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Abstract

Fitting high-dimensional data involves a delicate tradeoff between faithful representation
and the use of sparse models. Too often, sparsity assumptions on the fitted model are
too restrictive to provide a faithful representation of the observed data. In this paper,
we present a novel framework incorporating sparsity in different domains. We decompose
the observed covariance matrix into a sparse Gaussian Markov model (with a sparse pre-
cision matrix) and a sparse independence model (with a sparse covariance matrix). Our
framework incorporates sparse covariance and sparse precision estimation as special cases
and thus introduces a richer class of high-dimensional models. We characterize sufficient
conditions for identifiability of the two models, viz., Markov and independence models.
We propose an efficient decomposition method based on a modification of the popular
`1-penalized maximum-likelihood estimator (`1-MLE). We establish that our estimator is
consistent in both the domains, i.e., it successfully recovers the supports of both Markov
and independence models, when the number of samples n scales as n = Ω(d2 log p), where
p is the number of variables and d is the maximum node degree in the Markov model.
Our experiments validate these results and also demonstrate that our models have better
inference accuracy under simple algorithms such as loopy belief propagation.

Keywords: high-dimensional covariance estimation, sparse graphical model selection,
sparse covariance models, sparsistency, convex optimization

1. Introduction

Covariance estimation is a classical problem in multi-variate statistics. The idea that second-
order statistics capture important and relevant relationships between a given set of variables
is natural. Finding the sample covariance matrix based on observed data is straightforward
and widely used (Anderson, 1984). However, the sample covariance matrix is ill-behaved
in high-dimensions, where the number of dimensions p is typically much larger than the
number of available samples n (p � n). Here, the problem of covariance estimation is
ill-posed since the number of unknown parameters is larger than the number of available
samples, and the sample covariance matrix becomes singular in this regime.

Various solutions have been proposed for high-dimensional covariance estimation. Intu-
itively, by restricting the class of covariance models to those with a limited number of free
parameters, we can successfully estimate the models in high dimensions. A natural mech-
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anism to achieve this is to impose a sparsity constraint on the covariance matrix. In other
words, it is presumed that there are only a few (off-diagonal) non-zero entries in the co-
variance matrix, which implies that the variables under consideration approximately satisfy
marginal independence, corresponding to the zero pattern of the covariance matrix (Kauer-
mann, 1996) (and we refer to such models as independence models). Many works have
studied this setting and have provided guarantees for high-dimensional estimation through
simple thresholding of the sample covariance matrix and other related schemes. See Sec-
tion 1.2. In many settings, however, marginal independence is too restrictive and does not
hold. For instance, consider the dependence between the monthly stock returns of various
companies listed on the S&P 100 index. It is quite possible that a wide range of complex
(and unobserved) factors such as the economic climate, interest rates etc., affect the returns
of all the companies. Thus, it is not realistic to model the stock returns of various companies
through a sparse covariance model.

A popular alternative sparse model, based on conditional independence relationships,
has gained widespread acceptance in recent years (Lauritzen, 1996). In this case, sparsity
is imposed not on the covariance matrix, but on the inverse covariance or the precision
matrix. It can be shown that the zero pattern of the precision matrix corresponds to a set
of conditional-independence relationships and such models are referred to as graphical or
Markov models. Going back to the stock market example, a first-order approximation is
to model the companies in different divisions1 as conditionally independent given the S&P
100 index variable, which captures the overall trends of the stock returns, and thus removes
much of the dependence between the companies in different divisions. High-dimensional
estimation in models with sparse precision matrices has been widely studied, and guarantees
for estimation have been provided under a set of sufficient conditions. See Section 1.2 for
related works. However, sparse Markov models may not be always sufficient to capture all
the statistical relationships among variables. Going back to the stock market example, the
approximation of using the S&P index node to capture the dependence between companies
of different divisions may not be enough. For instance, there can still be a large residual
dependence between the companies in manufacturing and mining divisions, which cannot
be accounted by the S&P index node.

In this paper, we consider decomposition of the observed data into two domains, viz.,
Markov and independence domains. We posit that the observed data results in a sparse
graphical model under structured perturbations in the form of an independence model, see
Figure 1. This framework encapsulates Markov and independence models, and incorporates
a richer class of models which can faithfully capture complex relationships, such as in the
stock market example above, and yet retain parsimonious representation. The idea that
a combination of Markov and independence models can provide good model-fitting is not
by itself new and perhaps the work which is closest to ours is the work by Choi et al.
(2010), where multi-resolution models with a known hierarchy of variables is considered.
Their model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided in Choi
et al. (2010). However, the approach in Choi et al. (2010) has several deficiencies, including

1. See http://www.osha.gov/pls/imis/sic_manual.html for classifications of the companies.
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Figure 1: Representation of the covariance decomposition problem, where perturbing the observed
covariance matrix with a structured noise model results in a sparse graphical model. The
case where the noise model has sparse marginal dependencies is considered.

oretical guarantees, assumption of a known sparsity support for the Markov model, use of
expectation maximization (EM) which has no guarantees of reaching the global optimum,
non-identifiability due to the presence of both latent variables and residual correlations,
and so on. In contrast, we develop efficient convex optimization methods for decomposi-
tion, which are easily implementable and also provide theoretical guarantees for successful
recovery. In summary, in this paper, we provide an in-depth study of efficient methods and
guarantees for joint estimation of a combination of Markov and independence models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for
certain choices of tuning parameter. Therefore, we incorporate a range of models from
sparse covariance to sparse inverse covariance.

1.1 Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in
a high dimensional setting. Our contributions in this paper are three fold. First, we derive
a set of sufficient restrictions, under which there is a unique decomposition into the two
domains, viz., the Markov and the independence domains, thereby leading to an identifiable
model. Second, we propose novel and efficient estimators for obtaining the decomposition,
under both exact and sample statistics. Third, we provide strong theoretical guarantees
for high-dimensional learning, both in terms of norm guarantees and sparsistency in each
domain, viz., the Markov and the independence domain.

Our learning method is based on convex optimization. We adapt the popular !1-
penalized maximum likelihood estimator (MLE), proposed originally for sparse Markov
model selection and has efficient implementation in the form of graphical lasso (Friedman et al.,
2007). This method involves an !1 penalty on the precision matrix, which is a convex re-
laxation of the !0 penalty, in order to encourage sparsity in the precision matrix. The
Lagrangian dual of this program is a maximum entropy solution which approximately fits
the given sample covariance matrix. We modify this program to our setting as follows: we
incorporate an additional !1 penalty term involving the residual covariance matrix (cor-
responding to the independence model) in the max-entropy program. This term can be
viewed as encouraging sparsity in the independence domain, while fitting a maximum en-
tropy Markov model to the rest of the sample correlations. We characterize the optimal
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Figure 1: Representation of the covariance decomposition problem, where perturbing the observed
covariance matrix with a structured noise model results in a sparse graphical model. The
case where the noise model has sparse marginal dependencies is considered.

lack of theoretical guarantees, assumption of a known sparsity support for the Markov
model, use of expectation maximization (EM) which has no guarantees of reaching the
global optimum, non-identifiability due to the presence of both latent variables and residual
correlations, and so on. In contrast, we develop efficient convex optimization methods for
decomposition, which are easily implementable and also provide theoretical guarantees for
successful recovery. In summary, in this paper, we provide an in-depth study of efficient
methods and guarantees for joint estimation of a combination of Markov and independence
models.

Our model reduces to sparse covariance and sparse inverse covariance estimation for
certain choices of tuning parameter. Therefore, we incorporate a range of models from
sparse covariance to sparse inverse covariance.

1.1 Summary of Contributions

We consider joint estimation of Markov and independence models, given observed data in
a high dimensional setting. Our contributions in this paper are three fold. First, we derive
a set of sufficient restrictions, under which there is a unique decomposition into the two
domains, viz., the Markov and the independence domains, thereby leading to an identifiable
model. Second, we propose novel and efficient estimators for obtaining the decomposition,
under both exact and sample statistics. Third, we provide strong theoretical guarantees
for high-dimensional learning, both in terms of norm guarantees and sparsistency in each
domain, viz., the Markov and the independence domain.

Our learning method is based on convex optimization. We adapt the popular `1-
penalized maximum likelihood estimator (MLE), proposed originally for sparse Markov
model selection and has efficient implementation in the form of graphical lasso (Friedman
et al., 2007). This method involves an `1 penalty on the precision matrix, which is a convex
relaxation of the `0 penalty, in order to encourage sparsity in the precision matrix. The
Lagrangian dual of this program is a maximum entropy solution which approximately fits
the given sample covariance matrix. We modify this program to our setting as follows: we
incorporate an additional `1 penalty term involving the residual covariance matrix (cor-
responding to the independence model) in the max-entropy program. This term can be
viewed as encouraging sparsity in the independence domain, while fitting a maximum en-
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tropy Markov model to the rest of the sample correlations. We characterize the optimal
solution of the above program, and also provide intuitions on the class of Markov and in-
dependence model combinations which can be incorporated under this framework. As a
byproduct of this analysis, we obtain a set of conditions for identifiability of the two model
components.

We provide strong theoretical guarantees for our proposed method under a set of suffi-
cient conditions. We establish that it is possible to obtain sparsistency and norm guarantees
in both the Markov and the independence domains. We establish that the number of sam-
ples n is required to scale as n = Ω(d2 log p) for consistency, where p is the number of
variables, and d is the maximum degree in the Markov graph. The set of sufficient condi-
tions for successful recovery are based on the so-called notion of mutual incoherence, which
controls the dependence between different sets of variables (Ravikumar et al., 2011). In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
sufficient mutual incoherence conditions; But we observe that our method has good nu-
merical estimation performance even when the above incoherence conditions are not fully
satisfied.

We establish that our estimation reduces to sparse covariance and sparse inverse co-
variance estimation for certain choices of tuning parameter. On one end, it reduces to the
`1 penalized MLE for sparse precision estimation (Ravikumar et al., 2011). On the other
extreme, it reduces to (soft) threshold estimator for sparse covariance estimator, on lines
of Bickel and Levina (2008). Moreover, our conditions for successful recovery are similar
to those previously characterized for consistent estimation of sparse covariance/precision
matrix.

Our experiments validate our theoretical results on the sample complexity and demon-
strate that our method is able to learn a richer class of models, compared to sparse graphical
model selection, while requiring similar number of samples. In particular, our method is
able to provide better estimates for the overall precision matrix, which is dense in general,
while the performance of `1-based optimization is worse since it attempts to approximate
the dense matrix via a sparse estimate. Additionally, we demonstrate that our estimated
models have better accuracy under simple distributed inference algorithms such as loopy
belief propagation (LBP). This is because the Markov components of the estimated models
tend to be more walk summable (Malioutov et al., 2006), since some of the correlations
can be “transferred” to the residual matrix. Thus, in addition to learning a richer model
class, incorporating sparsity in both covariance and precision domains, we also learn mod-
els amenable to efficient inference. We also apply our method to real data sets. We see
the resulting models are fairly interpretable for the real data sets. For instance, for stock
returns data set, we observe in both Markov and residual graphs that there exist edges
among companies in the same division or industry, e.g., in the residual graph, nodes “HD”,
“WMT”, “TGT” and “MCD”, all belonging to division Retail Trade form a partition. Also
for foreign exchange rate data set, we observe that the statistical dependencies of foreign
exchange rates are correlated with the geographical locations of countries, e.g., it is observed
in the learned model that the exchange rates of Asian countries are more correlated.
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1.2 Related Works

There have been numerous works on high-dimensional covariance selection and estimation,
and we describe them below. In all the settings below based on sparsity of the covariance
matrix in some basis, the notion of consistent estimation of the sparse support is known as
sparsistency.

Sparse Graphical Models: Estimation of covariance matrices by exploiting the sparsity
pattern in the inverse covariance or the precision matrix has a long history. The sparsity
pattern of the precision matrix corresponds to a Markov graph of a graphical model which
characterizes the set of conditional independence relationships between the variables. Chow
and Liu established that the maximum likelihood estimate (MLE) for tree graphical models
reduces to a maximum weighted spanning tree algorithm where the edge weights correspond
to empirical mutual information. The seminal work by Dempster (1972) on covariance
selection over chordal graphs analyzed the convex program corresponding to the Gaussian
MLE and its dual, when the graph structure is known.

