
Journal of Machine Learning Research 15 (2014) 367-443 Submitted 1/13; Revised 9/13; Published 2/14

Unbiased Generative Semi-Supervised Learning

Patrick Fox-Roberts∗ pfoxroberts@gmail.com
Cambridge University Engineering Department
Trumpington Street
Cambridge, CB2 1PZ, UK

Edward Rosten ed@computervisionconsulting.com

Computer Vision Consulting

7th floor

14 Bonhill Street

London, EC2A 4BX, UK

Editor: William Cohen

Abstract

Reliable semi-supervised learning, where a small amount of labelled data is complemented
by a large body of unlabelled data, has been a long-standing goal of the machine learning
community. However, while it seems intuitively obvious that unlabelled data can aid the
learning process, in practise its performance has often been disappointing. We investigate
this by examining generative maximum likelihood semi-supervised learning and derive novel
upper and lower bounds on the degree of bias introduced by the unlabelled data. These
bounds improve upon those provided in previous work, and are specifically applicable to
the challenging case where the model is unable to exactly fit to the underlying distribution
a situation which is common in practise, but for which fewer guarantees of semi-supervised
performance have been found. Inspired by this new framework for analysing bounds, we
propose a new, simple reweighing scheme which provides a provably unbiased estimator for
arbitrary model/distribution pairs—an unusual property for a semi-supervised algorithm.
This reweighing introduces no additional computational complexity and can be applied to
very many models. Additionally, we provide specific conditions demonstrating the circum-
stance under which the unlabelled data will lower the estimator variance, thereby improving
convergence.
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1. Introduction

Reliable semi-supervised learning has been a long standing goal of the machine learning
community. Its desirability is motivated by the observation that when collecting data
sets, often each sample has two distinct parts: some feature X, collected from some real
world population, often consisting of one or more basic measurements; and some label Y ,
assigned by the experimenter, representing a higher level concept. Furthermore the act of
assigning this higher level label very often constitutes a major bottleneck in the data set
creation process. It is perhaps expensive (requiring an expert’s opinion), slow (requiring
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an investment of time or staff), or in some way destructive (requiring a component to be
tested to destruction, or the death of a patient).

If we wish to fit a model parametrised by some set of parameters θ to this distribution,
we will need some data set DL consisting of NL labelled samples, DL = (xi, yi)i=1,...,NL

, to
train our model with; for example, if we are training using maximum likelihood, we must
find the parameters which maximise P (DL|θ), which for iid data is equivalent to finding

θ? = arg max
θ

NL∑
i=1

log (P (xi, yi|θ)) . (1)

In order to get a solution which generalises well to unseen data NL may have to be quite
large, especially if the model is rich or the feature space X high dimensional.

A far preferable situation would be to be able to utilise a smaller labelled data set DL,
augmented with an additional data set DU consisting of NU unlabelled samples, DU =
(xi)i=NL+1,...,NL+NU

, which consist only of their observed feature rather than a feature -
label pair. In essence the unlabelled data is used to ‘bootstrap’ the labelled. Unlabelled
samples tell us the shape of our distribution in the feature space, while labelled samples
give us the classification information.

At first glance, utilising unlabelled data to aid in fitting the parameters of some model
appears trivial. Inspired by the likelihood principal (Jaynes, 2003), it is tempting to simply
augment the likelihood function of the parameters, P (DL|θ), with the additional unlabelled
data, P (DL, DU |θ), and proceed with training exactly as before, that is, find the parameters

θ?S = arg max
θ

NL∑
i=1

log (P (xi, yi|θ)) +

NL+NU∑
i=NL

log (P (xi|θ)) . (2)

In practice however this has proven to give mixed results, sometime improving model fitting,
other times worsening it. This unpredictable of performance has formed a very major barrier
to more widespread adoption of semi-supervised techniques. Many alternative algorithms
have been developed to counter this. However, there still exists a need to better understand
and quantify why more standard methods fail.

This paper examines the effect of including unlabelled data in a training set when per-
forming maximum likelihood fitting of generative models. In particular, it is well known
(see, for example, Bishop, 2006) that maximising the parameter likelihood for labelled data
approximately minimises the Kullback Leibler divergence between the parametric distribu-
tion P (X,Y |θ) and the underlying distribution the data is sampled from, P (X,Y ). We
show that maximising the likelihood of a data set containing unlabelled samples minimises
a different divergence. We then show that the possible error between this and the cor-
rect divergence may grow rapidly with the proportion of unlabelled data, and will do so
monotonically.

Out of necessity, the analysis presented shall only concern itself with generative models.
This follows in the footsteps of numerous other pieces of work which have shed light on
the generative semi-supervised learning problem, for example Castelli and Cover (1995),
Castelli and Cover (1996), Dillon et al. (2010), Cozman et al. (2003) and Yang and Priebe
(2011). Moreover, generative models are of interest in and of themselves. For example, they
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are used in the fields of computer vision and text analysis, both of which could potentially
benefit from better semi-supervised algorithms; recent examples of such work include that
of Rauschert and Collins (2012), Beecks et al. (2011), Lücke and Eggert (2010), Kang et al.
(2012) and Zhuang et al. (2012). In the general case there is also evidence that generative
models can converge faster than discriminative, as shown by Ng and Jordan (2002), and so
are valuable when dealing with small data sets.

2. Previous Work

A great deal of work has been done proposing algorithms designed to take advantage of
semi-supervised data. Here we shall concern ourselves instead with examining the work
done on finding general bounds on performance.

We begin by considering the highly influential work by Castelli and Cover (1995, 1996).
This looks not at a particular semi-supervised algorithm, but rather at a slightly more
general question of when unlabelled samples can be of value. They conclude that for an
identifiable (as defined in the paper) binary decision problem, using a generative model, the
misclassification risk decreases exponentially fast towards the Bayes error as the number
of labelled samples increases. This result is encouraging. However, the requirement of
identifiability is a strict one. In practise it cannot often be guaranteed, and may even be
flatly contradicted.

The work of Dillon et al. (2010) builds upon this. Amongst other things they confirm
that provided a data set is generated from P (X,Y |θ0) where θ0 ∈ Ω, the estimator

θ̂N = arg max
θ∈Ω

NL∑
i=1

log(P (xi, yi|θ)) +
N∑

i=NL+1

log(P (xi|θ))

is consistent. As such, in cases where there is good reason to believe the true distribution is
drawn from the same family as our parametric model, we can expect consistent convergence.
They also provide one of few examinations of the associated variance of an estimator, though
again under the assumption of an identifiable model.

In a similar vein Zhang (2000) examines the fisher information matrix when learning
parameters for semi-supervised learning, and conclude that even when their true distribution
can not be expressed by the model parameters being fitted, unlabelled samples always aid
in learning in that they reduce the variance of the estimator. From this work we can
conclude that adding unlabelled samples is not preventing consistent convergence. As such,
if performance is observed to often worsen instead of improve as the number of unlabelled
samples increases, the fault must lie elsewhere.

The asymptotic behaviours of semi-supervised learning where the model is mis-specified
has been further studied by Cozman et al. (2003); Cozman and Cohen (2006, 2002), where
no assumptions are made about the parametric model being close to the underlying dis-
tribution. In particular, they show that the limiting value of the optimum parameters θ?

when performing ML semi-supervised learning in such a scenario is

arg max
θ

(
(1− λ)EP (X,Y ) (logP (x, y|θ)) + λEP (x) (log(P (x|θ)))

)
where λ is the probability of a sample being unlabelled. If λ varies (say by adding unlabelled
samples) then this will likely change the optimal parameters θ?, and so the associated error
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rate. In the limit, as λ → 1, we will tend towards the solution found training entirely on
unlabelled data. They argue that with a few assumptions on the modelling densities, θ?

is a continuous function of λ. They also show that an instance where the asymptotically
optimal parameters are not changed by λ comes, as might be expected, when the model is
“correct” and can be fitted exactly to the underlying distribution (i.e., the true distribution
P (x, y) is a member of the family of distributions that can be modelled by P (x, y|θ)).

