
Journal of Machine Learning Research 15 (2014) 3483-3487 Submitted 2/14; Revised 5/14; Published 10/14

The Gesture Recognition Toolkit

Nicholas Gillian ngillian@media.mit.edu

Joseph A. Paradiso joep@media.mit.edu

Responsive Environments Group, Media Lab

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Editor: Isabelle Guyon, Vassilis Athitsos, Sergio Escalera

Abstract

The Gesture Recognition Toolkit is a cross-platform open-source C++ library designed to
make real-time machine learning and gesture recognition more accessible for non-specialists.
Emphasis is placed on ease of use, with a consistent, minimalist design that promotes
accessibility while supporting flexibility and customization for advanced users. The toolkit
features a broad range of classification and regression algorithms and has extensive support
for building real-time systems. This includes algorithms for signal processing, feature
extraction and automatic gesture spotting.

Keywords: gesture recognition, machine learning, C++, open source, classification,
regression, clustering, gesture spotting, feature extraction, signal processing

1. Introduction

Gesture recognition is a powerful tool for human-computer interaction. It is increasingly
redefining how we interact with our smartphones, wearable devices, televisions and gaming
consoles. In addition to the increasing prevalence of gesture-based interactions in consumer
devices, a diverse range of individuals are gaining access to affordable sensor technology
and rapid-prototyping tools that facilitate non-specialists to build custom gesture-based
applications. Commercial sensors such as the Microsoft Kinect or easy-to-use hardware
platforms like Arduino (Mellis et al., 2007), combined with prototyping environments, such
as Processing or Openframeworks,1 are empowering professional developers, students, re-
searchers, hobbyists, creative coders, interaction designers, musicians and artists to create
novel-interactive systems that are playful, poignant and expressive.

Nevertheless, while a diverse range of individuals now have access to powerful sensors
and rapid-prototyping tools, performing real-time gesture recognition can pose a challenge,
even to accomplished developers and engineers (Patel et al., 2010). This is despite the large
number of sophisticated machine-learning applications currently available, such as MAT-
LAB, R and WEKA (Hall et al., 2009). Many of these applications are primarily designed
for offline analysis of prerecorded data sets by domain experts, and require substantial effort
to recognize real-time signals. There are accessible machine-learning libraries in Java (Abeel
et al., 2009) and Python (Pedregosa et al., 2011) that can be used to prototype real-time

1. More information on Processing and Openframeworks can be found on their respective websites: http:
//processing.org and http://www.openframeworks.cc.

c©2014 Nicholas Gillian and Joseph A. Paradiso.

http://processing.org
http://processing.org
http://www.openframeworks.cc

Gillian and Paradiso

systems. However, many users need to build their systems in C++ due to the computational
overhead of the sensor data and interactive visualizations and therefore benefit from C++
tools for real-time machine learning. While there are a number of powerful C++ libraries
that can be adapted for gesture recognition (King, 2009; Sonnenburg et al., 2010; Gashler,
2011), these tools still require the user to develop the supporting infrastructure needed to
build real-time systems and can have steep learning curves for non-specialists. This leaves
C++ users with a sizable gulf of execution, specifically the gap between their goals and the
actions needed to attain those goals with the system (Hutchins et al., 1985). This gap can
significantly impede the process of building novel gesture-based interfaces for technologists,
researchers, artists and beyond.

2. Gesture Recognition Toolkit

To address this issue, we have created the Gesture Recognition Toolkit (GRT), a cross
platform open source C++ machine-learning library for real-time gesture recognition. The
toolkit was developed with the following core design principles:

Accessibility: The GRT is a general-purpose tool for facilitating non-specialists to
create their own machine-learning based systems. Emphasis is placed on ease of use, with
a clear and consistent coding convention applied throughout the toolkit. The GRT pro-
vides a minimal code footprint for the user, reducing the need for arduous and error-prone
boilerplate code to perform common functionality, such as passing data between algorithms
or to preprocess data sets. This consistent, minimalist design significantly lowers the en-
try barrier for a new user because the same subset of core functions apply throughout the
toolkit.

Flexibility: To support flexibility while maintaining consistency, the GRT uses an
object-oriented modular architecture. This architecture is built around a set of core mod-
ules and a central gesture-recognition pipeline. The input to both the modules and
pipeline consists of an N -dimensional double-precision vector, making the toolkit flexible
to the type of input signal. The algorithms in each module can be used as stand-alone
classes; alternatively a gesture-recognition pipeline can be used to chain modules together
to create a more sophisticated gesture-recognition system. The GRT includes modules for
preprocessing, feature extraction, clustering, classification, regression and post processing.

