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Abstract

We present a multi-task learning approach to jointly estimate the means of multiple inde-
pendent distributions from samples. The proposed multi-task averaging (MTA) algorithm
results in a convex combination of the individual task’s sample averages. We derive the op-
timal amount of regularization for the two task case for the minimum risk estimator and a
minimax estimator, and show that the optimal amount of regularization can be practically
estimated without cross-validation. We extend the practical estimators to an arbitrary
number of tasks. Simulations and real data experiments demonstrate the advantage of the
proposed MTA estimators over standard averaging and James-Stein estimation.

Keywords: multi-task learning, James-Stein, Stein’s paradox

1. Introduction

The mean is one of the most fundamental and useful tools in statistics (Salsburg, 2001).
By the 16th century Tycho Brahe was using the mean to reduce measurement error in as-
tronomical investigations (Plackett, 1958). Legendre (1805) noted that the mean minimizes
the sum of squared errors to a set of samples:

ȳ = arg min
ỹ

N∑
i=1

(yi − ỹ)2. (1)

More recently it has been shown that the mean minimizes the sum of any Bregman di-
vergence to a set of samples (Banerjee et al., 2005; Frigyik et al., 2008). Gauss (1857)
commented on the mean’s popularity in his time:

“It has been customary certainly to regard as an axiom the hypothesis that if
any quantity has been determined by several direct observations, made under the
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same circumstances and with equal care, the arithmetical mean of the observed
values affords the most probable value, if not rigorously, yet very nearly at least,
so that it is always most safe to adhere to it.”

But the mean is a more subtle quantity than it first appears. In a surprising result
popularly called Stein’s paradox (Efron and Morris, 1977), Stein (1956) showed that it is
better (in a summed squared error sense) to estimate each of the means of T Gaussian
random variables using data sampled from all of them, even if the random variables are
independent and have different means. That is, it is beneficial to consider samples from
seemingly unrelated distributions to estimate a mean. Stein’s result is an early example of
the motivating hypothesis behind multi-task learning: that leveraging data from multiple
tasks can yield superior performance over learning from each task independently. In this
work we consider a multi-task regularization approach to the problem of estimating multiple
means; we call this multi-task averaging (MTA).

Multi-task learning is most intuitive when the multiple tasks are conceptually similar.
But we argue that it is really the statistical similarity of the multiple tasks that determines
how well multi-task learning works. In fact, a key result of this paper is that proposed
multi-task estimation achieves lower total squared error than the sample mean if the true
means of the multiple tasks are close compared to the variance of the samples (see Equation
12). Of course, in practice cognitive notions of similarity can be a useful guide for multi-task
learning, as tasks that seem similar to humans often do have similar statistics.

We begin the paper with the proposed MTA objective in Section 2, and review related
work in Section 3. We show that MTA has provably nice theoretical properties in Section 4;
in particular, we derive the optimal notion of task similarity for the two task case, which is
also the optimal amount of regularization to be used in the MTA estimation. We generalize
this analysis to form practical estimators for the general case of T tasks. Simulations in
Section 5 verify the advantage of MTA over standard sample means and James-Stein esti-
mation if the true means are close compared to the variance of the underlying distributions.
In Section 6 we present four experiments on real data: (i) estimating Amazon customer
reviews, (ii) estimating class grades, (iii) forecasting sales, and (iv) estimating the length of
kings’ reigns. These real-data experiments show that MTA is generally 10-20% better than
the sample mean.

A short version of this paper was published in NIPS 2012 (Feldman et al., 2012). This
paper substantially differs from that conference paper that it contains more analysis, proofs,
and new and expanded experiments.

2. Multi-Task Averaging

Consider the problem of estimating the means of T random variables that have finite means
{µt} and variances {σ2

t } for t = 1, . . . , T . We treat this as a T -task multi-task learning
problem, and estimate the T means jointly. We take as given Nt independent and identically
distributed (iid) random samples {Yti}Nt

i=1 for each task t. Key notation is summarized in
Table 1.
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T number of tasks
Nt number of samples for tth task
µt true mean of task t
σ2
t variance of the tth task
Yti ∈ R ith random sample from tth task
Ȳt ∈ R sample average for tth task: 1

Nt

∑
i Yti,

also referred to as the single-task mean estimate
Ȳ ∈ RT vector with tth component Ȳt
Y ∗t ∈ R MTA estimate of tth mean
Y ∗ ∈ RT vector with tth component Y ∗t
Ŷt ∈ R an estimate of the tth mean

Ỹt ∈ R dummy variable

Σ ∈ RT×T diagonal covariance matrix of Ȳ with Σtt =
σ2
t
Nt

A ∈ RT×T pairwise task similarity matrix

L = D −A graph Laplacian of A, with diagonal D s.t. Dtt =
∑T

r=1Atr
W MTA solution matrix, W = (I + γ

T ΣL)−1

Table 1: Key Notation

In this paper, we judge the estimates by total squared error: given T estimates {Ŷt}
and T true means {µt}:

estimation error({Ŷt)})
4
=

T∑
t=1

(
µt − Ŷt

)2
, (2)

Equivalently (up to an additive factor), the metric can be expressed as the total squared
expected error to a random sample Yt from each task:

regression error({Ŷt)})
4
=

T∑
t=1

E

[(
Yt − Ŷt

)2
]

; (3)

we use an empirical approximation to (3) in the experiments because the true means are
not known but held-out samples from the distributions are available.

Let a T × T matrix A describe the relatedness or similarity of any pair of the T tasks,
with Att = 0 for all t without loss of generality (because the diagonal self-similarity terms
are canceled in the objective below). Further we assume each task’s variance σ2

t is known
or already estimated. The proposed MTA objective is

{Y ∗t }Tt=1 = arg min
{Ỹt}Tt=1

1

T

T∑
t=1

Nt∑
i=1

(Yti − Ỹt)2

σ2
t

+
γ

T 2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2. (4)

The first term of (4) minimizes the multi-task empirical loss, normalizing the contribution
of each task’s losses by that task’s variance σ2

t so that high-variance tasks do not dispropor-
tionately dominate the loss term. The second term of (4) jointly regularizes the estimates
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by tying them together. The regularization parameter γ balances the empirical risk and the
multi-task regularizer. If γ = 0, the MTA objective decomposes into T separate minimiza-
tion problems, producing the sample averages {Ȳt}. If γ = 1, the balance between empirical
risk and multi-task regularizer is completely specified by the task similarity matrix A.

A more general formulation of MTA is

{Y ∗t }Tt=1 = arg min
{Ỹt}Tt=1

1

T

T∑
t=1

Nt∑
i=1

L(Yti, Ỹt) + γJ
(
{Ỹt}Tt=1

)
,

where L is some loss function and J is some regularization function. If L is chosen to be
any Bregman loss, then setting γ = 0 will produce the T sample averages (Banerjee et al.,
2005). For the analysis and experiments in this paper, we restrict our focus to the tractable
squared-error formulation given in (4). The MTA objective and many of the results in
this paper generalize straightforwardly to samples that are vectors rather than scalars (see
Section 4.2), but for most of the paper we restrict our focus to scalar samples Yti ∈ R.

The task similarity matrix A can be specified as side information, for example from
a domain expert, but often this side information is not available, or it may not be clear
how to convert semantic notions of task similarity into appropriate numerical values for the
task-similarity values in A. In such cases, A can be treated as a matrix parameter of the
MTA objective, and in Section 4 we fix γ = 1 and derive two optimal choices of A for the
T = 2 case: the A that minimizes expected squared error, and a minimax A. We use the
T = 2 analysis to propose practical estimators of A for any number of tasks, removing the
need to cross-validate the amount of regularization.

3. Related Work

In this section, we review related and background material: James-Stein estimation, multi-
task learning, manifold regularization, and the graph Laplacian.

3.1 James-Stein Estimation

A closely related body of work to MTA is Stein estimation (James and Stein, 1961; Bock,
1975; Efron and Morris, 1977; Casella, 1985), which can be derived as an empirical Bayes
strategy for estimating multiple means simultaneously (Efron and Morris, 1972). James
and Stein (1961) showed that the maximum likelihood estimate of the task mean can be
dominated by a shrinkage estimate given Gaussian assumptions. Specifically, given a single
sample drawn from T normal distributions Yt ∼ N (µt, σ

2) for t = 1, . . . , T , Stein showed
that the maximum likelihood estimator Ȳt = Yt is inadmissible, and is dominated by the
James-Stein estimator:

Ŷ JS
t =

(
1− (T − 2)σ2

Ȳ >Ȳ

)
Ȳt, (5)

where Ȳ is a vector with tth entry Ȳt. The above estimator dominates Ȳt when T > 2. For
T = 2, (5) reverts to the maximum likelihood estimator, which turns out to be admissible
(Stein, 1956). James and Stein showed that if σ2 is unknown it can be replaced by a
standard unbiased estimate σ̂2 (James and Stein, 1961; Casella, 1985).
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Note that in (5) the James-Stein estimator shrinks the sample means towards zero (the
terms “regularization” and “shrinkage” are often used interchangeably). The form of (5)
and its shrinkage towards zero points to the implicit assumption that the µt are themselves
drawn from a standard normal distribution centered at 0. More generally, the means are
assumed to be drawn as µt ∼ N (ξ, 1). The James-Stein estimator then becomes

Ŷ JS
t = ξ +

(
1− (T − 3)σ2

(Ȳ − ξ1)>(Ȳ − ξ1)

)
(Ȳt − ξ), (6)

where ξ can be estimated (as we do in this work) as the average of means ξ = ¯̄Y =
1
T

∑T
r=1 Ȳr, and this additional estimation decreases the degrees of freedom by one.1 Note

that (6) shrinks the estimates towards the mean-of-means ξ rather than shrinking towards
zero. Also, the more similar the multiple tasks are (in the sense that individual task means
are closer to the mean-of-means ξ), the more regularization occurs in (6).