In the high-dimensional regime, penalized likelihood methods have been used in a
number of works to achieve parsimony in covariance selection. Penalized MLE based
on `1 penalty has been used in Huang et al. (2006); Meinshausen and Bühlmann (2006);
d’Aspremont et al. (2008); Banerjee et al. (2008); Rothman et al. (2008); Ravikumar et al.
(2011), among numerous other works, where sparsistency and norm guarantees for recovery
in high dimensions are provided. Graphical lasso (Friedman et al., 2007) is an efficient and
popular implementation for the `1-MLE. There have also been recent extensions to group
sparsity structures(Yuan and Lin, 2006; Zhao et al., 2009), scenarios with missing sam-
ples (Loh and Wainwright, 2011) , semi-parametric settings based on non-paranormals (Liu
et al., 2009), and to the non-parametric setting (Kolar et al., 2010). In addition to the
convex methods, there have also been a number of non-convex methods for Gaussian graph-
ical model selection (Spirtes and Meek, 1995; Kalisch and Bühlmann, 2007; Zhang, 2009;
Anandkumar et al., 2011; Zhang, 2008). While we base much of our consistency analysis
on Ravikumar et al. (2011), we also need to develop novel techniques to handle the delicate
issue of errors in the two domains, viz., Markov and independence domains.

Sparse Covariance Matrices: In contrast to the above formulation, alternatively we
can impose sparsity on the covariance matrix. Note that the zero pattern in the covari-
ance matrix corresponds to marginal independence relationships (Cox and Wermuth, 1993;
Kauermann, 1996; Banerjee and Richardson, 2003). High-dimensional estimation of sparse
covariance models has been extensively studied in El Karoui (2008); Bickel and Levina
(2008); Cai et al. (2010), among others. Wagaman and Levina (2009) consider block-
diagonal and banded covariance matrices and propose an Isomap method for discovering
meaningful orderings of variables. The work in Lam and Fan (2009) provides unified results
for sparsistency under different sparsity assumptions, viz., sparsity in precision matrices,
covariance matrices and models with sparse Cholesky decomposition.

The above works provide strong guarantees for covariance selection and estimation under
various sparsity assumptions. However, they cannot handle matrices which are combinations
of different sparse representations, but are otherwise dense when restricted to any single
representation.
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Decomposable Regularizers: Recent works have considered model decomposition based
on observed samples into desired parts through convex relaxation approaches. Typically,
each part is represented as an algebraic variety, which are based on semi-algebraic sets, and
conditions for recovery of each component are characterized. For instance, decomposition
of the inverse covariance matrix into sparse and low-rank varieties is considered in Chan-
drasekaran et al. (2009, 2010a); Candès et al. (2009) and is relevant for latent Gaussian
graphical model. The work in Silva et al. (2011) considers finding a sparse-approximation
using a small number of positive semi-definite (PSD) matrices, where the “basis” or the
set of PSD matrices is specified a priori. In Negahban et al. (2010), a unified framework
is provided for high-dimensional analysis of the so-called M -estimators, which optimize the
sum of a convex loss function with decomposable regularizers. A general framework for de-
composition into a specified set of algebraic varieties was studied in Chandrasekaran et al.
(2010b).

The above formulations, however, cannot incorporate our scenario, which consists of
a combination of sparse Markov and independence graphs. This is because, although the
constraints on the inverse covariance matrix (Markov graph) and the covariance matrix
(independence graph) can each be specified in a straightforward manner, their combined
constraints on the resulting covariance matrix is not easy to incorporate into a learning
method. In particular, we do not have a decomposable regularizer for this setting.

Multi-Resolution Models: Perhaps the work which is closest to ours is the work by Choi
et al. (2010), where multi-resolution models with a known hierarchy of variables is consid-
ered. The model consists of a combination of a sparse precision matrix, which captures the
conditional independence across scales, and a sparse covariance matrix, which captures the
residual in-scale correlations. Heuristics for learning and inference are provided. However,
the work has three main deficiencies: the sparsity support is assumed to be known, the
proposed heuristics have no theoretical guarantees for success and the models considered
are in general not identifiable, due to the presence of both latent variables and residual
correlations.

2. Preliminaries and Problem Statement

Notation: For any vector v ∈ Rp and a real number a ∈ [1,∞), the notation ‖v‖a refers

to the `a norm of vector v given by ‖v‖a :=
(∑p

i=1 |vi|a
) 1

a . For any matrix U ∈ Rp×p,
the induced or the operator norm is given by |||U |||a,b := max‖z‖a=1 ‖Uz‖b for parameters
a, b ∈ [1,∞). Specifically, we use the `∞ operator norm which is equivalent to |||U |||∞ =
maxi=1,...,p

∑p
j=1 |Uij |. We also have |||U |||1 = |||UT |||∞. Another induced norm is the spectral

norm |||U |||2 (or |||U |||) which is equivalent to the maximum singular value of U . We also use the
`∞ element-wise norm notation ‖U‖∞ to refer to the maximum absolute value of the entries
of U . Note that it is not a matrix norm but a norm on the vectorized form of the matrix.
The trace inner product of two matrices is denoted by 〈U, V 〉 := Tr(UTV ) =

∑
i,j UijVij .

Finally, we use the usual notation for asymptotics: f(n) = Ω(g(n)) if f(n) ≥ cg(n) for some
constant c > 0 and f(n) = O(g(n)) if f(n) ≤ c′g(n) for some constant c′ <∞.
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2.1 Gaussian Graphical Models

A Gaussian graphical model is a family of jointly Gaussian distributions which factor in
accordance to a given graph. Given a graph G = (V,E), with V = {1, . . . , p}, consider
a vector of Gaussian random variables X = [X1, X2, . . . , Xp], where each node i ∈ V is
associated with a scalar Gaussian random variable Xi. A Gaussian graphical model Markov
on G has a probability density function (pdf) that may be parameterized as

fX(x) ∝ exp

[
−1

2
xTJx + hTx

]
, (1)

where J is a positive-definite symmetric matrix whose sparsity pattern corresponds to that
of the graph G. More precisely,

J(i, j) = 0 ⇐⇒ (i, j) /∈ G.

The matrix J is known as the potential or concentration matrix, the non-zero entries J(i, j)
as the edge potentials, and the vector h as the potential vector. The form of parameteriza-
tion in (1) is known as the information form and is related to the standard mean-covariance
parameterization of the Gaussian distribution as

µ = J−1h, Σ = J−1,

where µ := E[X] is the mean vector and Σ := E[(X−µ)(X−µ)T ] is the covariance matrix.
We say that a jointly Gaussian random vector X with joint pdf f(x) satisfies local

Markov property with respect to a graph G if

f(xi|xN (i)) = f(xi|xV \i)

holds for all nodes i ∈ V , where N (i) denotes the set of neighbors of node i ∈ V and, V \ i
denotes the set of all nodes excluding i. More generally, we say that X satisfies the global
Markov property, if for all disjoint sets A,B ⊂ V , we have

f(xA,xB|xS) = f(xA|xS)f(xB|xS).

where set S is a separator2 of A and B. The local and global Markov properties are
equivalent for non-degenerate Gaussian distributions (Lauritzen, 1996).

On lines of the above description of graphical models, consider the class of Gaussian
models3 N (µ,ΣGc), where the covariance matrix is supported on a graph Gc (henceforth
referred to as the conjugate graph), i.e.,

ΣGc(i, j) = 0 ≡ (i, j) /∈ Gc.

Recall that uncorrelated Gaussian variables are independent, and thus,

Xi ⊥⊥ Xj ≡ (i, j) /∈ Gc.

2. A set S ⊂ V is a separator for sets A and B if the removal of nodes in S partitions A and B into distinct
components.

3. In the sequel, we denote the Markov graph, corresponding the support of the information matrix, as G
and the conjugate graph, corresponding to the support of the covariance matrix, as Gc.
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Equivalence between pairwise independence and global Markov properties were studied
in Cox and Wermuth (1993); Kauermann (1996); Banerjee and Richardson (2003).

In this paper, we posit that the observed model results in a sparse graphical model
under structure perturbations in the form of an independence model:

Σ∗ + Σ∗R = J∗M
−1, Supp(J∗M ) = GM ,Supp(Σ∗R) = GR, (2)

where Supp(·) denotes the set of non-zero (off-diagonal) entries, GM denotes the Markov
graph and GR, the independence graph.

2.2 Problem Statement

We now give a detailed description of our problem statement, which consists of the co-
variance decomposition problem (given exact statistics) and covariance estimation problem
(given a set of samples).

2.2.1 Covariance Decomposition Problem

A fundamental question to be addressed is the identifiability of the model parameters.

Definition 1 (Identifiability) A parametric model {Pθ : θ ∈ Θ} is identifiable with re-
spect to a measure µ if there do not exist two distinct parameters θ1 6= θ2 such that Pθ1 = Pθ2
almost everywhere with respect to µ.

Thus, if a model is not identifiable, there is no hope of estimating the model parameters
from observed data. A Gaussian graphical model (with no hidden variables) belongs to the
family of standard exponential distributions (Wainwright and Jordan, 2008, Ch. 3). Under
non-degeneracy conditions, it is also in the minimal form, and as such is identifiable (Brown,
1986). In our setting in (2), however, identifiability is not straightforward to address, and
forms an important component of the covariance decomposition problem, described below.

Decomposition Problem: Given the covariance matrix Σ∗ = J∗M
−1−Σ∗R as in (2), where

J∗M is an unknown concentration matrix and Σ∗R is an unknown residual covariance matrix,
how and under what conditions can we uniquely recover J∗M and Σ∗R from Σ∗?

In other words, we want to address whether the matrices J∗M and Σ∗R are identifiable,
given Σ∗, and if so, how can we design efficient methods to recover them. If we do not
impose any additional restrictions, there exists an equivalence class of models which form
solutions to the decomposition problem. For instance, we can model Σ∗ entirely through
an independence model (Σ∗ = Σ∗R), or through a Markov model (Σ∗ = J∗M

−1). However,
in most scenarios, these extreme cases are not desirable, since they result in dense models,
while we are interested in sparse representations with a parsimonious use of edges in both
the graphs, viz., the Markov and the independence graphs. In Section 3.1, we provide
a sufficient set of structural and parametric conditions to guarantee identifiability of the
Markov and the independence components, and in Section 3.2, we propose an optimization
program to obtain them.
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2.2.2 Covariance Estimation Problem

In the above decomposition problem, we assume that the exact covariance matrix Σ∗ is
known. However, in practice, we only have access to samples, and we describe this setting
below.

Denote Σ̂n as the sample covariance matrix4

Σ̂n :=
1

n

n∑

k=1

x(k)x
T
(k), (3)

where x(k), k = 1, ..., n are n i.i.d. observations of a zero mean Gaussian random vector
X ∼ N (0,Σ∗), where X := (X1, ..., Xp). Now the estimation problem is described below.

Estimation Problem: Assume that there exists a unique decomposition Σ∗ = J∗M
−1−Σ∗R

where J∗M is an unknown concentration matrix with bounded entries and Σ∗R is an unknown
sparse residual covariance matrix given a set of constraints. Given the sample covariance
matrix Σ̂n, our goal is to find estimates of J∗M and Σ∗R with provable guarantees.

In the sequel, we relate the exact and the sample versions of the decomposition problem.
In Section 4, we propose a modified optimization program to obtain efficient estimates of
the Markov and independence components. Under a set of sufficient conditions, we provide
guarantees in terms of sparsistency, sign consistency, and norm guarantees, defined below.

Definition 2 (Estimation Guarantees) We say that an estimate (ĴM , Σ̂R) to the de-
composition problem in (2), given a sample covariance matrix Σ̂n, is sparsistent or model
consistent, if the supports of ĴM and Σ̂R coincide with the supports of J∗M and Σ∗R respec-
tively. It is said to be sign consistent, if additionally, the respective signs coincide. The
norm guarantees on the estimates is in terms of bounds on ‖ĴM − J∗M‖ and ‖Σ̂R−Σ∗R‖,
under some norm ‖·‖.

3. Analysis under Exact Statistics

In this section, we provide the results under exact statistics.

3.1 Conditions for Unique Decomposition

We first provide a set of sufficient conditions under which we can guarantee that the de-
composition of Σ∗ in (2) into concentration matrix J∗M and residual matrix Σ∗R is unique.5

We impose the following set of constraints on the two matrices:

(A.0) Σ∗ and J∗M are positive definite matrices, i.e., Σ∗ � 0, J∗M � 0.

(A.1) Off-diagonal entries of J∗M are bounded from above, i.e., ‖J∗M‖∞,off ≤ λ∗, for some
λ∗ > 0.

4. Without loss of generality, we limit our analysis to zero-mean Gaussian models. The results can be easily gener-
alized to models with non-zero means.

