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Abstract

Low dimensional embeddings of manifold data have gained popularity in the last decade. However,

a systematic finite sample analysis of manifold embedding algorithms largely eludes researchers.

Here we present two algorithms that embed a general n-dimensional manifold into R
d (where d only

depends on some key manifold properties such as its intrinsic dimension, volume and curvature)

that guarantee to approximately preserve all interpoint geodesic distances.

Keywords: manifold learning, isometric embeddings, non-linear dimensionality reduction, Nash’s
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1. Introduction

Finding low dimensional representations of manifold data has gained popularity in the last decade.

One typically assumes that points are sampled from an n-dimensional manifold residing in some

high-dimensional ambient space R
D and analyzes to what extent their low dimensional embedding

maintains some important manifold property, say, interpoint geodesic distances.

Despite an abundance of manifold embedding algorithms, only a few provide any kind of dis-

tance preserving guarantee. Isomap (Tenebaum et al., 2000), for instance, provides an asymptotic

guarantee that as one increases the amount of data sampled from an underlying manifold, one can

approximate the geodesic distances between the sample points well (Bernstein et al., 2000). Then,

under a very restricted class of n-dimensional manifolds, one can show that the n-dimensional em-

bedding returned by Isomap is approximately distance preserving on the input samples.

Unfortunately any kind of systematic finite sample analysis of manifold embedding algorithms—

especially for general classes of manifolds—still largely eludes the manifold learning community.

Part of the difficulty is due to the restriction of finding an embedding in exactly n dimensions. It

turns out that many simple manifolds (such as a closed loop, a cylinder, a section of a sphere)

cannot be isometrically embedded in R
n, where n is the manifold’s intrinsic dimension. If these

manifolds reside in some high dimensional ambient space, we would at least like to embed them in

a lower dimensional space (possibly slightly larger than n) while still preserving interpoint geodesic

distances.

Here we are interested in investigating low-dimensional distance-preserving manifold embed-

dings more formally. Given a sample X from an underlying n-dimensional manifold M ⊂ R
D, and

an embedding procedure A : M→ R
d that (uses X in training and) maps points from M into some

low dimensional space R
d , we define the quality of the embedding A as (1± ε)-isometric if for all
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p,q ∈M, we have

(1− ε)DG(p,q)≤ DG(A(p),A(q))≤ (1+ ε)DG(p,q),

where DG denotes the geodesic distance. We would like to know i) can one come up with an

embedding algorithm A that achieves (1± ε)-isometry for all points in M? ii) how much can one

reduce the target dimension d and still have (1± ε)-isometry? and, iii) what kinds of restrictions (if

any) does one need on M and X?

Since A only gets to access a finite size sample X from the underlying non-linear manifold M,

it is essential to assume certain amount of curvature regularity on M. Niyogi et al. (2008) provide a

nice characterization of manifold curvature via a notion of manifold condition number that will be

useful throughout the text (details later).

Perhaps the first algorithmic result for embedding a general n-dimensional manifold is due to

Baraniuk and Wakin (2009). They show that an orthogonal linear projection of a well-conditioned

n-dimensional manifold M ⊂ R
D into a sufficiently high dimensional random subspace is enough

to approximately preserve all pairwise geodesic distances. To get (1± ε)-isometry, they show that

a target dimension d of size about O
(

n
ε2 log V D

τ

)
is sufficient, where V is the n-dimensional volume

of the manifold and τ is the manifold’s curvature condition number. This result was sharpened by

Clarkson (2008) and Verma (2011) by completely removing the dependence on ambient dimension

D and partially substituting the curvature-condition τ with more average-case manifold properties.

In either case, the 1/ε2 dependence is troublesome: if we want an embedding with all distances

within 99% of the original distances (i.e., ε = 0.01), the bounds require the dimension of the target

space to be at least 10,000!

1.1 Our Contributions

In this work, we give two algorithms that achieve (1±ε)-isometry where the dimension of the target

space is independent of the isometry constant ε. As one expects, this dependency shows up in the

sampling density (i.e., the size of X) required to compute the embedding. The first algorithm we

propose is simple and easy to implement but embeds the given n-dimensional manifold in Õ(2cn)
dimensions1 (where c is an absolute constant). The second algorithm, a variation on the first, fo-

cuses on minimizing the target dimension. It is computationally more involved and serves a more

theoretical purpose: it shows that one can embed the manifold in just Õ(n) dimensions.

We would like to highlight that both of our proposed algorithms work for a very general class of

well-conditioned manifolds. There is no requirement that the underlying manifold is connected, or is

globally isometric (or even globally diffeomorphic) to some subset of Rn as is frequently assumed by

several manifold embedding algorithms. In addition, unlike spectrum-based embedding algorithms

in the literature, our algorithms yield an explicit embedding that cleanly embeds out-of-sample data

points, and provide isometry guarantees over the entire manifold (not just the input samples).

As we shall discuss in the next section, our algorithms are heavily inspired by Nash’s embedding

technique (Nash, 1954). It is worth noting that the techniques used in our proof are different from

what Nash uses in his work; unlike traditional differential-geometric settings, we can only access

the underlying manifold through a finite size sample. This makes it difficult to compute quantities

(such as the curvature tensor and local functional form of the input manifold, etc.) that are important

1. Õ(·) notation suppresses the logarithmic dependence on quantities that depend on the intrinsic geometry of the un-

derlying manifold, such as its volume and curvature-condition terms.
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in Nash’s approach for constructing an isometric embedding. Our work provides insight on how

and under what conditions can one use just the samples to construct an approximate isometric

embedding of the underlying manifold. In that sense, this work can be viewed as an algorithmic

realization of Nash’s Embedding Theorem.

2. Isometrically Embedding n-Dimensional Manifolds: Intuition

Given an underlying n-dimensional manifold M ⊂ R
D, we shall use ideas from Nash’s embedding

(Nash, 1954) to develop our algorithms. To ease the burden of finding a (1±ε)-isometric embedding

directly, our proposed algorithm will be divided in two stages. The first stage will embed M in a

lower dimensional space without having to worry about preserving any distances. Since interpoint

distances will potentially be distorted by the first stage, the second stage will focus on adjusting

these distances by applying a series of corrections. The combined effect of both stages is a distance

preserving embedding of M in lower dimensions. We now describe the stages in detail.

2.1 Embedding Stage

We shall use the random projection result by Clarkson (2008) (with ε set to a constant) to embed M

into d = Õ(n) dimensions. This gives an easy one-to-one low-dimensional embedding that doesn’t

collapse interpoint distances. Note that a projection does contract interpoint distances; by appropri-

ately scaling the random projection, we can make sure that the distances are contracted by at most

a constant amount, with high probability.

2.2 Correction Stage

Since the random projection can contract different parts of the manifold by different amounts, we

will apply several corrections—each corresponding to a different local region—to stretch-out and

restore the local distances.

To understand a single correction better, we can consider its effect on a small section of the con-

tracted manifold. Since manifolds are locally linear, the section effectively looks like a contracted

n-dimensional affine space. Our correction map needs to restore distances over this n-flat.

For simplicity, let us temporarily assume n = 1 (this corresponds to a 1-dimensional manifold),

and let t ∈ [0,1] parameterize a unit-length segment of the contracted 1-flat. Suppose we want to

stretch the segment by a factor of L≥ 1 to restore the contracted distances. How can we accomplish

this?

Perhaps the simplest thing to do is apply a linear correction Ψ : t 7→ Lt. While this mapping

works well for individual local regions, it turns out that this mapping makes it difficult to control

the interference between different corrections with overlapping localities.

We instead use extra coordinates and apply a non-linear map Ψ : t 7→ (t,sin(Ct),cos(Ct)), where

C controls the stretch-size. Note that such a spiral map stretches the length of the tangent vectors by

a factor of
√

1+C2, since ‖Ψ′‖= ‖dΨ/dt‖= ‖(1,C cos(Ct),−C sin(Ct))‖=
√

1+C2. Now since

the geodesic distance between any two points p and q on a manifold is given by the expression∫ ‖γ′(s)‖ds, where γ is a parameterization of the geodesic curve between points p and q (that is,

length of a curve is infinitesimal sum of the length of tangent vectors along its path), Ψ stretches

the interpoint geodesic distances by a factor of
√

1+C2 on the resultant surface as well. Thus, to

stretch the distances by a factor of L, we can set C :=
√

L2−1.
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Figure 1: A simple example demonstrating our embedding technique on a 1-dimensional manifold.

Left: The original 1-dimensional manifold in some high dimensional space. Middle:

A low dimensional mapping of the original manifold via, say, a linear projection onto

the vertical plane. Different parts of the manifold are contracted by different amounts—

distances at the tail-ends are contracted more than the distances in the middle. Right:

Final embedding after applying a series of spiraling corrections. Small size spirals are

applied to regions with small distortion (middle), large spirals are applied to regions with

large distortions (tail-ends). Resulting embedding is isometric (i.e., geodesic distance

preserving) to the original manifold.

Now generalizing this to a local region for an arbitrary n-dimensional manifold, let U :=
[u1, . . . ,un] be a d× n matrix whose columns form an orthonormal basis for the (local) contracted

n-flat in the embedded space R
d and let σ1, . . . ,σn be the corresponding shrinkages along the n or-

thogonal directions. Then one can consider applying an n-dimensional analog of the spiral mapping:

Ψ : t 7→ (t,Ψsin(t),Ψcos(t)), where t ∈ R
d

Ψsin(t) := (sin((Ct)1), . . . ,sin((Ct)n)), and

Ψcos(t) := (cos((Ct)1), . . . ,cos((Ct)n)).

Here C is an n× d “correction” matrix that encodes how much of the surface needs to stretch in

the various orthogonal directions. It turns out that if one sets C to be the matrix SUT, where S is a

diagonal matrix with entry Sii :=
√

(1/σi)2−1 (recall that σi was the shrinkage along direction ui),

then the correction Ψ precisely restores the shrinkages along the n orthonormal directions on the

resultant surface (see Section 5.2.1 for a detailed derivation).

This takes care of the local regions individually. Now, globally, since different parts of the con-

tracted manifold need to be stretched by different amounts, we localize the effect of the individual

Ψ’s to a small enough neighborhood by applying a specific kind of kernel function known as the

“bump” function in the analysis literature, given by (see also Figure 5 middle)

λx(t) := 1{‖t−x‖<ρ} ·e−1/(1−(‖t−x‖/ρ)2).

Applying different Ψ’s at different parts of the manifold has an aggregate effect of creating an

approximate isometric embedding.

We now have a basic outline of our algorithm. Let M be an n-dimensional manifold in R
D.

We first find a contraction of M in d = Õ(n) dimensions via a random projection. This embeds

the manifold in low dimensions but distorts the interpoint geodesic distances. We estimate the

distortion at different regions of the projected manifold by comparing a sample from M (i.e., X)
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Figure 2: Tubular neighborhood of a manifold. Note that the normals (dotted lines) of a particular

length incident at each point of the manifold (solid line) will intersect if the manifold is

too curvy.

with its projection. We then perform a series of corrections—each applied locally—to adjust the

lengths in the local neighborhoods. We will conclude that restoring the lengths in all neighborhoods

yields a globally consistent approximately isometric embedding of M. See also Figure 1.

As briefly mentioned earlier, a key issue in preserving geodesic distances across points in dif-

ferent neighborhoods is reconciling the interference between different corrections with overlapping

localities. Based on exactly how we apply these different local Ψ’s gives rise to our two algorithms.

For the first algorithm, we shall allocate a fresh set of coordinates for each correction Ψ so that

the different corrections don’t interfere with each other. Since a local region of an n-dimensional

manifold can potentially have up to O(2cn) overlapping regions, we shall require O(2cn) additional

coordinates to apply the corrections, making the final embedding dimension of Õ(2cn) (where c

is an absolute constant). For the second algorithm, we will follow Nash’s technique (Nash, 1954)

more closely and apply Ψ maps iteratively in the same embedding space without the use of extra

coordinates. At each iteration we need to compute a pair of vectors normal to the embedded mani-

fold. Since locally the manifold spreads across its tangent space, these normals indicate the locally

empty regions in the embedded space. Applying the local Ψ correction in the direction of these

normals gives a way to mitigate the interference between different Ψ’s. Since we don’t use extra

coordinates, the final embedding dimension remains Õ(n).

3. Preliminaries

Let M be a smooth, n-dimensional compact Riemannian submanifold of RD. Note that we do not

have any further topological restrictions on M; it may or may not have a boundary, or may or may

not be orientable. We will frequently refer to such a manifold as an n-manifold.

Since we will be working with samples from M, we need to ensure certain amount of curvature

regularity. Here we borrow the notation from Niyogi et al. (2008) about the condition number of M.

Definition 1 (condition number (Niyogi et al., 2008)) Let M⊂R
D be a compact Riemannian man-

ifold. The condition number of M is 1
τ , if τ is the largest number such that the normals of length

r < τ at any two distinct points p,q ∈M don’t intersect.