There have been a number of extensions to the original James-Stein estimator. The
James-Stein estimator given in (6) is itself not admissible, and is dominated by the positive
part James-Stein estimator (Lehmann and Casella, 1998), which was further theoretically
improved by Bock’s James-Stein estimator (Bock, 1975). Throughout this work, we compare
to Bock’s well-regarded positive-part James-Stein estimator for multiple data points per task
and independent unequal variances (Bock, 1975; Lehmann and Casella, 1998). In particular,
let Yti ∼ N (µt, σ

2
t ) for t = 1, . . . , T and i = 1, . . . , Nt, let Σ be the covariance matrix of the

vector of task sample means Ȳ , and let λmax(Σ) be the largest eigenvalue of Σ, then the
estimator is

Ŷ JS
t = ξ +

1−
tr(Σ)

λmax(Σ) − 3

(Ȳ − ξ1)>Σ−1(Ȳ − ξ1)


+

(Ȳt − ξ), (7)

where (x)+ = max(0, x).

3.2 Multi-Task Learning for Mean Estimation

MTA is an approach to the problem of estimating T means. We are not aware of other
work in the multi-task literature that addresses this problem explicitly; most multi-task
learning methods are designed for regression, classification, or feature selection, for example,
Micchelli and Pontil (2004); Bonilla et al. (2008); Argyriou et al. (2008). Estimating T
means can be considered a special case of multi-task regression, where one fits a constant
function to each task, since, with a feature space of zero dimensions only the constant offset
term is learned. And, similarly to MTA, one of the main approaches to multi-task regression
in the literature is tying tasks together with an explicit multi-task parameter regularizer.

Abernethy et al. (2009), for instance, propose to minimize the empirical loss by adding
the regularizer

||β||∗,

where the tth column of the matrix β is the vector of parameters for the tth task and || · ||∗ is
the trace norm. Applying this approach to mean estimation, the matrix β has only one row,

1. For more details as to why T − 2 in (5) becomes T − 3 in (6), see Example 7.7 on page 278 of Lehmann
and Casella (1998).
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and ||β||∗ reduces to the `2 norm on the outputs, thus for mean estimation this regularizer
does not actually tie the tasks together.

Argyriou et al. (2008) propose a a different regularizer,

tr(β>D−1β),

where D is a learned, shared feature covariance matrix. With no features (as in the MTA
application of constant function regression), D is just a constant and tr(β>D−1β) is a ridge
regularizer on the outputs. The regularizers in the work of Jacob et al. (2008) and Zhang
and Yeung (2010) reduce similarly when applied to mean estimation. These regularizers are
similar to the original James Stein estimator in that they shrink the estimates towards zero;
though more modern James Stein estimators shrink towards a pooled mean (see Section
3.1).

The most closely related work is that of Sheldon (2008) and Kato et al. (2008), where
the regularizer or constraint, respectively, is

T∑
r=1

T∑
s=1

Ars‖βr − βs‖22,

which is the MTA regularizer if applied to mean estimation. In this paper we do just that:
apply this regularizer to mean estimation, show that this special case enables new and useful
analytic results, and demonstrate its performance with simulated and real data.

3.3 Multi-Task Learning and the Similarity Between Tasks

A key issue for MTA and many other multi-task learning methods is how to estimate
some notion of similarity (or task relatedness) between tasks and/or samples if it is not
provided. A common approach is to estimate the similarity matrix jointly with the task
parameters (Argyriou et al., 2007; Xue et al., 2007; Bonilla et al., 2008; Jacob et al., 2008;
Zhang and Yeung, 2010). For example, Zhang and Yeung (2010) assume that there exists
a covariance matrix for the task relatedness, and proposed a convex optimization approach
to estimate the task covariance matrix and the task parameters in a joint, alternating way.
Applying such joint and alternating approaches to the MTA objective given in (4) leads to
a degenerate solution with zero similarity. However, the simplicity of MTA enables us to
specify the optimal task similarity matrix for T = 2 (see Section 4), which we use to obtain
closed-form estimators for the general T > 1 case.

3.4 Manifold Regularization

MTA is similar in form to manifold regularization (Belkin et al., 2006). For example, Belkin
et al.’s Laplacian-regularized least squares objective for semi-supervised regression solves

arg min
f∈H

∑N
i=1(yi − f(xi))

2 + λ||f ||2H + γ
∑N+M

i,j=1 Aij(f(xi)− f(xj))
2,

where f is the regression function to be estimated, H is a reproducing kernel Hilbert space
(RKHS), N is the number of labeled training samples, M is the number of unlabeled training
samples, Aij is the similarity (or weight in an adjacency graph) between feature samples
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xi and xj , and ||f ||H is the norm of the function f in the RKHS. In MTA, as opposed
to manifold regularization, we are estimating a different function (that is, the constant
function that is the mean) for each of the T tasks, rather than a single global function. One
can interpret MTA as regularizing the individual task estimates over the task-similarity
manifold, which is defined for the T tasks by the T × T matrix A.

3.5 Background on the Graph Laplacian Matrix

It will be helpful for later sections to review the graph Laplacian matrix. For graph G
with T nodes, let A ∈ RT×T be a matrix where component Ars ≥ 0 is the weight of the
edge between node r and node s, for all r, s. The graph Laplacian matrix is defined as
L = L(A) = D −A, with diagonal matrix D such that Dtt =

∑
sAts.

The graph Laplacian matrix is analogous to the Laplacian operator, which quantifies
how locally smooth a twice-differentiable function g(x) is. Similarly, the graph Laplacian
matrix L can be thought of as being a measure of the smoothness of a function defined
on a graph. Given a function f defined over the T nodes of graph G, where fi ∈ R is the
function value at node i, the total energy of a graph is (for symmetric A)

E(f) =
1

2

T∑
i=1

T∑
j=1

Aij(fi − fj)2 = f>L(A)f,

which is small when f is smooth over the graph (Zhu and Lafferty, 2005). If A is asymmetric
then the energy can be written as

E(f) =
1

2

T∑
i=1

T∑
j=1

Aij(fi − fj)2 = f>L((A+A>)/2)f. (8)

When each fi ∈ Rd is a vector, one can alternatively write the energy in terms of the
distance matrix:

E(f) =
1

2
tr(∆>A),

where ∆ij = (fi − fj)>(fi − fj).
As discussed above, the graph Laplacian can be thought of as an operator on a func-

tion, but it is useful in and of itself (i.e., without a function). The eigenvalues of the graph
Laplacian are all real and non-negative, and there is a wealth of literature showing how
the eigenvalues reveal the structure of the underlying graph and can be used for clustering
(v. Luxburg, 2007). The graph Laplacian is a common tool in semi-supervised learning lit-
erature (Zhu and Goldberg, 2009), and the Laplacian of a random walk probability matrix
P (i.e., all the entries are non-negative and the rows sum to 1) is also of interest. For exam-
ple, Saerens et al. (2004) showed that the pseudo-inverse of the Laplacian of a probability
transition matrix is used to compute the square root of the average commute time (the
average time taken by a random walker on graph G to reach node j for the first time when
starting at node i, and coming back to node i).

Finally, since we will be using this fact occasionally, we note that the graph Laplacian
is homogeneous, i.e., L(γA) = γL(A), where A is a matrix and γ is a scalar.
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4. MTA Theory and Estimators

First, we give a general closed-form solution for the MTA mean estimates and characterize
the MTA objective in Sections 4.1 through 4.3. Then in Section 4.4 we analyze the estima-
tion error for the two task T = 2 case and give conditions for when MTA is better than the
sample means. In Section 4.5, we derive the optimal similarity matrix A for the two task
case.

Then in Section 4.7, we generalize our T = 2 analysis to propose practical estimators
for any number of tasks T , and analyze their computational efficiency. In Section 4.8, we
analyze the relationship of different estimators formed by linearly combining the sample
means, including the MTA estimators, James Stein, and other estimators that regularize
sample means towards a pooled mean. Lastly, we discuss the Bayesian interpretation of
MTA in Section 4.9.

Proofs and derivations are in the appendix.

4.1 Closed-form MTA Solution

Without loss of generality, we only deal with symmetric A because in the case of asymmetric
A it is equivalent to consider instead the symmetrized matrix (A> +A)/2.

For symmetric A with non-negative components, the MTA objective given in (4) is con-
tinuous, differentiable, and convex; and (4) has closed-form solution (derivation in Appendix
A):

Y ∗ =
(
I +

γ

T
ΣL
)−1

Ȳ , (9)

where Ȳ is the vector of sample averages with tth entry Ȳt = 1
Nt

∑Nt
i=1 Yti, L is the graph

Laplacian of A, and Σ is the diagonal covariance matrix of the sample mean vector Ȳ such

that Σtt =
σ2
t
Nt

. The inverse
(
I + γ

T ΣL
)−1

in (9) always exists:

Lemma 1 Suppose that 0 ≤ Ars < ∞ for all r, s, γ ≥ 0, and 0 <
σ2
t
Nt

< ∞ for all t. The

MTA solution matrix W =
(
I + γ

T ΣL
)−1

exists.

The MTA estimates Y ∗ converge to the vector of true means µ:

Proposition 2 As Nt →∞ ∀ t, Y ∗ → µ.

4.2 MTA for Vectors

MTA can also be applied to vectors. Let Y∗ ∈ RT×d be a matrix with Y ∗t as its tth row
and let Ȳ ∈ RT×d be a matrix with Ȳt ∈ Rd as its tth row. One can perform MTA on the
vectorized form of Y∗:

vec(Y∗) =
(
I +

γ

T
ΣL
)−1

vec(Ȳ),

as long as (the now block-diagonal) Σ ∈ RTd×Td is invertible. An equivalent formulation
for MTA for vectors was proposed in Mart́ınez-Rego and Pontil (2013).
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4.3 Convexity of MTA Solution

One sees from (9) that the MTA estimates are linear combinations of the sample averages:

Y ∗ = WȲ , where W =
(
I +

γ

T
ΣL
)−1

.

