ∩ Ē)≥ 1−2δ. So (11), (12) and (13) together conclude the proof.

In anomaly detection applications, normal samples are considered abundant, that is, n ≫ m,

which implies that ( logn
n
)

1
2β+d ≤ ( logm

m
)

1
2β+d . Then the upper bounds for the excess type II errors

in Theorem 2 and Theorem 3 are of the same order. Having access to the mixture (contaminated)

sample S̄ looks like a weaker condition than having access to a pure anomaly sample. However, this
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does not seem to be the case in our settings. The essence is revealed by observing that the density

ratio p1/p0 and the regression function η play the same role in the oracle NP classifier at level α:

φ∗(x) = 1I(p1/p0(x)≥C∗
α) = 1I(η(x)≥ D∗

α) .

A plug-in classifier depends upon an estimate of either p1/p0 or η. Being able to estimate the

anomaly density p1 is not of particular advantage, because only the ratio p1/p0 matters. Strictly

speaking, the conditions for the two theorems are not the same, but one advantage of targeting the

regression function seems to be that we do not have to split the normal example into two, with one

to estimate p0 and the other to estimate the optimal threshold C∗
α.
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Appendix A. Technical Lemmas

The appendix includes two important technical lemmas and their proofs. Lemma 1 is a uniform

deviation result on kernel density estimators, and Lemma 2 is a uniform division result on Nadaraya-

Watson estimators.

Lemma 1 Let p ∈ PΣ(β,L, [−1,1]d)and the kernel K be β-valid and L′-Lipschitz. Denote by p̂(x) =
1

nhd ∑n
i=1 K

(

Xi−x
h

)

the kernel density estimator of p based on the i.i.d sample {X1, . . . ,Xn}, where h

is the bandwidth. For any ε ∈ (0,1), if the sample size n is such that

√

log(n/ε)
nhd < 1, it holds

IP(‖ p̂− p‖∞ ≥ δ)≤ ε ,

where

δ = (32c2d +
√

48dc1)

√

log(n/ε)

nhd
+2Lc3hβ +

1

nhd

√
dL′

nh
+(L+C̃ ∑

1≤|s|≤⌊β⌋

1

s!
)dβ/2n−2β ,

where c1 = ‖p‖∞‖K‖2, c2 = ‖K‖∞ + ‖p‖∞ +
∫ |K|‖t‖βdt, c3 =

∫ |K|‖t‖βdt, and C̃ is such that

C̃ ≥ sup1≤|s|≤⌊β⌋ supx∈[−1,1]d |Ds p(x)|.

Let h =
(

logn
n

)
1

2β+d
, it is enough to take δ =C

√

log(n/ε)
nhd , where

C = 32c2d +
√

48dc1 +2Lc3 +
√

dL′+L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!
.

Proof Divide each coordinate of the hypercube [−1,1]d into 2M equally spaced subintervals. Then

[−1,1]d is subdivided into (2M)d small hypercubes, with a total of (2M+1)d vertices. We denote

the collection of these vertices by G. Note that for any δ > 0,

IP(‖ p̂− p‖∞ ≥ δ)≤ IP(M1 +M2 +M3 ≥ δ) , (14)

3031



TONG

where

M1 = sup

‖x−x′‖≤
√

d
M

1

nhd

∣

∣

∣

∣

∣

n

∑
i=1

(

K(
Xi − x

h
)−K(

Xi − x′

h
)

)

∣

∣

∣

∣

∣

,

M2 = sup

‖x−x′‖≤
√

d
M

|p(x)− p(x′)| ,

M3 = sup
x∈G

∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

K(
Xi − x

h
)− p(x)

∣

∣

∣

∣

∣

.

Note that because K is L′-Lipschitz,

M1 ≤ sup

‖x−x′‖≤
√

d
M

1

nhd

n

∑
i=1

∣

∣

∣

∣

(

K(
Xi − x

h
)−K(

Xi − x′

h
)

)∣

∣

∣

∣

≤ 1

nhd

n
√

dL′

Mh
=

1

nhd

√
dL′

nh
.