5. We drop the positive definite constraint on the residual matrix Σ∗R thereby allowing for a richer class
of covariance decomposition. In Section 5.3, we modify the conditions and the learning method to
incorporate positive definite residual matrices Σ∗R.
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(A.2) Diagonal entries of Σ∗R are zero:
(
Σ∗R
)
ii

= 0, and the support of its off-diagonal entries
satisfies

(
Σ∗R
)
ij
6= 0 ⇐⇒ |

(
J∗M
)
ij
| = λ∗, ∀ i 6= j.

(A.3) For any i, j, we have sign
((

Σ∗R
)
ij

)
. sign

((
J∗M
)
ij

)
≥ 0, i.e, the signs are the same.

Indeed, the above constraints restrict the class of models for which we can provide
guarantees. However, in many scenarios, the above assumptions may be reasonable, and
we now provide some justifications. (A.0) is a natural assumption to impose since we
are interested in valid Σ∗ and J∗M matrices. Condition (A.1) corresponds to bounded off-
diagonal entries of J∗M . Intuitively, this limits the extent of “dependence” between the
variables in the Markov model, and can lead to models where inference can be performed
with good accuracy using simple algorithms such as belief propagation. Condition (A.2)
limits the support of the residual matrix Σ∗R: the residual covariances are captured at those
locations (edges) where the concentration entries (J∗M )i,j are “clipped” (i.e., the bound λ∗

is achieved). Intuitively, the Markov matrix J∗M is unable to capture all the correlations
between the node pairs due to clipping, and the residual matrix Σ∗R captures the remaining
correlations at the clipped locations. Condition (A.3) additionally characterizes the signs
of the entries of Σ∗R. For the special case, when the Markov model is attractive, i.e.,
(J∗M )i,j ≤ 0 for i 6= j, the residual entries (Σ∗R)i,j are also all negative. This implies that the
model corresponding to Σ∗ is also attractive, since it only consists of positive correlations.
By default, we set the diagonal entries of the residual matrix to zero in (A.2) and thus,
assume that the Markov matrix captures all the variances in the model. In Section 4.2.1,
we provide a simple example of a Markov chain and a residual covariance model satisfying
the above conditions.

It is also worth mentioning that the number of model parameters satisfying above con-
ditions is equivalent to the number of parameters in the special case of sparse inverse
covariance estimation when λ→∞ (Ravikumar et al., 2011). It is assumed in assumption
(A.2) that the residual matrix Σ∗R takes nonzero value when the corresponding entry in the
Markov matrix J∗M takes its maximum absolute value λ∗. This assumption in conjunction
with the sign assumption in (A.3), exactly determines the Markov entry

(
JM
)
ij

when the

corresponding residual entry
(
ΣR

)
ij
6= 0. So, for each (i, j) pair, only one of the entries(

JM
)
ij

and
(
ΣR

)
ij

are unknown which results that the proposed model in this paper does
not introduce additional parameters comparing to the sparse inverse covariance estimation,
which is interesting.

According to the above discussion, we observe that the overall covariance and inverse
covariance matrices Σ∗ and J∗ = Σ∗−1 are dense, but represented with small number of
parameters. It is interesting that we are able to represent models with dense patterns, but
it is important to notice that the sparse representation leads to some restrictions on the
model.

In the sequel, we propose an efficient method to recover the respective matrices J∗M and
Σ∗R under conditions (A.0)-(A.3) and then establish the uniqueness of the decomposition.
Finally, note that we do not impose any sparsity constraints on the concentration matrix
J∗M , and in fact, our method and guarantees allow for dense matrices J∗M , when the exact
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covariance matrix Σ∗ is available. However, when only samples are available, we limit
ourselves to sparse J∗M and provide learning guarantees in the high-dimensional regime,
where the number of samples can be much smaller than the number of variables.

3.2 Formulation of the Optimization Program

We now propose a method based on convex optimization for obtaining (J∗M ,Σ
∗
R) given the

covariance matrix Σ∗ in (2). Consider the following program

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM − λ‖ΣR‖1,off (4)

s. t. ΣM − ΣR = Σ∗, (ΣR)d = 0,

where ‖·‖1,off denotes the `1 norm of the off-diagonal entries, which is the sum of the absolute
values of the off-diagonal entries, and (·)d denotes the diagonal entries. Intuitively, the
parameter λ imposes a penalty on large residual covariances, and under favorable conditions,
can encourage sparsity in the residual matrix. The program in (4) can be recast

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM (5)

s. t. ΣM − ΣR = Σ∗, (ΣR)d = 0, ‖ΣR‖1,off ≤ C(λ),

for some constant C(λ) depending on λ. The objective function in the above program
corresponds to the entropy of the Markov model (modulo a scaling and a shift factor) (Cover
and Thomas, 2006), and thus, intuitively, the above program looks for the optimal Markov
model with maximum entropy subject to an `1 constraint on the residual matrix.

We declare the optimal solution Σ̂R in (4) as the estimate of the residual matrix Σ∗R,

and ĴM := Σ̂
−1

M as the estimate of the Markov concentration matrix J∗M . The justification
behind these estimates is based on the fact that the Lagrangian dual of the program in (4)
is (see Appendix A)

ĴM := arg min
JM�0

〈Σ∗, JM 〉 − log det JM (6)

s. t. ‖JM‖∞,off ≤ λ,

where ‖·‖∞,off denotes the `∞ element-wise norm of the off-diagonal entries, which is the
maximum absolute value of the off-diagonal entries. Further, we show in Appendix A that
the following relations exist between the optimal primal6 solution ĴM and the optimal dual

solution
(
Σ̂M , Σ̂R

)
: ĴM = Σ̂

−1

M , and thus, Ĵ−1
M − Σ̂R = Σ∗ is a valid decomposition of the

covariance matrix Σ∗.

Remark 3 Notice that when the `∞ constraint is removed in the primal program in (6),
which is equivalent to letting λ → ∞, the program corresponds to the maximum likelihood
estimate, and the optimal solution in this case is ĴM = Σ∗−1. Similarly, in the dual program
in (4), when λ → ∞, the optimal solution corresponds to Σ̂M = Σ∗ and Σ̂R = 0. At the

6. Henceforth, we refer to the program in (6) as the primal program and the program in (4) as the dual
program.
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other extreme, when λ → 0, ĴM is a diagonal matrix, and the residual matrix Σ̂R is in
general, a full matrix (except for the diagonal entries). Thus, the parameter λ allows us to
carefully tune the contributions of the Markov and residual components, and we notice in
our experiments in Section 7 that λ plays a crucial role in obtaining efficient decomposition
into Markov and residual components.

3.3 Guarantees and Main Results

We now establish that the optimal solutions of the proposed optimization programs in (4)
and (6) lead to a unique decomposition of the given covariance matrix Σ∗ under conditions
(A.0)–(A.3) given in Section 3.1.

Theorem 4 (Uniqueness of Decomposition) Under (A.0)–(A.3), given a covariance
matrix Σ∗, if we set the parameter λ = ‖J∗M‖∞,off in the optimization program in (4),
then the optimal solutions of primal-dual optimization programs (6) and (4) are given by(
ĴM , Σ̂R

)
=
(
J∗M ,Σ

∗
R

)
, and the decomposition is unique.

See the proof in Appendix C.

Thus, we establish that the proposed optimization programs in (4) and (6) uniquely
recover the Markov concentration matrix J∗M and the residual covariance matrix Σ∗R given
Σ∗ under conditions (A.0)–(A.3).

4. Sample Analysis of the Algorithm

In this section, we provide the results under sample statistics where some i.i.d. samples of
random variables are only available.

4.1 Optimization Program

We have so far provided guarantees on unique decomposition given the exact covariance
matrix Σ∗. We now consider the case, when n i.i.d. samples are available from N (0,Σ∗),
which allows us to estimate the sample covariance matrix Σ̂n, as in (3).

We now modify the dual program in (4), considered in the previous section, to incorpo-
rate the sample covariance matrix Σ̂n as follows

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR

log det ΣM − λ‖ΣR‖1,off (7)

s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d

=
(
Σ̂n
)
d
,
(
ΣR

)
d

= 0,

ΣM � 0,ΣM − ΣR � 0.

Note that, in addition to substituting Σ∗ by Σ̂n, there are two more modifications in the
above program comparing to the exact case in (4). First, the positive-definiteness constraint
on the overall covariance matrix Σ = ΣM − ΣR is added to make sure that the overall
covariance matrix estimation is valid. This constraint is not required in the exact case
since we have the constraint Σ = Σ∗ in that case which ensures the positive-definiteness of
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overall covariance matrix according to assumption (A.0) that Σ∗ � 0. Second, the equality
constraint ΣM − ΣR = Σ∗ is relaxed on the off-diagonal entries by introducing the new
parameter γ which allows some deviation. More discussion including the Lagrangian primal
form of the above optimization program and the effect of new parameter γ is provided in
section 6.

4.2 Assumptions under Sample Statistics

We now provide conditions under which we can provide guarantees for estimating the
Markov model J∗M and the residual model Σ∗R, given the sample covariance Σ̂n in high
dimensions. These are conditions in addition to conditions (A.0)–(A.3) in Section 3.1.

The additional assumptions for successful recovery in high dimensions are based on the
Hessian of the objective function in the optimization program in (19), with respect to the
variable JM , evaluated at the true Markov model J∗M . The Hessian of this function is given
by Boyd and Vandenberghe (2004)

Γ∗ = J∗M
−1 ⊗ J∗M−1 = Σ∗M ⊗ Σ∗M , (8)

where ⊗ denotes the Kronecker matrix product (Horn and Johnson, 1985). Thus Γ∗ is a p2×
p2 matrix indexed by the node pairs. Based on the results for exponential families (Brown,
1986), Γ∗(i,j),(k,l) = Cov{XiXj , XkXl}, and hence it can be interpreted as an edge-based
alternative to the usual covariance matrix Σ∗M . Define KM as the `∞ operator norm of the
covariance matrix of the Markov model

KM := |||Σ∗M |||∞.

We now denote the supports of the Markov and residual models. Denote EM := {(i, j) ∈
V × V |i 6= j,

(
J∗M
)
ij
6= 0} as the edge set of Markov matrix J∗M . Define

SM := EM ∪ {(i, i)|i = 1, ..., p}, (9)

SR := {(i, j) ∈ V × V |
(
Σ∗R
)
ij
6= 0}. (10)

Thus, the set SM includes diagonal entries and also all edges of Markov graph corresponding
to J∗M . Also, recall from (A.2) in Section 3.1 that the diagonal entries of Σ∗R are set to zero,
and that the support set SR is contained in SM , i.e., SR ⊂ SM . Let ScM and ScR denote the
respective complement sets. Define

S := SM ∩ ScR, (11)

so that {SR, S, ScM} forms a partition of {(1, ..., p) × (1, ..., p)}. This partitioning plays a
crucial role in being able to provide learning guarantees. Define the maximum node degree
for Markov model J∗M as

d := max
j=1,...,p

|{i : (i, j) ∈ SM}|.

Finally, for any two subsets T and T ′ of V × V , Γ∗TT ′ denotes the submatrix of Γ∗ indexed
by T as rows and T ′ as columns. We now impose various constraints on the submatrices of
the Hessian in (8), limited to each of the sets {SR, S, ScM}.
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(A.4) Mutual Incoherence: These conditions impose mutual incoherence among three
partitions of Γ∗ indexed by SR, ScM and S. For some α ∈ (0, 1], we have

max{|||Γ∗Sc
MS

(
Γ∗SS

)−1
Γ∗SSR

− Γ∗Sc
MSR
|||∞, |||Γ∗Sc

MS

(
Γ∗SS

)−1|||∞} ≤ (1− α), (12)

KSSR
:= |||

(
Γ∗SS

)−1
Γ∗SSR

|||∞ <
1

4
. (13)

(A.5) Covariance Control: For the same α specified above, we have the bound:

KSS := |||
(
Γ∗SS

)−1|||∞ ≤
(m− 4)α

4(m− (m− 1)α)
for some m > 4. (14)

(A.6) Eigenvalue Control: The minimum eigenvalue of overall covariance matrix Σ∗ sat-
isfies the lower bound

λmin(Σ∗) ≥ C6d

√
log(4pτ )

n
+ C7d

2 log(4pτ )

n
for some C6, C7 > 0 and τ > 2.