Moreover, and less obviously, each MTA estimate is a convex combination of the single-task
sample averages:

Theorem 3 If γ ≥ 0, 0 ≤ Ars < ∞ for all r, s and 0 <
σ2
t
Nt

< ∞ for all t, then the MTA

estimates {Y ∗t } given in (9) are convex combinations of the task sample averages {Ȳt}.

This theorem generalizes a result of Chebotarev and Shamis (2006) that the matrix
(I + γL)−1 is right-stochastic (i.e., the rows are non-negative and sum to 1) if the entries
of A are strictly positive. Our proof (given in the appendix) uses a different approach, and

extends the result both to the more general form of the MTA solution matrix
(
I + γ

T ΣL
)−1

and to A with non-negative entries.

4.4 MSE Analysis for the Two Task Case

In this section we analyze the T = 2 task case, with N1 and N2 samples for tasks 1 and
2 respectively. Suppose random samples drawn for the first task {Y1i} are iid with finite
mean µ1 and finite variance σ2

1, and random samples drawn for the second task {Y2i} are
iid with finite mean µ2 = µ1 + ∆ and finite variance σ2

2. Let the task-relatedness matrix be
A = [0 a; a 0], and without loss of generality, we fix γ = 1. Then the closed-form solution
(9) can be simplified:

Y ∗1 =

 2 +
σ2

2
N2
a

2 +
σ2

1
N1
a+

σ2
2

N2
a

 Ȳ1 +

 σ2
1

N1
a

2 +
σ2

1
N1
a+

σ2
2

N2
a

 Ȳ2. (10)

The mean squared error of Y ∗1 is

MSE[Y ∗1 ] =
σ2

1

N1

4 + 4
σ2

2
N2
a+

σ2
1σ

2
2

N1N2
a2 +

σ4
2

N2
2
a2(

2 +
σ2

1
N1
a+

σ2
2

N2
a
)2

+
∆2 σ

4
1

N2
1
a2(

2 +
σ2

1
N1
a+

σ2
2

N2
a
)2 . (11)

Next, we compare the MTA estimate Y ∗1 to the sample average Ȳ1, which is the maximum
likelihood estimate of the true mean µ1 for many distributions.2 The MSE of the single-task

sample average Ȳ1 is
σ2

1
N1

, and comparing that to (11) and simplifying some tedious algebra
establishes that

MSE[Y ∗1 ] < MSE[Ȳ1] if ∆2 <
4

a
+
σ2

1

N1
+
σ2

2

N2
. (12)

Thus the MTA estimate of the first mean has lower MSE than the sample average estimate
if the squared mean-separation ∆2 is small compared to the summed variances of the sample
means. See Figure 1 for an illustration.

2. The uniform distribution is perhaps the simplest example where the sample average is not the maximum
likelihood estimate of the mean. For more examples, see Section 8.18 of Romano and Siegel (1986).
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Figure 1: Plot shows the percent change in average risk for two tasks (averaged over 10,000
runs of the simulation). For each task there are N iid samples, for N = 2, 10, 20.
The first task generates samples from a standard Gaussian. The second task
generates samples from a Gaussian with σ2 = 1 and different mean value, which
is varied as marked on the x-axis. The symmetric task-relatedness value was
fixed at a = 1 (note this is generally not the optimal value). One sees that
given N = 2 samples from each Gaussian, the MTA estimate is better than the
single-task sample if the difference between the true means is less than 1.5. Given
N = 20 samples from each Gaussian, the MTA estimate is better if the distance
between the means is less than 2. In the extreme case that the two Gaussians
have the same mean (µ1 = µ2 = 0), then even with this suboptimal choice of
a = 1, MTA provides a 20% win for N = 2 samples, and a 5% win for N = 20
samples.

Further, because of the symmetry of (12), if the condition of (12) holds, it is also true
that MSE[Y ∗2 ] < MSE[Ȳ2], such that the MSE of each task individually is reduced.

The condition (12) shows that even when the true means are far apart such that ∆ is
large, there is some tiny amount of MTA regularization a that will improve the estimates.

4.5 Optimal Task Relatedness A for T = 2

We analyze the optimal choice of a in the task-similarity matrix A = [0 a; a 0]. The risk is
the sum of the mean squared errors:

R(µ, Y ∗) = MSE[Y ∗1 ] + MSE[Y ∗2 ], (13)

which is a convex, continuous, and differentiable function of a, and therefore the first deriva-
tive can be used to specify the optimal value a∗, when all the other variables are fixed.
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Figure 2: Plot shows the risk for two tasks, where the task samples were drawn iid from
Gaussians N (0, 1) and N (1, 1). The task-relatedness value a was varied as shown
on the x-axis. The minimum expected squared error is marked by a dot, and
occurs for the choice of a given by (14), and is independent of N .

Minimizing (13) w.r.t. a one obtains the optimal:

a∗ =
2

∆2
, (14)

which is always non-negative, as was assumed. This result is key because it specifies that
the optimal task-similarity a∗ ideally should measure the inverse of the squared task mean-
difference. Further, the optimal task-similarity is independent of the number of samples Nt

or the sample variance σ2
t , as these are accounted for in Σ of the MTA objective. Note that

a∗ also minimizes the functions MSE[Y ∗1 ] and MSE[Y ∗2 ], separately.

The effect on the risk on the choice of a and the optimal a∗ is illustrated in Figure 2.

Analysis of the second derivative shows that this minimizer always holds for N1, N2 ≥ 1.

In the limit case, when the difference in the task means ∆ goes to zero (while σ2
t stay

constant), the optimal task-relatedness a∗ goes to infinity, and the weights in (10) on Ȳ1

and Ȳ2 become 1/2 each.

4.6 Estimating Task Similarity from Data for T = 2 Tasks

The optimal two-task similarity given in (14) requires knowledge of the true means µ1

and µ2. These are, in practice, unavailable. What similarity should be used then? A
straightforward approach is to use single-task estimates instead:

â∗ =
2

(ȳ1 − ȳ2)2
,
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and to use maximum likelihood estimates σ̂2
t to form the matrix Σ̂. This data-dependent ap-

proach is analogous to empirical Bayesian methods in which prior parameters are estimated
from data (Casella, 1985).

4.7 Estimating Task Similarity from Data for Arbitrary T Tasks

Based on our analysis in the preceding sections of the optimal A for the two-task case, we
propose two methods to estimate A from data for arbitrary T > 1. The first method is
designed to minimize the approximate risk using a constant similarity matrix. The second
method provides a minimax estimator. With both methods one can take advantage of the
Sherman-Morrison formula (Sherman and Morrison, 1950) to avoid taking the matrix inverse
or solving a set of linear equations in (9) (detailed in Section 4.7.3). For the special case
that all task variances are assumed equal (an assumption used in all of our experiments),
the computation time is O(T ).

4.7.1 MTA Constant

The risk of estimator Ŷ = WȲ is

R(µ,WȲ ) = E[(WȲ − µ)>(WȲ − µ)] (15)

= tr(WΣW>) + µ>(I −W )>(I −W )µ, (16)

where (16) uses the fact that E[Ȳ Ȳ >] = µµ> + Σ.
One approach to generalizing the results of Section 4.4 to arbitrary T is to try to find

a symmetric, non-negative matrix A such that the (convex, differentiable) risk R(µ,WȲ )

is minimized for W =
(
I + γ

T ΣL
)−1

(recall L is the graph Laplacian of A). The problem
with this approach is two-fold: (i) the solution is not analytically tractable for T > 2 and
(ii) an arbitrary A has T (T − 1) degrees of freedom, which is considerably more than the T
means we are trying to estimate in the first place. To avoid these problems, we generalize
the two-task results by constraining A to be a scaled constant matrix A = a11>, and find
the optimal a∗ that minimizes the risk given by (16). As in Section 4.4, we fix γ = 1.
For analytic tractability, we add the assumption that all the Yt have the same variance,
estimating Σ as tr(Σ)

T I. Then minimizing (15) becomes:

a∗ = arg min
a

R

(
µ,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

Ȳ

)
,

which has the solution

a∗ =
2

1
T (T−1)

∑T
r=1

∑T
s=1(µr − µs)2

, (17)

which does reduce to the optimal two task MTA solution (14) when T = 2.
While (17) is theoretically interesting, in practice, one of course does not have {µr} as

these are precisely the values one is trying to estimate, and thus cannot use (17) directly.
Instead, we propose estimating a∗ using the sample means {ȳr}:

â∗ =
2

1
T (T−1)

∑T
r=1

∑T
s=1(ȳr − ȳs)2

. (18)
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Using the optimal estimated constant similarity given in (18) and an estimated covari-
ance matrix Σ̂ produces what we refer to as the MTA Constant estimate

Y ∗ =

(
I +

1

T
Σ̂L(â∗11>)

)−1

Ȳ . (19)

Note that we made the assumption that the entries of Σ were the same in order to be able
to derive (17), but we do not need nor necessarily suggest that assumption on the Σ̂ be
used in practice with â∗ in (19).

4.7.2 MTA Minimax

Bock’s James-Stein estimator is minimax (Lehmann and Casella, 1998)). In this section,
we derive a minimax version of MTA for arbitrary T that prescribes less regularization
than MTA Constant. Formally, an estimator YM of µ is called minimax if it minimizes the
maximum risk:

inf
Ỹ

sup
µ
R(µ, Ỹ ) = sup

µ
R(µ, YM ).