To control M2, note that if β ≤ 1,

|p(x)− p(x′)|= |p(x)− px′(x)| ≤ L‖x− x′‖β .

If β > 1, p is ⌊β⌋-times continuously differentiable. In particular, for all s such that 1 ≤ |s| ≤ ⌊β⌋,

Ds p is continuous. Since [−1,1]d is compact, there exists a positive constant C̃, such that

sup
1≤|s|≤⌊β⌋

sup
x∈[−1,1]d

|Ds p(x)| ≤ C̃ .

Therefore,

|p(x)− p(x′)| ≤ |p(x)− px′(x)|+ |px′(x)− p(x′)|

= L‖x− x′‖β + ∑
1≤|s|≤⌊β⌋

∣

∣

∣

∣

(x′− x)s

s!
Ds p(x′)

∣

∣

∣

∣

≤
(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

‖x− x′‖β .

Putting together the β ≤ 1 and β > 1 cases yields M2 ≤
(

L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β.

Define by t = δ− 1
nhd

√
dL′
nh

−
(

L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β. Inequality (14) together with upper

bounds on M1 and M2, implies that

IP(‖ p̂− p‖∞ ≥ δ)≤ IP(M3 ≥ t) .

Use a union bound to control the tail probability of M3,

IP(M3 ≥ t) ≤ ∑
x∈G

IP

(∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

K(
Xi − x

h
)− p(x)

∣

∣

∣

∣

∣

≥ t

)

.

≤ 2(2M+1)d exp

(

− hdnt2

8(c1 + c2t/6)

)

,
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for t ≥ 2Lc3hβ. The last inequality relies on the assumptions that p ∈ PΣ(β,L, [−1,1]d) and K is

β-valid. It essentially follows along the same lines as the proof of Lemma 4.1 in Rigollet and Vert

(2009), so we omit the derivation and refer the interested reader to this paper. For a given ε ∈ (0,1),
we would like to enforce

2(2M+1)d exp

(

− hdnt2

8(c1 + c2t/6)

)

≤ ε .

Because log2+d log(2M+1)≤ 6d logn, it is sufficient to have

6d logn− nhdt2

8(c1 + c2t/6)
≤ logε .

It is clear there exists a positive t∗ such that the above inequality attains equality, and that this

inequality holds for all t ≥ t∗. To get t∗, we restrict ourselves to t > 0, so that we have c1+c2t/6> 0.

Then we solve for t∗ as the bigger root of a quadratic function in t:

t∗ =
1

2nhd

(

8c2d logn− 4

3
logεc2 +

√

(8c2d logn− 4

3
logεc2)2 −4nhd(8c1 logε−48dc1 logn)

)

.

Observe that for positive a and b,
√

a+b ≤√
a+

√
b, so it holds

t∗ ≤ 1

2nhd

(

2(8c2d logn− 4

3
logεc2)+

√

4nhd(48dc1 logn−8c1 logε)

)

≤ 32c2d
log n

ε

nhd
+
√

48dc1

√

log n
ε

nhd

≤ (32c2d +
√

48dc1)

√

log n
ε

nhd
,

in which the last inequality holds for n such that

√

log(n/ε)
nhd < 1. Then we can take

δ = (32c2d +
√

48dc1)

√

log n
ε

nhd
+2Lc3hβ +

1

nhd

√
dL′

nh
+

(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2n−2β .

When h =
(

logn
n

)
1

2β+d
, we have

√

logn

nhd = hβ =
(

logn
n

)

β
2β+d

, and nh > 1. Also, it is safe to assume

that dβ/2n−2β ≤
√

log(n/ε)/(nhd), Therefore,

δ ≤ (32c2d +
√

48dc1)

√

log n
ε

nhd
+2Lc3

√

logn

nhd
+
√

dL′
√

logn

nhd
+

(

L+C̃ ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2

n2β

≤ C

√

log n
ε

nhd
,

where C = 32c2d +
√

48dc1 +2Lc3 +
√

dL′+L+C̃ ∑1≤|s|≤⌊β⌋
1
s!