The condition number is based on the notion of “reach” introduced by Federer (1959) and is

closely related to the Second Fundamental Form of the manifold. Intuitively, it captures the com-
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plexity of a manifold in terms of the manifold’s curvature. If M has condition number 1/τ, we can,

for instance, bound the directional curvature at any p ∈M by τ. Figure 2 depicts the normals of a

manifold. Notice that long non-intersecting normals are possible only if the manifold is relatively

flat. Hence, the condition number of M gives us a handle on how curvy can M be. As a quick exam-

ple, let’s calculate the condition number of an n-dimensional sphere of radius r (embedded in R
D).

Note that in this case one can have non-intersecting normals of length less than r (since otherwise

they will start intersecting at the center of the sphere). Thus, the condition number of such a sphere

is 1/r. Henceforth we shall assume that M is well-conditioned, that is, M has condition number 1/τ.

There are several useful properties of well-conditioned manifolds that would be helpful throughout

the text; these are outlined in Appendix A.

Since we make minimal topological assumptions on M, even a well-conditioned M can have

computational degeneracies: M, for instance, can have an unbounded number of well-conditioned

connected components, yielding unusually large cover sizes. Since we make use of a random pro-

jection for the Embedding Stage, it is essential to have good manifold covers. Thus in order to avoid

degenerate cases, we shall assume covering regularity on M.

Definition 2 (manifold regularity) Let M ⊂ R
D be an n-manifold with condition number 1/τ. We

call M as CM-regular, if for any r ≤ τ/2, the r-covering number of M is of size at most (CM/r)n,

where CM is a universal constant dependent only on intrinsic properties of M (such as its n-

dimensional volume, etc.). That is, there exists a set S ⊂ M of size at most (CM/r)n such that

for all p ∈M, exists x ∈ S such that ‖p− x‖ ≤ r.

We will use the notation DG(p,q) to indicate the geodesic distance between points p and q

where the underlying manifold is understood from the context, and ‖p−q‖ to indicate the Euclidean

distance between points p and q where the ambient space is understood from the context.

To correctly estimate the distortion induced by the initial contraction mapping, our algorithm

needs access to a high-resolution sample from our underlying manifold.

Definition 3 (bounded manifold cover) Let M ⊂R
D be a Riemannian n-manifold. We call X ⊂M

an α-bounded (ρ,δ)-cover of M if for all p ∈M and ρ-neighborhood Xp := {x ∈ X : ‖x− p‖< ρ}
around p, we have

• there exist points x0, . . . ,xn ∈ Xp such that

∣
∣
∣

xi−x0

‖xi−x0‖ ·
x j−x0

‖x j−x0‖

∣
∣
∣ ≤ 1/2n, for i 6= j. (local spread

criterion)

• |Xp| ≤ α. (local boundedness criterion)

• exists point x ∈ Xp such that ‖x− p‖ ≤ ρ/2. (covering criterion)

• for any n+1 points in Xp satisfying the local spread criterion, let T̂p denote the n-dimensional

affine space passing through them (note that T̂p does not necessarily pass through p). Then,

for any unit vector v̂ in T̂p, we have
∣
∣v̂ · v

‖v‖
∣
∣ ≥ 1− δ, where v is the projection of v̂ onto the

tangent space of M at p. (tangent space approximation criterion)

The above is an intuitive notion of manifold sampling that can estimate the local tangent spaces. Cu-

riously, we haven’t found such “tangent-space approximating” notions of manifold sampling in the

literature. We do note in passing that our sampling criterion is similar in spirit to the (ε,δ)-sampling
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(also known as “tight” ε-sampling) criterion popular in the Computational Geometry literature (see,

e.g., Dey et al., 2002; Giesen and Wagner, 2003).

Remark 4 Given an n-manifold M with condition number 1/τ, and some 0 < δ≤ 1. If ρ≤ τδ/16n,

then there exists a 213n-bounded (ρ,δ)-cover of M (see Appendix B).

We can now state our two algorithms.

4. The Algorithms

Inputs: We assume the following quantities are given.

(i) n – the intrinsic dimension of M.

(ii) 1/τ – the condition number of M.

(iii) X – an α-bounded (ρ,δ)-cover of M.

(iv) ρ – the ρ parameter of the cover.

Notation: Let φ be a random orthogonal projection map that maps points from R
D into a random

subspace of dimension d (n≤ d ≤ D). We will have d to be about Õ(n). Set Φ := (2/3)(
√

D/d)φ
as a scaled version of φ. Since Φ is linear, Φ can also be represented as a d×D matrix. In our

discussion below we will use the function notation and the matrix notation interchangeably, that

is, for any p ∈ R
D, we will use the notation Φ(p) (applying function Φ to p) and the notation Φp

(matrix-vector multiplication) interchangeably.

For any x∈X , let x0, . . . ,xn be n+1 points from the set {x′ ∈X : ‖x−x′‖< ρ} such that
∣
∣ xi−x0

‖xi−x0‖ ·
x j−x0

‖x j−x0‖
∣
∣≤ 1/2n, for i 6= j (cf. Definition 3). Let Fx be the D×n matrix whose column vectors form

some orthonormal basis of the n-dimensional subspace spanned by the vectors {xi− x0}i∈[n]. Note

that Fx serves as a good approximation to the tangent spaces at different points in the neighborhood

of x ∈M ⊂ R
D.

Estimating local contractions: We estimate the contraction caused by Φ at a small enough neigh-

borhood of M containing the point x ∈ X , by computing the “thin” Singular Value Decomposition

(SVD) UxΣxV
T
x of the d× n matrix ΦFx and representing the singular values in the conventional

descending order. That is, ΦFx =UxΣxV
T
x , and since ΦFx is a tall matrix (n≤ d), we know that the

bottom d−n singular values are zero. Thus, we only consider the top n (of d) left singular vectors

in the SVD (so, Ux is d×n, Σx is n×n, and Vx is n×n) and σ1
x ≥ σ2

x ≥ . . .≥ σn
x where σi

x is the ith

largest singular value.

Observe that the singular values σ1
x , . . . ,σ

n
x are precisely the distortion amounts in the directions

u1
x , . . . ,u

n
x at Φ(x) ∈ R

d ([u1
x , . . . ,u

n
x ] = Ux) when we apply Φ. To see this, consider the direction

wi := Fxvi
x in the column-span of Fx ([v1

x , . . . ,v
n
x ] =Vx). Then Φwi = (ΦFx)v

i
x = σi

xui
x, which can be

interpreted as: Φ maps the vector wi in the column-space of Fx (in R
D) to the vector ui

x (in R
d) with

the scaling of σi
x.

Note that if 0<σi
x≤ 1 (for all x∈X and 1≤ i≤ n), we can define an n×d correction matrix (cor-

responding to each x ∈ X) Cx := SxU
T
x , where Sx is a diagonal matrix with (Sx)ii :=

√

(1/σi
x)

2−1.

We can also write Sx as (Σ−2
x − I)1/2. The correction matrix Cx will have an effect of stretching the
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direction ui
x by the amount (Sx)ii and killing any direction v that is orthogonal to (the column-span

of) Ux.

Algorithm 1 Compute Corrections Cx’s

1: for x ∈ X (in any order) do

2: Let x0, . . . ,xn ∈ {x′ ∈ X : ‖x′− x‖< ρ} be such that
∣
∣ xi−x0

‖xi−x0‖ ·
x j−x0

‖x j−x0‖
∣
∣≤ 1/2n (for i 6= j).

3: Let Fx be a D× n matrix whose columns form an orthonormal basis of the n-dimensional

span of the vectors {xi− x0}i∈[n].
4: Let UxΣxV

T
x be the “thin” SVD of ΦFx.

5: Set Cx := (Σ−2
x − I)1/2UT

x .

6: end for

Algorithm 2 Embedding Technique I

Preprocessing Stage: Partition the given covering X into disjoint subsets such that no subset con-

tains points that are too close to each other. Let x1, . . . ,x|X | be the points in X in some arbitrary but

fixed order. We can do the partition as follows:

1: Initialize X (1), . . . ,X (K) as empty sets.

2: for xi ∈ X (in any fixed order) do

3: Let j be the smallest positive integer such that xi is not within distance 2ρ of any element in

X ( j). That is, the smallest j such that for all x ∈ X ( j), ‖x− xi‖ ≥ 2ρ.

4: X ( j)← X ( j)∪{xi}.
5: end for

The Embedding: For any p ∈M ⊂ R
D, embed it in R

d+2nK as follows:

1: Let t = Φ(p).
2: Define Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) where

Ψ j,sin(t) := (ψ1
j,sin(t), . . . ,ψ

n
j,sin(t)),

Ψ j,cos(t) := (ψ1
j,cos(t), . . . ,ψ

n
j,cos(t)).

The individual terms are given by

ψi
j,sin(t) := ∑x∈X ( j)

(√

ΛΦ(x)(t)/ω
)

sin(ω(Cxt)i)

ψi
j,cos(t) := ∑x∈X ( j)

(√

ΛΦ(x)(t)/ω
)

cos(ω(Cxt)i)

i = 1, . . . ,n;

j = 1, . . . ,K

where Λa(b) =
λa(b)

∑q∈X λΦ(q)(b)
.

3: return Ψ(t) as the embedding of p in R
d+2nK .

A few remarks are in order.

Remark 5 The goal of the Preprocessing Stage is to identify samples from X that can have over-

lapping (ρ-size) local neighborhoods. The partitioning procedure described above ensures that
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corrections associated with nearby neighborhoods are applied in separate coordinates to minimize

interference.

Remark 6 If ρ≤ τ/8, the number of subsets (i.e., K) produced by Embedding I is at most α2cn for

an α-bounded (ρ,δ) cover X of M (where c≤ 4). See Appendix C for details.

Remark 7 The function Λ acts as a (normalized) localizing kernel that helps in localizing the

effects of the spiraling corrections (discussed in detail in Section 5.2).

Remark 8 ω > 0 is a free parameter that controls the interference due to overlapping local cor-

rections.

Algorithm 3 Embedding Technique II

The Embedding: Let x1, . . . ,x|X | be the points in X in some arbitrary but fixed order. For any point

p ∈M ⊂ R
D, we embed it in R

2d+3 by:

1: Let t = Φ(p).
2: Define Ψ0,n(t) := (t,0, . . . ,0

︸ ︷︷ ︸

d+3

). [Extension needed to efficiently find the normal vectors]

3: for i = 1, . . . , |X | do

4: Define Ψi,0 := Ψi−1,n.

5: for j = 1, . . . ,n do

6: Let ηi, j(t) and νi, j(t) be two mutually orthogonal unit vectors normal to Ψi, j−1(ΦM) at

Ψi, j−1(t).
7: Define

Ψi, j(t) := Ψi, j−1(t)+

(
√

ΛΦ(xi)(t)

ωi, j

)
[

ηi, j(t)sin(ωi, j(C
xit) j)+νi, j(t)cos(ωi, j(C

xit) j)
]

,

where Λa(b) =
λa(b)

∑q∈X λΦ(q)(b)
.

8: end for

9: end for

10: return Ψ|X |,n(t) as the embedding of p into R
2d+3.

Remark 9 The function Λ, and the free parameters ωi, j (one for each i, j iteration) have roles

similar to those in Embedding I.

Remark 10 The success of Embedding II depends upon finding a pair of normal unit vectors η and

ν in each iteration; we discuss how to approximate these in Appendix E.

For appropriate choice of d, ρ, δ and ω (or ωi, j), we have the following.
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4.1 Main Result

Theorem 11 Let M ⊂ R
D be a CM-regular n-manifold with condition number 1/τ. Let the target

dimension of the initial random projection mapping d = Ω(n log(CM/τ)) such that d ≤ D. For any

0 < ε ≤ 1, let ρ ≤ (τd/D)(ε/350)2, δ ≤ (d/D)(ε/250)2, and let X ⊂ M be an α-bounded (ρ,δ)-
cover of M. Now, given access to the sample X, let

i. NI ⊂ R
d+2αn2cn

be the embedding of M returned by Algorithm I (where c≤ 4),

ii. NII ⊂ R
2d+3 be the embedding of M returned by Algorithm II.

Then, with probability at least 1−1/poly(n) over the choice of the initial random projection, for all

p,q ∈M and their corresponding mappings pI,qI ∈ NI and pII,qII ∈ NII, we have

i. (1− ε)DG(p,q)≤ DG(pI,qI)≤ (1+ ε)DG(p,q),

ii. (1− ε)DG(p,q)≤ DG(pII,qII)≤ (1+ ε)DG(p,q).

5. Proof

Our goal is to show that the two proposed embeddings approximately preserve the lengths of all

geodesic curves. Now, since the length of any given curve γ : [a,b]→M is given by
∫ b

a ‖γ′(s)‖ds, it

is vital to study how our embeddings modify the length of the tangent vectors at any point p ∈M.