Let r(π, Ŷ ) be the average risk of estimator Ŷ w.r.t. a prior π(µ) such that r(π, Ŷ ) =∫
R(µ, Ŷ )π(µ)dµ. The Bayes estimator Y π is the estimator that minimizes the average risk,

and the Bayes risk r(π, Y π) is the average risk of the Bayes estimator. A prior distribution
π is called least favorable if r(π, Y π) > r(π′, Y π′) for all priors π′.

First, we will specify MTA Minimax for the T = 2 case. To find a minimax estimator
YM it is sufficient to show that (i) YM is a Bayes estimator w.r.t. the least favorable prior
(LFP) and (ii) it has constant risk (Lehmann and Casella, 1998). To find a LFP, we first
need to specify a constraint set for µt; we use an interval: µt ∈ [bl, bu], for all t, where bl ∈ R
and bu ∈ R. With this constraint set the minimax estimator is (see appendix for details):

YM =

(
I +

2

T (bu − bl)2
ΣL(11>)

)−1

Ȳ ,

which reduces to (14) when T = 2. This minimax analysis is only valid for the case when
T = 2, but we found that the following extension of MTA Minimax to larger T worked well
in simulations and applications for any T ≥ 2. To estimate bu and bl from data we assume
the unknown T means are drawn from a uniform distribution and use maximum likelihood
estimates of the lower and upper endpoints for the support:

b̂l = min
t
ȳt and b̂u = max

t
ȳt.

Thus, in practice, MTA Minimax is

YM =

(
I +

2

T (b̂u − b̂l)2
Σ̂L(11>)

)−1

Ȳ .
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4.7.3 Computational Efficiency of MTA Constant and Minimax

Both MTA Constant and MTA Minimax weight matrices can be written as

(I + cΣL(11>))−1 = (I + cΣ(TI − 11>))−1

= (I + cTΣ− cΣ11>)−1

= (Z − z1>)−1,

where c is different for MTA Constant and MTA Minimax, Z = I + cTΣ, z = cΣ1. The
Sherman-Morrison formula (Sherman and Morrison, 1950) can be used to find the inverse:

(Z − z1>)−1 = Z−1 +
Z−1z1>Z−1

1− 1>Z−1z
.

Since Z is diagonal, Z−1 can be computed in O(T ) time, and so can Z−1z.
Further the computation becomesO(T ) if the covariance matrix Σ is taken to be diagonal

with constant component σ2, an assumption we use in all our experiments. In that case,
compute the constant v = 1/(1 + cσ2), and then the MTA estimate reduces to a convex
combination of the task sample average and the pooled sample average: vȲ +(1−v)

∑T
t Ȳt.

4.8 Generality of MTA

In this section, we use the expression ‘matrices of MTA form’ to refer to matrices that can
be written

(I + ΓL(A))−1 , (20)

where A is a matrix with all non-negative entries, and Γ is a diagonal matrix with all
non-negative entries. Matrices of the form (I + γL)−1 have been used as graph kernels
(Fouss et al., 2006; Yajima and Kuo, 2006), and were termed regularized Laplacian kernels
(RLKs) by Smola and Kondor (2003). The RLK assumes that A (and L) are symmetric,
and thus MTA and (20) strictly generalizes the RLK because ΓL is only symmetric for
some special cases such as when Γ is a scaled identity matrix. Thus, one might also refer to
matrices of the form (20) as generalized regularized Laplacian kernels, but in this section
we focus on their role as estimators and in understanding relationships with the proposed
MTA estimator.

Figure 3 is a Venn diagram of the sets of estimators that can be expressed Ŷ = WȲ ,
where W is some T × T matrix. The first subset (the pink region) is all estimators where
W is right-stochastic. The second subset (the green region) is estimators of MTA form as
per (20). The innermost subset (the purple region) includes many well-known estimators
such as the James-Stein estimator, and estimators that regularize single-task estimates of
the mean to the pooled mean or the average of means. In this section we will prove that the
innermost purple subset is a strict subset of the green MTA subset, such that any innermost
estimator can be written in MTA form for specific choices of A, γ, and Σ. Note that the
covariance Σ is treated as a “choice” because some classic estimators assume Σ = I.

Proposition 4 The set of estimators WȲ where W is of MTA form as per (20) is strictly
larger than the set of estimators that regularize the single-task estimates as follows:

Ŷ =

(
1

γ
I + 1α>

)
Ȳ ,
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Ŷ = W ¹Y Ŷ = W ¹Y

right stochastic W

Ŷ = W ¹Y

W = (I + ¡L(A))
¡1

diagonal ¡ with ¡tt ¸ 0

Ars ¸ 0

Ŷ = W ¹Y

W =
³

1
°
I + 1®T

´

1T® = 1¡ 1
°

0 < 1
°
· 1

Figure 3: A Venn diagram of the set membership properties of various estimators of the
type Ŷ = WȲ .

where
∑T

r=1 αr = 1− 1
γ , γ ≥ 1, and αr ≥ 0, ∀r.

Corollary 5 Estimators that regularize the single task estimate towards the pooled mean
such that they can be written

Y̌t = λȲt +
1− λ∑T
r=1Nr

T∑
s=1

Ns∑
i=1

Ysi,

for λ ∈ (0, 1] can also be written in MTA form as

Y̌ =

(
I +

1− λ
λN>1

L(1N>)

)−1

Ȳ ,

where N is a T by 1 vector with Nt as its tth entry since in Proposition 4 we can choose
γ = 1

λ and α = 1−λ
NT 1

N, which matches (20) with Γ = 1−λ
λN>1

I and A = 1N>.

Corollary 6 Estimators which regularize the single task estimate towards the average of
means such that they can be written

Y̆t = λȲt +
1− λ
T

T∑
t=1

Ȳt,
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for λ ∈ (0, 1], can also be written in MTA form as

Y̆ =

(
I +

1− λ
λT

L(11>)

)−1

Ȳ ,

since in Proposition 4 we can choose γ = 1
λ and α = 1−λ

T 1, which matches (20) with

Γ = 1−λ
λT I and A = 11>.

Note that the proof of the proposition in the appendix uses MTA form with asymmetric
similarity matrix A. The MTA form with asymmetric A arises if you replace the symmetric
MTA regularization term in (4) with the following asymmetric regularization term as follows:

1

2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2 +
1

2

T∑
r=1

(
T∑
s=1

Ars

)
Ỹ 2
r −

1

2

T∑
r=1

(
T∑
s=1

Asr

)
Ỹ 2
r .

Lastly, we make a note about the sum of the mean estimates for the different estimators
of Figure 3. In general, the sum of the estimates Ŷ = WȲ for right-stochastic W may differ
from the sum of the sample means, because 1>WȲ 6= 1>Ȳ for all right-stochastic W . But
in the special case of Bock’s positive-part James-Stein estimator the sum is preserved:

Proposition 7
1>Ŷ JS = 1>Ȳ , (21)

where Ŷ JS is given in (7).

We illustrate this property in the Kings’ reigns experiments in Table 7.

4.9 Bayesian Interpretation of MTA

The MTA estimates from (4) can be interpreted as jointly maximizing the likelihood of
T Gaussian distributions with a joint Gaussian Markov random field (GMRF) prior (Rue
and Held, 2005) on the solution. In MTA, the precision matrix (the inverse covariance of
the GMRF prior) is L, the graph Laplacian of the similarity matrix, and is thus positive
semi-definite (and not strictly positive definite); GMRFs with PSD inverse covariances are
called intrinsic GMRFs (IGMRFs).

GMRFs and IGMRFs are commonly used in graphical models, wherein the sparsity
structure of the precision matrix (which corresponds to conditional independence between
variables) is exploited for computational tractability. Because MTA allows for arbitrary but
non-negative similarities between any two tasks, the precision matrix does not (in general)
have zeros on the off-diagonal, and it is not obvious how additional sparsity structure of L
would be of help computationally.

Additionally, none of the results we show in this paper require a Gaussian assumption
nor any other assumption about the parametric form of the underlying distribution.

5. Simulations

As we have shown in the previous section, MTA is a theoretically rich formulation. In the
next two sections we test the usefulness of MTA Constant and MTA Minimax given data,
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first with simulations, then with real data. In these sections we use lower-case notation to
indicate that we are dealing with actual data as opposed to random variables.

In this section, we test estimators using simulations so that comparisons to ground
truth can be made. The simulated data was generated from either a Gaussian or uniform
hierarchical process with many sources of randomness (detailed below), in an attempt to
imitate the uncertainty of real applications, and thereby determine if these are good general-
purpose estimators. The reported results demonstrate that MTA works well averaged over
many different draws of means, variances, and numbers of samples.

Simulations are run for T = {2, 5, 25, 500} tasks, and parameters were set so that the
variances of the distribution of the true means are the same in both uniform and Gaussian
simulations. Simulation results are reported in Figures 4 and 5 for the Gaussian experi-
ments, and Figures 6 and 7 for the uniform experiments. The Gaussian simulations were
run as follows:

1. Fix σ2
µ, the variance of the distribution from which {µt} are drawn.

2. For t = 1, . . . , T :

(a) Draw the mean of the tth distribution µt from a Gaussian with mean 0 and
variance σ2

µ.

(b) Draw the variance of the tth distribution σ2
t ∼ Gamma(0.9, 1.0) + 0.1, where the

0.1 is added to ensure that variance is never zero.

(c) Draw the number of samples to be drawn from the tth distribution Nt from an
integer uniform distribution in the range of 2 to 100.

(d) Draw Nt samples Yti ∼ N (µt, σ
2
t ).

The uniform simulations were run as follows:

1. Fix σ2
µ, the variance of the distribution from which {µt} are drawn.

2. For t = 1, . . . , T :

(a) Draw the mean of the tth distribution µt from a uniform distribution with mean
0 and variance σ2

µ.

(b) Draw the variance of the tth distribution σ2
t ∼ U(0.1, 2.0).