.
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Lemma 2 Denote by η̂ the Nadaraya-Watson estimator of the regression function η based on an

i.i.d. sample {(X1,Y1), . . . ,(Xn,Yn)}. Let p be the marginal density of X, p ∈ PΣ(β,L, [−1,1]d),
f = η · p ∈ PΣ(β,L, [−1,1]d), and the kernel K be β-valid and L′-Lipschitz. Moreover, assume

p ≥ µ′min(> 0) and the sample size n is such that

√

log(n/ε)
nhd < 1. Then for any ε > 0,

IP(‖η̂−η‖∞ ≥ δ)≤ 3ε ,

for

δ =
1

µ′min −δ′

(

δ′+(32d‖K‖∞ +
√

12d‖K‖2‖p‖∞)

√

log(n/ε)

nhd
+(c4 + c5)h

β

)

+
1

µ′min −δ′

(

1

nhd

√
dL′

nh
+

(

L+C̃1 ∑
1≤|s|≤⌊β⌋

1

s!

)

dβ/2

n2β

)

,

where δ′ is the same as δ in Lemma 1, c4 =
‖p‖∞L

µ′min

(

1+ ‖ f‖∞

µ′min

)

(∫ |K(z)| · ‖z‖βdz
)

and c5 = L
∫ |K(z)| ·

‖z‖βdz, and C̃1 is such that C̃1 ≥ sup1≤|s|≤⌊β⌋ supx∈[−1,1]d |Ds p(x)|.
In particular, when h = ( logn

n
)

1
2β+d , there exists some positive D, such that we can take δ =

D

√

log(n/ε)
nhd .

Proof Recall that p̂(x) = 1
nhd ∑n

i=1 K(Xi−x
h

) and f̂ (x) = 1
nhd ∑n

i=1YiK(Xi−x
h

), so

|η̂−η|=
∣

∣

∣

∣

f̂

p̂
− f

p

∣

∣

∣

∣

≤
∣

∣

∣

∣

f

p̂
− f

p

∣

∣

∣

∣

+

∣

∣

∣

∣

f̂

p̂
− f

p̂

∣

∣

∣

∣

= | f | | p̂− p|
| p̂||p| +

1

| p̂| | f̂ − f | .

This implies that

IP(‖η̂−η‖∞ ≥ δ)≤ IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

+

∥

∥

∥

∥

1

| p̂| | f̂ − f |
∥

∥

∥

∥

∞

≥ δ

)

.

Therefore, to claim IP(‖η̂−η‖∞ ≥ δ) ≤ 3ε, it is enough to show that for δ1 and δ2 such that δ =
δ1 +δ2, it holds

i) IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ ε , and ii) IP

(∥

∥

∥

∥

1

| p̂| | f̂ − f |
∥

∥

∥

∥

∞

≥ δ2

)

≤ 2ε , (15)

where the quantities δ1 and δ2 will be specified later.

i). We prove the first inequality in (15). Because η ≤ 1 and η(x) = f (x)/p(x),

IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ IP

(∥

∥

∥

∥

p̂− p

p̂

∥

∥

∥

∥

∞

≥ δ1

)

.

Denote an event regarding the sample E = {‖ p̂− p‖∞ < δ′}, where δ′ is the same as δ in

Lemma 1. So by Lemma 1, IP(E)> 1− ε. Moreover,

IP(‖( p̂− p)/ p̂‖∞ ≥ δ1)

≤ IP
(

‖( p̂− p)/ p̂‖∞ ≥ δ1,‖ p̂− p‖∞ ≥ δ′
)

+ IP
(

‖( p̂− p)/ p̂‖∞ ≥ δ1,‖ p̂− p‖∞ < δ′
)