The relative value of labelled/unlabelled samples was also investigated in Ratsaby and
Venkatesh (1995) for the case of classifying between two multivariate gaussian distributions
of unknown class prior and position parameters. As in the work by Castelli and Cover,
an exponential decrease in error rate with the number of labelled samples is shown, and
an only polynomial decrease in the same with the number of unlabelled samples. However
they also demonstrate a deleterious effect in the dimensionality of the space, indicating
unlabelled samples are likely to be less useful in high dimensional spaces. Separately, the
work of Shahshahani and Landgrebe (1994) examines learning the parameters of both a
single gaussian and a GMM when labels are missing. They too note an interesting effect
of dimensionality on semi-supervised learning, in particular from the point of view of the
Hughes phenomenon (Hughes, 1968). This is the observation that, in theory, increasing the
dimensionality of a classification problem by taking new measurements should never increase
the Bayes error; yet in practise, if we are learning from sampled data we find performance
will after a while degrade due to the larger number of parameters that must be estimated
(this is very closely linked to the perhaps more familiar Curse of Dimensionality, see Bishop,
2006). They propose that semi-supervised learning can help mitigate this, but only if the
rate of introduction of bias due to the unlabelled samples is lower than the decrease in
variance of the estimator.

Recently, Yang and Priebe (2011) has provided an investigation of semi-supervised gen-
erative learning that builds upon these conclusions. The key parameters they identify are
the asymptotic optima achieved when performing fully supervised learning, θ∗sup, and those
achieved from entirely un-supervised learning, θ∗unsup. Provided that the ratio of NL to N
tends towards 0 as N tends towards infinity (where N = NL + NU ) we have the scenario
where we are moving from a high-variance, unbiased estimate, towards a low variance, bi-
ased estimate. Interestingly, the KL divergences between the distributions defined by θ∗sup
and θ∗unsup, and between these distributions and a given estimate based on a data set (either
fully labelled or a mixture of labelled and unlabelled), are identified as providing bounds
on the probability that classification performance will improve/worsen as unlabelled data
is added. Intuitively, if the divergence between the models specified by θ∗sup and θ∗unsup is
small, then adding unlabelled data is less likely to significantly worsen results. They also
show for a particular model that the point at which this occurs can be quite sharp. How-
ever, as it is likely to be different for different models and distributions, it still remains an
open question how it can be best estimated.

Additionally, theoretic examinations of expected performance for other semi supervised
learning situations, such as transductive learning (for example, Wang et al., 2007; Vapnik,
1998), PAC learning (Balcan and Blum, 2005; Blum and Balcan, 2010), and for generic loss
functions (Syed and Taskar, 2010), have also been carried out. However, as our purpose
here is to examine what can be said about generative semi-supervised learning we shall not
discuss these further.
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2.1 Non-ML Algorithms

Given the problems associated with standard ML semi-supervised learning, as well as the
desire to utilise unlabelled samples in non-generative models, a large number of alternative
objective functions have been proposed to take advantage of unlabelled data. Notable exam-
ples include Multi Conditional Learning (introduced by McCallum et al. 2006 and applied
to semi-supervised learning by Druck et al. 2007 ) and the hybrid Bayesian approach of
Lasserre et al. (2006), both of which utilise mixtures of generative and discriminative mod-
els; information theory based approaches, which consider the similarity of class predictions
across the kNN graph such as Subramanya and Bilmes (2009, 2008), the mutual information
of samples within local clusters (Szummer and Jaakkola, 2002), or the conditional entropy
of class predictions across the unlabelled samples (Grandvalet and Bengio, 2006); Expecta-
tion Regularisation (Mann and McCallum, 2007), which seeks to enforce class proportion
constraints; Co-training, (Blum and Mitchell, 1998), which makes use of situations where
data is known to be separable in two different ‘views’; transduction, (Vapnik, 1998), and
the transductive support vector machine; kernel methods, such as those investigated by
Krishnapuram et al. (2005) and Jaakkola and Haussler (1999), which seek to use unlabelled
samples to build better kernel functions; and many others. A thorough literature review
was carried out by Zhu (2005).

3. Local And Global Bounds On Semi-Supervised Divergences

We now present a number of theorems, showing the asymptotic limits of the performance of
models trained on semi-supervised data using the standard technique Equation (2). While
it has been previously noted in the literature that ML semi-supervised learning introduces
bias when the model and underlying distributions do not match, we provide new bounds
on the degree of this bias as a function of the proportion of unlabelled data, and the best
case performance of our model if it were to be trained on a large labelled data set, giving
new insight into the reason behind these bounds.

3.1 Notation And Conditions

A semi-supervised data set consists of two types of data - labelled samples drawn from
P (X,Y ), and unlabelled drawn from P (X). To allow us to deal with both of these within
a single framework we shall introduce a new variable Z, and consider our entire data set to
be drawn from P (X,Z), {xi, zi}i=1,...N in the space X × Z. We shall allow the ‘labelling’
Z to take on the same set of values as Y , plus one extra, U , and therefore Z = Y ∪ U . For
every “labelled” sample, zi = yi, and for every “unlabelled” sample zi = U . As such we now
have the data set {xi, zi}i=1,...N . Similarly, we shall consider our parameters θ to specify a
distribution P (X,Z|θ) rather than P (X,Y |θ), in a manner which will become clear as we
proceed.

We shall now apply several conditions to P (X,Z|θ) and P (X,Z) to allow them to
reflect what we consider the typical maximum likelihood generative semi-supervised learning
problem.
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Condition 1 X is conditionally independent of Z given Y — if we know the class y of
sample x, z gives us no more information, that is,

P (x|y, z, θ) = P (x|y, θ), P (x|y, z) = P (x|y)

This first condition represents the fact that zi can be considered a noisy estimate of yi
- in as much as it will either be equal to yi, or it will take on the value U to indicate yi is
unknown. In either case, if we had access to the true value of yi, then zi would be irrelevant
as it can give us no useful information. This condition is similar to the “missing at random”
assumption discussed by Grandvalet and Bengio (2006).

Condition 2 The labelled samples have been drawn randomly and labelled correctly. The
unlabelled samples are similarly drawn randomly, with no class bias. As such,

P (z|y, θ) =

{
P (U |θ), z = U

δk(z, y)P (Ū |θ), z 6= U
P (z|y) =

{
P (U), z = U

δk(z, y)P (Ū), z 6= U

where δk indicates the Kronecker delta function, and we have denoted 1−P (U |θ) as P (Ū |θ)
and 1− P (U) as P (Ū)

This second condition specifies our labelling process. It is imagined that a ‘bag’ full
of unlabelled samples initially exists, and individual ones are then drawn from it and the
correct label associated with them by some expensive labelling process1 to form the labelled
set.

In practise truly drawing samples completely at random runs with risk of certain classes
having zero labelled samples, which is likely to cause highly undesirable behaviour of the
algorithm. We do not foresee this as a problem for two reasons. Firstly, in the asymptotic
limit (which is what most of our work will be concerned with in this section) we will almost
surely achieve labelled samples being drawn from all classes. Secondly, in practise, the indi-
viduals running the experiment are likely to ensure that all classes have some representative
samples. This breaks the assumption of iid data; however, provided the class priors are re-
spected when choosing how many samples to label from each class (or suitable weighting
applied) we can still attain an asymptotically unbiased estimate of the expectation term in
the divergence.

Condition 3 The proportion of labelled data is known, letting us set P (Ū |θ) = P (Ū) =
1− P (U)

We assume this as matching labels to samples is a process controlled entirely by the
user, and that they use this knowledge to set P (U |θ) rather than having to infer it from
the data.

1. This can be considered a somewhat simpler model to that proposed by Rosset et al. (2005), where the
labelling also depended on the feature vector x. This work however is interested in the case of biased
semi-supervised learning, which we assume here to not be the case.
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3.1.1 Divergences

The KL divergence is a widely used method of measuring the similarity between two dis-
tributions, and one which shall be made extensive use of in this article. For distributions
P (X,Y ) and P (X,Y |θ) where X is a continuous random variable and Y is discrete, it is
defined as

KL(P (X,Y )||P (X,Y |θ)) =

∫
x∈X

∑
y∈Y

P (x, y) log

(
P (x, y)

P (x, y|θ)

)
It is perhaps most widely used as a justification of maximum likelihood methods, as it

is a standard proof that the parameters

θ? = arg max
θ

NL∑
i=1

log (p (xi, yi|θ))

are an asymptotically unbiased minimiser of KL(P (X,Y )||P (X,Y |θ)), for example, see
Bishop (2006).