In (A.4), the condition in (12) bounds the effect of the non-edges of the Markov model,
indexed by ScM , to its edges, indexed by SR and S. Note that we distinguish between the
common edges of the Markov model with the residual model (SR) and the remaining edges
of the Markov model (S). The second condition in (13) controls the influence of the edge-
based terms which are shared with the residual matrix, indexed by SR, to other edges of
the Markov model, indexed by S = SM ∩ ScR. Condition (A.5) imposes `∞ bounds on the
rows of (Γ∗SS)−1. Note that for sufficiently large m, the bound in (14) tends to α

4(1−α) . Also

note that the conditions (A.4) and (A.5) are only imposed on the Markov model J∗M and
there are no additional constraints on the residual matrix Σ∗R (other than the conditions
previously introduced in Section 3.1). In condition (A.6), it is assumed that the minimum
eigenvalue of overall covariance matrix Σ∗ is sufficiently far from zero to make sure that its
estimation Σ̂ is positive definite and therefore a valid covariance matrix.

4.2.1 Example of a Markov Chain + Residual Covariance Model

In this section, we propose a simple model satisfying assumptions (A.0)–(A.5). Consider
a Markov chain with concentration matrix J∗M over 4 nodes, as shown in Figure 2. The
diagonal entries in the corresponding covariance matrix Σ∗M = J∗M

−1 are set to unity, and
the correlations between the neighbors in J∗M are set uniformly to some value ρ ∈ (−1, 1),
i.e.,

(
Σ∗M

)
ij

= ρ for (i, j) ∈ EM . Due to the Markov property, the correlations between

other node pairs are given by
(
Σ∗M

)
13

=
(
Σ∗M

)
24

= ρ2 and
(
Σ∗M

)
14

= ρ3. For the residual
covariance matrix Σ∗R, we consider one edge between nodes 1 and 2, i.e., SR = {(1, 2), (2, 1)}.
It is easy to see that conditions (A.0)–(A.2) are satisfied. Recall that ScM = {(i, j) :
(i, j) /∈ EM} and the remaining node pairs belongs to set S := SM \ SR. Through some
straightforward calculations, we can show that for any |ρ| < 0.07, the mutual incoherence
conditions in (A.4) and (A.5) are satisfied for α = 0.855 and m ≥ 83. Note that the value
of nonzero entries of Σ∗R are not involved or restricted by these assumptions. However,
they do need to satisfy the sign condition in (A.3). Thus, we have non-trivial models
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Figure 2: Example of a Markov chain and a residual covariance matrix, where a residual edge is
present between nodes 1 and 2.

satisfying the set of sufficient conditions for successful high-dimensional estimation.7 In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
mutual incoherence conditions (A.4) and (A.5); But we observe that our method has good
numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

Theorem 5 Consider a Gaussian distribution with covariance matrix Σ∗ = J∗
M

−1 − Σ∗
R

satisfying conditions (A.0)-(A.6). Given a sample covariance matrix Σ̂n using n i.i.d. sam-
ples from the Gaussian model, let

(
ĴM , Σ̂R

)
denote the optimal solutions of the primal-dual

pair (19) and (7), with parameters γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n for some

constants C1, C2 > 0, where λ∗ := ‖J∗
M‖∞,off . Suppose that

(
Σ∗

R

)
min

:= min(i,j)∈SR
|
(
Σ∗

R

)
ij

|
scales as

(
Σ∗

R

)
min

= Ω
(√

log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2 log p

)
, (15)

then with probability greater than 1 − 1/pc → 1 (for some c > 0), we have:

a) The estimates ĴM $ 0 and Σ̂R satisfy #∞ bounds

‖ĴM − J∗
M‖∞ = O

(√
log p

n

)
,

‖Σ̂R − Σ∗
R‖∞ = O

(√
log p

n

)
.

b) The estimate Σ̂R is sparsistent and sign consistent with Σ∗
R.

c) If in addition,
(
J∗

M

)
min

:= min(i,j)∈SM
|
(
J∗

M

)
ij
| scales as

(
J∗

M

)
min

= Ω
(√

log p/n
)
,

then the estimate ĴM is sparsistent and sign consistent with J∗
M .

7. Similarly, for the case when the correlations corresponding to Markov edges are distinct as
(
Σ∗

M

)
12

=

ρ1,
(
Σ∗

M

)
23

= ρ2, and
(
Σ∗

M

)
34

= ρ3, we can argue the same conditions. For compatibility with Figure 2,
assume that ρ1 is the maximum among these three parameters, and therefore, the residual edge is between
nodes 1 and 2. This is because the maximum of off-diagonal entries of J∗

M also happens in entry (1, 2).
Then, the same condition |ρ1| < 0.07 is sufficient for satisfying conditions (A.0)–(A.5).
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Figure 2: Example of a Markov chain and a residual covariance matrix, where a residual edge is
present between nodes 1 and 2.

satisfying the set of sufficient conditions for successful high-dimensional estimation.7 In
Section 7, the synthetic experiments are run on a model which does not necessarily satisfy
mutual incoherence conditions (A.4) and (A.5); But we observe that our method has good
numerical estimation performance even when the above incoherence conditions are not fully
satisfied.

4.3 Guarantees and Main Results

We are now ready to provide the main result of this paper.

Theorem 5 Consider a Gaussian distribution with covariance matrix Σ∗ = J∗M
−1 − Σ∗R

satisfying conditions (A.0)-(A.6). Given a sample covariance matrix Σ̂n using n i.i.d. sam-
ples from the Gaussian model, let

(
ĴM , Σ̂R

)
denote the optimal solutions of the primal-dual

pair (19) and (7), with parameters γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n for some

constants C1, C2 > 0, where λ∗ := ‖J∗M‖∞,off . Suppose that
(
Σ∗R
)

min
:= min(i,j)∈SR

|
(
Σ∗R
)
ij
|

scales as
(
Σ∗R
)

min
= Ω

(√
log p/n

)
and the sample size n is lower bounded as

n = Ω
(
d2 log p

)
, (15)

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimates ĴM � 0 and Σ̂R satisfy `∞ bounds

‖ĴM − J∗M‖∞ = O

(√
log p

n

)
,

‖Σ̂R − Σ∗R‖∞ = O

(√
log p

n

)
.

b) The estimate Σ̂R is sparsistent and sign consistent with Σ∗R.

c) If in addition,
(
J∗M
)

min
:= min(i,j)∈SM

|
(
J∗M
)
ij
| scales as

(
J∗M
)

min
= Ω

(√
log p/n

)
,

then the estimate ĴM is sparsistent and sign consistent with J∗M .

7. Similarly, for the case when the correlations corresponding to Markov edges are distinct as
(
Σ∗M

)
12

=

ρ1,
(
Σ∗M

)
23

= ρ2, and
(
Σ∗M

)
34

= ρ3, we can argue the same conditions. For compatibility with Figure 2,
assume that ρ1 is the maximum among these three parameters, and therefore, the residual edge is between
nodes 1 and 2. This is because the maximum of off-diagonal entries of J∗M also happens in entry (1, 2).
Then, the same condition |ρ1| < 0.07 is sufficient for satisfying conditions (A.0)–(A.5).
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Proof See Appendix D.

Remark 6 Here, we provide a few more observations and extensions as follows.

1. Non-asymptotic sample complexity and error bounds: In the above theorem,
we establish that the number of samples is required to scale as n = Ω(d2 log p). In fact,
our results are non-asymptotic, and the exact constants are provided in inequality (31).
The non-asymptotic form of error bounds are also provided in (34) and (40).

2. Extension to sub-Gaussian and other distributions: In the above theorem, we
considered Gaussian distribution. Similar to high dimensional covariance estimation
in Ravikumar et al. (2011), the result in the theorem can be easily extended to sub-
Gaussian and other distributions with known tail conditions.

3. Comparison between direct estimation of Σ∗ and the above decomposition:
The overall matrix Σ∗ (and J∗) is a full matrix in general. Thus, if we want to
estimate it directly, we need n = Ω

(
p2 log p

)
samples since the maximum node degree

is Θ(p). Therefore, we can not estimate it directly in high dimensional regime and it
demonstrates the importance of such sparse covariance + inverse covariance models
for estimation.

We discussed Remark 3 that the parameter λ allows us to carefully tune the contributions
of the Markov and residual components. When λ → ∞, the program corresponds to `1-
penalized maximum likelihood estimator which is well-studied in Ravikumar et al. (2011);
Rothman et al. (2008). In this case, Σ̂R = 0 and all the dependencies among random
variables are captured by the sparse graphical model represented by ĴM . On the other
extreme, when λ∗ = 0 and thus λ = C2

√
log p/n → 0, with increasing the number of

samples n, the off-diagonal entries in ĴM are bounded too tight by λ (refer to the primal
program in (19)) and therefore the residual covariance matrix Σ̂R captures most of the
dependencies among random variables. In this case, we have the covariance estimation
Σ̂ = Σ̂M − Σ̂R, where the diagonal entries are included in Σ̂M and the off-diagonal entries
are mostly included in −Σ̂R. In order to explain the results for these cases in a more concrete
way, we explicitly mention the results for both sparse inverse covariance estimation (λ→∞)
and sparse covariance estimation (λ ≈ 0) methods in the following subsections. Note that
both of these are special cases of the general result expressed in Theorem 5. Thus, in
Theorem 5, we generalize these extreme cases to models with a linear combination of sparse
covariance and sparse inverse covariance matrices.

5. Discussions and Extension

In this section, we first provide a detailed discussion of special cases sparse covariance and
sparse inverse covariance estimation. Then, the extension of results to the structured noise
model is mentioned.
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5.1 Sparse Inverse Covariance Estimation

In this section, we mention the result for sparse inverse covariance estimation in high di-
mensional regime. This result is provided by Ravikumar et al. (2011) and is a special case
of Theorem 5 when the parameter λ goes to infinity. Before proposing the explicit result in
Corollary 7, we state how the required conditions in Theorem 5 reduces to the conditions
in Ravikumar et al. (2011).
Since the support of residual matrix Σ∗R is a zero matrix in this special case, the mutual
incoherence conditions in (A.4) reduce exactly to the same mutual incoherence condition in
Ravikumar et al. (2011) as

|||Γ∗ScS

(
Γ∗SS

)−1|||∞ ≤ (1− α) for some α ∈ (0, 1], (16)

where S = SM is the support of Markov matrix J∗ = J∗M as defined in (9). Also note that
the covariance control condition (A.5) is not required any more.
Furthermore, the sample complexity and convergence rate of J∗M estimation in Theorem 5
exactly reduce to the results in Ravikumar et al. (2011) as (for q = 8, l = 3)

n > nf

(
pτ ; 1/max

{
v∗,2ld

(
1 +

q

α

)
KSSKM max

{
1,

2

l − 1

(
1 +

q

α

)
KSSK

2
M

}})
, (17)

‖Ĵ − J∗‖∞ ≤ 2KSS

(
1 +

q

α

)
δf (pτ ;n), (18)

where the result is valid for any q ≥ 8 and l > 1.

Corollary 7 (Sparse Inverse Covariance Estimation (Ravikumar et al., 2011))
Consider a Gaussian distribution with covariance matrix Σ∗ = J∗−1 satisfying mutual in-
coherence condition (16). Given a sample covariance matrix Σ̂n using n i.i.d. samples
from the Gaussian model, let Ĵ denote the optimal solution of the primal-dual pair (19) and
(7), with parameters γ = C1

√
log p/n and λ → ∞ (removing `∞ constraints in the primal

program (19)) for some constant C1 > 0. Suppose that the sample size n is lower bounded
as

n = Ω
(
d2 log p

)
,

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Ĵ � 0 satisfies `∞ bound

‖Ĵ − J∗‖∞ = O

(√
log p

n

)
.

b) If in addition
(
J∗
)

min
:= min(i,j)∈SM

|
(
J∗
)
ij
| scales as

(
J∗
)

min
= Ω

(√
log p/n

)
, the

estimate Ĵ is sparsistent and sign consistent with J∗.

Remark 8 (Comparison of general result in Theorem 5 and sparse inverse co-
variance estimation in Corollary 7) Considering the results in Theorem 5, sample com-
plexity and convergence rate of estimated models are exactly the same as results in Raviku-
mar et al. (2011) with only some minor differences in coefficients. Compare (31) with (17)
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for sample complexity and (34) with (18) for convergence rate of estimated Markov matrix
ĴM . But regarding the mutual incoherence conditions, we observe that the conditions for
the special case sparse inverse covariance estimation in (16) are less restrictive than the
conditions for the general case in (12)-(13). Since the sparse inverse covariance estimation
(Ravikumar et al., 2011) is a special case of the general model in this paper, this additional
limitation on models is inevitable, i.e., it is natural that we need some more incoherence
conditions in order to be able to recover both the Markov and residual models in the general
case.