(c) Draw the number of samples to be drawn from the tth distribution Nt from an
integer uniform distribution in the range of 2 to 100.

(d) Draw Nt samples Yti ∼ U [µt −
√

3σ2
t , µt +

√
3σ2

t ].

We compared MTA Constant and MTA Minimax to single-task sample averages and
to Bock’s James-Stein estimator (Bock, 1975) given in (7), with a slight adaptation for

better performance. The term tr(Σ)
λmax

in (7) is called the effective dimension of the estimator.
In simulations where we set Σ to be the true covariance matrix and then estimated the
effective dimension by estimating the maximum eigenvalue and trace of the sample mean
covariance matrix, we found that replacing the effective dimension with the number of tasks
T (when Σ is diagonal) resulted in a significant performance boost for Bock’s estimator,
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due to the high variance of the estimated maximum eigenvalue in the denominator of the
effective dimension. Preliminary experiments with real data also showed a performance
advantage to using T rather than the effective dimension. Consequently, to present James-
Stein estimation in its best light, for all of the experiments in this paper, the James-Stein
comparison refers to (7) using T instead of the effective dimension.

James-Stein, MTA Constant and MTA Minimax all self-estimate the amount of reg-
ularization to use (for MTA Constant and MTA Minimax the parameter γ = 1). So we
also compared to a 50-50 randomized cross-validated (CV) version of each. For the cross-
validated versions, we randomly subsampled Nt/2 samples and chose the value of γ for
MTA Constant/Minimax or λ for James-Stein that resulted in the lowest average left-out
risk compared to the sample mean estimated with all Nt samples. In the optimal versions
of MTA Constant/Minimax γ was set to 1, as this was the case during derivation. Note that
the James-Stein formulation with a cross-validated regularization parameter λ is simply a
convex regularization towards the average of the sample means:

λȳt + (1− λ)¯̄y.

We used the following parameters for CV: γ ∈ {2−5, 2−4, . . . , 25} for the MTA estimators
and for cross-validated James-Stein a comparable set of λ spanning (0, 1) by the transfor-
mation λ = γ

γ+1 . Even when cross-validating the regularization parameter for MTA, an
advantage of using the proposed MTA Constant or MTA Minimax is that these estimators
provide a data-adaptive scale for γ, where γ = 1 sets the regularization parameter to be a∗

T
or 1

T (bu−bl)2 , respectively.

Some observations from Figures 4-7:

• Further to the right on the x-axis the means are more likely to be further apart, and
multi-task approaches help less on average compared to the single-task sample means.

• For T = 2, the James-Stein estimator reduces to the single-task estimator. The MTA
estimators provide a gain while the means are close with high probability (that is,
when σ2

µ < 1) but deteriorate quickly thereafter.

• For T = 5, MTA Constant dominates in the Gaussian case, but in the uniform case
does worse than single-task when the means are far apart. For all T > 2, MTA
Minimax almost always outperforms James-Stein and always outperforms single-task,
which is to be expected as it was designed conservatively.

• The T = 25 and T = 500 cases illustrate that all estimators benefit from an increase
in the number of tasks. The difference between T = 25 performance and T = 500
performance is minor, indicating that benefit from jointly estimating a larger number
of tasks together levels off early on.

• For MTA Constant, cross-validation is always worse than the estimated optimal reg-
ularization, while the opposite is true for MTA Minimax. This is to be expected, as
minimax estimators are not designed to minimizes the average risk, but average risk
is the metric optimized during cross-validation and is the metric reported.
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• Cross-validating MTA Constant or MTA Minimax should result in similar perfor-
mance, and this can be seen in the figures where the green and blue dotted lines are
superimposed. The performance differs slightly because the discrete set of γ choices
multiply different a’s for the MTA Constant and MTA Minimax.

In summary, when the tasks are close to each other compared to their variances, MTA
Constant is the best estimator to use by a wide margin. When the tasks are farther apart,
MTA Minimax provides a win over both James-Stein and sample averages.

5.1 Oracle Performance

To illustrate the best performance we know is possible to achieve with MTA, Figure 8 shows
the effect of using the true “oracle” means and variances for the calculation of optimal
pairwise similarities for T > 2:

Aorcl
rs =

2

(µr − µs)2
. (22)

This matrix is the best pairwise oracle, but does not generally minimize the risk over all
possible A for T > 2. However, comparing to it illustrates how well the MTA formulation
can do, without the added error due to estimating A from the data.3:

Figure 8 reproduces the results from the T = 5 Gaussian simulation (excluding cross-
validation results), and compares to the performance of oracle pairwise MTA using (22).
Oracle MTA is over 30% better than MTA Constant, indicating that practical estimates of
the similarity are highly suboptimal compared to the best possible MTA performance, and
motivating better estimates of A as a direction for future research.

6. Real Data Experiments

We present four real data experiments,4 comparing eight estimators on both goals (2)
and (3). The first experiment estimates future customer reviews based on past customer
reviews. The second experiment estimates final grades based on homework grades. The
third experiment forecasts a customer’s future order size based on the size of their past
orders. The fourth experiment takes a more in-depth look at the estimates produced by
these methods for the historical problem of estimating the length of a king’s reign.

6.1 Metrics

For all the experiments except estimating final grades, we only have sample data, and so we
compare the estimators using a metric that is an empirical approximation to the regression
error defined in (3). First, we replace the expectation in (3) with a sum over the samples.
Second, we measure the squared error between a sample yti and an estimator formed without

3. Preliminary experiments (not reported) showed that for T > 2 estimating A pairwise as Ârs = 2
(ȳr−ȳs)2

was almost always worse than constant MTA.
4. Research-grade Matlab code and the data used in these experiments can be found at http://mayagupta.

org/publications.html.
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Figure 4: Gaussian experiment results for T = {2, 5}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task. Note: for T = 2 the James-Stein esti-
mator reduces to single-task, and so the cyan and black lines overlap. Similarly,
for T = 2, MTA Constant and MTA Minimax are identical, and so the blue and
green lines overlap.
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Gaussian,T = 25
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Figure 5: Gaussian experiment results for T = {25, 500}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task.
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Figure 6: Uniform experiment results for T = {2, 5}. The y-axis is average (over 10000
random draws) percent change in risk vs. single-task, such that −50% means the
estimator has half the risk of single-task. Note: for T = 2 the James-Stein esti-
mator reduces to single-task, and so the cyan and black lines overlap. Similarly,
for T = 2, MTA Constant and MTA Minimax are identical, and so the blue and
green lines overlap.
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Figure 7: Uniform experiment results for for T = {25, 500}. The y-axis is average (over
10000 random draws) percent change in risk vs. single-task, such that −50%
means the estimator has half the risk of single-task.
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Figure 8: Average (over 10000 random draws) percent change in risk vs. single-task with
T = 5 for the Gaussian simulation. Oracle MTA uses the true means and variance
to specify the weight matrix W .

that sample, ŷt\yti . That is, the empirical risk we measure is:

T∑
t=1

(
1

Nt

Nt∑
i=1

[
(yti − ŷt\yti)

2
])

. (23)

To make the results more comparable across data sets, we present the results as the percent
the error given in (23) is reduced compared to the single-task sample mean estimate.

6.2 Experimental Details

For the cross-validation estimators, we cross-validate the regularization parameter from the
set {2−15, 2−14, . . . , 214, 215}. This is a larger range of cross-validation values than used in
the simulations, but we found that necessary to achieve good results with cross-validation in
the real data experiments. Cross-validation parameters were chosen using double-leave-one-
out cross-validation (for each sample left out for test, the remaining N-1 samples undergo
leave-one-out cross-validation to optimize (23)). For real-data experiments with more than
50 tasks, to make the double leave-one-out cross-validation fast enough to be feasible, we
randomly sub-sampled uniformly and independently for each held-out sample 50 tasks for
the estimation of the regularization parameter (but all tasks were used in all cases for the
actual estimates).
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In addition to James-Stein, MTA, and their variants, we also compare to the completely-
regularized baseline, the pooled mean estimator:

ŷpooled
t = ¯̄y =

1

TN

T∑
s=1

N∑
i=1

ysi, (24)

which estimates the same value for each task.
For each experiment, a single pooled variance estimate when needed was used for all

tasks: σ2
t = σ2, for all t. We found that using a pooled variance estimate improved perfor-

mance for all the estimators compared.

6.3 Estimating Customer Reviews for Amazon Products

We model amazon.com customer reviews for a product as iid random draws from an un-
known distribution. We scraped customer review scores (ranging from 1 to 5) for four
different product types from the amazon.com website, as detailed in Table 2. We treat each
product as a task, and jointly estimate the mean reviews for all products of the same type.
The eight estimators are compared to see how well they predict held-out customer reviews,
as per (23); a lower (more negative) score corresponds to greater percent reduction in risk
compared to the sample mean estimates.

# of Products Mean # of Reviews Range of # of Reviews

Machine Learning Books 156 7.7 2—80
Blue Suede Shoes 37 16.2 2—143
Espresso Machines 277 47.1 2—1788
Robot Vacuums 59 137.1 3—883

Table 2: Products used in customer reviews experiments, ordered by mean number of re-
views (that is, mean sample size).

Table 3 shows the percent risk reduction for each estimator compared to single-task
estimates. Some observations:

• MTA Constant (no cross-validation) has the best risk reduction averaged across the
products at 11.9% average risk reduction over the single-task estimates, slightly better
than the cross-validated forms of MTA.

• The average MTA Constant risk reduction is 34% better than JS (11.9% vs 8.9%),
and MTA Constant is better than JS on all the data sets.

• On all data sets, all the joint estimators (not including the pooled mean baseline) do
better than the single-task estimates except JS CV on the robot vacuums data set,
showing that joint estimation usually helps.

• MTA Minimax consistently provides small gains over single-task, on average reducing
risk by 4.0%, with the lowest standard deviation of improvement of 2.1.
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• The JS estimator is more sensitive to the quality of the pooled mean estimate than
the MTA Constant estimator.