For brevity and to make subsequent equations more readable we shall introduce a more
concise notation to refer to the KL divergence. For random variables A and B and param-
eters θ, the full divergence shall be denoted as

D(P (A,B), θ) ≡ KL(P (A,B)||P (A,B|θ))

and the conditional divergence as

D(P (A|B), θ) ≡ KL(P (A|B)||P (A|B, θ)).

3.2 Standard ML Semi-Supervised Learning Expressed As A Divergence

Our first step is to demonstrate that when a proportion of a data set whose likelihood we are
maximising is lacking labels, in the asymptotic limit we will minimise a different divergence
to that we might wish - specifically, we minimise D(P (X,Z)|θ) rather than D(P (X,Y )|θ).

Theorem 4 Subject to the conditions in 3.1, maximising

NL∏
i=1

P (xi, yi|θ)
NL+NU∏
i=nL+1

P (xi|θ) (3)

w.r.t. θ minimises an asymptotically unbiased estimate of a term directly proportional to
D(P (X,Z), θ), not D(P (X,Y ), θ)

Proof Given a set of N samples {xi, zi}i=1,...N drawn from P (X,Z), we can approximate
the expectation term in D(P (X,Z)|θ) with an arithmetic mean over our samples (for ex-
ample, see MacKay, 2003). Ignoring terms which are not a function of θ, and taking the
antilog, we attain

arg min
θ

D(P (X,Z), θ) ≈ arg max
θ

N∏
i=1

P (xi, zi|θ). (4)
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Examining the above, and making use of Condition 1 to simplify P (xi|zi, y, θ) into
P (xi|y, θ), we can rewrite the likelihood contribution of a single sample i, P (xi, zi|θ) as
follows

P (xi, zi|θ) =
∑
y∈Y

P (xi, zi, y|θ)

=
∑
y∈Y

P (xi|zi, y, θ)P (zi|y, θ)P (y|θ)

=
∑
y∈Y

P (xi|y, θ)P (zi|y, θ)P (y|θ)

=
∑
y∈Y

P (xi, y|θ)P (zi|y, θ).

This can be simplified further using Conditions 2 and 3, depending on the value of zi. First
consider the case where zi = U

P (xi, zi|θ)|zi=U =
∑
y∈Y

P (xi, y|θ)P (U |θ) = P (xi|θ)P (U). (5)

Thus, a sample whose labelling zi indicates it is unlabelled contributes a quantity propor-
tional to P (xi|θ) to our likelihood expression. Now consider a single labelled example (i.e.,
where zi 6= U),

P (xi, zi|θ)|zi 6=U =
∑
y∈Y

P (xi, y|θ)δk(y, zi)P (Ū |θ)

= P (xi, y|θ)|y=ziP (Ū)

= P (xi, yi|θ)P (Ū) (6)

where we have made a slight change of notation in the last term to represent that if zi 6= U ,
then yi is known. This contributes a term proportional to P (xi, yi|θ) to the likelihood. If
we substitute these results back into Equation (4), our final likelihood expression is

arg max
θ

∏
i,zi 6=U

P (Ū)P (xi, yi|θ)
∏

j,zj=U

P (U)P (xj |θ)

which is equivalent to maximising Equation (3).

The form of our final likelihood function is the same as that found by Cozman and
Cohen (2006). The difference is in the interpretation of this. While Cozman and Cohen
(2006) considers it simply as a biased approximate minimiser of D(P (X,Y ), θ), we con-
sider it an unbiased minimiser of a new divergence D(P (X,Z), θ). The utility of this is
that we can investigate the ‘bias’ introduced by considering the relationship between this
semi-supervised divergence and the original fully supervised one, and the properties of KL
divergences.
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3.3 Bounding D
(
P (X,Y ), θ

)
With D

(
P (X,Z), θ

)
Maximising the likelihood of a partially labelled data set corresponds to approximately min-
imising D (P (X,Z), θ). We now examine how D (P (X,Z), θ) is related to D (P (X,Y ), θ),
and show that a set of upper and lower bounds can be formed using it.

Theorem 5 Subject to the conditions in 3.1, for a given set of parameters θ, D
(
P (X,Z), θ

)
defines an upper and lower set of bounds on D

(
P (X,Y ), θ

)
as follows:

D
(
P (X,Z), θ

)
≤ D

(
P (X,Y ), θ

)
≤
D
(
P (X,Z), θ

)
P (Ū)

. (7)

Remark 6 These bounds imply that, for a given D
(
P (X,Z), θ

)
that we are optimising, the

divergence of interest D
(
P (X,Y ), θ

)
could vary by up to a factor P (Ū)−1. In situations

where P (Ū)−1 is large, this uncertainty may become the dominant factor in determining the
quality of our result.

Proof Consider the KL divergence D(P (X,Z), θ). We shall take the summation over Z
and split out the term z = U , noting that Z − U = Y

D(P (X,Z), θ) =

∫
x∈X

∑
z∈Y

P (x, z) log
( P (x, z)

P (x, z|θ)

)
dx

+

∫
x∈X

P (x, z)|z=U log
( P (x, z)|z=U
P (x, z|θ)|z=U

)
dx.

Using Equation (5) and Equation (6), and their corresponding counterparts when not con-
ditioned on θ, we can simplify the terms within our logarithms

P (x, z)|z=U
P (x, z|θ)|z=U

=
P (x)P (U)

P (x|θ)P (U)
=

P (x)

P (x|θ)
,

P (x, z)|z 6=U
P (x, z|θ)|z 6=U

=
P (x, y)|y=z

P (x, y|θ)|y=z
.

Using these identities, and Equation (5) and Equation (6) this allows us to rewrite the
divergence D(P (X,Z), θ)

D(P (X,Z), θ) = P (Ū)

∫
x∈X

∑
z∈Y

P (x, y)|y=z log
( P (x, y)|y=z

P (x, y|θ)|y=z

)
dx

+P (U)

∫
x∈X

P (x) log
( P (x)

P (x|θ)

)
dx.

which is exactly equivalent to

D(P (X,Z), θ) = P (Ū)D
(
P (X,Y ), θ

)
+ P (U)D

(
P (X), θ

)
. (8)
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From this we can find a set of upper and lower bounds on D(P (X,Y ), θ) in terms of
D(P (X,Z), θ) alone. The upper bound can be found by noting D(P (X), θ) ≥ 0, which
given Equation (8) implies

D(P (X,Z), θ) ≥ P (Ū)D
(
P (X,Y ), θ

)
(9)

which when rearranged gives the upper bound in Equation (7). The lower bound follows
similarly, by noting that D(P (X,Y ), θ) = D(P (Y |X), θ) + D(P (X), θ) ≥ D(P (X), θ).
Again using Equation (8) this gives

D(P (X,Z), θ) ≤ P (Ū)D
(
P (X,Y ), θ

)
+ P (U)D

(
P (X,Y ), θ

)
=

(
P (Ū) + P (U)

)
D
(
P (X,Y ), θ

)
= D

(
P (X,Y ), θ

)
(10)

which gives us our lower bound. Combining Equation (10) and Equation (9) gives us Equa-
tion (7).

It is notable that in deriving these bounds we have treated D(P (X), θ)) (or, equivalently,
D(P (Y |X), θ))) simply as a value in the range 0 to D(P (X,Y ), θ). As we wished to find
general bounds that would hold for any combination of P (X,Y ) and P (X,Y |θ) we feel that
this is an entirely justifiable method of proceeding.