5.2 Sparse Covariance Estimation

High-dimensional estimation of sparse covariance models has been studied in Bickel and
Levina (2008). They propose an estimation of a class of sparse covariance matrices by “hard
thresholding”. They also prove spectral norm guarantees on the error between the estimated
and exact covariance matrices. We also recover similar results in the other extreme case of
proposed program (7) when λ ≈ 0. The program reduces to the sparse covariance estimator
as discussed earlier. In order to see that again, let us investigate the dual program restated
as follows

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR

log det ΣM − λ‖ΣR‖1,off

s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d

=
(
Σ̂n
)
d
,
(
ΣR

)
d

= 0,

ΣM � 0,ΣM − ΣR � 0.

When the parameter λ ≈ 0, the variable ΣR is very slightly penalized in the objective
function. Therefore, most of the statistical dependencies are captured by ΣR and thus,
off-diagonal entries of ΣM take very small values. Furthermore, according to the property
of optimization program that the support of ΣR is contained within the support of JM ,
sparsity on ΣR is encouraged by the effect of parameter γ.
It is also observed that we are approximately performing “soft thresholding” in program (7)
(when λ ≈ 0) comparing to “hard thresholding” in Bickel and Levina (2008). Consider the
case λ = 0, where the Markov part ΣM is a diagonal matrix. Therefore, the ‖Σ̂n − ΣM +
ΣR‖∞,off ≤ γ constraint in the dual program (7) reduces to ‖Σ̂n + ΣR‖∞,off ≤ γ where

it is seen that the negative soft thresholding is performed on matrix Σ̂n with threshold
parameter γ, given by

Sγ(x) = sign(−x)(|x| − γ)+.

Notice that we need to have λ ≈ 0 for recovering the sparse covariance matrix given empirical
covariances and in this case, we can view the estimator as approximately performing soft
thresholding.

Finally, we propose the corollary for this special case. Before that, we need some addi-
tional definitions for a general covariance matrix Σ∗. Similar to definition (10), the support
of a covariance matrix Σ∗ is defined as

SΣ := {(i, j) ∈ V × V |Σ∗ij 6= 0}.
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The maximum node degree for a covariance matrix Σ∗ is also defined as

dΣ := max
j=1,...,p

|{i : (i, j) ∈ SΣ}|.

Corollary 9 (Sparse Covariance Estimation) Consider a Gaussian distribution with
covariance matrix Σ∗ satisfying eigenvalue control condition (A.6). Given a sample covari-
ance matrix Σ̂n using n i.i.d. samples from the Gaussian model, let

(
Σ̂M , Σ̂R

)
denote the

optimal solutions of the primal-dual pair (19) and (7), with parameters γ = C1

√
log p/n

and λ = C2

√
log p/n for some constants C1, C2 > 0. The estimated covariance matrix Σ̂ is

defined as Σ̂off := −Σ̂R and Σ̂d :=
(
Σ̂M

)
d
. Suppose that

(
Σ∗off

)
min

:= min(i,j)∈SΣ,i 6=j |
(
Σ∗
)
ij
|

scales as
(
Σ∗off

)
min

= Ω
(√

log p/n
)

and the sample size n is lower bounded as

n = Ω
(
d2

Σ log p
)
,

then with probability greater than 1− 1/pc → 1 (for some c > 0), we have:

a) The estimate Σ̂ satisfies `∞ bound

‖Σ̂− Σ∗‖∞,off = O

(√
log p

n

)
.

b) The estimate Σ̂off is sparsistent and sign consistent with Σ∗off .

Proof See Appendix F.

5.3 Structured Noise Model

In the discussion up to now, we considered general residual matrices Σ∗R, not necessarily
positive definite, thereby allowing for a rich class of covariance decomposition models. In
this section, we modify the conditions and the learning method to incorporate positive-
definite residual matrices Σ∗R.

We regularize the diagonal entries in an appropriate way to ensure that both J∗M and
Σ∗R are positive definite. Thus, the identifiability assumptions (A.0)-(A.3) are modified as
follows:

(A.0’) Σ∗, Σ∗R and J∗M are positive definite matrices, i.e., Σ∗ � 0,Σ∗R � 0, J∗M � 0.

(A.1’) J∗M is normalized such that
(
J∗M
)
d

= λ∗1 for some λ∗1 > 0 and off-diagonal entries of
J∗M are bounded from above, i.e., ‖J∗M‖∞,off ≤ λ∗2, for some λ∗2 > 0.

(A.2’) The off-diagonal entries of Σ∗R satisfy

(
Σ∗R
)
ij
6= 0 ⇐⇒ |

(
J∗M
)
ij
| = λ∗2, ∀ i 6= j.

(A.3’) For any i, j, we have sign
((

Σ∗R
)
ij

)
. sign

((
J∗M
)
ij

)
≥ 0, i.e, the signs are the same.
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It is seen in (A.1’) that we put additional restrictions on diagonal entries of the Markov
matrix J∗M in order to have nonzero diagonal entries for the residual matrix Σ∗R.
Similar to the general form of dual program introduced in (23), we propose the following
optimization program to estimate the Markov and residual components in the structured
noise model:

(
Σ̂M , Σ̂R

)
:= arg max

ΣM ,ΣR�0
log det ΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off

s. t. ‖Σ̂n + ΣR − ΣM‖∞,off ≤ γ,(
Σ̂n
)
d

+
(
ΣR

)
d

=
(
ΣM

)
d
.

The decomposition result under exact statistics can be similarly proven by setting parameter
γ = 0 when the identifiability assumptions (A.0’)-(A.3’) are satisfied. Furthermore, under
additional estimation assumptions (A.4)-(A.6), the sample statistics guarantees in Theorem
5 can be also extended to the solutions of above program.

6. Proof Outline

In this section, the Lagrangian primal form for the proposed dual program (7) is provided
first and then the proof outlne is presented. For now, we drop the positive-definiteness
constraint ΣM − ΣR � 0 in the proposed dual program (7). We finally show that this
constraint is satisfied for the proposed estimation under specified conditions and thus this
constraint can be dropped. In the subsequent discussion, we drop this constraint. It is
shown in Appendix A that the primal form for this reduced dual program is

ĴM := arg min
JM�0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (19)

s. t. ‖JM‖∞,off ≤ λ,

We further establish that Σ̂M = Ĵ−1
M is valid between the dual variable ΣM and primal

variable JM and thus,
‖Σ̂n − Ĵ−1

M + Σ̂R‖∞,off ≤ γ. (20)

Comparing the above with the exact decomposition Σ∗ = J∗M
−1 − Σ∗R in (2), we note that

for the sample version, we do not exactly fit the Markov and the residual models with the
sample covariance matrix Σ̂n, but allow for some divergence, depending on γ. Similarly,
the primal program (19) has an additional `1 penalty term on ĴM , which is absent in (6).
Having a non-zero γ in the primal program enables us to impose a sparsity constraint on
ĴM , which in turn, enables us to estimate the matrices in the high dimensional regime
(p� n), under a set of conditions of sufficient conditions given in section 4.2.

We now provide a high-level description of the proof for Theorem 5. The detailed proof
is given in Appendix D. The proof is based on the primal-dual witness method, which has
been previously employed in Ravikumar et al. (2011) and other works. However, we require
significant modifications of this approach in order to handle the more complex setting of
covariance decomposition.

In the primal-dual witness method, we define a modified version of the original opti-
mization program (19). Note that the key idea in constructing the modified version is to be
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S SRSc
M

Figure 3: The sets SR, S and Sc
M form a partition of {(1, ..., p) × (1, ..., p)}, where p is the number

of nodes, SR is the support of the residual covariance matrix Σ∗
R and SM is the support

of the precision matrix J∗
M of the Markov model and Sc

M is its complement.

able to analyze it and prove guarantees for it in a less complicated way comparing to the
original version. Let us denote the solutions of the modified program by

(
J̃M , Σ̃R

)
pair. In

general, the optimal solutions of the two programs, original and modified one, are different.
However, under conditions (A.0)–(A.5), we establish that their optimal solutions coincide.
See Appendix D for details. Through this equivalence, we thus establish that the optimal
solution

(
ĴM , Σ̂R

)
of the original program in (19) inherits all the properties of the optimal

solution
(
J̃M , Σ̃R

)
of the modified program, i.e., the solutions of the modified program act

as witness for the original program. In the following, we define the modified optimization
program and its properties. The primal-dual witness method steps which guarantee the
equivalence between solutions of the original and the modified program are mentioned in
Appendix D.

We modify the sample version of our optimization program in (19) as follows:

J̃M := arg min
JM!0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (21)

s. t.
(
JM

)
Sc

M
= 0,

(
JM

)
SR

= λ sign
((

J∗
M

)
SR

)
.

Note that since we do not a priori know the supports of the original matrices J∗
M and Σ∗

R,
the above program cannot be implemented in practice, but is only a device useful for proving
consistency results. We observe that the objective function in the modified program above
is the same as the original program in (19), and only the constraints on the precision matrix
are different in the two programs. In the above program in (21), constraints on the entries
of the precision matrix when limited to sets SR and Sc

M are more restrictive, while those
in set S := SM \ SR are more relaxed (i.e., the #∞ constraints present in (19) are removed
above), compared to the original program in (19). Recall that SM denotes the support of
the Markov model, while SR ⊆ SM denotes the support of the residual or the independence
model. See Figure 3.

We now discuss the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program

in (21). Since the precision matrix entries on Sc
M are set to zero in (21), we have that

Supp(J̃M ) ⊆ Supp(J∗
M ). Denoting Σ̃R as the residual covariance matrix corresponding to

the modified program (21), we can similarly characterize it in the following form derived
from duality:

(
Σ̃R

)
ij

=

{
0 for (i, j) ∈ S

β̃ij for (i, j) ∈ SR, Sc
M ,

(22)

21

Figure 3: The sets SR, S and ScM form a partition of {(1, ..., p)× (1, ..., p)}, where p is the number
of nodes, SR is the support of the residual covariance matrix Σ∗R and SM is the support
of the precision matrix J∗M of the Markov model and ScM is its complement.

able to analyze it and prove guarantees for it in a less complicated way comparing to the
original version. Let us denote the solutions of the modified program by

(
J̃M , Σ̃R

)
pair. In

general, the optimal solutions of the two programs, original and modified one, are different.
However, under conditions (A.0)–(A.5), we establish that their optimal solutions coincide.
See Appendix D for details. Through this equivalence, we thus establish that the optimal
solution

(
ĴM , Σ̂R

)
of the original program in (19) inherits all the properties of the optimal

solution
(
J̃M , Σ̃R

)
of the modified program, i.e., the solutions of the modified program act

as witness for the original program. In the following, we define the modified optimization
program and its properties. The primal-dual witness method steps which guarantee the
equivalence between solutions of the original and the modified program are mentioned in
Appendix D.

We modify the sample version of our optimization program in (19) as follows:

J̃M := arg min
JM�0

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off (21)

s. t.
(
JM
)
Sc
M

= 0,
(
JM
)
SR

= λ sign
((
J∗M
)
SR

)
.

Note that since we do not a priori know the supports of the original matrices J∗M and Σ∗R,
the above program cannot be implemented in practice, but is only a device useful for proving
consistency results. We observe that the objective function in the modified program above
is the same as the original program in (19), and only the constraints on the precision matrix
are different in the two programs. In the above program in (21), constraints on the entries
of the precision matrix when limited to sets SR and ScM are more restrictive, while those
in set S := SM \ SR are more relaxed (i.e., the `∞ constraints present in (19) are removed
above), compared to the original program in (19). Recall that SM denotes the support of
the Markov model, while SR ⊆ SM denotes the support of the residual or the independence
model. See Figure 3.

We now discuss the properties of the optimal solution
(
J̃M , Σ̃R

)
of the modified program

in (21). Since the precision matrix entries on ScM are set to zero in (21), we have that

Supp(J̃M ) ⊆ Supp(J∗M ). Denoting Σ̃R as the residual covariance matrix corresponding to
the modified program (21), we can similarly characterize it in the following form derived
from duality:

(
Σ̃R

)
ij

=

{
0 for (i, j) ∈ S
β̃ij for (i, j) ∈ SR, ScM ,

(22)
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where β̃ij are the Lagrangian multipliers corresponding to the equality constraints in the
modified program (21).

Define estimation errors ∆̃J := J̃M−J∗M and ∆̃R := Σ̃R−Σ∗R for the modified program in

(21). It is easy to see that
(
∆̃J

)
SR

= λδ,
(
∆̃J

)
Sc
M

= 0,
(
∆̃R

)
S

= 0, where λδ := λ− λ∗ > 0.