≤ IP(‖ p̂− p‖∞ ≥ δ′)+ IP
(

‖ p̂− p‖∞ ≥ δ1(µ
′
min −δ′),‖ p̂− p‖∞ < δ′

)

.
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Take δ1 =
δ′

µ′min−δ′ , then we have δ′ = δ1(µ
′
min −δ′). So

IP

(∥

∥

∥

∥

| f | | p̂− p|
| p̂||p|

∥

∥

∥

∥

∞

≥ δ1

)

≤ IP(‖ p̂− p‖∞ ≥ δ′)≤ ε .

ii). Now we prove the second inequality in (15). Note that

IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2

)

= IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2,‖ p̂− p‖∞ ≥ δ′
)

+ IP

(∥

∥

∥

∥

f̂ − f

p̂

∥

∥

∥

∥

∞

≥ δ2,‖ p̂− p‖∞ < δ′
)

≤ IP(‖ p̂− p‖∞ ≥ δ′)+ IP
(

‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′)

)

= ε+ IP
(

‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′)

)

.

Therefore, to bound the tail probability of ‖( f̂ − f )/ p̂‖∞, it remains to show

IP(‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′))≤ ε .

Let G be the same collection of vertices of sub-cubes in [−1,1]d as in the proof of Lemma 1,

and denote by M = n2. Note that for every δ3 > 0, it holds

IP(‖ f̂ − f‖∞ ≥ δ3) ≤ IP(M1 +M2 +M3 ≥ δ3) ,

where

M1 = sup

‖x−x′‖≤
√

d
M

| f̂ (x)− f̂ (x′)| ,

M2 = sup

‖x−x′‖≤
√

d
M

| f (x)− f (x′)| ,

M3 = sup
x∈G

| f̂ (x)− f (x)| .

The quantity M1 can be controlled as follows:

M1 = sup

‖x−x′‖≤
√

d
M

∣

∣

∣

∣

∣

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− 1

nhd

n

∑
i=1

YiK(
Xi − x′

h
)

∣

∣

∣

∣

∣

≤ sup

‖x−x′‖≤
√

d
M

1

nhd

n

∑
i=1

∣

∣

∣

∣

K(
Xi − x

h
)−K(

Xi − x′

h
)

∣

∣

∣

∣

≤ 1

nhd

n
√

dL′

Mh
=

1

nhd

√
dL′

nh
.

The quantity M2 can be controlled similarly as its counterpart in proof for Lemma 1,

M2 ≤
(

L+C̃1 ∑
1≤|s|≤⌊β⌋

1

s!

)

d
β
2 n−2β .
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Let t = δ3 − 1
nhd

√
dL′
nh

−
(

L+C̃1 ∑1≤|s|≤⌊β⌋
1
s!

)

d
β
2 n−2β, then

IP(‖ f̂ − f‖∞ ≥ δ3)≤ IP(M3 ≥ t) .

Use a union bound to control the tail probability of M3:

IP(M3 ≥ t)≤ ∑
x∈G

IP
(

| f̂ (x)− f (x)| ≥ t
)

.

For each fixed x ∈ G,

f̂ (x)− f (x) =
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)−η(x) · p(x)

=
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

+ IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

−η(x) · p(x)

= B1(x)+B2(x) ,

where

B1(x) =
1

nhd

n

∑
i=1

YiK(
Xi − x

h
)− IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

,

B2(x) = IE

[

1

nhd

n

∑
i=1

YiK(
Xi − x

h
)

]

−η(x) · p(x) .

This implies that

IP(M1 ≥ t) ≤ ∑
x∈G

IP(|B1(x)|+ |B2(x)| ≥ t) .

The tail probability of |B1(x)| is controlled by invoking the Bernstein’s inequality. Denote

by Zi = Zi(x) =
1
hd YiK(Xi−x

h
)− IE

[

1
hd YiK(Xi−x

h
)
]

. It is clear that IE(Zi) = 0, |Zi| ≤ 2‖K‖∞h−d .