In practice, however, we will not be dealing with arbitrary distributions for P (X,Y ) and
P (X,Y |θ); rather, P (X,Y ) will usually represent some measurements of a real world phe-
nomenon that we believe to be learnable in (hopefully) some well chosen space. Similarly our
model may have been selected from a pool of potential models are that which is considered
most likely (according to some prior beliefs) to be able to fit to the distribution of interest
acceptably well, and will also often be smoothly varying with non-negligible correlations
between P (Y |X, θ) and P (X|θ). As such, with additional problem specific knowledge, we
suspect that tighter bounds on D(P (X,Y ), θ) will tend to exist.

Another question one might raise is whether the lower bound can become tight even in
instances where there is a mismatch between the model and true distribution - that is, given
minθD(P (X,Y ), θ) > 0, can we have the situation where D(P (X,Z), θ) = D(P (X,Y ), θ)?
To answer this, consider D(P (X,Z), θ) as written in Equation (8). This can be re-written
as follows

D(P (X,Z), θ) = D
(
P (X,Y ), θ

)
− P (U)D

(
P (Y |X), θ

)
.

As such, in order to achieve the situation where D(P (X,Z), θ) = D
(
P (X,Y ), θ

)
, it must

be the case that P (U)D
(
P (Y |X), θ

)
= 0. Assuming P (U) > 0 (as otherwise we are dealing

with the trivial case of utilising no labelled data) then this must mean D(P (Y |X), θ) =
0, that is, the conditional distribution specified by the model perfectly matches the true
distribution. This observation seems to match intuition - if the model can correctly predict
the class of unlabelled data, then its divergence estimate will not be biased by utilising
these samples.

3.4 Global Bounds

The results in 3.3 give us bounds on D(P (X,Y ), θ) in terms of D(P (X,Z), θ) for a given θ.
It is of more interest however to characterise the global minimisers of these two expressions.

376



Unbiased Generative Semi-Supervised Learning

That is, if we make use of our unlabelled data to minimise D(P (X,Z), θ) with respect to
θ, what can be inferred about the value of D(P (X,Y ), θ) evaluated at this minimum?

Theorem 7 Define the optimum parameters for the supervised and ML semi-supervised
learning problems as

θ? = arg min
θ

D(P (X,Y ), θ),

θ?S = arg min
θ

D(P (X,Z), θ).

Subject to the conditions in 3.1, it can be shown that

D(P (X,Y ), θ?) ≤ D(P (X,Y ), θ?S) ≤ D(P (X,Y ), θ?)

P (Ū)
. (11)

That is, the divergence minimised by supervised learning, D(P (X,Y ), θ), evaluated at the
parameters which minimise the semi-supervised divergence, θ?S, can be upper and lower
bounded as a function of said divergence evaluated at its own optima, θ?.

Proof The lower bound

D(P (X,Y ), θ?) ≤ D(P (X,Y ), θ?S)

is true by the definition of θ∗ - it is the minimiser of D(P (X,Y ), θ), and so any other value
of θ must result in a greater than or equal divergence.

The upper bound can be derived as follows. Consider the term D(P (X,Y ), θ?S)P (Ū).
Using Equation (9) evaluated at θ = θ?S we can see the following,

D(P (X,Y ), θ?S)P (Ū) ≤ D(P (X,Z), θ?S).

Given the definition of θ∗S we can further see that

D(P (X,Z), θ?S) ≤ D(P (X,Z), θ?).

And using Equation (10) evaluated at θ = θ?,

D(P (X,Z), θ?) ≤ D(P (X,Y ), θ?).

Hence, utilising all three of these inequalities in that order,

D(P (X,Y ), θ?S)P (Ū) ≤ D(P (X,Z), θ?S)

≤ D(P (X,Z), θ?)

≤ D(P (X,Y ), θ?)

we see that
D(P (X,Y ), θ?S)P (Ū) ≤ D(P (X,Y ), θ?).

By dividing through by P (Ū) we achieve our upper bound in Equation (11), that is,

D(P (X,Y ), θ?S) ≤ D(P (X,Y ), θ?)

P (Ū)
.
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Thus, we can place bounds on divergence D(P (X,Y ), θ) evaluated at θ∗S in terms
of the proportion of P (Ū), and D(P (X,Y ), θ∗). One immediate observation is that if
D
(
P (X,Y, θ?

)
= 0, then D

(
P (X,Y ), θ?S

)
= 0. Thus, if the true distribution lies within

the family of distributions expressible by our model, then the optima intersect regardless
of P (U), as confirmed by Cozman et al. (2003). Conversely, if D

(
P (X,Y ), θ?

)
> 0 then

our bounds loosen as P (U) grows, and the rate of this depends on how well matched our
model is to the data - if they are very similar then the bound grows slowly, whereas if they
are different it may grow much faster. This confirms earlier results (see Section 2.2 in Zhu,
2005, for a summary), and builds on them by providing explicit bounds on how rapidly
performance may degrade.

The overall conclusion is that performing ML semi-supervised learning in the manner of
Equation (3) forces us to make a trade off. We can rarely evaluate KL divergences directly,
and must use estimators whose variance is inversely proportional to N (MacKay, 2003). By
including unlabelled data we can decrease this source of uncertainty. However in doing so
we weaken our bounds, introducing a new source of error. This provides a complementary
reinterpretation of the results noted by Cozman et al. (2003).

As our bounds weaken then, how does our solution degrade? We now show that the
supervised divergence, evaluated at the ML semi-supervised optima, grows monotonically
with the proportion of unlabelled samples.

Theorem 8 Subject to the conditions in 3.1, let us define two distributions P1(X,Z) and
P2(X,Z), and corresponding models P1(X,Z|θ) and P2(X,Z|θ). These distributions shall
differ from one another only in terms of the probability that Z = U ; that is, P1(X,Y ) =
P2(X,Y ) and P1(X,Y |θ) = P2(X,Y |θ) (which in turn implies P1(X) = P2(X) and P1(X|θ) =
P2(X|θ)). We shall assume that distribution P2(X,Z) has a greater chance of an unlabelled
sample, and so P2(U) > P1(U).

Define the optima θ?S1 and θ?S2 as

θ?S1 = arg min
θ

D(P1(X,Z), θ), θ?S2 = arg min
θ

D(P2(X,Z), θ). (12)

It follows that

D(P (X,Y ), θ?S1) ≤ D(P (X,Y ), θ?S2) (13)

and

D(P (Y |X), θ?S1) ≤ D(P (Y |X), θ?S2). (14)

Proof By definition,

D(P1(X,Z), θ∗S1) ≤ D(P1(X,Z), θ∗S2).

We can expand both these divergences to rewrite this expression as follows;

P1(Ū)D(P (X,Y ), θ?S1) + P1(U)D(P (X), θ?S1)

≤ P1(Ū)D(P (X,Y ), θ?S2) + P1(U)D(P (X), θ?S2)
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Rearranging this expression to isolate D(P (X), θ?S1)−D(P (X), θ?S2) gives us

D(P (X), θ?S1)−D(P (X), θ?S2) ≤ P1(Ū)

P1(U)
(D(P (X,Y ), θ?S2)−D(P (X,Y ), θ?S1)) . (15)

We shall utilise this term later.
Now examining the divergences associated with the distribution P2(X,Z), by the defi-

nition given in Equation (12) we see that

D(P2(X,Z), θ∗S2) ≤ D(P2(X,Z), θ∗S1).

This can be expanded as before,

P2(Ū)D(P (X,Y ), θ?S2) + P2(U)D(P (X), θ?S2)

≤ P2(Ū)D(P (X,Y ), θ?S1) + P2(U)D(P (X), θ?S1),

and D(P (X), θ?S1)−D(P (X), θ?S2) once again isolated,

P2(Ū)

P2(U)
(D(P (X,Y ), θ?S2)−D(P (X,Y ), θ?S1)) ≤ D(P (X), θ?S1)−D(P (X), θ?S2). (16)

Combining Equation (15) and Equation (16) to eliminate D(P (X), θ?S1) − D(P (X), θ?S2)
gives us

P2(Ū)

P2(U)
(D(P (X,Y ), θ?S2)−D(P (X,Y ), θ?S1))

≤ P1(Ū)

P1(U)
(D(P (X,Y ), θ?S2)−D(P (X,Y ), θ?S1)) .