This implies that in any of the three sets S, SR or ScM , only one of the two estimation errors

∆̃J or ∆̃R can be non-zero (or is at most λδ). This property is crucial to be able to decouple
the perturbations in the Markov and the independence domains, and thereby gives bounds
on the individual perturbations. It is not clear if there is an alternative partitioning of the
variables (here the partition is S, SR and ScM ) which allows us to decouple the estimation

errors for J̃M and Σ̃R. Through this decoupling, we are able to provide bounds on estimation
errors ∆̃J and ∆̃R and thus, Theorem 5 is established.

7. Experiments

In this section, we provide synthetic and real experimental results for the proposed algo-
rithm. We term our proposed optimization program as `1 +`∞ method and compare it with
the well-known `1 method which is a special case of the proposed algorithm when λ = ∞.
The primal optimization program (19) is implemented via the ADMM (Alternating Direc-
tion Method of Multipliers) technique proposed in Mohan (2013). We also compare the
performance of belief propagation on the proposed model.

7.1 Synthetic Data

We build a Markov + residual synthetic model in the following way. We choose 0.2 fraction of
Markov edges randomly to introduce residual edges. The underlying graph for the Markov
part is a q × q 2-D grid structure (4-nearest neighbor grid). Therefore, the number of
nodes is p = q2. Because of assumption (A.2), we randomly set 0.2 fraction of nonzero
Markov off-diagonal entries to {−0.2, 0.2}, and the rest of nonzero off-diagonal entries in J∗M
(corresponding to the grid edges) are randomly chosen from set ±[0.15, 0.2], i.e.,

(
J∗M
)
ij
∈

[−0.2,−0.15] ∪ [0.15, 0.2], for all (i, j) ∈ EM . Note that 0.2 fraction of edges take the
maximum absolute value which is needed by assumption (A.2). Then we ensure that J∗M
is positive definite by adding some uniform diagonal weighting. The nonzero entries of Σ∗R
are chosen from ±[0.15, 0.2] such that the sign of residual entry is the same as the sign
of overlapping Markov entry (assumption (A.3)). We also generate a random mean in the
interval [0, 1] for each variable. Note that this generated synthetic model does not necessarily
satisfy mutual incoherence conditions (A.4) and (A.5); But we observe in the following
that our method has good numerical estimation performance even when the incoherence
conditions are not fully satisfied.

Before we provide experiment results, it is worth mentioning that the realization of
above model is an example that both Markov and residual matrices J∗M and Σ∗R are sparse,
while the overall covariance matrix Σ∗ = J∗M

−1 − Σ∗R and concentration matrix J∗ = Σ∗−1

are both dense matrices.
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Size(p) cγ λ

25 2.23 0.2

64 2.08 0.2

100 2.01 0.2

400 1.85 0.2

900 1.83 0.2

Table 1: Regularization parameters used for grid-structured Markov graph simulations in
Figure 4. Note that γ = cγ

√
log p/n.

7.1.1 Effect of graph size p

We apply our method (`1+`∞ method) to random realizations of the above described model

Σ∗ = J∗M
−1−Σ∗R with different sizes p ∈ {25, 64, 100, 400, 900}. Normalized Dist

(
ĴM , J

∗
M

)
,

the edit distance between the estimated and exact Markov components ĴM and J∗M , and

normalized Dist
(

Σ̂R,Σ
∗
R

)
, the edit distance between the estimated and exact residual com-

ponents Σ̂R and Σ∗R as a function of number of samples are plotted in Figure 4 for different
sizes p.

In Figure 4.a, normalized Dist
(
ĴM , J

∗
M

)
is plotted and in Figure 4.b, the same is plotted

with rescaled horizontal axis n/ log p. We observe that by increasing the number of sam-
ples, the edit distance decreases, and by increasing the size of problem, it becomes harder to
recover the components which are intuitive. More importantly, we observe in the rescaled
graph that the plots for different sizes p make a lineup which is consistent with the theo-
retical results saying that8 n = O(d2 log p) is sufficient for correct recovery.

Similarly, in Figure 4.c, normalized9 Dist
(

Σ̂R,Σ
∗
R

)
is plotted and in Figure 4.d, the same

is plotted with rescaled horizontal axis n/ log p. We similarly have the initial observations
that by increasing the number of samples, the edit distance decreases, and by increasing
the size of problem, it becomes harder to recover the components. The theoretical sample
complexity n = O(d2 log p) is also validated in Figure 4.d.

The value of regularization parameters used for this simulation are provided in Table
1. Since in the synthetic experiments, we know the value of λ∗ := ‖J∗M‖∞,off , parameter
λ is set to λ∗ = 0.2. It is observed that the recovery of sparsity pattern of the Markov
component J∗M is fairly robust to the choice of this parameter. For choosing parameter γ,
the experiment is run for several values of γ to see which one gives the best recovery result.
The effect of parameter γ is discussed in detail in the next subsection.

7.1.2 Effect of regularization parameter γ

We apply our method (`1 + `∞ method) to random realizations of the above described
grid-structured synthetic model Σ∗ = J∗M

−1 − Σ∗R with fixed size p = 64. Here, we fix the

8. Note that in the grid graph, d = 4 is fixed for different sizes p.
9. The normalized distance for recovering residual component is greater than 1 for small n. Since we

normalize the distance with the number of edges in the exact model, this may happen.
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(Ĵ

M
,J

∗ M
)

(b)

0 500 1000 1500 2000 2500 30000

0.5

1

 

 

p=25

p=64

p=100

p=400

p=900

n

Grid graph

N
o
rm

.
D

is
t
(Σ̂

R
,Σ

∗ R
)

(c)

0 200 400 600 8000

0.5

1

 

 

p=25

p=64

p=100

p=400

p=900

n/ log p

Grid graph

N
o
rm

.
D

is
t
(Σ̂

R
,Σ

∗ R
)

(d)

Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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Figure 4: Simulation results for grid-structured Markov graph with different size p. (a-b) Normal-

ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗

M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ

√
log p/n

where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗
M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗
R are plotted in Figure 5. We observe the pattern that for cγ less than

some optimal value c∗
γ , the Markov component is not recovered, and for values greater than

the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗

γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing #1 + #∞ and #1 methods

We apply #1 + #∞ and #1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗

M
−1 −Σ∗

R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗
M is plotted in Figure 6.a. We

observe that the behaviour of #1 +#∞ method is very close to #1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗
M .

11. Here, we choose the nonzero off-diagonal entries of J∗
M randomly from {−0.2, 0.2}.
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ized edit distance between the estimated Markov component ĴM and the exact Markov
component J∗M . In panel (b), the horizontal axis is rescaled as n/ log p. (c-d) Normal-

ized edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗R. In panel (d), the horizontal axis is rescaled as n/ log p. Each point in
the figures is derived from averaging 10 trials.

regularization parameter10 λ = 0.2 and change the regularization parameter γ = cγ
√

log p/n
where cγ ∈ {1, 1.3, 2.08, 2.5, 3}. The edit distance between the estimated and exact Markov

components ĴM and J∗M , and the edit distance between the estimated and exact residual

components Σ̂R and Σ∗R are plotted in Figure 5. We observe the pattern that for cγ less than
some optimal value c∗γ , the Markov component is not recovered, and for values greater than
the optimal value, the components are recovered with different statistical efficiency, where
by increasing cγ , the statistical rate of Markov component recovery becomes worse. For
the simulations of previous subsection provided in Figure 4, we choose some regularization
parameter close to c∗γ . For example, we choose cγ = 2.08 for p = 64 as suggested by Figure
5.

7.1.3 Comparing `1 + `∞ and `1 methods

We apply `1 + `∞ and `1 methods to a random realization of the above described grid-
structured synthetic model 11 Σ∗ = J∗M

−1−Σ∗R with size p = 64. The edit distance between

the estimated and exact Markov components ĴM and J∗M is plotted in Figure 6.a. We
observe that the behaviour of `1 +`∞ method is very close to `1 method which suggests that

10. λ is set to the maximum absolute value of off-diagonal entries of Markov matrix J∗M .
11. Here, we choose the nonzero off-diagonal entries of J∗M randomly from {−0.2, 0.2}.
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Figure 5: Simulation results for grid graph with fixed size p = 64 and regularization parameters
λ = 0.2 and varying cγ ∈ {1, 1.3, 2.08, 2.5, 3} where γ = cγ

√
log p/n. (a) Edit distance

between the estimated Markov component ĴM and the exact Markov component J∗
M .

(b) Edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J∗
M can be estimated efficiently under either methods. The edit distance

between the estimated and exact residual components Σ̂R and Σ∗
R is plotted in Figure

6.b. Since there is not any off-diagonal #∞ constraints in #1 method, it can not recover
the residual matrix Σ∗

R. Finally the #∞-elementwise norm of error between the estimated

precision matrix Ĵ and the exact precision matrix J∗ is sketched for both methods in Figure
6.c. We observe the advantage of proposed #1 + #∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for #1 method that we have
λ = ∞.

7.1.4 Benefit of applying LBP (Loopy Belief Propagation) to the proposed
model

We compare the result of applying LBP to J∗ and J∗
M components of a random realization

of the above described grid-structured synthetic model.12 The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J∗ model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are |||RM ||| = 0.8613 and |||R||| = 3.2446 for
J∗

M and J∗ models respectively. Thus, the matrix J∗ is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J∗

M matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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√
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between the estimated Markov component ĴM and the exact Markov component J∗
M .

(b) Edit distance between the estimated residual component Σ̂R and the exact residual
component Σ∗

R. Each point in the figures is derived from averaging 10 trials.
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6.c. We observe the advantage of proposed #1 + #∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for #1 method that we have
λ = ∞.
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model is walk-summable, then the mean estimates under LBP converge and are correct. The
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component Σ∗R. Each point in the figures is derived from averaging 10 trials.

sparsity pattern of J∗M can be estimated efficiently under either methods. The edit distance

between the estimated and exact residual components Σ̂R and Σ∗R is plotted in Figure
6.b. Since there is not any off-diagonal `∞ constraints in `1 method, it can not recover
the residual matrix Σ∗R. Finally the `∞-elementwise norm of error between the estimated

precision matrix Ĵ and the exact precision matrix J∗ is sketched for both methods in Figure
6.c. We observe the advantage of proposed `1 + `∞ method in estimating the overall model
precision matrix J∗ = Σ∗−1. Note that the same regularization parameters provided in
Table 1 are used for the simulations of this subsection, except for `1 method that we have
λ =∞.

7.1.4 Benefit of applying LBP (Loopy Belief Propagation) to the proposed
model

We compare the result of applying LBP to J∗ and J∗M components of a random realization
of the above described grid-structured synthetic model.12 The log of average mean and
variance errors over all nodes are sketched in Figure 7 throughout the iterations. We observe
that LBP does not converge for J∗ model. It is shown in Malioutov et al. (2006) that if a
model is walk-summable, then the mean estimates under LBP converge and are correct. The
spectral norms of the partial correlation matrices are |||RM ||| = 0.8613 and |||R||| = 3.2446 for
J∗M and J∗ models respectively. Thus, the matrix J∗ is not walk-summable and therefore
its convergence under LBP is not guaranteed and this is seen in Figure 7. On the other
hand, LBP is accurate for J∗M matrix. Thus, our method learns models which are better
suited for inference under loopy belief propagation.

7.2 Real Data

The proposed algorithm is also applied to foreign exchange rate and monthly stock returns
data sets to learn a Markov plus residual model introduced in the paper. It is important to

12. Here, we choose 0.5 fraction of Markov edges randomly to introduce residual edges.
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Figure 6: Simulation results for grid graph with size p = 64. (a) Edit distance between the esti-

mated Markov component ĴM and the exact Markov component J∗
M . (b) Edit distance

between the estimated residual component Σ̂R and the exact residual component Σ∗
R.

(c) Precision matrix estimation error ‖J∗ − Ĵ‖∞ , where Ĵ = ĴM for !1 method and

Ĵ =
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Ĵ−1

M − Σ̂R

)−1
for !1 + !∞ method.
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Figure 7: Performance under loopy belief propagation for the overall model (J∗) and the Markov
component (J∗

M ).

note that the real data sets can be modeled by different models not necessarily satisfying
the conditions proposed in this paper. But, here we observe that the resulting Markov
plus residual models are fairly interpretable for the corresponding real data sets. The
interpretations are discussed in detail in the following sections.
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mated Markov component ĴM and the exact Markov component J∗
M . (b) Edit distance

between the estimated residual component Σ̂R and the exact residual component Σ∗
R.