In order to discuss tangent vectors, we need to introduce the notion of a tangent space TpM at

a particular point p ∈M. Consider any smooth curve c : (−ε,ε)→M such that c(0) = p, then we

know that c′(0) is the vector tangent to c at p. The collection of all such vectors formed by all

such curves is a well defined vector space (with origin at p), called the tangent space TpM. In what

follows, we will fix an arbitrary point p ∈ M and a tangent vector v ∈ TpM and analyze how the

various steps of the algorithm modify the length of v.

Let Φ be the initial (scaled) random projection map (from R
D to R

d) that may contract distances

on M by various amounts, and let Ψ be the subsequent correction map that attempts to restore these

distances (as defined in Step 2 for Embedding I or as a sequence of maps in Step 7 for Embedding

II). To get a firm footing for our analysis, we need to study how Φ and Ψ modify the tangent

vector v. It is well known from differential geometry that for any smooth map F : M → N that

maps a manifold M ⊂ R
k to a manifold N ⊂ R

k′ , there exists a linear map (DF)p : TpM→ TF(p)N,

known as the derivative map or the pushforward (at p), that maps tangent vectors incident at p in

M to tangent vectors incident at F(p) in N. To see this, consider a vector u tangent to M at some

point p. Then, there is some smooth curve c : (−ε,ε)→ M such that c(0) = p and c′(0) = u. By

mapping the curve c into N, that is, F(c(t)), we see that F(c(t)) includes the point F(p) at t = 0.

Now, by calculus, we know that the derivative at this point,
dF(c(t))

dt

∣
∣
∣
t=0

is the directional derivative

(∇F)p(u), where (∇F)p is a k′×k matrix called the gradient (at p). The quantity (∇F)p is precisely

the matrix representation of this linear “pushforward” map that sends tangent vectors of M (at p) to

the corresponding tangent vectors of N (at F(p)). Figure 3 depicts how these quantities are affected

by applying F . Also note that if F is linear, then DF = F .

Observe that since pushforward maps are linear, without loss of generality we can assume that

v has unit length. Also, since for n = 0 there is nothing to prove, we shall assume that n≥ 1.

A quick roadmap for the proof. In the next three sections, we take a brief detour to study the

effects of applying Φ, applying Ψ for Algorithm I, and applying Ψ for Algorithm II separately. This
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p

v

M

TpM

TF(p)F(M)

F(M)
F(p) (DF)p(v)

Figure 3: Effects of applying a smooth map F on various quantities of interest. Left: A manifold M

containing point p. v is a vector tangent to M at p. Right: Mapping of M under F . Point

p maps to F(p), tangent vector v maps to (DF)p(v).

will give us the necessary tools to analyze the combined effect of applying Ψ◦Φ on v (Section 5.4).

We will conclude by relating tangent vectors to lengths of curves, showing approximate isometry

(Section 5.5). Figure 4 provides a quick sketch of our two stage mapping with the quantities of

interest. We defer the proofs of all the supporting lemmas to Appendix D.

5.1 Effects of Applying Φ

It is well known as an application of Sard’s theorem from differential topology (see, e.g., Milnor,

1972) that almost every smooth mapping of an n-dimensional manifold into R
2n+1 is a differen-

tial structure preserving embedding of M. In particular, a projection onto a random subspace (of

dimension 2n+1) constitutes such an embedding with probability 1.

This translates to stating that a random projection into R
2n+1 is enough to guarantee that Φ

doesn’t collapse the lengths of non-zero tangent vectors almost surely. However, due to compu-

tational issues, we additionally require that the lengths are bounded away from zero (that is, a

statement of the form ‖(DΦ)p(v)‖ ≥Ω(1)‖v‖ for all v tangent to M at all points p).

We can thus appeal to the random projections result by Clarkson (2008) (with the isometry

parameter set to a constant, say 1/4) to ensure this condition. In particular, the following holds.

Lemma 12 Let M⊂R
D be a CM-regular n-manifold with condition number 1/τ. Let R be a random

projection matrix that maps points from R
D into a random subspace of dimension d (d ≤D). Define

Φ := (2/3)(
√

D/d)R as a scaled projection mapping. If d = Ω(n log(CM/τ)), then with probability

at least 1−1/poly(n) over the choice of the random projection matrix, we have

(a) For all p ∈M and all tangent vectors v ∈ TpM, (1/2)‖v‖ ≤ ‖(DΦ)p(v)‖ ≤ (5/6)‖v‖.

(b) For all p,q ∈M, (1/2)‖p−q‖ ≤ ‖Φp−Φq‖ ≤ (5/6)‖p−q‖.

(c) For all x ∈ R
D, ‖Φx‖ ≤ (2/3)(

√

D/d)‖x‖.

In what follows, we assume that Φ is such a scaled random projection map. Then, a bound on the

length of tangent vectors also gives us a bound on the spectrum of ΦFx (recall the definition of Fx

from Section 4).
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Φ

R
d+k

t = Φp

Ψ

M ΦM

R
D

R
d

ΨΦM

p Ψ(t)

v

‖v‖= 1

u = Φv (DΨ)t(u)

‖(DΨ)t(u)‖ ≈ ‖v‖‖u‖ ≤ 1

Figure 4: Two stage mapping of our embedding technique. Left: Underlying manifold M ⊂ R
D

with the quantities of interest—a fixed point p and a fixed unit-vector v tangent to M at p.

Center: A (scaled) linear projection of M into a random subspace of d dimensions. The

point p maps to Φp and the tangent vector v maps to u := (DΦ)p(v) = Φv. The length

of v contracts to ‖u‖. Right: Correction of ΦM via a non-linear mapping Ψ into R
d+k.

We have k = O(α2cn) for correction technique I, and k = d + 3 for correction technique

II (see also Section 4). Our goal is to show that Ψ stretches length of contracted v (i.e., u)

back to approximately its original length.

Corollary 13 Let Φ, Fx and n be as described above (recall that x ∈ X that forms a bounded (ρ,δ)-
cover of M). Let σi

x represent the ith largest singular value of the matrix ΦFx. Then, for δ≤ d/32D,

we have 1/4≤ σn
x ≤ σ1

x ≤ 1 (for all x ∈ X).

We will be using these facts in our discussion below in Section 5.4.

5.2 Effects of Applying Ψ (Algorithm I)

As discussed in Section 2, the goal of Ψ is to restore the contraction induced by Φ on M. To

understand the action of Ψ on a tangent vector better, we will first consider a simple case of flat

manifolds (Section 5.2.1), and then develop the general case (Section 5.2.2).

5.2.1 WARM-UP: FLAT M

Let us first consider applying a simple one-dimensional spiral map Ψ̄ : R → R
3 given by

t 7→ (t,sin(Ct),cos(Ct)), where t ∈ I = (−ε,ε). Let v̄ be a unit vector tangent to I (at, say, 0).

Then note that

(DΨ̄)t=0(v̄) =
dΨ̄

dt

∣
∣
∣
t=0

= (1,C cos(Ct),−C sin(Ct))
∣
∣
t=0

.

Thus, applying Ψ̄ stretches the length of v̄ from 1 to
∥
∥(1,C cos(Ct),−C sin(Ct))|t=0

∥
∥ =
√

1+C2.

Notice the advantage of applying the spiral map in computing the lengths: the sine and cosine terms

combine together to yield a simple expression for the size of the stretch. In particular, if we want to

stretch the length of v̄ from 1 to, say, L≥ 1, then we simply need C =
√

L2−1 (notice the similarity

between this expression and our expression for the diagonal component Sx of the correction matrix

Cx in Section 4).
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We can generalize this to the case of n-dimensional flat manifold (a section of an n-flat) by

considering a map similar to Ψ̄. For concreteness, let F be a D× n matrix whose column vectors

form some orthonormal basis of the n-flat manifold (in the original space R
D). Let UΣVT be the

“thin” SVD of ΦF . Then FV forms an orthonormal basis of the n-flat manifold (in R
D) that maps

to an orthogonal basis UΣ of the projected n-flat manifold (in R
d) via the contraction mapping Φ.

Define the spiral map Ψ̄ : Rd → R
d+2n in this case as follows. Ψ̄(t) := (t,Ψ̄sin(t),Ψ̄cos(t)), with

Ψ̄sin(t) := (ψ̄1
sin(t), . . . , ψ̄

n
sin(t)) and Ψ̄cos(t) := (ψ̄1

cos(t), . . . , ψ̄
n
cos(t)). The individual terms are given

as
ψ̄i

sin(t) := sin((Ct)i)
ψ̄i

cos(t) := cos((Ct)i)
i = 1, . . . ,n,

where C is now an n× d correction matrix. It turns out that setting C = (Σ−2 − I)1/2UT pre-

cisely restores the contraction caused by Φ to the tangent vectors (notice the similarity between

this expression with the correction matrix in the general case Cx in Section 4 and our motivat-

ing intuition in Section 2). To see this, let v be a vector tangent to the n-flat at some point p (in

R
D). We will represent v in the FV basis (that is, v = ∑i αi(Fvi) where [Fv1, . . . ,Fvn] = FV ).

Note that ‖Φv‖2 = ‖∑i αiΦFvi‖2 = ‖∑i αiσ
iui‖2 = ∑i(αiσ

i)2 (where σi are the individual singu-

lar values of Σ and ui are the left singular vectors forming the columns of U). Now, let w be

the pushforward of v (that is, w = (DΦ)p(v) = Φv = ∑i wie
i, where {ei}i forms the standard ba-

sis of R
d). Now, since DΨ̄ is linear, we have ‖(DΨ̄)Φ(p)(w)‖2 = ‖∑i wi(DΨ̄)Φ(p)(e

i)‖2, where

(DΨ̄)Φ(p)(e
i) = dΨ̄

dt i

∣
∣
t=Φ(p)

=
(

dt
dt i ,

dΨ̄sin(t)
dt i , dΨ̄cos(t)

dt i

)∣
∣
∣
t=Φ(p)

. The individual components are given by

dψ̄k
sin(t)/dt i =+cos((Ct)k)Ck,i

dψ̄k
cos(t)/dt i =−sin((Ct)k)Ck,i

k = 1, . . . ,n; i = 1, . . . ,d.

By algebra, we see that

‖(D(Ψ̄◦Φ))p(v)‖2 = ‖(DΨ̄)Φ(p)((DΦ)p(v))‖2 = ‖(DΨ̄)Φ(p)(w)‖2

=
d

∑
i=1

w2
i

( dt

dt i

)2

+
d

∑
i=1

n

∑
k=1

w2
i

(dψk
sin(t)

dt i

)2

+
d

∑
i=1

n

∑
k=1

w2
i

(dψk
cos(t)

dt i

)2
∣
∣
∣
∣
t=Φ(p)

=
d

∑
k=1

w2
k +

n

∑
k=1

cos2((CΦ(p))k)((CΦv)k)
2 +

n

∑
k=1

sin2((CΦ(p))k)((CΦv)k)
2

=
d

∑
k=1

w2
k +

n

∑
k=1

((CΦv)k)
2 = ‖Φv‖2 +‖CΦv‖2 = ‖Φv‖2 +(Φv)TCTC(Φv)

= ‖Φv‖2 +(∑
i

αiσ
iui)TU(Σ−2− I)UT(∑

i

αiσ
iui)

= ‖Φv‖2 +[α1σ1, . . . ,αnσn](Σ−2− I)[α1σ1, . . . ,αnσn]T

= ‖Φv‖2 +(∑
i

α2
i −∑

i

(αiσ
i)2) = ‖Φv‖2 +‖v‖2−‖Φv‖2 = ‖v‖2.

In other words, our non-linear correction map Ψ̄ can exactly restore the contraction caused by Φ for

any vector tangent to an n-flat manifold.

In the fully general case, the situation gets slightly more complicated since we need to apply

different spiral maps, each corresponding to a different size correction at different locations on the
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Figure 5: Effects of applying a bump function on a spiral mapping. Left: Spiral mapping t 7→
(t,sin(t),cos(t)). Middle: Bump function λx: a smooth function with compact support.

The parameter x controls the location while ρ controls the width. Right: The combined

effect: t 7→ (t,λx(t)sin(t),λx(t)cos(t)). Note that the effect of the spiral is localized while

keeping the mapping smooth.

contracted manifold. Recall that we localize the effect of a correction by applying the so-called

“bump” function (details below). These bump functions, although important for localization, have

an undesirable effect on the stretched length of the tangent vector. Thus, to ameliorate their effect

on the length of the resulting tangent vector, we control their contribution via a free parameter ω.