Choice: To date, there is no single machine-learning algorithm that can be used to
recognize all gestures. It is therefore crucial for a user to be able to choose from, and
quickly experiment with, a number of algorithms to see which might work best for their
particular task. The GRT features a broad range of machine-learning algorithms such as
AdaBoost, Decision Trees, Dynamic Time Warping, Hidden Markov Models, K-Nearest
Neighbor, Linear and Logistic Regression, Näıve Bayes, Multilayer Perceptrons, Random
Forests, Support Vector Machines and more.2 In addition to supporting a broad range of
algorithms, the toolkit’s architecture facilities a user to seamlessly switch between different
algorithms with minimal modifications to the user’s code.

Supporting Infrastructure: Building sophisticated machine-learning based systems
requires more than just a state-of-the-art classifier. In many real-world scenarios, the input

2. For Support Vector Machines, we provide an easy-to-use wrapper for LibSVM (Chang and Lin, 2011).
All other algorithms are custom implementations unless otherwise stated in the source documentation.

3484

The Gesture Recognition Toolkit

to a classification algorithm must first be preprocessed and have salient features extracted.
Preprocessing and feature extraction are important because they can significantly improve
the predictive performance of a classifier, and also provide faster and more cost-effective pre-
dictors (Guyon and Elisseeff, 2003). The GRT therefore supports a wide range of pre/post
processing, feature extraction and feature selection algorithms, including popular prepro-
cessing filters (e.g., Moving Average Filter), embedded feature extraction algorithms (e.g.,
AdaBoost), dimensionality reduction techniques (e.g., Principal Component Analysis), and
unsupervised quantizers (e.g., K-Means Quantizer, Self-Organizing Map Quantizer). Accu-
rate labeling of data sets is also critical for building robust machine-learning based systems.
The toolkit therefore contains extensive support for recording, labeling and managing su-
pervised and unsupervised data sets for classification, regression and time series analysis.3

Customizability: In addition to using the wide range of existing GRT algorithms,
more advanced users commonly want to test or deploy their own algorithms when building
novel recognition systems, such as using a custom feature-extraction algorithm. The GRT
is therefore designed to facilitate users to easily incorporate their own algorithms within the
toolkit’s framework by inheriting from one of the GRT base classes. The toolkit leverages
advanced object-orientated concepts, such as polymorphism and abstract base-class point-
ers, facilitating custom algorithms to be used alongside any of the existing GRT algorithms.

Real-time Support: The GRT supports common techniques for performing offline
analysis on pre-recorded data sets, such as partitioning data into validation and test data
sets, running cross validation and computing accuracy metrics. In addition to these offline
techniques, the toolkit is designed to enable a user to seamlessly move from the offline
analysis phase to the real-time recognition phase. One significant challenge involved in
moving from offline analysis to real-time gesture recognition is automatically segmenting
valid gestures from a continuous stream of data (Junker et al., 2008). This is a nontrivial
task because the input data might consist of generic movements that are not valid gestures
in the model. To support real-time gesture recognition, the GRT features algorithms that
automatically perform gesture spotting. These algorithms, such as the Adaptive Näıve
Bayes Classifier (Gillian et al., 2011a) and N -Dimensional Dynamic Time Warping (Gillian
et al., 2011b), learn rejection thresholds from the training data, which are then used to
automatically recognize valid gestures from a continuous stream of real-time data.

3. Code Example

The code example below demonstrates the core design principles of the GRT. This example
shows how to setup a custom gesture-recognition system consisting of a moving-average filter
preprocessing module, a fast Fourier transform and custom feature extraction modules,
an AdaBoost classifier and a timeout-filter post processing module. The example also
illustrates how to load a training data set from a CSV file, train a classification model, and
use this model to predict the class label of a new data sample.

//Setup a custom recognition pipeline

1: GestureRecognitionPipeline pipeline;

2: pipeline.addPreProcessingModule(MovingAverageFilter(5));

3. A detailed description of the GRT data structures can be found at http://www.nickgillian.com/wiki/
pmwiki.php/GRT/Reference.