(c) Precision matrix estimation error ‖J∗ − Ĵ‖∞ , where Ĵ = ĴM for !1 method and
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7.2.1 Foreign exchange rate data

In this section, we apply the proposed algorithm to the foreign exchange rate data set.13

The data set includes monthly exchange rates of 19 countries currency with respect to
US dollars from October 1983 to January 2012. Thus, the data set has 340 samples of
19 variables. We apply the optimization program (7) with a slight modification. Since
the underlying model for this data set does not necessarily satisfy the proposed eigenvalue
condition (A.6), we need to make sure that the overall covariance matrix estimation Σ̂ is
positive definite and thus a valid covariance matrix. We add an additional constraint to the
optimization program (7), imposing a lower bound on the minimum eigenvalue of overall
covariance matrix λmin(Σ), i.e., λmin(Σ) ≥ σmin. The parameter σmin is set to 0.001 in this
experiment.
The resulting edges of Markov and residual matrices for some moderate choice of regulariza-
tion parameters γ = 20 and λ = 0.004 are plotted in Figure 8. The choice of regularization
parameters are further discussed at the end of this subsection. We observe sparsity on both
Markov and residual structures. There are two main observations in the learned model in
Figure 8. First, it is seen that the statistical dependencies of foreign exchange rates are
correlated with the geographical locations of countries, e.g., it is observed in the learned
model that the exchange rates of Asian countries are more correlated. We can refer to
Asian countries “South Korea”, “Japan”,“China”,“Sri Lanka”, “Taiwan”, “Thailand” and
“India” in the Markov model where several edges exist between them while other nodes in
the graph have much lower degrees. We observe similar patterns in the residual matrix,
e.g., there is an edge between “India” and “Sri Lanka” in the residual model. We also see
the interesting phenomena in the Markov graph that there exist some high degree nodes
such as “South Korea” and “Japan”. The presence of high degree nodes suggests that in-
corporating hidden variables can further lead to sparser representations, and this has been
observed before in other works, e.g., Choi et al. (2010); Chandrasekaran et al. (2010a); Choi
et al. (2011).

The regularization parameters are chosen such that the resulting Markov and residual
graphs are reasonably sparse, while still being informative. Increasing the parameter γ
makes both Markov and residual components sparser, and increasing parameter λ makes
the residual component sparser. In addition, it is worth discussing the fact that we chose
parameter γ relatively large compared to parameter λ in this simulation. In Theorem 4,
we have γ = C1

√
log p/n and λ = λ∗ + C2

√
log p/n. Now, if C1 is large compared to C2

and furthermore λ∗ is small, γ can be larger than λ. Hence, we have an agreement between
theory and practice.

7.2.2 Monthly stock returns data

In this section we apply the algorithm to monthly stock returns of a number of companies in
the S&P 100 stock index. We pick 17 companies in divisions “E.Trans, Comm, Elec&Gas”
and “G.Retail Trade” and apply the optimization program (19) to their stock returns data
to learn the model. The resulting edges for Markov and residual matrices are plotted in
Figure 9 for regularization parameters γ = 2.2e − 03 and λ = 1e − 04. There is sparsity
on both Markov and residual structure. The isolated nodes in the Markov graph are not

13. Data set available at http://research.stlouisfed.org/fred2/categories/15/downloaddata.
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Figure 8: Markov and independence graph structures for the foreign exchange rate data set with
regularization parameters γ = 20 and λ = 0.004. Solid edges indicate Markov model and
dotted edges indicate independence model.
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Figure 9: Markov and independence graph structures for the monthly stock returns data set with
regularization parameters γ = 2.2e − 03 and λ = 1e − 04. Solid edges indicate Markov
model and dotted edges indicate independence model.

presented in the figure. We see in both Markov and residual graphs that there exist higher
correlations among stock returns of companies in the same division or industry. There
are 5 connected partitions in the residual graph. e.g., nodes “HD”, “WMT”, “TGT” and
“MCD”, all belonging to division Retail Trade form a partition. This is also observed for the
telecommunication industries (companies “T” and “VZ”) and energy industries (companies
“ETR” and “EXC”). We see a similar pattern in the Markov graph but with more edges.
Similar to exchange rate data set results, we also observe high degree nodes in the Markov
graph such as “HD” and “TGT” which suggest incorporating hidden nodes.
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8. Conclusion

In this paper, we provided an in-depth study of convex optimization methods and guarantees
for high-dimensional covariance matrix decomposition. Our methods unify the existing
results for sparse covariance/precision estimation and introduce a richer class of models with
sparsity in multiple domains. We provide consistency guarantees for estimation in both the
Markov and the residual domains, and establish efficient sample complexity results for our
method. These findings open up many future directions to explore. One important aspect is
to relax the sparsity constraints imposed in the two domains, and to develop new methods
to enable decomposition of such models. Other considerations include extension to discrete
models and other models for the residual covariance matrix (e.g., low rank matrices). Such
findings will push the envelope of efficient models for high-dimensional estimation. It is
worth mentioning while in many scenarios it is important to incorporate latent variables,
in our framework it is challenging to incorporate both latent variables as well as marginal
independencies, and provide learning guarantees, and we defer it to future work.
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Appendix A. Duality Between Programs

In this section we prove duality between programs (19) and (7) (when the positive-definiteness
constraint ΣM −ΣR � 0 is dropped). By doing this, the duality between programs (6) and
(4) is also proved since they are special cases of (19) and (7) when γ is set to zero and Σ̂n

is substituted with Σ∗.
Before we prove duality, we introduce the concept of subdifferential or subgradient for

a convex function not necessarily differentiable. Subgradient (subdifferential) generalizes
the gradient (derivative) concept to nondifferentiable functions. Supposing convex function
f : Rn → R, the subgradient at a point x0 which is usually denoted by ∂f(x0) consists of
all vectors c such that

f(x) ≥ f(x0) + 〈c, x− x0〉, ∀x ∈ Dom f.

In order to prove duality, we start from program (7) (when the positive-definiteness
constraint ΣM − ΣR � 0 is dropped) and derive the primal form (19). Program (7) can be
written in the following equivalent form where λ1 goes to infinity and λ2 is used instead of
λ.

(
Σ̂M , Σ̂R

)
:= arg max

ΣM�0,ΣR

log det ΣM − λ1‖ΣR‖1,on − λ2‖ΣR‖1,off (23)
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s. t. ‖Σ̂n − ΣM + ΣR‖∞,off ≤ γ,(
ΣM

)
d
−
(
ΣR

)
d

=
(
Σ̂n
)
d
.

By introducing the dual variable JM for above program, we have:

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

−〈JM ,ΣR〉 = −λ1‖ΣR‖1,on − λ2‖ΣR‖1,off ,

where (ĴM )on ∈ λ1∂‖Σ̂R‖1,on, (ĴM )off ∈ λ2∂‖Σ̂R‖1,off minimizes the above program. Thus,
we have the following equivalent form for program (23):

min
‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

max
ΣM�0,ΣR

‖Σ̂n−ΣM+ΣR‖∞,off≤γ
(ΣM )d−(ΣR)d=(Σ̂n)

d

log det ΣM − 〈JM ,ΣR〉,

where the order of programs is exchanged. If we define the new variable Σ = ΣM −ΣR, and
use Σ as the new variable in the program instead of ΣR, the inner max program becomes

max
ΣM�0,Σ

‖Σ̂n−Σ‖∞,off≤γ,Σd=(Σ̂n)
d

log det ΣM − 〈JM ,ΣM 〉+ 〈JM ,Σ〉.

Since the objective function and constraints are disjoint functions of variables Σ and ΣM ,
we can do optimization individually for two variables. The optimizers are Σ̂M = J−1

M and

Σ̂ = Σ̂n + γZγ , where Zγ is a member of the subgradient of ‖ · ‖1,off evaluated at point JM ,
i.e.,

(Zγ)ij =





0 for i = j
∈ [−1, 1] for i 6= j,

(
JM
)
ij

= 0

sign
((
JM
)
ij

)
for i 6= j,

(
JM
)
ij
6= 0.

Also note that since ΣM should be positive definite, the variable JM should be also positive
definite. Therefore, it adds another constraint JM � 0. If we substitute these optimizers,
we get the dual program

min
JM�0

‖JM‖∞,on≤λ1

‖JM‖∞,off≤λ2

〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off ,

which is equivalent to (19) when λ1 goes to infinity and therefore the result is proved.

Appendix B. Characterization of the Proposed Optimization Programs

We proposed programs (6) and (19) to do decomposition and estimation respectively. For-
mer is used to decompose exact statistics to its Markov and residual covariance components
and the latter is used to estimate decomposition components given sample covariance ma-
trix. In this appendix we characterize optimal solutions of these optimization programs.
Both programs are convex and therefore the optimal solutions can be characterized using
standard convex optimization theory. Note that the proof of following lemmas is mentioned
after the remarks.
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Lemma 1 For any λ > 0, primal problem (6) has a unique solution ĴM � 0 which is
characterized by the following equation:

Σ∗ − Ĵ−1
M + Ẑ = 0, (24)

where Ẑ has the following form

Ẑij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(25)

in which α̂ij can only take nonnegative values, i.e., we have α̂ij ≥ 0.

Remark 10 Comparing Lagrangian optimality condition in (24) with relation Σ∗ = Ĵ−1
M −

Σ̂R between solutions of primal-dual optimization programs (derived in Appendix A) implies
the equality Σ̂R = Ẑ. Thus, Σ̂R entries are determined by Lagrangian multipliers of primal
program. More specifically, we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(26)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (6).

Lemma 2 For any λ > 0, γ ≥ 0 and sample covariance matrix Σ̂n with strictly positive
diagonal entries, primal problem (19) has a unique solution ĴM � 0 which is characterized
by the equation

Σ̂n − Ĵ−1
M + Ẑ = 0, (27)

where Ẑ = Ẑα + γẐγ. Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is represented as in (25) for some
Lagrangian multipliers α̂ij ≥ 0.

Remark 11 Comparing Lagrangian optimality condition in (27) with relation Σ̂n = Ĵ−1
M −

Σ̂R − γẐγ between solutions of primal-dual optimization programs (derived in Appendix

A) implies the equality Σ̂R = Ẑα. Thus, Σ̂R entries are determined by the Lagrangian
multipliers of primal program. More specifically, we have

(Σ̂R)ij =





0 for i = j

0 for i 6= j, |
(
ĴM
)
ij
| < λ

α̂ij sign
((
ĴM
)
ij

)
for i 6= j, |

(
ĴM
)
ij
| = λ,

(28)

where α̂ij ≥ 0 are the Lagrangian multipliers of primal program (19).

Proof We prove Lemma 2 here and Lemma 1 is a special case of that when γ is set to zero
and Σ̂n is substituted with Σ∗.

For any λ > 0 and γ ≥ 0, the optimization problem (19) is a convex programming
where the objective function is strictly convex. Therefore, if the minimum is achieved it
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is unique. Since off-diagonal entries of JM are bounded according to constraints, the only
issue for minimum achievement may arises for unbounded diagonal entries. It is shown in
Ravikumar et al. (2011) that if diagonal entries of Σ̂n are strictly positive, the function is
coercive with respect to diagonal entries and therefore here is no issue regarding unbounded
diagonal entries. Thus, the minimum is attained in JM � 0. But since when JM approaches
the boundary of positive definite cone, the objective function goes to infinity, the solution
is attained in the interior of the cone JM � 0. After showing that the unique minimum is
achieved, let us characterize the minimum.

Considering αij as Lagrangian multipliers of inequality constraints of program (19), the
Lagrangian function is

L(JM , α) = 〈Σ̂n, JM 〉 − log detJM + γ‖JM‖1,off +
∑

i 6=j
αij
[∣∣(JM

)
ij

∣∣− λ
]
.

We skipped positive definiteness constraint in writing Lagrangian function since it is in-
active. Based on standard convex optimization theory, the matrix ĴM � 0 is the optimal
solution if and only if it satisfies KKT conditions. It should minimize the Lagrangian which
happens if and only if 0 belongs to the subdifferential of Lagrangian or equivalently there
exists a matrix Ẑ such that

Σ̂n − Ĵ−1
M + Ẑ = 0,

where Ẑ = Ẑα + γẐγ . Matrix Ẑγ ∈ ∂‖ĴM‖1,off and Ẑα is

(Ẑα)ij =





0 for i = j

∈ α̂ij .[−1, 1] for i 6= j,
(
ĴM
)
ij

= 0

α̂ij sign
((
ĴM )ij

))
for i 6= j,

(
ĴM
)
ij
6= 0,

for some Lagrangian multipliers α̂ij ≥ 0. The solution should also satisfy complementary

slackness conditions α̂ij .
[∣∣(ĴM

)
ij

∣∣− λ
]

= 0 for i 6= j. Applying this condition to above Ẑα
representation, results to (25) form proposed in the lemma.