5.2.2 THE GENERAL CASE

More specifically, Embedding Technique I restores the contraction induced by Φ by applying a

non-linear map Ψ(t) := (t,Ψ1,sin(t),Ψ1,cos(t), . . . ,ΨK,sin(t),ΨK,cos(t)) (recall that K is the number

of subsets we decompose X into—cf. description in Embedding I in Section 4), with Ψ j,sin(t) :=
(ψ1

j,sin(t), . . . ,ψ
n
j,sin(t)) and Ψ j,cos(t) := (ψ1

j,cos(t), . . . ,ψ
n
j,cos(t)). The individual terms are given as

ψi
j,sin(t) := ∑x∈X ( j) (

√

ΛΦ(x)(t)/ω)sin(ω(Cxt)i)

ψi
j,cos(t) := ∑x∈X ( j) (

√

ΛΦ(x)(t)/ω)cos(ω(Cxt)i)
i = 1, . . . ,n; j = 1, . . . ,K,

where Cx’s are the correction amounts for different locations x on the manifold, ω > 0 controls the

frequency (cf. Section 4), and ΛΦ(x)(t) is defined to be λΦ(x)(t)/∑q∈X λΦ(q)(t), with

λΦ(x)(t) :=

{
exp(−1/(1−‖t−Φ(x)‖2/ρ2)) if ‖t−Φ(x)‖< ρ.
0 otherwise.

λ is a classic example of a bump function (see Figure 5 middle). It is a smooth function with

compact support. Its applicability arises from the fact that it can be made “to specifications”. That

is, it can be made to vanish outside any interval of our choice. Here we exploit this property to

localize the effect of our corrections. The normalization of λ (the function Λ) creates the so-called

smooth partition of unity that helps to vary smoothly between the spirals applied at different regions

of M.

Since any tangent vector in R
d can be expressed in terms of the basis vectors, it suffices to study

how DΨ acts on the standard basis {ei}. Note that

(DΨ)t(e
i) =

( dt

dt i
,
dΨ1,sin(t)

dt i
,
dΨ1,cos(t)

dt i
, . . . ,

dΨK,sin(t)

dt i
,
dΨK,cos(t)

dt i

)∣
∣
∣
t
,
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where (k ∈ [n], i ∈ [d], j ∈ [K])

dψk
j,sin(t)

dt i = ∑x∈X ( j)
1
ω

(

sin(ω(Cxt)k)
dΛ

1/2

Φ(x)(t)

dt i

)

+
√

ΛΦ(x)(t)cos(ω(Cxt)k)C
x
k,i

dψk
j,cos(t)

dt i = ∑x∈X ( j)
1
ω

(

cos(ω(Cxt)k)
dΛ

1/2

Φ(x)(t)

dt i

)

−
√

ΛΦ(x)(t)sin(ω(Cxt)k)C
x
k,i

.

One can now observe the advantage of having the term ω. By picking ω sufficiently large, we can

make the first part of the expression sufficiently small. Now, for any tangent vector u = ∑i uie
i such

that ‖u‖ ≤ 1, we have (by algebra)

∥
∥(DΨ)t(u)

∥
∥2

=
∥
∥
∥∑

i

ui(DΨ)t(e
i)
∥
∥
∥

2

=
d

∑
i=1

u2
i

( dt

dt i

)2

+
d

∑
i=1

K

∑
j=1

n

∑
k=1

u2
i

(dψk
j,sin(t)

dt i

)2

+
d

∑
i=1

K

∑
j=1

n

∑
k=1

u2
i

(dψk
j,cos(t)

dt i

)2

=
d

∑
k=1

u2
k +

n

∑
k=1

K

∑
j=1

[

∑
x∈X ( j)

(A
k,x
sin(t)

ω

)

+
√

ΛΦ(x)(t)cos(ω(Cxt)k)(C
xu)k

]2

+
[

∑
x∈X ( j)

(A
k,x
cos(t)

ω

)

−
√

ΛΦ(x)(t)sin(ω(Cxt)k)(C
xu)k

]2

, (1)

where the individual terms A
k,x
sin(t) := ∑i ui sin(ω(Cxt)k)(dΛ

1/2

Φ(x)(t)/dt i), and similarly A
k,x
cos(t) :=

∑i ui cos(ω(Cxt)k)(dΛ
1/2

Φ(x)(t)/dt i). We can further simplify Equation (1) and get

Lemma 14 Let t be any point in Φ(M) and u be any vector tangent to Φ(M) at t such that ‖u‖ ≤ 1.

Let d, ε, ρ and α be as per the statement of Theorem 11. Pick ω≥Ω(nα216n
√

d/ρε), then

‖(DΨ)t(u)‖2 = ‖u‖2 + ∑
x∈X

ΛΦ(x)(t)
n

∑
k=1

(Cxu)2
k +ζ, (2)

where |ζ| ≤ ε/2.

We will use this derivation of ‖(DΨ)t(u)‖2
to study the combined effect of Ψ ◦Φ on M in

Section 5.4.

5.3 Effects of Applying Ψ (Algorithm II)

The goal of the second algorithm is to apply the spiraling corrections while using the coordinates

more economically. We achieve this goal by applying them sequentially in the same embedding

space (rather than simultaneously by making use of extra 2nK coordinates as done in the first algo-

rithm), see also Nash (1954). Since all the corrections will be sharing the same coordinate space,

one needs to keep track of a pair of normal vectors in order to prevent interference among the

different local corrections.

More specifically, Ψ : Rd → R
2d+3 (in Algorithm II) is defined recursively as Ψ := Ψ|X |,n such

that (see also Embedding II in Section 4)

Ψi, j(t) := Ψi, j−1(t)+ηi, j(t)

√

ΛΦ(xi)(t)

ωi, j
sin(ωi, j(C

xit) j)+νi, j(t)

√

ΛΦ(xi)(t)

ωi, j
cos(ωi, j(C

xit) j),
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where Ψi,0(t) := Ψi−1,n(t), and the base function Ψ0,n(t) is given as t 7→ (t,

d+3
︷ ︸︸ ︷

0, . . . ,0). ηi, j(t) and

νi, j(t) are mutually orthogonal unit vectors that are approximately normal to Ψi, j−1(ΦM) at Ψi, j−1(t).
In this section we assume that the normals η and ν have the following properties:

- |ηi, j(t) ·v| ≤ ε0 and |νi, j(t) ·v| ≤ ε0 for all unit-length v tangent to Ψi, j−1(ΦM) at Ψi, j−1(t). (qual-

ity of normal approximation)

- For all 1 ≤ l ≤ d, we have ‖dηi, j(t)/dt l‖ ≤ Ki, j and ‖dνi, j(t)/dt l‖ ≤ Ki, j. (bounded directional

derivatives)

We refer the reader to Appendix E for details on how to estimate such normals.

Now, as before, representing a tangent vector u = ∑l ule
l (such that ‖u‖2 ≤ 1) in terms of

its basis vectors, it suffices to study how DΨ acts on basis vectors. Observe that (DΨi, j)t(e
l) =

(
dΨi, j(t)

dt l

)2d+3

k=1

∣
∣
∣
t
, with the kth component given as

(
dΨi, j−1(t)

dt l

)

k

+(ηi, j(t))k

√

ΛΦ(xi)(t)C
xi

j,lB
i, j
cos(t)− (νi, j(t))k

√

ΛΦ(xi)(t)C
xi

j,lB
i, j
sin(t)

+
1

ωi, j

[(dηi, j(t)

dt l

)

k

√

ΛΦ(xi)(t)B
i, j
sin(t)+

(dνi, j(t)

dt l

)

k

√

ΛΦ(xi)(t)B
i, j
cos(t)

+(ηi, j(t))k

dΛ
1/2

Φ(xi)
(t)

dt l
B

i, j
sin(t)+(νi, j(t))k

dΛ
1/2

Φ(xi)
(t)

dt l
Bi, j

cos(t)
]

,

where B
i, j
cos(t) := cos(ωi, j(C

xit) j) and B
i, j
sin(t) := sin(ωi, j(C

xit) j). For ease of notation, let R
k,l
i, j be the

terms in the bracket (being multiplied to 1/ωi, j) in the above expression. Then, we have for any i, j

‖(DΨi, j)t(u)‖2 =
∥
∥∑

l

ul(DΨi, j)t(e
l)
∥
∥2

=
2d+3

∑
k=1

[

∑
l

ul

(
dΨi, j−1(t)

dt l

)

k
︸ ︷︷ ︸

ζ
k,1
i, j

+(ηi, j(t))k

√

ΛΦ(xi)(t)cos(ωi, j(C
xit) j)∑

l

C
xi

j,lul

︸ ︷︷ ︸

ζ
k,2
i, j

−(νi, j(t))k

√

ΛΦ(xi)(t)sin(ωi, j(C
xit) j)∑

l

C
xi

j,lul

︸ ︷︷ ︸

ζ
k,3
i, j

+(1/ωi, j)∑
l

ulR
k,l
i, j

︸ ︷︷ ︸

ζ
k,4
i, j

]2

= ‖(DΨi, j−1)t(u)‖2

︸ ︷︷ ︸

=∑k

(
ζ

k,1
i, j

)2

+ ΛΦ(xi)(t)(C
xiu)2

j
︸ ︷︷ ︸

=∑k

(
ζ

k,2
i, j

)2

+
(

ζ
k,3
i, j

)2

+∑
k

[(
ζk,4

i, j /ωi, j

)2
+
(
2ζk,4

i, j /ωi, j

)(
ζk,1

i, j +ζk,2
i, j +ζk,3

i, j

)
+2
(
ζk,1

i, j ζk,2
i, j +ζk,1

i, j ζk,3
i, j

)]

︸ ︷︷ ︸

Zi, j

, (3)

where the last equality is by expanding the square and by noting that ∑k ζk,2
i, j ζk,3

i, j = 0 since η and ν

are orthogonal to each other. The base case ‖(DΨ0,n)t(u)‖2 equals ‖u‖2.
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Again, by picking ωi, j sufficiently large, and by noting that the cross terms ∑k(ζ
k,1
i, j ζk,2

i, j ) and

∑k(ζ
k,1
i, j ζk,3

i, j ) are very close to zero since η and ν are approximately normal to the tangent vector, we

have

Lemma 15 Let t be any point in Φ(M) and u be any vector tangent to Φ(M) at t such that ‖u‖ ≤ 1.

Let ε be the isometry parameter chosen in Theorem 11. Pick ωi, j ≥Ω
(
(Ki, j+(α16n/ρ))(nd|X |)2/ε

)

(recall that Ki, j is the bound on the directional derivative of η and ν). If ε0 ≤ O
(
ε/
√

d(n|X |)2
)

(recall that ε0 is the quality of approximation of the normals η and ν), then we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X |,n)t(u)‖2 = ‖u‖2 +
|X |

∑
i=1

ΛΦ(xi)(t)
n

∑
j=1

(Cxiu)2
j +ζ, (4)

where |ζ| ≤ ε/2.

5.4 Combined Effect of Ψ(Φ(M))

We can now analyze the aggregate effect of both our embeddings on the length of an arbitrary unit

vector v tangent to M at p. Let u := (DΦ)p(v) = Φv be the pushforward of v. Then ‖u‖ ≤ 1 (cf.

Lemma 12). See also Figure 4.

Now, recalling that D(Ψ◦Φ) = DΨ ·DΦ, and noting that pushforward maps are linear, we have

‖(D(Ψ◦Φ))p(v)‖2 =
∥
∥(DΨ)Φ(p)(u)

∥
∥2

. Thus, representing u as ∑i uie
i in ambient coordinates of

R
d , and using Equation (2) (for Algorithm I) or Equation (4) (for Algorithm II), we get

∥
∥(D(Ψ◦Φ))p(v)

∥
∥2

=
∥
∥(DΨ)Φ(p)(u)

∥
∥2

= ‖u‖2 + ∑
x∈X

ΛΦ(x)(Φ(p))‖Cxu‖2 +ζ,

where |ζ| ≤ ε/2. We can give simple lower and upper bounds for the above expression by noting

that ΛΦ(x) is a localization function. Define Np := {x∈X : ‖Φ(x)−Φ(p)‖< ρ} as the neighborhood

around p (ρ as per the theorem statement). Then only the points in Np contribute to above equation,

since ΛΦ(x)(Φ(p)) = dΛΦ(x)(Φ(p))/dt i = 0 for ‖Φ(x)−Φ(p)‖ ≥ ρ. Also note that for all x ∈ Np,

‖x− p‖< 2ρ (cf. Lemma 12).

Let xM := argmaxx∈Np
‖Cxu‖2 and xm := argminx∈Np

‖Cxu‖2 be the quantities that attain the

maximum and the minimum respectively. Then:

‖u‖2 +‖Cxmu‖2− ε/2≤ ‖(D(Ψ◦Φ))p(v)‖2 ≤ ‖u‖2 +‖CxM u‖2 + ε/2. (5)

Notice that ideally we would like to have the correction factor “Cpu” in Equation (5) since that

would give the perfect stretch around the point p. But what about correction Cxu for nearby x’s?

The following lemma helps us continue in this situation.

