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GPstuff: Bayesian Modeling with Gaussian Processes
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Abstract

The GPstuff toolbox is a versatile collection of Gaussian process models and computational tools

required for Bayesian inference. The tools include, among others, various inference methods,

sparse approximations and model assessment methods.
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1. Introduction

Gaussian process (GP) prior provides a flexible building block for many hierarchical Bayesian mod-

els (Rasmussen and Williams, 2006). GPstuff (v4.1) is a versatile collection of computational tools

for GP models and it has already been used in several published projects, for example, in epidemiol-

ogy, species distribution modeling and building energy usage modeling (see Vanhatalo et al., 2013,

and project web pages for references). GPstuff combines models and inference tools in a modular

format. It also provides various sparse GP models and methods for model assessment. The tool-

box is compatible with Unix and Windows Matlab (at least r2009b or later). Most features work

also with Octave (tested with 3.6.4). The toolbox is available from http://becs.aalto.fi/en/

research/bayes/gpstuff/ and also http://mloss.org/software/view/451/.

2. Implementation

In many practical GP models, the observations y = [y1, ...,yn]
T related to inputs (covariates) X =

{xi = [xi,1, ...xi,d]
T}n

i=1 are assumed to be conditionally independent given a latent function (or pre-

dictor) f (x) so that the likelihood p(y|f,γ) = ∏n
i=1 p(yi| fi,γ), where f = [ f (x1), ..., f (xn)]

T, fac-
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torizes over cases. The latent function is given a GP prior, f ∼ GP(m(x|φ),k(x,x′|θ)) which is

defined by the mean and covariance function, m(x|φ) and k(x,x′|θ) respectively. The parameters,

ϑ = {γ,φ,θ}, are given a hyperprior after which the posterior p(f|y,X) is approximated and used

for prediction. Most of the models in GPstuff follow the above single latent dependency, but there

are also models where each factor depends on multiple latent values.
We illustrate the construction and inference of a GP model with a regression example. First,

we assume yi = f (xi) + εi, εi ∼ N(0,σ2), and give f (x) a GP prior with a squared exponential

covariance function, k(x,x′) = σ2
se exp(||x−x′||2/2l2).

lik = lik_gaussian(’sigma2’, 0.2ˆ2); % init. the likelihood

gpcf = gpcf_sexp(’lengthScale’, 1, ’magnSigma2’, 0.2ˆ2) % init. the cov. function

gp = gp_set(’lik’, lik, ’cf’, gpcf); % init. the model struct

% Find MAP estimate of the parameters and predict to new inputs

opt=optimset(’TolFun’,1e-3,’TolX’,1e-3,’Display’,’iter’); % optimization settings

gp=gp_optim(gp,x,y,’optimf’,@fminscg,’opt’,opt); % x,y = training data

[Ef, Varf] = gp_pred(gp, x, y, xt); % xt = test inputs

The model is constructed modularly so that each mathematical function or distribution is repre-

sented by an “object” style structure. The structures lik and gpcf contain all the essential informa-

tion about the likelihood and covariance function such as parameter values and function handles to

construct a covariance matrix and its gradient with respect to the parameters. All the model blocks

are collected into a GP structure constructed by gp set.

There are two lines of approach for the inference. The first assumes a Gaussian observation

model which enables an analytic solution for the marginal likelihood p(y|X,ϑ) and the conditional

posterior p(f|X,y,ϑ). Using the relation p(ϑ|y,X) ∝ p(y|X,ϑ)p(ϑ) the parameters, ϑ, can be

optimized to the maximum a posterior (MAP) estimate or marginalized over with grid, central com-

posite design (CCD), importance sampling (IS) or Markov chain Monte Carlo (MCMC) integration

(Vanhatalo et al., 2010). With other observation models the marginal likelihood and the conditional

posterior have to be approximated either with Laplace’s method (LA) or expectation propagation

(EP) (Rasmussen and Williams, 2006). An alternative approach is to sample from the joint posterior

p(f,ϑ|X,y) with MCMC by alternating sampling from p(f|X,y,ϑ) and p(ϑ|X,y, f).

Above, gp optim returns a redefined model structure with parameter values optimized to their

MAP estimate. Any optimizer with similar arguments to Matlab’s optimizers can be used. gp pred

returns the conditional posterior predictive mean, E[ f |y,X,ϑ] and variance Var[ f |y,X,ϑ] at the test

inputs.
Many sparse GPs have been proposed to speed up the computations with large data sets. GPstuff

includes FI(T)C, PIC, SOR, DTC (Quiñonero-Candela and Rasmussen, 2005), VAR (Titsias, 2009),
CS+FIC (Vanhatalo and Vehtari, 2008) sparse approximations, and several compactly supported
(CS) covariance functions. For example, CS+FIC can be used with the following modification to
the model initialization.

gpcf2 = gpcf_ppcs2(’nin’, nin, ’lengthScale’, 5, ’magnSigma2’, 1);

gp = gp_set(’type’,’CS+FIC’,’lik’,lik,’cf’,{gpcf,gpcf2},’X_u’,Xu)

In the first line, a CS covariance function, piecewise polynomial of second order, is created. It is

then given to the GP structure together with inducing inputs (Xu) and sparse GP type definition.
We can tailor the above model, for example, by replacing the Gaussian observation model with

a more robust Student-t observation model (Jylänki et al., 2011).
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lik = lik_t(’nu’, 4, ’sigma2’, 10, ’nu_prior’, prior_logunif);

gp = gp_set(’lik’, lik, ’cf’, gpcf, ’jitterSigma2’, 1e-6, ’latent_method’, ’EP’);

Here we set explicitly the prior for the degrees of freedom parameter, ν in the Student-t distribution,

add jitter on the diagonal of the covariance matrix and define EP as the means to approximate the

marginal likelihood.