Gathering together similar divergences, this implies that(
P1(Ū)

P1(U)
− P2(Ū)

P2(U)

)
D(P (X,Y ), θ?S1) ≤

(
P1(Ū)

P1(U)
− P2(Ū)

P2(U)

)
D(P (X,Y ), θ?S2)

As we know that P2(U) > P1(U), and so P2(Ū) < P1(Ū), it follows that P2(U)P1(Ū) >
P1(U)P2(Ū), which in turn implies

P1(Ū)

P1(U)
− P2(Ū)

P2(U)
> 0.

As it is positive we may cancel this term out without altering the inequality, indicating that

D(P (X,Y ), θ?S1) ≤ D(P (X,Y ), θ?S2)

proving Equation (13).
To prove Equation (14), note that if we take Equation (15), multiply though by P1(U),

and then use some simple algebra to gather all terms relating to the marginal divergence
together, it is equivalent to stating

D(P (X), θ?S1)−D(P (X), θ?S2) ≤ P1(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) .
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Similarly, Equation (16) can be rearranged as

P2(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) ≤ D(P (X), θ?S1)−D(P (X), θ?S2).

Combining these two, we see that

P2(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1))

≤ P1(Ū) (D(P (Y |X), θ?S2)−D(P (Y |X), θ?S1)) .

Gathering together terms, this rearranges to(
P1(Ū)− P2(Ū)

)
D(P (Y |X), θ?S1) ≤

(
P1(Ū)− P2(Ū)

)
D(P (Y |X), θ?S2)

which, given P2(U) > P1(U), and hence P2(Ū) < P1(Ū), implies

D(P (Y |X), θ?S2) ≥ D(P (Y |X), θ?S1)

proving Equation (14).

This observation seems intuitively reasonable. As P (U) grows the model is increasingly
penalised by large values of D(P (X), θ), and so seeks to minimise this at the expense of
letting D(P (Y |X), θ) get larger. However, if our end goal is to create a classifier then this
result may give us cause to reconsider - adding unlabelled data not only weakens our bounds
on the joint divergence, but asymptotically can only worsen (or at best leave unchanged)
the conditional divergence.

Thus, we can now conclude several things about the asymptotic optimum of the ML
semi-supervised learning problem. Firstly, due to the observation of monotonicity, the di-
vergence D(P (X,Y ), θ∗S) is upper bounded by D(P (X,Y ), θ∗U ), confirming Yang and Priebe
(2011). Secondly, that if we were to increase the quantity of unlabelled data, it will tend
towards this approaching equality as P (U) tends towards 1. Finally, it will do so mono-
tonically - raising the proportion of unlabelled data will never decrease D(P (X,Y ), θ∗S) or
D(P (Y |X), θ∗S).

This result initially seems to contradict that of Cozman and Cohen (2006), where they
gave an example of a ML semi-supervised learning process where despite the model not
fitting the underlying distribution, adding unlabelled data asymptotically improved the
decision boundary. We point out though that their measure of how well the boundary fits
is based on the error rate, not the KL divergence. while it is true that minimising the
conditional KL divergence will typically reduce the error rate this is not an absolute rule
(and indeed forms a set of bounds). We would postulate that this is an example of a case
where the divergence rises but the classification rate improves.

Finally, it makes sense to more closely examine the final solution arrived at as P (U)→ 1,
in a similar manner to that discussed by Yang and Priebe (2011). In particular, we wish to
confirm that their result extend beyond identifiable models, and shall show that where there
is a choice between multiple sets of parameters which minimise the unsupervised divergence
D(P (X), θ), the semi-supervised divergence minimised by ML learning is upper bounded by
the one set of these parameters which best minimises D(P (Y |X), θ). This proof is largely
similar to that showing monotonicity but is included here for completeness.
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Theorem 9 Subject to the conditions in 3.1, define the optimum unsupervised parameters
θ?U to be any parameters which meet these requirements:

θ?U = arg min
θ

D(P (Y |X), θ) subject to D(P (X), θ?U ) = min
θ′

D(P (X), θ′)

It can be shown that provided P (Ū) 6= 0,

D(P (X,Y ), θ?S) ≤ D(P (X,Y ), θ?U ) (17)

and
D(P (Y |X), θ?S) ≤ D(P (Y |X), θ?U ) (18)

Proof By definition,
D(P (X,Z), θ?S) ≤ D(P (X,Z), θ?U ). (19)

The standard semi-supervised divergence can be expanded as follows,

D(P (X,Z)|θ) = P (Ū)D
(
P (X,Y ), θ

)
+ P (U)D

(
P (X), θ

)
.

As such, we can rewrite Equation (19) as follows

P (Ū)D(P (X,Y ), θ?S) + P (U)D(P (X), θ?S)

≤ P (Ū)D(P (X,Y ), θ?U ) + P (U)D(P (X), θ?U ).

If we subtract P (U)D(P (X), θ?U ) from both sides this becomes

P (Ū)D(P (X,Y ), θ?S) + P (U) (D(P (X), θ?S)−D(P (X), θ?U ))

≤ P (Ū)D(P (X,Y ), θ?U ).

However, by definition, D(P (X), θ?S) ≥ D(P (X), θ?U ), implying

P (Ū)D(P (X,Y ), θ?S) ≤ P (Ū)D(P (X,Y ), θ?U )

and hence Equation (17) directly follows by dividing through by P (Ū). Equation (18)
follows similarly by noting that Equation (17) implies

D(P (Y |X), θ?S) +D(P (X), θ?S) ≤ D(P (Y |X), θ?U ) +D(P (X), θ?U ).

If we subtract D(P (X), θ?U ) from both sides we find that

D(P (Y |X), θ?S) +D(P (X), θ?S)−D(P (X), θ?U ) ≤ D(P (Y |X), θ?U )

and again note that by definition, D(P (X), θ?S) ≥ D(P (X), θ?U ), and hence

D(P (Y |X), θ?S) ≤ D(P (Y |X), θ?U )

directly follows, proving Equation (18).
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Note that the above derivation could have proceeded in exactly the same manner with
θ?U chosen to be any parameters for which D(P (X), θ?U ) = minθ′ D(P (X), θ′). However, by
choosing θ?U to be the parameters which also minimised D(P (Y |X), θ?U ) we attain as tight
a bound as possible.

For many models there will be only one set of parameters which minimise D(P (X), θ),
and so this is not an issue. However for others this will not be the case. For example, many
mixture models contain mixture components which are identical save for the class they
are assigned to. In these cases, specifying that θ?U have the lowest conditional divergence
amongst those set of parameters which have the minimum marginal divergence allows us
to choose the best combination of class assignment for each mixture component given their
other parameters, strengthening slightly the conclusions of Yang and Priebe (2011).

We can now rewrite our global bounds as follows:

D(P (X,Y ), θ?) ≤ D(P (X,Y ), θ?S) ≤ min

(
D(P (X,Y ), θ?)

P (Ū)
, D(P (X,Y ), θ?U )

)
.

Assuming that D(P (Y |X), θ?U ) <∞, which will be the case provided P (Y |X, θ?U ) does not
assign zero probability to any Y given any X, this gives tighter performance bounds as
P (Ū)→ 0.

3.5 Summary

This ends our theoretical examination of performing ML learning on a partially labelled
data set. Overall we can conclude the following;

• When we introduce unlabelled data into our likelihood expression, we change the
divergence being minimised, from D(P (X,Y ), θ) to D(P (X,Z), θ).

• We can form a set of upper and lower bounds on D(P (X,Y ), θ) using D(P (X,Z), θ)
for a given θ, namely

D(P (X,Z), θ) ≤ D(P (X,Y ), θ) ≤ D(P (X,Z), θ)

P (Ū)
.

The lower bound becomes tight if D(P (Y |X), θ) is equal to 0, that is, if our model is
fits to the conditional distribution well.