Lemma 16 Let p, v, u be as above. For any x ∈ Np ⊂ X, let Cx and Fx also be as discussed above

(recall that ‖p−x‖< 2ρ, and X ⊂M forms a bounded (ρ,δ)-cover of the fixed underlying manifold

M with condition number 1/τ). Define ξ := (4ρ/τ)+δ+4
√

ρδ/τ. If ρ≤ τ/4 and δ≤ d/32D, then

1−‖u‖2−40 ·max
{
√

ξD/d,ξD/d
}
≤ ‖Cxu‖2 ≤ 1−‖u‖2 +51 ·max

{
√

ξD/d,ξD/d
}
.
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Note that we chose ρ≤ (τd/D)(ε/350)2 and δ≤ (d/D)(ε/250)2 (cf. theorem statement). Thus,

combining Equation (5) and Lemma 16, we get (recall ‖v‖= 1)

(1− ε)‖v‖2 ≤ ‖(D(Ψ◦Φ))p(v)‖2 ≤ (1+ ε)‖v‖2.

So far we have shown that our embedding approximately preserves the length of a fixed tangent

vector at a fixed point. Since the choice of the vector and the point was arbitrary, it follows that our

embedding approximately preserves the tangent vector lengths throughout the embedded manifold

uniformly. We will now show that preserving the tangent vector lengths implies preserving the

geodesic curve lengths.

5.5 Preservation of the Geodesic Lengths

Pick any two (path-connected) points p and q in M, and let α be the geodesic2 path between p and

q. Further let p̄, q̄ and ᾱ be the images of p, q and α under our embedding. Note that ᾱ is not

necessarily the geodesic path between p̄ and q̄, thus we need an extra piece of notation: let β̄ be the

geodesic path between p̄ and q̄ (under the embedded manifold) and β be its inverse image in M. We

need to show (1− ε)L(α) ≤ L(β̄) ≤ (1+ ε)L(α), where L(·) denotes the length of the path · (end

points are understood).

First recall that for any differentiable map F and curve γ, γ̄ = F(γ)⇒ γ̄′ = (DF)(γ′). By (1±ε)-
isometry of tangent vectors, this immediately gives us (1−ε)L(γ)≤ L(γ̄)≤ (1+ε)L(γ) for any path

γ in M and its image γ̄ in embedding of M. So,

(1− ε)DG(p,q) = (1− ε)L(α)≤ (1− ε)L(β)≤ L(β̄) = DG( p̄, q̄).

Similarly,

DG( p̄, q̄) = L(β̄)≤ L(ᾱ)≤ (1+ ε)L(α) = (1+ ε)DG(p,q).

6. Conclusion

This work provides two algorithms for (1±ε)-isometric embedding of generic n-dimensional man-

ifolds. Our algorithms are similar in spirit to Nash’s construction (Nash, 1954), and manage to

remove the dependence on the isometry constant ε from the final embedding dimension. Note that

this dependency does necessarily show up in the sampling density required to make the corrections.

The correction procedure discussed here can also be readily adapted to create isometric embed-

dings from any manifold embedding procedure (under some mild conditions). Take any off-the-

shelf manifold embedding algorithm A (such as LLE, Laplacian Eigenmaps, etc.) that maps an

n-dimensional manifold in, say, d dimensions, but does not necessarily guarantee an approximate

isometric embedding. Then as long as one can ensure that A is a one-to-one mapping that doesn’t

collapse interpoint distances, we can scale the output returned by A to create a contraction. The

scaled version of A acts as the Embedding Stage of our algorithm. We can thus apply the Correc-

tions Stage (either the one discussed in Algorithm I or Algorithm II) to produce an approximate

isometric embedding of the given manifold in slightly higher dimensions. In this sense, the correc-

tion procedure presented here serves as a universal procedure for approximate isometric manifold

embeddings.

2. Globally, geodesic paths between points are not necessarily unique; we are interested in a path that yields the shortest

distance between the points.
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Appendix A. Properties of a Well-conditioned Manifold

Throughout this section we will assume that M is a compact submanifold of RD of dimension n, and

condition number 1/τ. The following are some properties of such a manifold that would be useful

throughout the text.

Lemma 17 (relating nearby tangent vectors—implicit in the proof of Proposition 6.2 Niyogi

et al., 2008) Pick any two (path-connected) points p,q ∈M. Let u ∈ TpM be a unit length tangent

vector and v ∈ TqM be its parallel transport along the (shortest) geodesic path to q. Then,3 i)

u · v≥ 1−DG(p,q)/τ, ii) ‖u− v‖ ≤
√

2DG(p,q)/τ.

Lemma 18 (relating geodesic distances to ambient distances—Proposition 6.3 of Niyogi et al.,

2008) If p,q ∈M such that ‖p−q‖ ≤ τ/2, then DG(p,q)≤ τ(1−
√

1−2‖p−q‖/τ)≤ 2‖p−q‖.

Lemma 19 (projection of a section of a manifold onto the tangent space) Pick any p ∈M and

define Mp,r := {q ∈M : ‖q− p‖ ≤ r}. Let f denote the orthogonal linear projection of Mp,r onto

the tangent space TpM. Then, for any r ≤ τ/4

(i) the map f : Mp,r → TpM is one-to-one. (follows from Lemma 5.4, 6.1-6.3 of Niyogi et al.

(2008))

(ii) for any x,y ∈Mp,r, ‖ f (x)− f (y)‖2 ≥
(
1−
(

r
τ +
√

2r
τ

)2) · ‖x− y‖2. (follows from Lemma 5.3,

6.2, 6.3 of Niyogi et al., 2008)

Lemma 20 (coverings of a section of a manifold) Pick any p ∈ M and define Mp,r := {q ∈ M :

‖q− p‖ ≤ r}. If r ≤ τ/4, then there exists C ⊂Mp,r of size at most 16n with the property: for any

p′ ∈Mp,r, exists c ∈C such that ‖p′− c‖ ≤ r/2.

Proof The proof closely follows the arguments presented in the proof of Theorem 22 of Dasgupta

and Freund (2008).

For r ≤ τ/4, note that Mp,r ⊂ R
D is (path-)connected. Let f denote the projection of Mp,r onto

TpM ∼= R
n. Quickly note that f is one-to-one (see Lemma 19(i)). Then, f (Mp,r)⊂ R

n is contained

in an n-dimensional ball of radius r. By standard volume arguments, f (Mp,r) can be covered by at

most 16n balls of radius r/7 (see, e.g., Lemma 5.2 of Vershynin, 2010)). WLOG we can assume

that the centers of these covering balls are in f (Mp,r). Note that the inverse image of each of these

3. Technically, it is not possible to directly compare two vectors that reside in different tangent spaces. However,

since we only deal with manifolds that are immersed in some ambient space, we can treat the tangent spaces as

n-dimensional affine subspaces. We can thus parallel translate the vectors to the origin of the ambient space, and

do the necessary comparison (such as take the dot product, etc.). We will make a similar abuse of notation for any

calculation that uses vectors from different affine subspaces to mean to first translate the vectors and then perform

the necessary calculation.
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q

TpM

q′
θ

τ

p

c

v

Figure 6: Plane spanned by vectors q− p and v∈ TpM (where v is the projection of q− p onto TpM),

with τ-balls tangent to p. Note that q′ is the point on the ball such that ∠pcq=∠pcq′ = θ.

covering balls (in R
n) is contained in a D-dimensional ball of radius r/2 that is centered at some

point in Mp,r (by noting r≤ τ/4 and using Lemma 19(ii)). Thus, the centers of these D-dimensional

balls (containing the inverse images) forms the desired covering.

Lemma 21 (relating nearby manifold points to tangent vectors) Pick any point p ∈ M and let

q ∈M (distinct from p) be such that DG(p,q)≤ τ. Let v ∈ TpM be the projection of the vector q− p

onto TpM. Then, i)

∣
∣
∣

v
‖v‖ ·

q−p

‖q−p‖

∣
∣
∣≥ 1− (DG(p,q)/2τ)2, ii)

∥
∥
∥

v
‖v‖ −

q−p

‖q−p‖

∥
∥
∥≤ DG(p,q)/τ

√
2.

Proof If vectors v and q− p are in the same direction, we are done. Otherwise, consider the plane

spanned by vectors v and q− p. Then since M has condition number 1/τ, we know that the point

q cannot lie within any τ-ball tangent to M at p (see Figure 6). Consider such a τ-ball (with center

c) whose center is closest to q and let q′ be the point on the surface of the ball which subtends the

same angle (∠pcq′) as the angle formed by q (∠pcq). Let this angle be called θ. Then using cosine

rule, we have cosθ = 1−‖q′− p‖2/2τ2.

Define α as the angle subtended by vectors v and q− p, and α′ the angle subtended by vectors v

and q′− p. WLOG we can assume that the angles α and α′ are less than π/2. Then, cosα≥ cosα′ =
cosθ/2. Using the trigonometric identity cosθ = 2cos2

(
θ
2

)
− 1, and noting ‖q− p‖2 ≥ ‖q′− p‖2,

we have

∣
∣
∣
∣

v

‖v‖ ·
q− p

‖q− p‖

∣
∣
∣
∣
= cosα≥ cos

θ

2
≥
√

1−‖q− p‖2/4τ2 ≥ 1− (DG(p,q)/2τ)2.

Now, by applying the cosine rule, we have
∥
∥ v
‖v‖ −

q−p

‖q−p‖
∥
∥2

= 2(1− cosα). The lemma follows.

Lemma 22 (approximating tangent space by nearby samples) Let 0 < δ ≤ 1. Pick any point

p0 ∈M and let p1, . . . , pn ∈M be n points distinct from p0 such that (for all 1≤ i≤ n)

(i) DG(p0, pi)≤ τδ/
√

n,
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(ii)
∣
∣ pi−p0

‖pi−p0‖ ·
p j−p0

‖p j−p0‖
∣
∣≤ 1/2n (for i 6= j).

Let T̂ be the n dimensional subspace spanned by vectors {pi− p0}i∈[n]. For any unit vector û ∈ T̂ ,

let u be the projection of û onto Tp0
M. Then,

∣
∣û · u

‖u‖
∣
∣≥ 1−δ.

Proof Define the vectors v̂i := pi−p0

‖pi−p0‖ (for 1≤ i≤ n). Observe that {v̂i}i∈[n] forms a basis of T̂ . For

1≤ i≤ n, define vi as the projection of vector v̂i onto Tp0
M. Also note that by applying Lemma 21,

we have that for all 1≤ i≤ n, ‖v̂i− vi‖2 ≤ δ2/2n.

Now consider any unit û ∈ T̂ , and its projection u in Tp0
M. Let V = [v̂1, . . . , v̂n] be the D× n

matrix with columns v1, . . . ,vn. We represent the unit vector û as V α = ∑i αiv̂i. Also, since u is the

projection of û, we have u = ∑i αivi. Then, ‖α‖2 ≤ 2. To see this, we first identify T̂ with R
n via an

isometry S (a linear map that preserves the lengths and angles of all vectors in T̂ ). Note that S can

be represented as an n×D matrix, and since the columns of V form a basis for T̂ , SV is an n× n

invertible matrix. Then, since Sû = SV α, we have α = (SV )−1
Sû. Thus, (recall ‖Sû‖= 1)

‖α‖2 ≤ max
x∈Sn−1

‖(SV )−1x‖2 = λmax((SV )−T(SV )−1)

= λmax((SV )−1(SV )−T) = λmax((V
TV )−1) = 1/λmin(V

TV )

≤ 1/
(
1− ((n−1)/2n)

)
≤ 2,

where i) λmax(A) and λmin(A) denote the largest and smallest eigenvalues of a square symmetric

matrix A respectively, and ii) the second inequality is by noting that VTV is an n×n matrix with 1’s

on the diagonal and at most 1/2n on the off-diagonal elements, and applying the Gershgorin circle

theorem.

Now we can bound the quantity of interest. Note that
∣
∣
∣û · u

‖u‖
∣
∣
∣ ≥ |ûT(û− (û−u))| ≥ 1−‖û−u‖= 1−

∥
∥∑

i

αi(v̂i− vi)
∥
∥

≥ 1−∑
i

|αi|‖v̂i− vi‖ ≥ 1− (δ/
√

2n)∑
i

|αi| ≥ 1−δ,

where the last inequality is by noting ‖α‖1 ≤
√

2n.

Appendix B. On Constructing a Bounded Manifold Cover

Given a compact n-manifold M ⊂ R
D with condition number 1/τ, and some 0 < δ ≤ 1. We can

construct an α-bounded (ρ,δ) cover X of M (with α≤ 213n and ρ≤ τδ/16n) as follows.

Set ρ ≤ τδ/16n and pick a (ρ/2)-net C of M (that is C ⊂M such that, i. for c,c′ ∈C such that

c 6= c′, ‖c− c′‖ ≥ ρ/2, ii. for all p ∈ M, exists c ∈ C such that ‖c− p‖ < ρ/2). WLOG we shall

assume that all points of C are in the interior of M. Then, for each c ∈C, define Mc,ρ/2 := {p ∈M :

‖p−c‖ ≤ ρ/2}, and the orthogonal projection map fc : Mc,ρ/2→ TcM that projects Mc,ρ/2 onto TcM

(note that, cf. Lemma 19(i), fc is one-to-one). Note that TcM can be identified with R
n with the c as

the origin. We will denote the origin as x
(c)
0 , that is, x

(c)
0 = fc(c).