GPstuff has wide variety of observation models (see Table 1) of which we want to highlight im-

plementations of recently proposed multinomial probit with EP (Riihimäki et al., 2013) and logistic

GP density estimation and regression with Laplace approximation (Riihimäki and Vehtari, 2012).

The constructed models could be compared, for example, with deviance information criterion

(DIC), widely applicable information criterion (WAIC), leave-one-out or k-fold cross-validation

(LOO/kf-CV) (Vehtari and Ojanen, 2012) with functions gp dic, gp waic, gp loopred and gp kfcv.

New models can be implemented by modifying the existing model blocks, such as covariance

functions. Adding new inference methods is more laborious since they require summaries from

model blocks which may not be provided by the current version of GPstuff. A thorough introduction

to GPstuff is provided by demo programs and Vanhatalo et al. (2013).

3. Related Software

Perhaps the best known GP software packages are the Gaussian processes for Machine Learn-

ing (GPML) (Rasmussen and Nickisch, 2010) and the flexible Bayesian modelling (FBM) (Neal,

1998). Overviews of alternatives are provided by the Gaussian processes website (http://www.

gaussianprocess.org/) and the R Archive Network (http://cran.r-project.org/). The

main advantage of GPstuff over the other GP software is its versatile collection of models and

computational tools. Its most important features and comparison to GPML and FBM are presented

in Table 1. GPstuff project was started in 2006 based on the MCMCstuff-toolbox (http://becs.

aalto.fi/en/research/bayes/mcmcstuff/), which was based on Netlab (Nabney, 2001) and

influenced by FBM. The INLA software (Rue et al., 2009) and the book by Rasmussen and Williams

(2006) have motivated some of the technical details in GPstuff. In addition, the implementation of

sparse matrix routines, used with the CS covariance functions, rely on the SuiteSparse toolbox

(Davis, 2005).
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GPstuff GPML FBM

Covariance functions

number of elementary functions 13 10 4

sums of elements, masking of inputs x x x

delta distance x x

products, positive scaling of elements x x

Mean functions

number of elementary functions 4 4 0

sums of elements, masking of inputs x x

products, power, scaling of elements x

marginalized parameters x

Single latent likelihood/observation models

Gaussian x x x

logistic/logit, erf/probit x x MCMC

Poisson x LA/EP/MCMC MCMC

Gaussian scale mixture MCMC MCMC

Student-t x LA/VB/MCMC

Laplacian EP/VB/MCMC

mixture of likelihoods LA/EP/MCMC

sech-squared, uniform for classification x

derivative observations for sexp covf only

binomial, negative binomial, zero-trunc. negative binomial, log-Gaussian Cox pro-

cess; Weibull, log-Gaussian and log-logistic with censoring

x

quantile regression MCMC/EP

Multilatent likelihood/observation models

multinomial, Cox proportional hazard model, density estimation, density regression,

input dependent noise, input dependent overdispersion in Weibull, zero-inflated

negative binomial

MCMC/LA

multinomial logit (softmax) MCMC/LA MCMC

multinomial probit EP MCMC

Priors for parameters (ϑ)

several priors, hierarchical priors x x

Sparse models

FITC x exact/EP/LA

CS, FIC, CS+FIC, PIC, VAR, DTC, SOR x

PASS-GP LA/EP

Latent inference

exact (Gaussian only) x x x

scaled Metropolis, HMC x x

LA, EP, elliptical slice sampling x x

variational Bayes (VB) x

scaled HMC (with inverse of prior cov.) x

scaled HMC (whitening with approximate posterior covariance) x

parallel EP, robust EP x

marginal corrections (cm2 and fact) x

Hyperparameter inference

type II ML x x x

type II MAP, Metropolis, HMC x x

LOO-CV for Gaussian x x

least squares LOO-CV for non-Gaussian some likelihoods

LA/EP LOO-CV for non-Gaussian, k-fold CV x

NUTS, slice sampling (SLS), surrogate SLS, shrinking-rank SLS, covariance-

matching SLS, grid, CCD, importance sampling

x

Model assessment

marginal likelihood MAP,ML ML

LOO-CV for fixed hyperparameters x x

LOO-CV for integrated hyperparameters, k-fold CV, WAIC, DIC x

average predictive comparison x

Table 1: The comparison of features in GPstuff (v4.1), GPML (v3.2) and FBM (2004-11-10) tool-

boxes. In case of model blocks the notation x means that it can be inferred with any

inference method (EP, LA (Laplace), MCMC and in case of GPML also with VB). In case

of sparse approximations, inference methods and model assessment methods x means that

the method is available for all model blocks.
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