Moreover,

Var(Zi)≤ IE

(

h−2dK2(
Xi − x

h
)

)

=
∫

h−dK2(y)p(x+ yh)dy ≤ ‖K‖2‖p‖∞h−d .

Therefore for any t1 > 0,

∑
x∈G

IP(|B1(x)| ≥ t1) = ∑
x∈G

IP

(

1

n
|

n

∑
i=1

Zi| ≥ t1

)

≤ 2(2M+1)d exp

(

− nt2
1

2‖K‖2‖p‖∞h−d +4/3‖K‖∞h−dt1

)

.
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To have the last display bounded from above by ε ∈ (0,1), we recycle the arguments in the

proof for Lemma 1 to find out that t1 should be greater than or equal to

t∗1 =

(

32d‖K‖∞ +
√

12d‖K‖2‖p‖∞

)

√

log(n/ε)

nhd
,

provided the sample size n is such that

√

log(n/ε)
nhd < 1.

Decompose B2(x) into two parts,

B2(x) =
{

IE
[

1
nhd ∑n

i=1 K(Xi−x
h

)η(Xi)
]

− IE[ p̂(x)η(x)]
}

+{IE[ p̂(x)η(x)]− p(x)η(x)} .

Note that
∣

∣

∣

∣

∣

IE

[

1

nhd

n

∑
i=1

K(
Xi − x

h
)η(Xi)

]

− IE[ p̂(x)η(x)]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫
1

hd
K(

y− x

h
)(η(y)−η(x))p(y)dy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫
K(z)[η(x+hz)−η(x)]p(x+hz)dz

∣

∣

∣

∣

≤ ‖p‖∞

∫
|K(z)| · |η(x+hz)−η(x)|dz . (16)

Note that

|η(x+hz)−η(x)| =

∣

∣

∣

∣

f (x+hz)

p(x+hz)
− f (x)

p(x)

∣

∣

∣

∣

≤ 1

µ′min

∣

∣

∣

∣

f (x+hz)− f (x)
p(x+hz)

p(x)

∣

∣

∣

∣

.

It follows from p ∈ PΣ(L,β, [−1,1]d) that

∣

∣

∣

∣

p(x+hz)

p(x)
−1

∣

∣

∣

∣

≤ L‖z‖βhβ

µ′min

.

Therefore,

|η(x+hz)−η(x)|

≤ 1

µ′min

(

| f (x+hz)− f (x)|+ | f (x)| · L

µ′min

‖z‖βhβ

)

≤
(

1+
‖ f‖∞

µ′min

)

L

µ′min

‖z‖βhβ ,

where the last inequality follows from f ∈ PΣ(β,L, [−1,1]d). The above inequality together

with (16) implies that
∣

∣

∣

∣

∣

IE

[

1

nhd

n

∑
i=1

K(
Xi − x

h
)η(Xi)

]

− IE[ p̂(x) ·η(x)]
∣

∣

∣

∣

∣

≤ c4hβ ,
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where c4 =
‖p‖∞L

µ′min

(

1+ ‖ f‖∞

µ′min

)

(∫ |K(z)| · ‖z‖βdz
)

.

Now we control the second part of B2(x). Because p ∈ PΣ(β,L, [−1,1]d), we have via similar

lines to the proof of Lemma 4.1 in Rigollet and Vert (2009),

|IE[ p̂(x)η(x)]− p(x)η(x)| ≤ |η(x)| · |IE p̂(x)− p(x)| ≤ c5hβ ,

where c5 = L
∫ |K(z)| · ‖z‖βdz. Therefore,

|B2(x)| ≤ (c4 + c5)h
β .

Taking t̃ = (32d‖K‖∞ +
√

12d‖K‖2‖p‖∞)
√

log(n/ε)
nhd + (c4 + c5)h

β, and δ3 = t̃ + 1
nhd

√
dL′
nh

+
(

L+C̃1 ∑1≤|s|≤⌊β⌋
1
s!