• JS does better on average than its cross-validated counterpart JS CV, and MTA
Constant does better on average than its cross-validated counterpart MTA Constant
CV.

• The rows in Table 3 are ordered by the average number of reviews (that is, the average
number of samples per task). As one would expect from theory, the gains are larger
if there are fewer reviews per task.

• Mixing un-related products (the last row of Table 3) still produces substantial gains
over single-task estimates.

Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

ML Books -24.6 -23.1 -22.9 -24.6 -23.3 -6.5 -23.1
Blue Suede Shoes -12.4 -11.5 -10.6 -12.5 -11.6 -4.8 -11.6
Espresso Machines 2.7 -3.7 -6.3 -8.4 -7.8 -3.6 -8.3
Robot Vacuums 8.7 -0.7 7.3 -2.5 -2.2 -0.8 -1.8
All Products -1.9 -5.4 -9.3 -11.3 -11.0 -4.3 -10.7

Average -5.5 -8.9 -8.4 -11.9 -11.2 -4.0 -11.1
STD 13.2 8.9 10.8 8.1 7.7 2.1 7.7

Table 3: Percent change in risk vs. single-task for customer reviews experiment (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation, and ‘STD’
denotes standard deviation.

6.4 Estimating Final Grades from Homework Grades

We model homework grades as random samples drawn iid from an unknown distribution
where the mean for each student is that student’s final class grade. We compare the eight
estimators to see how well they predict each student’s final grade given only their homework
grades. Final class grades are based on the homework, but also on projects, labs, quizzes,
exams and sometimes class participation, with the mix varying by class. We collected
22 anonymized data sets from six different instructors at three different universities for
undergraduate electrical engineering classes. Further experimental details:

• Each of the 22 data sets is for a different class, and constitutes a single experiment,
where each student corresponds to a task.

• We treat the ith homework grade of the tth student as sample yti.

• For each class and each cross-validation method, cross-validation parameters were
chosen independently using leave-one-out cross-validation on the homework grades.
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• For each class, the error measurement for estimator ŷ is the sum of squared errors
across all T students:

T∑
t=1

(µt − ŷt)2,

where µt is the given tth student’s final grade.

Table 4 compares the estimators in terms of the percent change in error compared to
the single task estimate ȳt. A lower (more negative) score corresponds to greater percent
reduction in risk compared to the single task estimates.

Some observations:

• MTA Constant (no cross-validation) has the best average risk reduction, at 16.6%
better on average than the standard single-task estimate. The standard deviation
of the win over single task for MTA Constant is 13.7% - also lower than any of the
other estimators except MTA Minimax. This shows MTA Constant is consistently
providing good error reduction.

• MTA Minimax consistently provides small gains, as designed, with low variance.

• Once again, the higher variance of the James-Stein estimator compared to the others
is because of the positive-part aspect of the JS estimator: when the positive-part
boundary is triggered, JS reduces to the one-task (average-of-means) estimator, which
can have poor performance.

• JS does better on average than its cross-validated counterpart JS CV, and MTA
Constant does better on average than its cross-validated counterpart MTA Constant
CV.

6.5 Estimating Customer Spending

We collaborated with the wooden jigsaw puzzle company Artifact Puzzles to estimate how
much each repeat customer would spend on their next order. We treated each customer as
a task; in the time period spanned by the data there are T = 1355 unique customers who
have each purchased at least twice. We modelled each order by a customer as an iid draw
from that customer’s unknown spending distribution. The number of orders per customer
(that is, samples per task) ranged from 2-23, with a mean of 3.03 orders per customer. The
amount spent on a given order had a rather long tail distribution, ranging from $9-$2403,
with a mean of $82.16.

Results are shown in Table 5, showing the percentage reduction in (23) compared to the
single-task sample means.

Some observations from Table 5:

• MTA Constant performed slightly better than the James-Stein estimator, reducing
the empirical risk by 22.4% rather than 21.1%.

• JS does better than its cross-validated counterpart JS CV, and MTA Constant does
better than its cross-validated counterpart MTA Constant CV.
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Class Pooled JS JS MTA MTA MTA MTA
Size Mean CV Constant Constant Minimax Minimax

CV CV

16 26.3 0.7 -0.0 0.6 -0.0 -0.0 -0.0
20 71.2 −3.2 -5.2 −4.7 −3.4 −1.7 −4.6
25 776.9 −12.2 -12.3 −12.2 −12.2 −2.7 −12.1
29 −7.6 −11.6 −31.2 −11.4 -35.2 −1.8 −29.6
34 373.6 −4.9 −12.4 −5.0 −12.7 −1.1 -13.3
36 -28.3 −17.4 −0.0 −16.0 −0.0 −2.8 −0.0
39 42.0 -5.8 −0.0 −5.6 −0.0 −0.9 −0.0
44 3.0 −47.6 −64.5 −42.7 −68.0 −7.0 -69.0
45 127.6 −3.0 −0.0 -19.2 −0.0 −4.6 −0.0
47 -12.8 −8.0 −0.0 −7.1 −0.0 −0.7 −0.0
48 -21.0 −20.5 −0.0 −18.5 −0.0 −2.5 −0.0
50 63.5 63.5 −0.0 9.3 −0.0 -4.4 −0.0
50 3.7 −33.6 −41.5 −29.7 −42.4 −3.2 -47.4
57 23.3 -3.8 −0.0 −3.6 −0.0 −0.4 −0.0
58 −0.2 -16.3 −0.0 −15.6 −0.0 −2.8 −0.0
65 45.0 -29.4 −0.0 −26.2 −0.0 −4.2 −0.0
68 −16.9 -45.5 −16.5 −39.0 −17.0 −6.1 −19.8
69 −14.7 -41.0 −14.7 −39.8 −14.7 −4.5 −14.8
72 34.6 −32.9 −27.3 −29.0 −27.8 −4.0 -34.8
73 224.2 −28.1 −41.1 −26.4 −39.6 −2.4 -41.2
110 5.7 −14.8 -25.3 −13.4 −20.6 −1.2 −22.0
149 -16.6 −11.7 −0.0 −10.1 −0.0 −0.8 −0.0

Average 77.4 −14.9 −13.3 -16.6 −13.3 −2.7 −14.0
STD 182.0 22.7 18.1 13.7 18.7 1.9 19.4

Table 4: Percent change in risk vs. single-task for the grade estimation experiment (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation, and ‘STD’
denotes standard deviation.

3648



Multi-Task Averaging

Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

Customer Spending -10.6 -21.1 -17.6 -22.4 -19.7 -0.6 -19.5

Table 5: Percent change in risk vs. single-task for the customer spending experiments (lower
is better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation.

Pooled JS JS MTA MTA MTA MTA
Mean CV Constant Constant Minimax Minimax

CV CV

Kings’ Reigns -8.2 -8.7 -4.7 -8.9 -2.9 -3.1 -3.2

Table 6: Percent change in risk vs. single-task for the kings’ reigns experiments (lower is
better). ‘JS’ denotes James-Stein, ‘CV’ denotes cross-validation.

6.6 Estimating the Length of Kings’ Reigns

To illustrate the differences between the actual estimates, we re-visit an estimation problem
studied by Isaac Newton, “How long does the average king reign?” (Newton, 1728; Stigler,
1999). Newton considered 9 different kingdoms, from the Kings of Judah to more recent
French kings. Our data set covers 30 well-known dynasties, listed in Table 7, from ancient
to modern times, and spread across the globe. All data was taken from wikipedia.org in
August and September 2013 (see the linked data files for the raw data and more historical
details).

Results are shown in Table 6, showing the percentage reduction in (23) compared to the
single-task sample means. Some observations about these results:

• The pooled mean is 8.2% better than estimating each dynasty’s average separately.
We found it surprising that pooling across cultures and history forms overall better
estimates: the fate of man is apparently the fate of man, regardless of whether it is
1000 BC in Babylon or 19th century Denmark.

• The JS and MTA Constant estimators achieve a slightly bigger reduction in squared
error compared to the pooled mean.

• The MTA Constant estimator is very slightly better than the JS estimator, −8.9% vs
−8.7%.

• The JS and MTA estimators do better than their cross-validated counterparts.

We also give the actual estimators of the average length of the reign for each kingdom
in Table 7. Some observations from Table 7:
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Dynasty, # Kings Avg. Pooled JS JS MTA MTA MTA MTA
Mean CV Const. Const. MM MM