Now, let Bc be any n-dimensional closed ball centered at the origin x
(c)
0 ∈ TcM of radius r > 0 that

is completely contained in fc(Mc,ρ/2) (that is, Bc ⊂ fc(Mc,ρ/2)). Pick a set of n points x
(c)
1 , . . . ,x

(c)
n

on the surface of the ball Bc such that (x
(c)
i − x

(c)
0 ) · (x(c)j − x

(c)
0 ) = 0 for i 6= j.
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Define the bounded manifold cover as

X :=
⋃

c∈C,i=0,...,n

f−1
c (x

(c)
i ). (6)

Lemma 23 Let 0 < δ ≤ 1 and ρ ≤ τδ/16n. Let C be a (ρ/2)-net of M as described above, and X

be as in Equation (6). Then X forms a 213n-bounded (ρ,δ) cover of M.

Proof Pick any point p ∈ M and define Xp := {x ∈ X : ‖x− p‖ < ρ}. Let c ∈ C be such that

‖p− c‖< ρ/2. Then Xp has the following properties.

Local spread criterion: For 0 ≤ i ≤ n, since ‖ f−1
c (x

(c)
i )− c‖ ≤ ρ/2 (by construction), we

have ‖ f−1
c (x

(c)
i )− p‖ < ρ. Thus, f−1

c (x
(c)
i ) ∈ Xp (for 0 ≤ i ≤ n). Now, for 1 ≤ i ≤ n, noting

that DG( f−1
c (x

(c)
i ), f−1

c (x
(c)
0 )) ≤ 2‖ f−1

c (x
(c)
i )− f−1

c (x
(c)
0 )‖ ≤ ρ (cf. Lemma 18), we have that for

the vector v̂
(c)
i :=

f−1
c (x

(c)
i )− f−1

c (x
(c)
0 )

‖ f−1
c (x

(c)
i )− f−1

c (x
(c)
0 )‖

and its (normalized) projection v
(c)
i :=

x
(c)
i −x

(c)
0

‖x(c)i −x
(c)
0 ‖

onto TcM,

∥
∥v̂

(c)
i − v

(c)
i

∥
∥ ≤ ρ/

√
2τ (cf. Lemma 21). Thus, for i 6= j, we have (recall, by construction, we have

v
(c)
i · v

(c)
j = 0)

|v̂(c)i · v̂
(c)
j | = |(v̂(c)i − v

(c)
i + v

(c)
i ) · (v̂(c)j − v

(c)
j + v

(c)
j )|

= |(v̂(c)i − v
(c)
i ) · (v̂(c)j − v

(c)
j )+ v

(c)
i · (v̂

(c)
j − v

(c)
j )+(v̂

(c)
i − v

(c)
i ) · v(c)j |

≤ ‖(v̂(c)i − v
(c)
i )‖‖(v̂(c)j − v

(c)
j )‖+‖v̂(c)i − v

(c)
i ‖+‖v̂

(c)
j − v

(c)
j ‖

≤ 3ρ/
√

2τ≤ 1/2n.

Covering criterion: There exists x ∈ Xp, namely f−1
c (x

(c)
0 ) (= c), such that ‖p− x‖ ≤ ρ/2.

Local boundedness criterion: Define Mp,3ρ/2 := {q ∈ M : ‖q− p‖ < 3ρ/2}. Note that Xp ⊂
{ f−1

c (x
(c)
i ) : c ∈ C∩Mp,3ρ/2,0 ≤ i ≤ n}. Now, using Lemma 20 we have that there exists a cover

N ⊂ Mp,3ρ/2 of size at most 163n such that for any point q ∈ Mp,3ρ/2, there exists n′ ∈ N such

that ‖q− n′‖ < ρ/4. Note that, by construction of C, there cannot be an n′ ∈ N such that it is

within distance ρ/4 of two (or more) distinct c,c′ ∈ C (since otherwise the distance ‖c− c′‖ will

be less than ρ/2, contradicting the packing of C). Thus, |C ∩Mp,3ρ/2| ≤ 163n. It follows that

|Xp| ≤ (n+1)163n ≤ 213n.

Tangent space approximation criterion: Pick any n+ 1 (distinct) points in Xp (viz. x0, . . . ,xn)

that satisfy the local spread criterion, that is,
∣
∣ xi−x0

‖xi−x0‖ ·
x j−x0

‖x j−x0‖
∣
∣ ≤ 1/2n (i 6= j). Let T̂p be the n-

dimensional affine space passing through x0, . . . ,xn (note that T̂p does not necessarily pass through

p). Then, for any unit vector û ∈ T̂p, we need to show that its projection up onto TpM has the

property |û · up

‖up‖ | ≥ 1− δ. Let θ be the angle between vectors û and up. Let ux0
be the projection

of û onto Tx0
M, and θ1 be the angle between vectors û and ux0

, and let θ2 be the angle between

vectors ux0
(at x0) and its parallel transport along the geodesic path to p (see Figure 7). WLOG we

can assume that θ1 and θ2 are at most π/2. Then, θ ≤ θ1 +θ2 ≤ π. We get the bound on the indi-

vidual angles as follows. By applying Lemma 22, cos(θ1) ≥ 1− δ/4, and by applying Lemma 17,

cos(θ2)≥ 1−δ/4. Finally, by using Lemma 24, we have
∣
∣û · up

‖up‖
∣
∣= cos(θ)≥ cos(θ1+θ2)≥ 1−δ.
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Figure 7: An example manifold M with various quantities of interest. T̂p is a sample-based ap-

proximation to TpM (using the nearby samples x0, . . . ,xn). The angle between û and its

projection up (into TpM) is bounded by bounding û and its projection ux0
(into Tx0

M) and

relating ux0
with its transport to TpM.

Lemma 24 Let 0≤ ε1,ε2 ≤ 1. If cosα≥ 1−ε1 and cosβ≥ 1−ε2, then cos(α+β)≥ 1−ε1−ε2−
2
√

ε1ε2.

Proof Applying the identity sinθ=
√

1− cos2 θ immediately yields sinα≤
√

2ε1 and sinβ≤
√

2ε2.

Now, cos(α+β) = cosαcosβ− sinαsinβ≥ (1− ε1)(1− ε2)−2
√

ε1ε2 ≥ 1− ε1− ε2−2
√

ε1ε2.

Remark 25 A dense enough sample from M constitutes as a tangent space approximating cover.

One can selectively prune the dense sampling to control the total number of points in each neigh-

borhood, while still maintaining the cover properties, forming a bounded cover as per Definition

3.

Appendix C. Bounding the Number of Subsets K in Embedding I

By construction (see the preprocessing stage of Embedding I), K = maxx∈X |X ∩B(x,2ρ)| (where

B(x,r) denotes a Euclidean ball centered at x of radius r). That is, K is the largest number of x’s

(∈ X) that are within a 2ρ ball of some x ∈ X .

Now, pick any x ∈ X and consider the set Mx := M ∩B(x,2ρ). Then, if ρ ≤ τ/8, Mx can be

covered by 2cn balls of radius ρ (see Lemma 20). By recalling that X forms an α-bounded (ρ,δ)-
cover, we have |X ∩B(x,2ρ)|= |X ∩Mx| ≤ α2cn (where c≤ 4).

Appendix D. Various Proofs

Here we provide proofs for the lemmas used throughout the text.

D.1 Proof of Lemma 12

Since R is a random orthoprojector from R
D to R

d , it follows that
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Lemma 26 (random projection of n-manifolds—adapted from Theorem 1.5 of Clarkson (2008))

Let M be a CM-regular n-manifold with condition number 1/τ. Let R̄ :=
√

D/dR be a scaling of R.

Pick any 0 < ε≤ 1 and 0 < δ≤ 1. If d = Ω
(
ε−2n log(CM/τ)+ε−2n log(1/ε)+ log(1/δ)

)
, then with

probability at least 1−δ, for all p,q ∈M

(1− ε)‖p−q‖ ≤ ‖R̄p− R̄q‖ ≤ (1+ ε)‖p−q‖.

We apply this result with ε = 1/4. Then, for d = Ω(n log(CM/τ)), with probability at least 1−
1/poly(n), (3/4)‖p−q‖ ≤ ‖R̄p− R̄q‖ ≤ (5/4)‖p−q‖. Now let Φ : RD→R

d be defined as Φx :=
(2/3)R̄x = (2/3)(

√

D/d)x (as per the lemma statement). Then we immediately get (1/2)‖p−q‖≤
‖Φp−Φq‖ ≤ (5/6)‖p−q‖.

Also note that for any x ∈RD, we have ‖Φx‖= (2/3)(
√

D/d)‖Rx‖ ≤ (2/3)(
√

D/d)‖x‖ (since

R is an orthoprojector).

Finally, for any point p ∈ M, a unit vector u tangent to M at p can be approximated arbi-

trarily well by considering a sequence {pi}i of points (in M) converging to p (in M) such that

(pi− p)/‖pi− p‖ converges to u. Since for all points pi, (1/2) ≤ ‖Φpi−Φp‖/‖pi− p‖ ≤ (5/6)
(with high probability), it follows that (1/2)≤ ‖(DΦ)p(u)‖ ≤ (5/6).

D.2 Proof of Corollary 13

Let v1
x and vn

x (∈ R
n) be the right singular vectors corresponding to singular values σ1

x and σn
x re-

spectively of the matrix ΦFx. Then, quickly note that σ1
x = ‖ΦFxv1‖, and σn

x = ‖ΦFxvn‖. Note

that since Fx is orthonormal, we have that ‖Fxv1‖ = ‖Fxvn‖ = 1. Now, since Fxvn is in the span of

column vectors of Fx, by the sampling condition (cf. Definition 3), there exists a unit length vector

v̄n
x tangent to M (at x) such that |Fxvn

x · v̄n
x | ≥ 1−δ. Thus, decomposing Fxvn

x into two vectors an
x and

bn
x such that an

x⊥bn
x and an

x := (Fxvn
x · v̄n

x)v̄
n
x , we have (by Lemma 12)

σn
x = ‖Φ(Fxvn)‖= ‖Φ((Fxvn

x · v̄n
x)v̄

n
x)+Φbn

x‖
≥ (1−δ)‖Φv̄n

x‖−‖Φbn
x‖

≥ (1−δ)(1/2)− (2/3)
√

2δD/d,

since ‖bn
x‖2 = ‖Fxvn

x‖2−‖an
x‖2≤ 1−(1−δ)2≤ 2δ and ‖Φbn

x‖≤ (2/3)(
√

D/d)‖bn
x‖≤ (2/3)

√

2δD/d.

Similarly decomposing Fxv1
x into two vectors a1

x and b1
x such that a1

x⊥b1
x and a1

x := (Fxv1
x · v̄1

x)v̄
1
x

(where v̄1
x is a unit vector tangent to M at x such that |Fxv1

x · v̄1
x | ≤ 1−δ), we have (by Lemma 12)

σ1
x = ‖Φ(Fxv1

x)‖= ‖Φ((Fxv1
x · v̄1

x)v̄
1
x)+Φb1

x‖
≤

∥
∥Φv̄1

x

∥
∥+‖Φb1

x‖
≤ (5/6)+(2/3)

√

2δD/d,

where the last inequality is by noting ‖Φb1
x‖ ≤ (2/3)

√

2δD/d. Now, by our choice of δ (≤ d/32D),

and by noting that d ≤ D, the corollary follows.

D.3 Proof of Lemma 14

We can simplify Equation (1) by recalling how the subsets X ( j) were constructed (see preprocessing

stage of Embedding I). Note that for any fixed t, at most one term in the set {ΛΦ(x)(t)}x∈X ( j) is

non-zero. Thus,
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‖(DΨ)t(u)‖2 =
d

∑
k=1

u2
k +

n

∑
k=1

∑
x∈X

ΛΦ(x)(t)
(

cos2(ω(Cxt)k)(C
xu)2

k + sin2(ω(Cxt)k)(C
xu)2

k

)

+
1

ω

[((
A

k,x
sin(t)

)2
+
(
Ak,x

cos(t)
)2)

/ω
︸ ︷︷ ︸

ζ1

+2A
k,x
sin(t)

√

ΛΦ(x)(t)cos(ω(Cxt)k)(C
xu)k

︸ ︷︷ ︸

ζ2

−2Ak,x
cos(t)

√

ΛΦ(x)(t)sin(ω(Cxt)k)(C
xu)k

︸ ︷︷ ︸

ζ3

]

= ‖u‖2 + ∑
x∈X

ΛΦ(x)(t)
n

∑
k=1

(Cxu)2
k +ζ,

where ζ :=(ζ1+ζ2+ζ3)/ω. Noting that i) the terms |Ak,x
sin(t)| and |Ak,x

cos(t)| are at most O(α16n
√

d/ρ)

(see Lemma 27), ii) |(Cxu)k| ≤ 4, and iii)
√

ΛΦ(x)(t) ≤ 1, we can pick ω sufficiently large (say,

ω ≥ Ω(nα216n
√

d/ρε) such that |ζ| ≤ ε/2 (where ε is the isometry constant from our main theo-

rem).