• If we find the parameters θ?S which minimise the standard semi-supervised diver-
gence D(P (X,Z), θ), then these are linked to the parameters θ? which minimise
D(P (X,Y ), θ) using the expression

D(P (X,Y ), θ?) ≤ D(P (X,Y ), θ?S) ≤ D(P (X,Y ), θ?)

P (Ū)
,

that is, our supervised divergence evaluated at the standard semi-supervised minima
may exceed the supervised minima by a factor of 1/(P (Ū)). Where there is a large
quantity of unlabelled data this factor may be very high.

• D(P (X,Y ), θ?S) grows monotonically with the proportion of unlabelled data P (U).
Moreover, it is the term D(P (Y |X), θ?S) which grows, indicating that we can expect
classification results to remain steady or worsen.
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Taken together, this gives a clear indication of the problem we face conducting genera-
tive semi-supervised ML learning, and gives novel bounds on the asymptotic performance
achievable.

4. Unbiased Generative Semi-Supervised Learning

Having investigated the properties of D(P (X,Z), θ), it is clear that if we wish to minimise
D(P (X,Y ), θ), it is better we find an unbiased likelihood estimator. From examination of
the form of the supervised divergence, we propose the following.

Theorem 10 Subject to the conditions in 3.1, and provided P (Ū) > 0, the expression

arg max
θ

NL∏
i=1

P (yi|xi, θ)
( N∏
i=1

P (xi|θ)
)NL/N

(20)

returns a set of parameters which minimise an asymptotically unbiased estimator of the
divergence D(P (X,Y ), θ).

Proof The divergence D(P (X,Y ), θ) is exactly equivalent to the following:

D(P (Y |X), θ) +D(P (X), θ). (21)

We draw samples (xi, yi)i=1,...,NL
and (xi)i=NL+1,...,N . Assuming that as N →∞, NL/N →

P (Ū), we can use these to construct an asymptotically unbiased estimator of the divergence
Equation (21), (

1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+

1

N

N∑
i=1

log

(
P (xi)

P (xi|θ)

))
. (22)

Disregarding all terms which are not a function of θ gives the expression(
−1

NL

NL∑
i=1

log (P (yi|xi, θ)) +
−1

N

N∑
i=1

log (P (xi|θ))

)
. (23)

Multiplying this by −NL and taking the antilog yields

NL∏
i=1

P (yi|xi, θ)
N∏
i=1

P (xi|θ)NL/N .

This is the quantity which is maximised in Equation (20). As the log function is monotonic,
the parameters which maximise this will minimise Equation (23) (due to the multiplication
by −NL). Minimising Equation (23) is equivalent to minimising Equation (22) as they only
differ by terms that are constant with respect to the parameters. And Equation (22) is an
unbiased estimator of Equation (21). Hence, the parameters returned by Equation (20) are
equivalent to those which minimise an unbiased estimator of D(P (X,Y ), θ).
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A special case occurs when P (Ū) = 0. This corresponds to Equation (22) where NL is
fixed while NU →∞,

arg min
θ

1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+D(P (X), θ) (24)

which estimates the marginal component of the divergence exactly while using the available
labelled data to estimate the conditional component as best possible.

Our term Equation (20) is somewhat similar to the form of Equation 3 presented by
McCallum et al. (2006), which was further investigated by Druck et al. (2007), but with the
exponents of the conditional and generative components of the equation set by the ratio
of labelled to unlabelled data, rather than being found by cross validation. Moreover, our
purpose in using an equation of this form is different; we wish to fit a generative model,
not a classifier. Rosset et al. (2005) has also previously noted that performance can be
improved by requiring certain expectations in the labelled and unlabelled data set match.
However, they enforced this as a strict requirement, rather than using it to find an unbiased
likelihood estimate as we do. Nigam et al. (2000) implement down-weighting of the log
likelihood of all unlabelled elements, by a factor which is set using cross validation. As the
marginal likelihood of the labelled samples is not re-weighed this also produces a biased
estimator of the joint likelihood.

An argument might be made that a biased estimator which is tuned using cross validation
has the potential to outperform the proposed unbiased objective function. While there is
certainly merit to this, we would respond that the parameter tuning inherent in cross
validation can increase the amount of time spent training dramatically, and that it requires
a large enough corpus of labelled data that a holdout set can be safely put aside to validate
with. Our objective function provides a simple, principled alternative, applicable in cases
where such restrictions prevent cross validation, as well as others.

4.1 Estimator Variance

Note that we can already generate an asymptotically unbiased estimate by using the labelled
data alone. Unlabelled samples are only of value if they make this process more reliable,
so it is worth investigating the uncertainty of this estimator. Consider the variance V of
Equation (22), where the variance is taken w.r.t. the probability of the possible data sets
we may have observed

V = Var

(
1

NL

NL∑
i=1

log

(
P (yi|xi)
P (yi|xi, θ)

)
+

1

N

N∑
i=1

log

(
P (xi)

P (xi|θ)

))
. (25)

We can expand Equation (25) as

V = Var

(
1

NL

NL∑
i=1

Ly|x(i)

)
+ Var

(
1

N

N∑
i=1

Lx(i)

)

+2 Cov

(
1

NL

NL∑
i=1

Ly|x(i),
1

N

N∑
i=1

Lx(i)

)
(26)
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where for ease of notation we have defined

Ly|x(i) ≡ log

(
P (yi|xi)
P (yi|xi, θ)

)
, Lx(i) ≡ log

(
P (xi)

P (xi|θ)

)
.

Using standard identities for variances and covariances,2 and taking advantage of our sam-
ples being iid, we can expand Equation (26) as follows

V =
1

NL
Var

(
LY |X

)
+

1

N
Var (LX) +

2

N
Cov

(
LY |X , LX

)
(27)

where we have now defined

LY |X ≡ log

(
P (Y |X)

P (Y |X, θ)

)
, LX ≡ log

(
P (X)

P (X|θ)

)
.

As such Equation (27) gives us the variance of Equation (22) in terms of a relationship
between the distributions P (X,Y ), P (X,Y |θ), NL and NU . Clearly V → 0 as NL → ∞.
However we are also interested in the case where we increase NU while holding NL steady,
corresponding to P (Ū) = 0. By inspection, as NU →∞, V → 1

NL
Var

(
LY |X

)
(as one might

expect from examination of Equation (24)), so the question becomes whether this reduces
V . Remembering that N = NL + NU , the derivative3 of Equation (27) with respect to N
(and hence NU since NL is fixed) is

dV

dN
=
−1

N2
Var (LX)− 2

N2
Cov

(
LY |X , LX

)
.

2. The simplification of the variance terms is intuitively obvious and a standard result - for any random
variable, we expect the variance of the arithmetic mean of a set of observations to be the variance of the
variable itself, divided by the number of observations made (see MacKay, 2003). However the covariance
term is perhaps a little more surprising, as it has no dependence on NL. This is due to the iid nature
of the data, which implies a covariance of zero between different samples. As such we can derive the
following:

Cov

(
1

NL

NL∑
i=1

Ly|x(i),
1

N

N∑
i=1

Lx(i)

)

=
1

NNL

NL∑
i=1

N∑
j=1

Cov
(
Ly|x(i), Lx(j)

)
=

1

NNL

NL∑
i=1

N∑
j=1
j 6=i

Cov
(
Ly|x(i), Lx(j)

)
+

1

NNL

NL∑
i=1

Cov
(
Ly|x(i), Lx(i)

)

= 0 +
1

NNL

NL∑
i=1

Cov
(
Ly|x(i), Lx(i)

)
=

1

NNL

NL∑
i=1

Cov
(
LY |X , LX

)
=

1

N
Cov

(
LY |X , LX

)
which eliminates NL and so gives us the stated form of the covariance.

3. Strictly NU is discrete, and does not have a derivative. However the expression is monotonic in NU , and
so the overall trend will be the same if this constraint is relaxed.
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For Equation (25) to decrease as NU increases this quantity must be negative. This is the
case iff

Cov
(
LY |X , LX

)
≥ −Var (LX)

2
.