CV CV

Larsa, 15 17.7 19.5 19.2 18.5 18.3 18.1 17.8 18.1
Amorite, 11 26.9 19.5 22.3 24.6 24.6 25.5 26.5 25.6
Assyrian, 27 17.3 19.5 19.1 18.2 17.8 17.6 17.4 17.6
Israel, 21 13.4 19.5 17.7 15.6 14.8 14.2 13.6 14.1
Judah, 22 21.5 19.5 20.5 21.0 21.2 21.3 21.5 21.4
Achaemenid, 9 24.3 19.5 21.4 22.9 22.4 23.1 23.9 23.2
Khmer, 33 20.0 19.5 20.0 20.0 20.0 20.0 20.0 20.0
Song, 18 17.7 19.5 19.2 18.5 18.3 18.0 17.8 18.0
Mongol, 4 10.8 19.5 16.8 13.8 16.1 14.5 12.0 14.3
Ming, 17 16.3 19.5 18.7 17.5 17.2 16.8 16.4 16.8
Qing, 12 24.6 19.5 21.6 23.0 23.1 23.7 24.4 23.8
Mamluk, 10 10.1 19.5 16.6 13.4 13.6 12.3 10.7 12.1
Ottoman, 36 17.0 19.5 19.0 18.0 17.4 17.2 17.1 17.2
Normandy, 3 23.0 19.5 21.0 22.0 21.1 21.6 22.5 21.7
Plantagenet, 8 30.8 19.5 23.7 27.2 26.4 28.0 30.0 28.2
Lancaster, 3 20.3 19.5 20.1 20.2 20.1 20.2 20.3 20.2
York, 3 8.0 19.5 15.9 12.0 15.8 13.8 10.1 13.4
Tudor, 5 23.4 19.5 21.1 22.3 21.6 22.2 23.0 22.3
Stuart, 6 16.8 19.5 18.9 17.9 18.4 17.8 17.1 17.8
Hanover, 6 31.0 19.5 23.7 27.3 25.7 27.5 30.0 27.8
Windsor, 3 14.0 19.5 17.9 16.0 17.9 16.9 15.0 16.7
Capet, 15 22.7 19.5 20.9 21.8 21.9 22.3 22.6 22.3
Valois, 7 24.3 19.5 21.4 22.9 22.4 23.1 23.9 23.2
Habsburg, 5 34.4 19.5 24.9 29.6 26.8 29.3 32.8 29.6
Bourbon, 10 21.8 19.5 20.6 21.2 21.2 21.4 21.7 21.4
Oldenburg, 16 25.8 19.5 22.0 23.9 24.3 25.0 25.6 25.0
Mughal, 20 15.7 19.5 18.5 17.1 16.6 16.2 15.8 16.2
Edo, 15 18.6 19.5 19.5 19.1 19.0 18.8 18.7 18.8
Kamehameha, 5 15.4 19.5 18.4 16.9 17.8 17.1 15.9 16.9
Zulu, 4 15.8 19.5 18.5 17.2 18.2 17.5 16.3 17.4

Average
Over Dynasties 19.98 19.49 19.98 19.98 20.00 20.03 20.01 20.04

Table 7: Sample average and eight other estimators of the expected length of the reign of
a king for each dynasty, ordered chronologically. ‘JS’ denotes James-Stein, ‘CV’
denotes cross-validation, ‘Const.’ denotes Constant, and ‘MM’ denotes Minimax.
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• Table 7 shows that while all the estimators regularize the single task mean (given in
column 1) to the pooled mean (given in column 2), the actual estimates can differ
quite a bit. For example, MTA Constant and MTA Minimax differ by 5 years in their
estimates of the average length of reign of a king from the House of York.

• One sees that the JS estimates are regularized harder towards the pooled mean of 19.5
than the MTA Constant estimates. The MTA Minimax estimates are (as expected)
least changed from the task means.

• The last row of Table 7 shows the estimates averaged over the different dynasties. Note
that the JS and JS CV estimators have the same average across the tasks (dynasties)
as the single-task average, as expected from Proposition 7.

• Based on Tables 5 and 7, we estimate the expected length of a king’s reign to be
the dynasty-averaged MTA Constant estimate of 20.00 years. Newton’s wrote his
estimate as “eighteen or twenty years” (Newton, 1728), and the analysis of Stigler
(1999) of Newton’s data shows that the maximum likelihood estimate from his data
was a more pessimistic 19.03 years.

7. Conclusions And Open Questions

We conclude with a summary and then some open questions.

7.1 Summary

We proposed a simple additive regularizer to jointly estimate multiple means using a pair-
wise task similarity matrix A. Our analysis of the T = 2 task case establishes that both
MTA estimates are better than the individual sample means when the separation between
the true means is small relative to the variance of the samples from each distribution. For
the two-task case, we provide a formula for the optimal pairwise task similarity matrix
A, that is, one can analytically estimate the optimal amount of regularization without the
need to cross-validate or tune a regularization hyper-parameter. We generalized that for-
mula to multiple tasks to form the practical and computationally-efficient MTA Constant
mean estimator, as well as a more conservative minimax variant. Simulations and four sets
of real data experiments show the MTA Constant estimator can substantially reduce errors
over the sample means, and generally performs slightly better than James-Stein estimation
(which also does not require cross-validation).

One can also cross-validate the amount of regularization in the MTA formula or in the
James-Stein formula. Our results show that both cross-validations work well, though in
both simulations and real data experiments, MTA Constant performed slightly better or
comparable to the cross-validations.

7.2 Open Questions

Averaging is common, and MTA has potentially broad applicability as a subcomponent to
the many algorithms that use means as a subroutine, such as k-means clustering, kernel
density estimation, or non-local means denoising.
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Most multi-task learning formulations contain an explicit or implicit dependence on
the pairwise similarity between tasks. For MTA, this is the A matrix. Even when side
information about task similarities is available, it may not be in the optimal numerical
form. This paper shows good performance with the assumption that A has constant entries,
where that constant is the average of pairwise similarities estimated based on the sample
means (MTA Constant). However, the oracle performance plots in Section 5 show that the
right choice of A can perform much better. Estimating all T ×T parameters of A optimally
may be difficult, but we hypothesize that other structured assumptions, such as low rank A,
might perform better than our constant approximation. Mart́ınez-Rego and Pontil (2013)
have shown some promising results by clustering tasks in a pre-processing stage.

We focused in this paper on estimating scalar means. The extension to vectors is
straightforward (see Section 4.2). However, how well the vector extension works in prac-
tice, how to best estimate the block diagonal covariance matrix, and whether different
regularization norms would be better remain open questions. A further extension is when
the samples themselves are distributions, and the task means to be estimated are expected
distributions (Frigyik et al., 2008).

We showed in Section 4 that the matrix inverse needed to compute the MTA Constant
and MTA Minimax estimators can be done efficiently. Simulations showed that the achiev-
able gains generally go up slowly with the number of tasks T , with T = 500 producing an
average risk reduction of 40% in the extreme case that the true means for the 500 tasks
were the same. In the real data experiment on customer spending, there were T = 1355
tasks that produced a risk reduction of 22.4%. Larger-scale experiments and analysis of the
effect of large T on the error would be intriguing.

We focused on squared error loss and the graph Laplacian regularizer because they are
standard, generally work well, lead to computationally efficient solutions, and are easy to
analyze. But re-considering the MTA objective with other loss functions and regularizers
might lead to interesting new perspectives and estimates.

Lastly, we hope that some of the analyses and results in this paper inspire further
theoretical analysis of other multi-task learning methods.
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Appendix A. MTA Closed-form Solution

When all Ars are non-negative, the differentiable MTA objective is convex, and admits
closed-form solution. First, we rewrite the objective in (4) using the graph Laplacian matrix
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L = D − (A+A>)/2:

1

T

T∑
t=1

1

σ2
t

Nt∑
i=1

(Yti − Ỹt)2 +
γ

T 2

T∑
r=1

T∑
s=1

Ars(Ỹr − Ỹs)2
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T∑
t=1

(
1

σ2
t

Nt∑
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T 2
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=
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σ2
t

Nt∑
i=1

Y 2
ti + Ỹ >Σ−1Ỹ − 2Ỹ >Σ−1Ȳ

)
+

γ

T 2
Ỹ >LỸ ,

where, Σ is a diagonal matrix with Σtt =
σ2
t
Nt

, and Ỹ and Ȳ are column vectors with tth

entries Ỹt and Ȳt, respectively.

For simplicity of notation, we assume from now on that A is symmetric. If, in practice,
an asymmetric A is provided, it can be symmetrized without loss of generality.

Take the partial derivative of the above objective w.r.t. Ỹ and equate to zero,

0 =
1

T

(
2Σ−1Y ∗ − 2Σ−1Ȳ

)
+ 2

γ

T 2
LY ∗ (25)

= Y ∗ − Ȳ +
γ

T
ΣLY ∗

Ȳ =
(
I +

γ

T
ΣL
)
Y ∗,

which yields the following optimal closed-form solution:

Y ∗ =
(
I +

γ

T
ΣL
)−1

Ȳ , (26)

as long as the inverse exists, which we will prove next.

Appendix B. Proof of Lemma 1

Assumptions: γ ≥ 0, 0 ≤ Ars <∞ for all r, s and 0 <
σ2
t
Nt

<∞ for all t.

Lemma 1 The MTA solution matrix W =
(
I + γ

T ΣL
)−1

exists.

Proof Let B = W−1 = I + γ
T ΣL. The (t, s)th entry of B is

Bts =

{
1 +

γσ2
t

TNt

∑
s 6=tAts if t = s

− γσ2
t

TNt
Ats if t 6= s,

The Gershgorin disk (Horn and Johnson, 1990) D(Btt, Rt) is the closed disk in C with center
Btt and radius

Rt =
∑
s 6=t
|Bts| =

γσ2
t

TNt

∑
s 6=t

Ats = Btt − 1.
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One knows that Btt ≥ 1 for non-negative A and when
γσ2

t
TNt
≥ 0, as assumed prior to the

lemma statement. Also, it is clear that Btt > Rt for all t. Therefore, every Gershgorin disk
is contained within the positive half-plane of C, and, by the Gershgorin Circle Theorem
(Horn and Johnson, 1990), the real part of every eigenvalue of matrix B is positive. Its
determinant is therefore positive, and the matrix B is invertible: W = B−1.

Appendix C. Proof of Proposition 2

Recall the proposition: As Nt →∞∀ t, Y ∗ → µ.

Proof First note that the (t, t)th diagonal entry of Σ is
σ2
t
Nt

, which approaches 0 as Nt → 0,
implying that all entries of γ

T ΣL → 0 as Nt → 0 as well. Since matrix inversion is a

continuous operation,
(
I + γ

T ΣL
)−1 → I in the norm.5 By the law of large numbers one

can conclude that Y ∗ asymptotically approaches the true mean µ.

Note further that the above proof is only valid for diagonal Σ, but can be easily ex-
tended for non-diagonal Σ by noting that Σrs = σrσs√

NrNs
also converges to 0 as Nr, Ns → 0.