Lemma 27 For all k, x and t, the terms |Ak,x
sin(t)| and |Ak,x

cos(t)| are at most O(α16n
√

d/ρ).

Proof We shall focus on bounding |Ak,x
sin(t)| (the steps for bounding |Ak,x

cos(t)| are similar). Note that

|Ak,x
sin(t)| =

∣
∣
∣

d

∑
i=1

uisin(ω(Cxt)k)
dΛ

1/2

Φ(x)(t)

dt i

∣
∣
∣≤

d

∑
i=1

|ui| ·
∣
∣
∣

dΛ
1/2

Φ(x)(t)

dt i

∣
∣
∣≤

√
√
√
√

d

∑
i=1

∣
∣
∣

dΛ
1/2

Φ(x)(t)

dt i

∣
∣
∣

2

,

since ‖u‖ ≤ 1. Thus, we can bound |Ak,x
sin(t)| by O(α16n

√
d/ρ) by noting the following lemma.

Lemma 28 For all i, x and t, |dΛ
1/2

Φ(x)(t)/dt i| ≤ O(α16n/ρ).

Proof Pick any t ∈ Φ(M), and let p0 ∈ M be (the unique element) such that Φ(p0) = t. Define

Np0
:= {x∈ X : ‖Φ(x)−Φ(p0)‖< ρ} as the neighborhood around p0. Fix an arbitrary x0 ∈Np0

⊂ X

(since if x0 /∈ Np0
then dΛ

1/2

Φ(x0)
(t)/dt i = 0), and consider the function

Λ
1/2

Φ(x0)
(t) =

(

λΦ(x0)(t)

∑x∈Np0
λΦ(x)(t)

)1/2

=

(

e−1/(1−(‖t−Φ(x0)‖2/ρ2))

∑x∈Np0
e−1/(1−(‖t−Φ(x)‖2/ρ2))

)1/2

.

Define At(x) := 1/(1− (‖t−Φ(x)‖2/ρ2)). Now, pick an arbitrary coordinate i0 ∈ {1, . . . ,d} and

consider the (directional) derivative of this function

dΛ
1/2

Φ(x0)
(t)

dt i0
=

1

2

(
Λ
−1/2

Φ(x0)
(t)
)(dΛΦ(x0)(t)

dt i0

)
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=

(

∑
x∈Np0

e−At(x)
)1/2

2
(

e−At(x0)
)1/2









(

∑
x∈Np0

e−At(x)
)(−2(ti0−Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)

(

∑
x∈Np0

e−At(x)
)2

−

(

e−At(x0)
)(

∑
x∈Np0

−2(ti0−Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

(

∑
x∈Np0

e−At(x)
)2









=

(

∑
x∈Np0

e−At(x)
)(−2(ti0−Φ(x0)i0)

ρ2
(At(x0))

2
)(

e−At(x0)
)1/2

2
(

∑
x∈Np0

e−At(x)
)1.5

−

(

e−At(x0)
)1/2(

∑
x∈Np0

−2(ti0−Φ(x)i0)

ρ2
(At(x))

2e−At(x)
)

2
(

∑
x∈Np0

e−At(x)
)1.5

.

Observe that the domain of the function At is {x ∈ X : ‖t −Φ(x)‖ < ρ} and the range is [1,∞).
Recalling that for any β ≥ 1, |β2e−β| ≤ 1 and |β2e−β/2| ≤ 3, we have that |At(·)2e−At(·)| ≤ 1 and

|At(·)2e−At(·)/2| ≤ 3. Thus,

∣
∣
∣

dΛ
1/2

Φ(x0)
(t)

dt i0

∣
∣
∣ ≤

3 ·
∣
∣
∣ ∑
x∈Np0

e−At(x)
∣
∣
∣ ·
∣
∣
∣
2(ti0−Φ(x0)i0)

ρ2

∣
∣
∣+
∣
∣
∣e
−At(x0)/2

∣
∣
∣ ·
∣
∣
∣ ∑
x∈Np0

2(ti0−Φ(x)i0)

ρ2

∣
∣
∣

2
(

∑
x∈Np0

e−At(x)
)1.5

≤
(3)(2/ρ)

∣
∣
∣ ∑
x∈Np0

e−At(x)
∣
∣
∣+
∣
∣
∣e
−At(x0)/2

∣
∣
∣ ∑

x∈Np0

(2/ρ)

2
(

∑
x∈Np0

e−At(x)
)1.5

≤ O(α16n/ρ),

where the last inequality is by noting: i) |Np0
| ≤ α16n (since for all x ∈ Np0

, ‖x− p0‖ ≤ 2ρ—cf.

Lemma 12, X is an α-bounded cover, and by noting that for ρ≤ τ/8, a ball of radius 2ρ can be cov-

ered by 16n balls of radius ρ on the given n-manifold—cf. Lemma 20), ii) |e−At(x)| ≤ |e−At(x)/2| ≤ 1

(for all x), and iii) ∑x∈Np0
e−At(x) ≥ Ω(1) (since our cover X ensures that for any p0, there exists

x ∈ Np0
⊂ X such that ‖p0− x‖ ≤ ρ/2—see also Remark 4, and hence e−At(x) is non-negligible for

some x ∈ Np0
).
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D.4 Proof of Lemma 15

Note that by definition, ‖(DΨ)t(u)‖2 = ‖(DΨ|X |,n)t(u)‖2. Thus, using Equation (3) and expanding

the recursion, we have

‖(DΨ)t(u)‖2 = ‖(DΨ|X |,n)t(u)‖2

= ‖(DΨ|X |,n−1)t(u)‖2 +ΛΦ(x|X |)(t)(C
x|X |u)2

n +Z|X |,n
...

= ‖(DΨ0,n)t(u)‖2 +
[ |X |

∑
i=1

ΛΦ(xi)(t)
n

∑
j=1

(Cxiu)2
j

]

+∑
i, j

Zi, j.

Note that (DΨi,0)t(u) := (DΨi−1,n)t(u). Now recalling that ‖(DΨ0,n)t(u)‖2 = ‖u‖2 (the base case

of the recursion), all we need to show is that |∑i, j Zi, j| ≤ ε/2. This follows directly from the lemma

below.

Lemma 29 For any i, j, let ωi, j ≥Ω
(
(Ki, j+(α16n/ρ))(nd|X |)2/ε

)
(as per the statement of Lemma

15), and let ε0 ≤ O
(
ε/
√

d(n|X |)2
)
. Then, for any i, j, |Zi, j| ≤ ε/2n|X |.

Proof Recall that (cf. Equation (3))

Zi, j =
1

ω2
i, j

∑
k

(
ζk,4

i, j

)2

︸ ︷︷ ︸

(a)

+2∑
k

ζk,4
i, j

ωi, j

(
ζk,1

i, j +ζk,2
i, j +ζk,3

i, j

)

︸ ︷︷ ︸

(b)

+2∑
k

ζk,1
i, j ζk,2

i, j

︸ ︷︷ ︸

(c)

+2∑
k

ζk,1
i, j ζk,3

i, j

︸ ︷︷ ︸

(d)

.

Term (a): Note that |∑k(ζ
k,4
i, j )

2| ≤ O
(
d3(Ki, j +(α16n/ρ))2

)
(cf. Lemma 30 (iv)). By our choice

of ωi, j, we have term (a) at most O(ε/n|X |).
Term (b): Note that

∣
∣ζk,1

i, j + ζk,2
i, j + ζk,3

i, j

∣
∣ ≤ O(n|X |+(ε/dn|X |)) (by noting Lemma 30 (i)-(iii),

recalling the choice of ωi, j, and summing over all i′, j′). Thus,
∣
∣∑k ζk,4

i, j (ζ
k,1
i, j +ζk,2

i, j +ζk,3
i, j )
∣
∣ ≤

O
((

d2(Ki, j + (α16n/ρ))
)(

n|X |+ (ε/dn|X |)
))

. Again, by our choice of ωi, j, term (b) is at most

O(ε/n|X |).
Terms (c) and (d): We focus on bounding term (c) (the steps for bounding term (d) are same).

Note that |∑k ζk,1
i, j ζk,2

i, j | ≤ 4|∑k ζk,1
i, j (ηi, j(t))k| (by combining the definition of ζ1

i, j and ζ2
i, j from Equa-

tion (3) with Lemma 32(b) and Corollary 13). Now, observe that
(
ζk,1

i, j

)

k=1,...,2d+3
is a tangent vector

with length at most O(
√

dn|X |) (cf. Lemma 30 (i)). Thus, by noting that ηi, j is almost normal (with

quality of approximation ε0), we have term (c) at most O(ε/n|X |).
By choosing the constants in the order terms appropriately, we can get the lemma.

Lemma 30 Let ζk,1
i, j , ζk,2

i, j , ζk,3
i, j , and ζk,4

i, j be as defined in Equation (3). Then for all 1 ≤ i≤ |X | and

1≤ j ≤ n, we have

(i) |ζk,1
i, j | ≤ 1+8n|X |+∑i

i′=1 ∑
j−1
j′=1 O(d(Ki′, j′+(α16n/ρ))/ωi′, j′),

(ii) |ζk,2
i, j | ≤ 4,
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(iii) |ζk,3
i, j | ≤ 4,

(iv) |ζk,4
i, j | ≤ O(d(Ki, j +(α16n/ρ))).

Proof First note for any ‖u‖ ≤ 1 and for any xi ∈ X , 1≤ j ≤ n and 1≤ l ≤ d, we have |∑l C
xi

j,lul |=
|(Cxiu) j| ≤ 4 (cf. Lemma 32 (b) and Corollary 13).

Noting that for all i and j, ‖ηi, j‖= ‖νi, j‖= 1, we have |ζk,2
i, j | ≤ 4 and |ζk,3

i, j | ≤ 4.

Observe that ζk,4
i, j = ∑l ulR

k,l
i, j . For all i, j, k and l, note that i) ‖dηi, j(t)/dt l‖ ≤ Ki, j and

‖dνi, j(t)/dt l‖ ≤ Ki, j and ii) |dλ
1/2

Φ(xi)
(t)/dt l| ≤ O(α16n/ρ) (cf. Lemma 28). Thus we have |ζk,4

i, j | ≤
O(d(Ki, j +(α16n/ρ))).

Now for any i, j, note that ζk,1
i, j = ∑l uldΨi, j−1(t)/dt l . Thus by recursively expanding, |ζk,1

i, j | ≤
1+8n|X |+∑i

i′=1 ∑
j−1
j′=1 O(d(Ki′, j′+(α16n/ρ))/ωi′, j′).

D.5 Proof of Lemma 16

We start by stating the following useful observations:

Lemma 31 Let A be a linear operator such that max‖x‖=1 ‖Ax‖ ≤ δmax. Let u be a unit-length

vector. If ‖Au‖ ≥ δmin > 0, then for any unit-length vector v such that |u · v| ≥ 1− ε, we have

1− δmax

√
2ε

δmin

≤ ‖Av‖
‖Au‖ ≤ 1+

δmax

√
2ε

δmin

.

Proof Let v′ = v if u · v > 0, otherwise let v′ = −v. Quickly note that ‖u− v′‖2 = ‖u‖2 + ‖v′‖2−
2u · v′ = 2(1−u · v′)≤ 2ε. Thus, we have,

i. ‖Av‖= ‖Av′‖ ≤ ‖Au‖+‖A(u− v′)‖ ≤ ‖Au‖+δmax

√
2ε,

ii. ‖Av‖= ‖Av′‖ ≥ ‖Au‖−‖A(u− v′)‖ ≥ ‖Au‖−δmax

√
2ε.

Noting that ‖Au‖ ≥ δmin yields the result.

Lemma 32 Let x1, . . . ,xn ∈ R
D be a set of orthonormal vectors, F := [x1, . . . ,xn] be a D×n matrix

and let Φ be a linear map from R
D to R

d (n ≤ d ≤ D) such that for all non-zero a ∈ span(F) we

have 0 < ‖Φa‖ ≤ ‖a‖. Let UΣVT be the thin SVD of ΦF. Define C = (Σ−2− I)1/2UT. Then,

(a) ‖C(Φa)‖2 = ‖a‖2−‖Φa‖2, for any a ∈ span(F),

(b) ‖C‖2 ≤ (1/σn)2, where ‖ · ‖ denotes the spectral norm of a matrix and σn is the nth largest

singular value of ΦF.