The conclusion is that even if NL is fixed our method of including unlabelled data reduces
the variance of our estimator provided Cov

(
LY |X , LX

)
is above a lower bound, proportional

to Var (LX). Perhaps surprisingly this bound is negative, indicating they may be slightly
anti-correlated. We feel this is a sufficiently weak criteria for our scheme to find application
across a variety of data sets.

5. Empirical Demonstration

We now examine the performance of the objective function given in Section 4 on real world
data sets, compared to the standard semi-supervised learning, supervised learning, and
several other alternative semi-supervised techniques. To maximally highlight the effect of
mismatch between the model and true distribution, a simple marginal distribution consisting
of a single axis aligned Gaussian was chosen to model each class.

The following six learning schemes were tested with this model: our unbiased semi-
supervised expression (SSunb), that is, the natural log of Equation (20); the log likelihood
of the labelled data (LL), that is, Equation (1); the log likelihood of the standard (bi-
ased) semi-supervised expression (SSb), that is, the natural log of Equation (3); the log
likelihood of the standard semi-supervised expression plus an Entropy Regularisation term
(Grandvalet and Bengio, 2006) with the parameter λ set by 5 fold cross validation, select-
ing the λ with the lowest holdout set error rate (ERer); Entropy Regularisation as before,
except cross validation is carried out on the log likelihood of the holdout set (ERnll); the
semi-supervised equivalent of Multi Conditional learning (as investigated in Druck et al.,
2007), again cross validating hyper parameters once on error rate (MCer) and once on log
likelihood (MCnll); and the log likelihood of the standard semi-supervised expression plus
an Expectation Regularisation (Mann and McCallum, 2007) term (XR), with the trade off
parameter set (after some experimentation) as in the original paper to the equivalent of 10
times the number of labelled samples; Additionally, for the position parameter µ of each
Gaussian a penalty term −C||µ||2 was added onto each objective function with C set to a
small constant (≈ 10−5).

We would point out that many of these learning schemes were originally designed for use
with a discriminative model. Here we are using them in a different manner, to augment the
objective function during the learning of a generative model. They have been selected due
to their reported good performance in improving discriminative learning, in the hope that
this will counteract the bias introduced by the missing class information in the likelihood
of the unlabelled samples.

We chose 7 data sets from the UCI repository (Frank and Asuncion, 2010); Diabetes,
Wine, glass identification (Glass), blood transfusion (Blood) (Yeh et al., 2009), Ecoli,
Haberman survival (Haber), and Pima Indian diabetes (Pima); and 2 from libsvm: SVM
guide 1 (SVMg) (Hsu et al., 2003) and fourclass (Four) (Ho and Kleinberg, 1996). Due
to computational constraints, data sets with > 3 classes had one or more merged to create
3 approximately equally sized groupings. Each axis of the data was transformed to lie in
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data SSunb LL SSb MCer MCnll ERer ERnll XR

Diabetes 3.36 4.12 3.90 144 3.58 3.90 3.97 3.74
SVMg 0.379 0.417 1.18 99.4 0.376 1.23 1.19 1.16
Wine 19.4 58.4 23.0 67.2 21.4 24.7 24.7 12.5
Glass 23.7 40.9 23.5 213 26.3 22.7 21.5 21.5
Blood 1.78 2.27 3.01 77.2 2.08 3.06 3.06 2.65
ecoli 8.80 13.7 10.0 68.6 10.3 9.97 10.0 9.63
Haber 4.75 7.30 5.02 79.8 5.10 4.98 4.90 4.59
Pima 3.60 4.30 4.24 136 3.80 4.26 4.25 3.87
Four 2.17 2.22 2.25 37.3 2.19 2.33 2.32 2.23

Table 1: Overall mean negative log likelihood - best result for each data set shown in bold,
second best underlined

the range [−1, 1]. Samples with missing attributes were excluded. Where a data set had a
dedicated test set, this was used; otherwise, one fifth of the data was randomly separated a
priori for this purpose.

A range of values ofNL andNU were trialled. As a proportion of the total available train-
ing data, NL varied from [0.025, 0.05, 0.1, 0.2], and NU from [0.025, 0.05, 0.1, 0.2, 0.4, 0.8],
with NU being formed by discarding labels prior to training (for example, a test where
NL = 0.05 and NU = 0.4 would indicate 0.45 of the available data was used for training,
of which one ninth was labelled). For each repetition a random set of parameters was gen-
erated and used as the starting point for each of the above learning schemes. Each model
was optimised by repeatedly alternating between a small number of iterations of downhill
simplex search (Lagarias et al., 1998), followed by a large numbers of iterations of BFGS
search (Nocedal and Wright, 1999), until convergence. This process was repeated 100 times
for each combination of NL and NU values. The error rate and negative log likelihood of
the test set was found for each solution. A selection of these results are shown here. Full
results over all test sets are included in the appendix.

Note that we have purposefully used the same optimisation scheme for all objective
functions - including LL, which has a closed form solution, and SSb, which can be op-
timised using expectation maximisation. Also note that for each repetition a single set
of starting parameters was randomly generated, and then used to initialise every learning
scheme investigated. The intent of this was to ensure that all variability encountered was
solely due to the choice of objective function.

Table 1 shows the mean negative log likelihood for each data set, that is, the negative
log likelihood averaged over all all repetitions of all values of NL and NU . For each data set,
the minimum negative log likelihood is shown in bold, and the second smallest underlined.
Our method SSunb achieved the lowest mean for 5 of the 9 data sets, and the second lowest
for a further 3. XR proved the best for two data sets, and MCnll and ERnll for one each.

Mean error rates are shown in in Table 2. Our method performed best for 3 data sets
and second best in a further 4, roughly equivalent to LL or MCer (without the need for the
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data SSunb LL SSb MCer MCnll ERer ERnll XR

Diabetes 0.283 0.284 0.332 0.299 0.294 0.337 0.346 0.312
SVMg 0.0597 0.0597 0.189 0.0572 0.0678 0.193 0.175 0.171
Wine 0.144 0.163 0.190 0.238 0.162 0.230 0.259 0.218
Glass 0.483 0.459 0.539 0.470 0.501 0.545 0.555 0.525
Blood 0.277 0.277 0.367 0.273 0.292 0.372 0.369 0.309
ecoli 0.121 0.104 0.266 0.140 0.147 0.276 0.280 0.184
Haber 0.298 0.298 0.371 0.337 0.319 0.379 0.369 0.301
Pima 0.296 0.292 0.348 0.302 0.306 0.355 0.358 0.327
Four 0.249 0.250 0.260 0.245 0.250 0.281 0.274 0.259

Table 2: Overall mean error rate - best result for each data set shown in bold, second best
underlined

latter’s expensive cross validation). We point out that we are training a simple generative
model, and so error rates reported are not directly comparable to previous work using more
powerful / conditional models.

Figure 1 consists of four plots, showing how the mean negative log likelihood of the
Blood data set varies as NU is increased, for all four values of NL tested. Error bars
indicate a single standard deviation. Note how for small values of NU all methods perform
similarly, with some benefit from using unlabelled data. As NU increases and the upper
bound weakens, the methods begin to diverge - the ER methods, along with SSb and XR
worsen consistently. LL remains approximately constant (as expected) and slightly larger
than SSunb. MCnll sits somewhere between LL and SSunb, worsening a little as the
proportion of unlabelled data grows. This qualitative description of the observed behaviour
applies to a significant proportion of the results. The main exceptions to this trend were in
the Glass, Wine and Haber data sets for small values of NL, where competing methods
(noticeably XR) performed better though this advantage tended to tail off as NL grew -
for example see Figure 3, which shows the Haberman data set performing very well under
XR training.

Figure 2 shows how the mean error rate of the same data set varies. For small quantities
of labelled data SSunb tends to tie with LL. However as the quantity of labelled data grows
competing methods begin to out perform it. In general we found that the proposed unbi-
ased method was not always best (most commonly being out performed by XR), but often
very competitive. It also rarely showed degradation in behaviour as the quantity of unla-
belled data was increased - as we would expect, given the manner in which it automatically
downgrades the influence of additional unlabelled samples.