Appendix D. Proof of Theorem 3

Assumptions: γ ≥ 0, 0 ≤ Ars <∞ for all r, s and 0 <
σ2
t
Nt

<∞ for all t.

We next state and prove two lemmas that will be used to prove Theorem 3.

Lemma 8 W has all non-negative entries.

Proof Because the off-diagonal elements of the graph Laplacian are non-positive, W−1 =(
I + γ

T ΣL
)

is a Z-matrix, defined to be a matrix with non-positive off-diagonal entries
(Berman and Plemmons, 1979). If W−1 is a Z-matrix, then the following two statements
are true and equivalent: “the real part of each eigenvalue of W−1 is positive” and “W exists
and W ≥ 0 (elementwise)” (Berman and Plemmons, 1979, Chapter 6, Theorem 2.3, G20

and N38). It has already been proven in Lemma 1 that the real part of every eigenvalue of
W−1 is positive. Therefore, W exists and is element-wise non-negative.

Lemma 9 The rows of W sum to 1.

5. Any matrix norm will do since the dimensionality is fixed, and on finite dimensional vector spaces all
norms are equivalent and therefore generate the same topology.
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Proof As proved in Lemma 1, W exists. Therefore, one can write:

W1 =1

1 =W−11

=
(
I +

γ

T
ΣL
)
1

=I1 +
γ

T
ΣL1

=1 +
γ

T
Σ0

=1,

where the the third equality is true because the graph Laplacian has rows that sum to zero.
The rows of W therefore sum to 1.

Theorem 3 The MTA solution matrix W =
(
I + γ

T ΣL
)−1

is right-stochastic.

Proof We know that W exists (from Lemma 1), is entry-wise non-negative (from Lemma
8), and has rows that sum to 1 (from Lemma 9).

Appendix E. MTA Constant Derivation

For the case when T > 2, analytically specifying a general similarity matrixA that minimizes
the risk is intractable. To address this limitation for arbitrary T , we constrain the similarity
matrix to be the constant matrix A = a11>, resulting in the following weight matrix:

W cnst =

(
I +

1

T
ΣL(a11>)

)−1

. (27)

For tractability, we optimize a using tr(Σ)I rather than the full Σ matrix, such that

a∗ = arg min
a

R

(
µ,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

Ȳ

)
, (28)

and then plug this a∗ into (27) to obtain MTA Constant.
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Simplify
(
I + 1

T
tr(Σ)
T L(a11>)

)−1
using the Sherman-Morrison formula,

(
I +

1

T

tr(Σ)

T
L(a11>)

)−1

=

(
I +

a

T

tr(Σ)

T
(TI − 11>)

)−1

=

(
I + a

tr(Σ)

T
− a

T

tr(Σ)

T
11>

)−1

=
1

1 + a tr(Σ)
T

I +

1

1+a
tr(Σ)

T

a
T

tr(Σ)
T 11> 1

1+a
tr(Σ)

T

1− a
T 1
> 1

1+a
tr(Σ)

T

tr(Σ)
T 1

=
1

a tr(Σ)
T + 1

I +

a
tr(Σ)

T

a
tr(Σ)

T
+1

1
T 11

> 1

1+a
tr(Σ)

T

1− a
tr(Σ)

T

1+a
tr(Σ)

T

=
1

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

=
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
.

The risk of Y ∗ = 1

a
tr(Σ)

T
+1

(
I + a tr(Σ)

T 2 11>
)
Ȳ is

R(µ, Y ∗)

= tr

(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
ΣI

1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)>)

+ µ>

(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
− I

)>(
1

a tr(Σ)
T + 1

(
I + a

tr(Σ)

T 2
11>

)
− I

)
µ

=
1

(a tr(Σ)
T + 1)2

tr

((
I + a

tr(Σ)

T 2
11>

)
Σ

(
I + a

tr(Σ)

T 2
11>

))

+ µ>

(
−a tr(Σ)

T

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

)>(
−a tr(Σ)

T

a tr(Σ)
T + 1

I +
a tr(Σ)

T

a tr(Σ)
T + 1

1

T
11>

)
µ
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=
1

(a tr(Σ)
T + 1)2

tr

(
Σ + 2a

tr(Σ)

T 2
11>Σ + a2 tr(Σ)2

T 4
11>Σ11>

)

+
(a tr(Σ)

T )2

(a tr(Σ)
T + 1)2

µ>L

(
1

T
11>

)>
L

(
1

T
11>

)
µ

=
tr(Σ)
T

(a tr(Σ)
T + 1)2

(
T + 2a

tr(Σ)

T
+

(
a
tr(Σ)

T

)2
)

+
(a tr(Σ)

T )2

(a tr(Σ)
T + 1)2

µ>L

(
1

T
11>

)>
L

(
1

T
11>

)
µ.

To find the minimum, we take the partial derivative w.r.t. a and set it equal to zero. Noting
that

L

(
1

T
11>

)>
L

(
1

T
11>

)
= L

(
1

T
11>

)
,

and omitting some tedious algebra,

∂

∂a∗
R(µ, Y ∗) = 0 =

2 tr(Σ)
T (−T + 1 + a∗µ>L

(
1
T 11

>)µ)

(a∗ tr(Σ)
T + 1)3

⇔ a∗ =
T − 1

µ>L
(

1
T 11

>)> L ( 1
T 11

>)> µ
=

T − 1

µ>L
(

1
T 11

>)µ
=

2
1

T (T−1)

∑T
r=1

∑T
s=1(µr − µs)2

.

Appendix F. MTA Minimax Derivation

Recall Lehmann and Casella (1998, Chapter 5, Theorem 1.4):

Theorem Suppose that π is a distribution on the space of µ such that

r(π, Yπ) = sup
µ
R(µ, Yπ),

where r(π, Yπ) =
∫
R(µ, Yπ)π(µ)dµ is the Bayes risk. Then:

1. Yπ is minimax.

2. If Yπ is the unique Bayes solution w.r.t. π (i.e., if it is the only minimizer of the
Bayes risk), then it is the unique minimax estimator.

3. The prior π is least favorable.
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Corollary If a Bayes estimator Yπ has constant risk, then it is minimax.

The first step in finding a minimax solution for the T = 2 case is specifying a constraint
set for µ over which a least favorable prior (LFP) can be found. We will use the box
constraint set, µt ∈ [bl, bu]>, where bl ∈ R and bu ∈ R. It is straightforward to show that
the corresponding LFP is

p(µ) =


1
2 , if µ = [bl, bu]>

1
2 , if µ = [bu, bl]

>

0, otherwise.

The next step is to guess a minimax weight matrix WM and show that the estimator
YM = WM Ȳ (i) has constant risk and (ii) is a Bayes solution. According to the corollary,
if both (i) and (ii) hold for the guessed WM , then WM Ȳ is minimax. For the T = 2 case,
we guess WM to be

WM =

(
I +

2

T (bl − bu)2
ΣL(11>)

)−1

,

which is just W cnst with a = 2
(bl−bu)2 . This choice of W is not a function of µ and thus we

have shown that (i) the Bayes risk w.r.t the LFP is constant for all µ. What remains to be
shown is (ii) WM is indeed the Bayes solution, i.e., it is minimizer of the Bayes risk:

1

2

(
[bl bu](W − I)>(W − I)

[
bl
bu

]
+ tr(WΣW>)

)
+

1

2

(
[bu bl](W − I)>(W − I)

[
bu
bl

]
+ tr(WΣW>)

)
. (29)

Note that this expression is the sum of two convex risks. We already know that for T = 2
the minimizer of the risk

[µ1 µ2](W − I)>(W − I)

[
µ1

µ2

]
+ tr(WΣW>)

is W ∗ =
(
I + 2

T (µ1−µ2)2 ΣL(11>)
)−1

. Thus, the minimizer of either term in (29) is

WM =

(
I +

2

T (bu − bl)2
ΣL(11>)

)−1

(30)

as was to be shown. One can conclude that WM is minimax over all estimators of the form(
I + γ

T ΣL
)−1

for T = 2 for the box constraint set.
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Appendix G. Proof of Proposition 4

Recall the proposition: The set of estimators WȲ where W is of MTA form as per (20) is
strictly larger than the set of estimators that regularize the single-task estimates as follows:

Ŷ =

(
1

γ
I + 1α>

)
Ȳ ,

where
∑T

r=1 αr = 1− 1
γ , γ ≥ 1, and αr ≥ 0, ∀r.

Proof Using the Sherman-Morrison formula,

(
1

γ
I + 1α>

)−1

= γI − γ21α>

1 + γα>1

= γI − γ1α>

= I + (γ − 1)I − γ1α>

= I + γ

(
1− 1

γ

)
I − γ1α>

= I + γL(1α>),

which is a matrix of MTA form for Γ = γI and A = 1αT . Thus, estimators Ŷt can be
written in MTA form:

Ŷ = (I + γL(1α>))−1Ȳ . (31)

The converse clearly does not hold: not all matrices (I+ΓL(A))−1 can be written as (31).

Appendix H. Proof of Proposition 7

Recall the proposition: 1>Ŷ JS = 1>Ȳ , where Ŷ JS is given in (7).

Proof The tth component of Ŷ JS can be written:

Ŷ JS
t =

1

T

T∑
r=1

Ȳr + c(Ȳt −
1

T

T∑
r=1

Ȳr),

for some scalar c ∈ [0, 1] that does not depend on t. Thus,

Ŷ JS =
1− c
T

(
T∑
r=1

Ȳr

)
1 + cȲ ,
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and the sum of the estimates is:

1>Ŷ JS = 1>

(
1− c
T

(
T∑
r=1

Ȳr

)
1 + cȲ

)

=
1− c
T

(
T∑
r=1

Ȳr

)
1>1 + c1>Ȳ

= (1− c)
T∑
r=1

Ȳr + c

T∑
r=1

Ȳr

= 1>Ȳ .
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