3485

http://www.nickgillian.com/wiki/pmwiki.php/GRT/Reference
http://www.nickgillian.com/wiki/pmwiki.php/GRT/Reference

Gillian and Paradiso

3: pipeline.addFeatureExtractionModule(FFT(512));

4: pipeline.addFeatureExtractionModule(MyCustomFeatureAlgorithm());

5: pipeline.setClassifier(Adaboost(DecisionStump()));

6: pipeline.addPostProcessingModule(ClassLabelTimeoutFilter(1000));

//Load a labeled data set from a CSV file and train a classification model

7: ClassificationData trainingData;

8: trainingData.load("TrainingData.csv");

9: bool success = pipeline.train(trainingData);

//The following lines would be called each time the user gets a new sample

10: vector< double > sample = getDataFromSenor(); //Custom user function

11: pipeline.predict(sample);

12: unsigned int predictedClassLabel = pipeline.getPredictedClassLabel();

13: double maxLikelihood = pipeline.getMaximumLikelihood();

Lines 1 through 6 show how a GestureRecognitionPipeline can be used to link several
modules together to build a more complex recognition system. Note that the customization
of the recognition system is achieved with a minimal code footprint, as the pipeline will auto-
matically connect the output of one module to the next module’s input; propagating signals
through the entire pipeline at both the training, testing and real-time prediction phases.
These six lines also illustrate the flexibility of the toolkit’s modular design, and demonstrate
how a user can easily experiment with different algorithms from existing modules, or insert
a custom algorithm into the pipeline as illustrated on line 4. Line 10 demonstrates how
real-time sensor data from a variety of devices can be incorporated; input can consist of
something as simple as the three-dimensional data from an accelerometer connected to an
Arduino, to more complex inputs, such as the high-dimensional skeleton data from a Kinect.

This example also demonstrates one of the key designs of the GRT that make it more
accessible: clean and consistent coding through abstraction. For instance, lines 9 and 11
show respectively how a user can train a model and then predict the class label of a new
sample using that model. These key functions are the same, regardless of which algorithms
are used. This abstraction significantly reduces the learning curve for new users, because
the same key functions are consistent across all the GRT algorithms.

4. Conclusion

The gesture recognition toolkit is open source under the MIT license and has been publicly
available since 2012, receiving over ten-thousand hits on the toolkit’s website.4 It has been
downloaded several thousand times and has built up a community of over 300 users on the
toolkit’s forum. To support a diverse range of users, we have established a number of online
resources, including detailed examples for each module and a wide range of tutorials and
references.5 Future work includes an interactive graphical user interface, in which a user
can record and label training data; configure; train and test a gesture-recognition model;
perform real-time prediction and then export their model and pipeline configuration so it
can be loaded directly into the user’s program, using the C++ API.

4. The toolkit’s website can be found at: http://www.nickgillian.com/software/grt.
5. Online tutorials, references and examples can be found at: http://www.nickgillian.com/wiki.

3486

http://www.nickgillian.com/software/grt
http://www.nickgillian.com/wiki

The Gesture Recognition Toolkit

References

T. Abeel, Y. Van de Peer, and Y. Saeys. Java-ML: A machine learning library. Journal of
Machine Learning Research, 10:931–934, 2009.

C.C. Chang and C.J. Lin. LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology, 2:27:1–27:27, 2011.

M. Gashler. Waffles: A machine learning toolkit. Journal of Machine Learning Research,
12:2383–2387, 2011.

N. Gillian, R. B. Knapp, and S. O’Modhrain. An adaptive classification algorithm for semi-
otic musical gestures. In Proceedings of the 8th Sound and Music Computing Conference,
2011a.

N. Gillian, R. B. Knapp, and S. O’Modhrain. Recognition of multivariate temporal mu-
sical gestures using n-dimensional dynamic time warping. In Proceedings of the 2011
International Conference on New Interfaces for Musical Expression, 2011b.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of
Machine Learning Research, 3:1157–1182, 2003.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten. The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1):10–18,
2009.

E. L. Hutchins, J. D. Hollan, and D. A. Norman. Direct manipulation interfaces. Human–
Computer Interaction, 1(4):311–338, 1985.

H. Junker, O. Amft, P. Lukowicz, and G. Tröster. Gesture spotting with body-worn inertial
sensors to detect user activities. Pattern Recognition, 41(6):2010–2024, 2008.

D.E. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research,
10:1755–1758, 2009.

D. Mellis, M. Banzi, D. Cuartielles, and T. Igoe. Arduino: An open electronics prototyping
platform. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2007.

K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and J. Landay. Gestalt:
integrated support for implementation and analysis in machine learning. In Proceedings
of the 23rd Annual ACM symposium on User Interface Software and Technology, 2010.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. Bona, A. Binder,
C. Gehl, and V. Franc. The SHOGUN machine learning toolbox. Journal of Machine
Learning Research, 11:1799–1802, 2010.

3487

	Introduction
	Gesture Recognition Toolkit
	Code Example
	Conclusion