As well as looking at the mean log likelihood and error rates though, we believe another
informative measure of the success of a semi-supervised algorithm is the raw frequency
with which it out performs alternate methods. This gives an estimate of the probability
that, should you include unlabelled data in your training data set, the performance of the
algorithm will improve.
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Figure 1: Four sample plots of the mean negative log likelihood of the Blood data set
for a variety of values of NL, as NU grows. Note that MCer is excluded, as it
significantly underperformed and caused unfavourable axis scaling.

An example of this is shown in Figure 4, which shows the proportion of occasions each
semi-supervised algorithm out performs supervised learning, where performance is measured
in terms of the negative log likelihood of the test set. For this particular case our proposed
unbiased estimator is consistently the superior one - on only one occasion does another
algorithm (MCnll) outperform supervised learning with greater frequency. In general it
was found that only when NU is small that we typically saw other methods performing
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Figure 2: Four sample plots of the mean error rate of the Blood data set for a variety of
values of NL, as NU grows.

better. What is also notable is how, while several other methods initially provide a bonus
when NU is small (where the proportion rises above 0.5, indicating that they were more
likely than not to improve learning), they tend to degrade quite rapidly as unlabelled data
is added, often making it more probable that they will worsen performance by the time
NU = 0.8. It was much rarer that our algorithm did this (one example occurring in the
Ecoli data set with NL = 0.2).
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Figure 3: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the
negative log likelihood on the Haberman data set for a variety of values of NL,
as NU grows.

Finally, Figure 5 shows the proportion of repetitions for which each semi-supervised
algorithm reduced the error compared to supervised learning alone. Here our algorithm
behaves much less impressively. With NL set to its lowest value 0.025 it tends to be the
better of the algorithms as NU grows, but the proportion of occasions it provides a benefit
is barely above 0.5. As the number of labelled data samples grows the two multi conditional
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Figure 4: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the
negative log likelihood on the Blood data set for a variety of values of NL, as
NU grows.

learning algorithms begin to out perform all others, especially when cross validated to reduce
error.
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Figure 5: Four sample plots of the proportion of tests in which each semi-supervised learning
scheme outperformed learning on the labelled data alone as measured by the error
rate on the Blood data set for a variety of values of NL, as NU grows.

6. Conclusions

We have presented tighter bounds on the bias introduced when performing semi-supervised
(as opposed to full supervised) maximum likelihood learning with a generative model using
the standard technique. We also provide a new interpretation which gives an intuitive
explanation for why the results are often poor with large amounts of unlabelled data.
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Additionally, we have demonstrated a simple example of a new unbiased objective func-
tion which approximately minimises KL (P (X,Y )||P (X,Y |θ)). This method is no more
computationally complex than simply augmenting the likelihood, demonstrates very good
behaviour with even very large quantities of unlabelled data, and requires quite weak condi-
tions on the correlation between the conditional and generative components of the likelihood
to reduce the variance of our estimator.

Although not covered, much of the analysis presented here likely to be applicable to
regression problems as well as classification ones. We leave this as an avenue for possible
future work.
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Appendix A. Supplementary Results Of Unbiased Semi-Supervised
Training

There are two measures of performance we examine, evaluated over a holdout set:

• The error rate

• The negative log likelihood

For each of these measures two statistics are calculated:

• The mean performance over all repetitions, and the associated variance.

• The proportion of repetitions in which the performance was better than that achieved
using the labelled data alone.

The former gives an approximate measure of ‘average risk’, according to whether we consider
risk in terms of misclassification rate (for example when designing a classification algorithm)
or negative log likelihood (such as when building a compression algorithm, say). The latter
tells us, for each measure of ‘risk’, whether or not including unlabelled data has improved
or worsened our performance.

Multi conditional learning, when cross validated according to error rate, often gave
extremely bad negative log likelihood results. This caused unfavourable scaling of the axis,
making other results indistinguishable. As such, the mean negative log likelihood results of
MCer have been separated out and plotted alone.

See the main body of the text for such as abbreviations and data sets.

A.1 Mean Errors And Negative Log Likelihood

This section shows the mean error and negative log likelihood results.
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Figure 6: Mean error results of Diabetes data set

A.2 Proportion In Which Performance Improves

This section shows the proportion of test in which the error / negative log likelihood was
improved by the addition of unlabelled data. That is, for every data set, the performance of
the model was evaluated for each training scheme, and compared to the performance when
only the labelled data was used. The frequency with which each semi-supervised scheme
outperforms supervised learning was recorded and normalised. This gives an estimate of the
probability that including unlabelled data will improve performance compared to supervised
learning alone. A value close to 1 indicates reliable improvement when unlabelled data is
added, whereas one close to 0 shows reliable worsening of results.
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Figure 7: Mean log likelihood results of Diabetes data set
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Figure 8: Mean log likelihood results of Diabetes data set
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Figure 9: Mean error results of the SVMguide data set
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Figure 10: Mean log likelihood results of the SVMguide data set
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Figure 11: Mean log likelihood results of the SVMguide data set
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Figure 12: Mean error results of the Wine data set
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Figure 13: Mean log likelihood results of the Wine data set
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Figure 14: Mean log likelihood results of the Wine data set
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Figure 15: Mean error results of the Glass data set
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Figure 16: Mean log likelihood results of the Glass data set
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Figure 17: Mean log likelihood results of the Glass data set
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Figure 18: Mean error results of the Blood data set
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Figure 19: Mean log likelihood results of the Blood data set
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Figure 20: Mean log likelihood results of the Blood data set
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Figure 21: Mean error results of the Ecoil data set

410



Unbiased Generative Semi-Supervised Learning

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.025

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.05

0 0.2 0.4 0.6 0.8 1
−20

−10

0

10

20

30

40

50

60

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.1

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15

NU

m
e
a
n
n
e
g
a
ti
v
e
lo
g
lik
e
lih
o
o
d

Ecoli, NL =0.2

LL SSunb ERnll ERer
MCnll MCer SS XR

Figure 22: Mean log likelihood results of the Ecoil data set
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Figure 23: Mean log likelihood results of the Ecoli data set
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Figure 24: Mean error results of the Haberman data set
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Figure 25: Mean log likelihood results of the Haberman data set
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Figure 26: Mean log likelihood results of the Haberman data set
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Figure 27: Mean error results of the Pima Indian data set
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Figure 28: Mean log likelihood results of the Pima Indian data set
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Figure 29: Mean log likelihood results of the Pima Indian data set
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Figure 30: Mean error results of the Fourclass data set
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Figure 31: Mean log likelihood results of the Fourclass data set
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Figure 32: Mean log likelihood results of the Fourclass data set
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Figure 33: Chance of error rate improvement VS labelled data alone - Diabetes data set
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Figure 34: Chance of log likelihood improvement VS labelled data alone - Diabetes data
set
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Figure 35: Chance of error rate improvement VS labelled data alone - SVMguide data set
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Figure 36: Chance of log likelihood improvement VS labelled data alone - SVMguide data
set
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Figure 37: Chance of error rate improvement VS labelled data alone - Wine data set
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Figure 38: Chance of log likelihood improvement VS labelled data alone - Wine data set
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Figure 39: Chance of error rate improvement VS labelled data alone - Glass data set
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Figure 40: Chance of log likelihood improvement VS labelled data alone - Glass data set
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Figure 41: Chance of error rate improvement VS labelled data alone - Blood data set
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Figure 42: Chance of log likelihood improvement VS labelled data alone - Blood data set
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Figure 43: Chance of error rate improvement VS labelled data alone - Ecoli data set
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Figure 44: Chance of log likelihood improvement VS labelled data alone - Ecoli data set
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Figure 45: Chance of error rate improvement VS labelled data alone - Haberman data set
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Figure 46: Chance of log likelihood improvement VS labelled data alone - Haberman data
set
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Figure 47: Chance of error rate improvement VS labelled data alone - Pima Indian data
set
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Figure 48: Chance of log likelihood improvement VS labelled data alone - Pima Indian data
set
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Figure 49: Chance of error rate improvement VS labelled data alone - Fourclass data set
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Figure 50: Chance of log likelihood improvement VS labelled data alone - Fourclass data
set
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