)

dβ/2n−2β, we have

IP(‖ f̂ − f‖∞ ≥ δ3)≤ IP(M1 ≥ t̃)≤ ∑
x∈G

IP
(

|B1(x)| ≥ t̃ − (c4 + c5)h
β
)

≤ ε .

Take δ2 =
δ3

µ′min−δ′ , we have IP(‖ f̂ − f‖∞ ≥ δ2(µ
′
min −δ′))≤ ε.

To conclude, part i) and part ii) in (15) together close the proof.
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E. Giné, V. Koltchinskii, and L. Sakhanenko. Kernel density estimators: convergence in distribution

for weighted sup norms. Probability Theory and Related Fields, 130:167–198, 2004.

3038



NEYMAN-PEARSON CLASSIFICATION

M. Han, D. Chen, and Z. Sun. Analysis to Neyman-Pearson classification with convex loss function.

Analysis in Theory and Applications, 24(1):18–28, 2008.

V. Hodge and J. Austin. A survey of outlier detection methodologies. Artificial Intelligence Rivew,

2:85–126, 2004.

E. L. Lehmann and J. P. Romano. Testing Statistical Hypotheses. Springer Texts in Statistics.

Springer, New York, third edition, 2005. ISBN 0-387-98864-5.

J. Lei, A. Rinaldo, and L. Wasserman. A conformal prediction approach to explore functional data.

Annals of Mathematics and Artificial Intelligence, 2013.

O. Lepski. Multivariate density estimation under sup-norm loss: oracle approach, adaptation and

independence structure. Annals of Statistics, 41(2):1005–1034, 2013.

E. Mammen and A.B. Tsybakov. Smooth discrimination analysis. Annals of Statistics, 27:1808–

1829, 1999.

M. Markou and S. Singh. Novelty detection: a review-part 1: statistical approahces. Signal Pro-

cessing, 12:2481–2497, 2003a.

M. Markou and S. Singh. Novelty detection: a review-part 2: network-based approahces. Signal

Processing, 12:2499–2521, 2003b.

A. Patcha and J.M. Park. An overview of anomaly detection techniques: Existing solutions and

latest technological trends. Computer Networks, 12:3448–3470, 2007.

W. Polonik. Measuring mass concentrations and estimating density contour clusters-an excess mass

approach. Annals of Statistics, 23:855–881, 1995.

P. Rigollet and X. Tong. Neyman-pearson classification, convexity and stochastic constraints. Jour-

nal of Machine Learning Research, 12:2831–2855, 2011.

P. Rigollet and R. Vert. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15(4):

1154–1178, 2009.

C. Scott. Comparison and design of neyman-pearson classifiers. Unpublished, 2005.

C. Scott. Performance measures for Neyman-Pearson classification. IEEE Transactions on Infor-

mation Theory, 53(8):2852–2863, 2007.

C. Scott and R. Nowak. A neyman-pearson approach to statistical learning. IEEE Transactions on

Information Theory, 51(11):3806–3819, 2005.

B. Tarigan and S. van de Geer. Classifiers of support vector machine type with l1 complexity

regularization. Bernoulli, 12:1045–1076, 2006.

A. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals of Statistics, 32:

135–166, 2004.

A. Tsybakov. Introduction to Nonparametric Estimation. Springer, 2009.

3039



TONG

A. Tsybakov and S. van de Geer. Square root penalty: Adaptation to the margin in classification

and in edge estimation. Annals of Statistics, 33:1203–1224, 2005.

D. Wied and R. Weiβbach. Consistency of the kernel density estimator: a survey. Statistical Papers,

53(1):1–21, 2010.

Y. Yang. Minimax nonparametric classification-part i: rates of convergence. IEEE Transaction

Information Theory, 45:2271–2284, 1999.

B. Zadrozny, J. Langford, and N. Abe. Cost-sensitive learning by cost-proportionate example

weighting. IEEE International Conference on Data Mining, page 435, 2003.

3040