Proof Note that the columns of FV form an orthonormal basis for the subspace spanned by columns

of F , such that Φ(FV ) = UΣ. Thus, since a ∈ span(F), let y be such that a = FV y. Note that i)

‖a‖2 = ‖y‖2, ii) ‖Φa‖2 = ‖UΣy‖2 = yTΣ2y. Now,

‖CΦa‖2 = ‖((Σ−2− I)1/2UT)ΦFV y‖2
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= ‖(Σ−2− I)1/2UTUΣVTV y‖2

= ‖(Σ−2− I)1/2Σy‖2

= yTy− yTΣ2y

= ‖a‖2−‖Φa‖2.

Now, consider ‖C‖2.

‖C‖2 ≤ ‖(Σ−2− I)1/2‖2‖UT‖2

≤ max
‖x‖=1

‖(Σ−2− I)1/2x‖2

≤ max
‖x‖=1

xTΣ−2x

= max
‖x‖=1

∑
i

x2
i /(σ

i)2

≤ (1/σn)2,

where σi are the (top n) singular values forming the diagonal matrix Σ.

Lemma 33 Let M ⊂ R
D be a compact Riemannian n-manifold with condition number 1/τ. Pick

any x ∈ M and let Fx be any n-dimensional affine space with the property: for any unit vector vx

tangent to M at x, and its projection vxF onto Fx,
∣
∣vx · vxF

‖vxF‖
∣
∣≥ 1−δ. Then for any p ∈M such that

‖x− p‖ ≤ ρ≤ τ/2, and any unit vector v tangent to M at p, (ξ := (2ρ/τ)+δ+2
√

2ρδ/τ)

i.

∣
∣
∣v · vF

‖vF‖

∣
∣
∣≥ 1−ξ,

ii. ‖vF‖2 ≥ 1−2ξ,

iii. ‖vr‖2 ≤ 2ξ,

where vF is the projection of v onto Fx and vr is the residual (i.e., v = vF + vr and vF⊥vr).

Proof Let γ be the angle between vF and v. We will bound this angle.

Let vx (at x) be the parallel transport of v (at p) via the (shortest) geodesic path via the manifold

connection. Let the angle between vectors v and vx be α. Let vxF be the projection of vx onto the

subspace Fx, and let the angle between vx and vxF be β. WLOG, we can assume that the angles α

and β are acute. Then, since γ≤ α+β≤ π, we have that

∣
∣
∣v · vF

‖vF‖

∣
∣
∣= cosγ≥ cos(α+β). We bound

the individual terms cosα and cosβ as follows.

Now, since ‖p− x‖ ≤ ρ, using Lemmas 17 and 18, we have cos(α) = |v · vx| ≥ 1− 2ρ/τ. We

also have cos(β) =
∣
∣
∣vx · vxF

‖vxF‖

∣
∣
∣≥ 1−δ. Then, using Lemma 24, we finally get

∣
∣
∣v · vF

‖vF‖

∣
∣
∣= |cos(γ)| ≥

1−2ρ/τ−δ−2
√

2ρδ/τ = 1−ξ.

Also note since 1 = ‖v‖2 = (v · vF

‖vF‖)
2
∥
∥
∥

vF

‖vF‖

∥
∥
∥

2

+ ‖vr‖2, we have ‖vr‖2 = 1−
(

v · vF

‖vF‖

)2

≤ 2ξ,

and ‖vF‖2 = 1−‖vr‖2 ≥ 1−2ξ.
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Now we are in a position to prove Lemma 16. Let vF be the projection of the unit vector v (at

p) onto the subspace spanned by (the columns of) Fx and vr be the residual (i.e., v = vF + vr and

vF⊥vr). Then, noting that p, x, v and Fx satisfy the conditions of Lemma 33 (with ρ in the Lemma

33 replaced with 2ρ from the statement of Lemma 16), we have (ξ := (4ρ/τ)+δ+4
√

ρδ/τ)

a)
∣
∣v · vF

‖vF‖
∣
∣≥ 1−ξ,

b) ‖vF‖2 ≥ 1−2ξ,

c) ‖vr‖2 ≤ 2ξ.

We can now bound the required quantity ‖Cxu‖2. Note that

‖Cxu‖2 = ‖CxΦv‖2 = ‖CxΦ(vF + vr)‖2

= ‖CxΦvF‖2 +‖CxΦvr‖2 +2CxΦvF ·CxΦvr

= ‖vF‖2−‖ΦvF‖2

︸ ︷︷ ︸

(a)

+‖CxΦvr‖2

︸ ︷︷ ︸

(b)

+2CxΦvF ·CxΦvr
︸ ︷︷ ︸

(c)

where the last equality is by observing vF is in the span of Fx and applying Lemma 32 (a). We now

bound the terms (a),(b), and (c) individually.

Term (a): Note that 1−2ξ≤ ‖vF‖2 ≤ 1 and observing that Φ satisfies the conditions of Lemma

31 with δmax = (2/3)
√

D/d, δmin = (1/2)≤ ‖Φv‖ (cf. Lemma 12) and
∣
∣v · vF

‖vF‖
∣
∣≥ 1−ξ, we have

(recall ‖Φv‖= ‖u‖ ≤ 1)

‖vF‖2−‖ΦvF‖2 ≤ 1−‖vF‖2

∥
∥
∥
∥

Φ
vF

‖vF‖

∥
∥
∥
∥

2

≤ 1− (1−2ξ)

∥
∥
∥
∥

Φ
vF

‖vF‖

∥
∥
∥
∥

2

≤ 1+2ξ−
∥
∥
∥
∥

Φ
vF

‖vF‖

∥
∥
∥
∥

2

≤ 1+2ξ−
(
1− (4/3)

√

2ξD/d
)2 ‖Φv‖2

≤ 1−‖u‖2 +
(
2ξ+(8/3)

√

2ξD/d
)
, (7)

where the fourth inequality is by using Lemma 31. Similarly, in the other direction

‖vF‖2−‖ΦvF‖2 ≥ 1−2ξ−‖vF‖2

∥
∥
∥
∥

Φ
vF

‖vF‖

∥
∥
∥
∥

2

≥ 1−2ξ−
∥
∥
∥
∥

Φ
vF

‖vF‖

∥
∥
∥
∥

2

≥ 1−2ξ−
(
1+(4/3)

√

2ξD/d
)2 ‖Φv‖2

≥ 1−‖u‖2−
(
2ξ+(32/9)ξ(D/d)+(8/3)

√

2ξD/d
)
. (8)
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Term (b): Note that for any x, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖. We can apply Lemma 32 (b) with

σn
x ≥ 1/4 (cf. Corollary 13) and noting that ‖vr‖2 ≤ 2ξ, we immediately get

0≤ ‖CxΦvr‖2 ≤ 42 · (4/9)(D/d)‖vr‖2 ≤ (128/9)(D/d)ξ. (9)

Term (c): Recall that for any x, ‖Φx‖ ≤ (2/3)(
√

D/d)‖x‖, and using Lemma 32 (b) we have

that ‖Cx‖2 ≤ 16 (since σn
x ≥ 1/4—cf. Corollary 13).

Now let a :=CxΦvF and b :=CxΦvr. Then ‖a‖= ‖CxΦvF‖ ≤ ‖Cx‖‖ΦvF‖ ≤ 4 (since ‖Cx‖ ≤ 4,

and noting that vF is vector in the column-span of Fx such that ‖vF‖ ≤ 1 and the largest singular

value of ΦFx is at most 1 by Corollary 13), and ‖b‖= ‖CxΦvr‖≤ (8/3)
√

2ξD/d (see Equation (9)).

Thus, |2a ·b| ≤ 2‖a‖‖b‖ ≤ 2 ·4 · (8/3)
√

2ξD/d = (64/3)
√

2ξD/d. Equivalently,

−(64/3)
√

2ξD/d ≤ 2CxΦvF ·CxΦvr ≤ (64/3)
√

2ξD/d. (10)

Combining (7)-(10), and noting d ≤ D, yields the lemma.

Appendix E. Computing the Normal Vectors

The success of the second embedding technique crucially depends upon finding (at each iteration

step) a pair of mutually orthogonal unit vectors that are normal to the embedding of manifold M

(from the previous iteration step) at a given point p. At a first glance finding such normal vectors

seems infeasible since we only have access to a finite size sample X from M. The saving grace comes

from noting that the corrections are applied to the n-dimensional manifold Φ(M) that is actually

a submanifold of d-dimensional space R
d . Let us denote this space R

d as a flat d-manifold N

(containing our manifold of interest Φ(M)). Note that even though we only have partial information

about Φ(M) (since we only have samples from it), we have full information about N (since it is

the entire space R
d). What it means is that given some point of interest Φp ∈ Φ(M) ⊂ N, finding

a vector normal to N (at Φp) automatically is a vector normal to Φ(M) (at Φp). Of course, to

find two mutually orthogonal normals to a d-manifold N, N itself needs to be embedded in a larger

dimensional Euclidean space (although embedding into d + 2 should suffice, for computational

reasons we will embed N into Euclidean space of dimension 2d+3). This is precisely the first thing

we do before applying any corrections (cf. Step 2 of Embedding II in Section 4). See Figure 8 for

an illustration of the setup before finding any normals.

Now for every iteration of the algorithm, note that we have complete knowledge of N and

exactly what function (namely Ψi, j for iteration i, j) is being applied to N. Thus with additional

computation effort, one can compute the necessary normal vectors.

More specifically, We can estimate a pair of mutually orthogonal unit vectors that are normal to

Ψi, j(N) at Φp (for any step i, j) as follows.
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N = R
d

ΦM

Φp

Φx1

Φx2

Φx3

Φx4

Figure 8: Basic setup for computing the normals to the underlying n-manifold ΦM at the point of

interest Φp. Observe that even though it is difficult to find vectors normal to ΦM at Φp

within the containing space R
d (because we only have a finite-size sample from ΦM,

viz. Φx1, Φx2, etc.), we can treat the point Φp as part of the bigger ambient manifold

N (= R
d , that contains ΦM) and compute the desired normals in a space that contains N

itself. Now, for each i, j iteration of Algorithm II, Ψi, j acts on the entire N, and since we

have complete knowledge about N, we can compute the desired normals.

Algorithm 4 Compute Normal Vectors

Preprocessing Stage:

1: Let ηrand
i, j and νrand

i, j be vectors in R
2d+3 drawn independently at random from the surface of the

unit-sphere (for 1≤ i≤ |X |, 1≤ j ≤ n).

Compute Normals: For any point of interest p∈M, let t := Φp denote its projection into R
d . Now,

for any iteration i, j (where 1≤ i≤ |X |, and 1≤ j≤ n), we shall assume that Ψi, j−1 (cf. Step 3) from

the previous iteration i, j− 1 is already given. Then we can compute the (approximated) normals

ηi, j(t) and νi, j(t) for the iteration i, j as follows.

1: Let ∆ > 0 be the quality of approximation.

2: for k = 1, . . . ,d do

3: Approximate the kth tangent vector as

T k :=
Ψi, j−1(t +∆ek)−Ψi, j−1(t)

∆
,

where Ψi, j−1 is as defined in Section 5.3, and ek is the kth standard vector.

4: end for

5: Let η = ηrand
i, j , and ν = νrand

i, j .

6: Use Gram-Schmidt orthogonalization process to extract η̂ (from η) that is orthogonal to vectors

{T 1, . . . ,T d}.
7: Use Gram-Schmidt orthogonalization process to extract ν̂ (from ν) that is orthogonal to vectors

{T 1, . . . ,T d , η̂}.
8: return η̂/‖η̂‖ and ν̂/‖ν̂‖ as mutually orthogonal unit vectors that are approximately normal to

Ψi, j−1(ΦM) at Ψi, j−1(t).

A few remarks are in order.
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Remark 34 The choice of target dimension of size 2d +3 (instead of d +2) ensures that a pair of

random unit-vectors η and ν are not parallel to any vector in the tangent bundle of Ψi, j−1(N) with

probability 1. This follows from Sard’s theorem (see, e.g., Milnor, 1972), and is the key observation

in reducing the embedding size in Whitney’s embedding (Whitney, 1936). This also ensures that our

orthogonalization process (Steps 6 and 7) will not result in a null vector.

Remark 35 By picking ∆ sufficiently small, we can approximate the normals η and ν arbitrarily

well by approximating the tangents T 1, . . . ,T d well.

Remark 36 For each iteration i, j, the vectors η̂/‖η̂‖ and ν̂/‖ν̂‖ that are returned (in Step 8) are a

smooth modification to the starting vectors ηrand
i, j and νrand

i, j respectively. Now, since we use the same

starting vectors ηrand
i, j and νrand

i, j regardless of the point of application (t = Φp), it follows that the

respective directional derivatives of the returned vectors are bounded as well.

By noting Remarks 35 and 36, the approximate normals we return satisfy the conditions needed

for Embedding II (see our discussion in Section 5.3).
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