Appendix C. Proof of Theorem 4

First note that as mentioned in Remark 3, the pair
(
ĴM , Σ̂R

)
given by optimization program

gives a decomposition Σ∗ = Ĵ−1
M − Σ̂R which is desired.

Next, in order to prove the equivalence, we show that there is a one to one correspondence
between the specified conditions (A.0)-(A.3) for valid decomposition and the characteriza-
tion of optimal solution of optimization program given in lemma 1. We go through each of
these conditions one by one in the following lines.
Condition (A.0) is considered in optimization program as positive definiteness of Markov
matrix JM .
Condition (A.1) is exactly the primal constraint ‖J∗M‖∞,off ≤ λ.
Condition (A.2) is exactly the same as relation (26) where diagonal entries of residual co-
variance matrix are zero and its off-diagonal entries can be nonzero only if the absolute
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value of corresponding entry in Markov matrix takes the maximum value λ.
Condition (A.3) is exactly the same as inequality α̂ij ≥ 0.
In the above lines, we covered one by one correspondence for conditions (A.0)-(A.3). But
note that we also covered all the equalities and inequalities that characterize unique optimal
solution of optimization program. In other words by above correspondence we proved that
both of the following derivations are true where second one is the reverse of first one. On
one hand, any optimal solution of optimization program gives a valid decomposition under
desired conditions. On the other hand, any valid decomposition under desired conditions
is a solution of proposed optimization program. Thus, we can infer that these two are
exactly equivalent and the result is proved. Since the solution of optimization program is
unique and according to the equivalence between this solution and decomposition under
those conditions, uniqueness is also established. �

Appendix D. Proof of Theorem 5

In this appendix, we first mention an outline of the primal-dual witness method and then
provide the detailed proof of the theorem.

D.1 Primal-Dual Witness Method

First, continuing the proof outline presented in section 6, we provide an outline of the primal-
dual witness method steps in order to establish equivalence between optimal solutions of
the original (19) and the modified (21) optimization programs.

1. The primal witness matrix J̃M is defined as in (21).

2. The dual witness matrix is set as Z̃ = −Σ̂n + J̃−1
M . It is defined in this way to satisfy

original program optimal solution characterization mentioned in appendix B.

3. We need to check the following feasibility conditions under which the modified program
solution is equivalent to the solution of original one:

(a) ‖J̃M‖∞,off,S ≤ λ: Since we relaxed the `∞ bounds on off-diagonal entries in set
S, we need to make sure that the modified solution satisfies this bound in order
to have equivalence between modified and original programs solutions.

(b) Set
(
Z̃α
)
SR

=
(
−Σ̂n + J̃−1

M − γ
(
Z̃γ
))
SR

where Z̃γ ∈ ∂‖J̃M‖1,off . Note that since

|
(
J̃M
)
ij
| = λ 6= 0 for any (i, j) ∈ SR, then Z̃γ and therefore above equation is well-

defined. Now we need to check:
(
Z̃α
)
ij

(
J̃M
)
ij
≥ 0 for all (i, j) ∈ SR. This means

that they have the same sign or one of them is zero. We need this condition for
equivalence between solutions because Lagrangian multipliers in original program
(19) corresponding to inequality constraints should be nonnegative.

(c) ‖Z̃‖∞,Sc
M
< γ: According to the

(
JM
)
Sc
M

= 0 constraint in the modified pro-

gram, all the inequality constraints become inactive in the original one when
desired ĴM = J̃M equality is satisfied. Then, complementary slackness condi-
tion enforce all the Lagrangian multipliers corresponding to set ScM to be zero.
These can be satisfied by the above strict dual feasibility. Also note that having
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zero Lagrangian multipliers results in zero residual entries, i.e.,
(
Σ̃R

)
Sc
M

= 0 and

therefore ‖∆̃R‖∞,Sc
M

= 0 when this feasibility condition is satisfied.

Also note that we dropped the positive-definiteness constraint ΣM−ΣR � 0 in the proof
outline. Thus, in addition to above conditions, we also need to show that Σ̃ = Σ̃M− Σ̃R � 0
in the modified program.

Before we state the detailed proof for the theorem, we introduce a pair of definitions
which are used in the analysis. Let us define matrix E as difference between sample covari-
ance matrix and the exact covariance matrix

E := Σ̂n − Σ∗. (29)

We also define R
(
∆̃J

)
as the difference between J̃−1

M and its first order Taylor expansion

around J∗M . Recall that ∆̃J was defined as ∆̃J := J̃M − J∗M . According to results for first
order derivative of inverse function J−1

M (Boyd and Vandenberghe, 2004), the remainder is

R
(
∆̃J

)
= J̃−1

M − J∗M
−1 + J∗M

−1∆̃JJ
∗
M
−1. (30)

D.2 Proof of the Theorem

Exploiting lemmata mentioned in Appendix E, Theorem 5 is proved as follows:

Proof According to the sample error bound mentioned in Lemma 4, we have ‖E‖∞ ≤
δf (pτ ;n) for some τ > 2 with probability greater than or equal to 1 − 1/pτ−2. In the
discussion after this, it is assumed that the above bound for ‖E‖∞ is satisfied and therefore
the following results are valid with probability greater than or equal to 1− 1/pτ−2.

By choosing γ = m
α δf (pτ ;n), we have ‖E‖∞ ≤ α

mγ as desired for Lemma 5. Choosing λδ
as in (36) (compatible with what mentioned in the theorem), we only need to show that the
other bound on ‖R‖∞ is also satisfied to be able to apply Lemma 5. As stated in the remark
after Theorem 5, the bound on sample complexity is not asymptotic and we assume the
following lower bound on the number of samples which is compatible with the asymptotic
form mentioned in the theorem:

n > nf

(
pτ ; 1/max

{
v∗, 4ld

(
1 +

m

α

)
KSSKM max

{
1,

4

l − 1

(
1 +

m

α

)
KSSK

2
M

}})
, (31)

for some l > 1. Because of monotonic behaviour of the tail function, for any n satisfying
above bound, we have:

δf
(
pτ ;n) ≤ min

{
1

v∗
,

1

4ld(1 + m
α )KSSKM

,
l − 1

16ld(1 + m
α )2K2

SSK
3
M

}
, (32)

According to the selection for regularization parameters λδ and γ and the bound on sample
error ‖E‖∞, we have:

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤
[

4KSSR
KSS

1− 2KSSR

(
1 +

α

m

)m
α

+ 2KSS

(
1 +

m

α

)]
δf (pτ ;n)
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= 2KSS

(
1 +

m

α

)
δf (pτ ;n)

1

1− 2KSSR

(=: λδ)

< 4KSS

(
1 +

m

α

)
δf (pτ ;n),

where in the last inequality, we used the second condition is assumption (A.4) that KSSR
<

1/4. Note that second line is equal to λδ since we assigned the same value in (36). Applying
the bound (32) on above inequality, we have

2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
< min

{
1

ldKM
,

l − 1

4ld(1 + m
α )KSSK3

M

}

≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
.

Thus, the conditions for Lemma 7 are satisfied and we have

‖∆̃J‖∞,S ≤ 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ λδ < 4KSS

(
1 +

m

α

)
δf (pτ ;n). (33)

Above inequalities tell us multiple things. First, since the error ‖∆̃J‖∞,S is bounded by

λδ, the J̃M entries in set S can not deviate from exact one J∗M more than λδ. We also
assumed that the off-diagonal entries in J∗M are bounded by λ∗. Therefore according to

the definition of λδ := λ − λ∗, the entries in
(
J̃M
)

off,S
are bounded by λ and therefore

the condition (a) for feasibility of primal-dual witness method is satisfied, i.e., we have
‖J̃M‖∞,off,S ≤ λ. Second, since ‖∆̃J‖∞,SR

= λδ, we have ‖∆̃J‖∞,S ≤ ‖∆̃J‖∞,SR
and

therefore ‖∆̃J‖∞ = ‖∆̃J‖∞,SR
= λδ which results the following error bound

‖∆̃J‖∞ := ‖J̃M − J∗M‖∞ ≤ 4KSS

(
1 +

m

α

)
δf (pτ ;n). (34)

Furthermore, ‖∆̃J‖∞ < 1
ldKM

bound can be concluded from above inequality by substituting

δf (pτ ;n) from (32). Thus, the condition for Lemma 6 is satisfied and we have the following
bound on the remainder term

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖2∞K3

M

≤ 16l

l − 1
dK3

MK
2
SS

(
1 +

m

α

)2[
δf (pτ ;n)

]2

=

[
16l

l − 1
dK3

MK
2
SS

(
1 +

m

α

)2
δf (pτ ;n)

]
δf (pτ ;n)

≤ δf (pτ ;n) =
α

m
γ,

where in the second inequality, we used error bound in (34) and the last inequality is
concluded from bound (32).

Now the conditions for Lemma 5 are satisfied and therefore we have the upper bound on
‖∆̃R‖∞,SR

< C3γ and the strict dual feasibility on ScM . Second result satisfies condition (c)

of the primal-dual witness method feasibility conditions. The upper bound on ‖∆̃R‖∞,SR
in
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conjunction with the lower bound on
(
Σ∗R
)

min
> C3γ (mentioned in the theorem), ensures

that the sign of Σ∗R and Σ̃R are the same which results that the condition (b) of the feasibility
conditions for primal-dual witness method is satisfied. Since all three conditions (a)-(c) are
satisfied, we have equivalence between the modified program and the original one under
conditions specified in the theorem. It gives us both results (a) and (b) in the theorem.
Then by assuming lower bound on minimum nonzero value of J∗M , the result in part (c) is
also proved.

As mentioned before, we need to show that the dropped constraint Σ = ΣM − ΣR � 0
is also satisfied. Since the conditions for Corollary 13 in Appendix E.5 are satisfied,
we have the spectral norm error bound (41) on overall covariance matrix Σ. Apply-
ing the inverse tail function for Gaussian distribution in (35) to assumption (A.6) re-
sults that the minimum eigenvalue of exact covariance matrix Σ∗ satisfies lower bound
λmin(Σ∗) ≥

(
C4 + m

αC3

)
dδf (pτ ;n) + C5d

2
[
δf (pτ ;n)

]2
where C6 :=

(
C4 + m

αC3

)√
2q2 and

C7 := 2q2C5. Then by exploiting Weyl’s theorem (Theorem 4.3.1 in Horn and Johnson
(1985)), the estimated covariance matrix Σ̂ is positive definite and thus valid. Therefore,
the result is proved.

Appendix E. Auxiliary Lemmata

First, the tail condition for a probability distribution is defined as follows.

Definition 12 (Tail Condition) The random vector X satisfies tail condition with pa-
rameters f and v∗ if there exists a constant v∗ ∈ (0,∞) and function f : N×(0,∞)→ (0,∞)
such that for any (i, j) ∈ V × V :

P[|Σ̂n − Σ∗ij | ≥ δ] ≤
1

f(n, δ)
for all δ ∈ (0,

1

v∗
].

Note that since the function f(n, δ) is an increasing function of both variables n and δ,
we define the inverse functions nf (r; δ) and δf (r;n) with respect to variables n and δ
respectively (when the other argument is fixed), where f(n, δ) = r.

E.1 Concentration Bounds

From Lemma 1 in Ravikumar et al. (2011), we have the following concentration bound for
the empirical covariance matrix of Gaussian random variables.

Lemma 3 (Ravikumar et al. 2011) Consider a set of Gaussian random variables with
covariance matrix Σ∗. Given n i.i.d. samples, the sample covariance matrix Σ̂n satisfies

P[|Σ̂n
ij − Σ∗ij | > δ] ≤ 4 exp

{
−nδ

2

2q2

}
for all δ ∈ (0, q),

for some constant q > 0.
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Thus the tail function for Gaussian random vector takes the exponential form with the
following corresponding inverse functions:

nf (r; δ) =
2q2 log(4r)

δ2
, δf (r;n) =

√
2q2 log(4r)

n
(35)

Applying above Lemma, we get the following bound for sampling error.

Lemma 4 (Ravikumar et al. 2011) For any τ > 2 and sample size n such that δf (pτ ;n) <
1/v∗, we have

P
[
‖E‖∞ ≥ δf (pτ ;n)

]
≤ 1

pτ−2
→ 0.

E.2 Feasibility Conditions

In the following lemma, we propose some conditions to bound the residual error ‖∆̃R‖∞,SR

and also satisfy the condition (c) of feasibility conditions required for equivalence between
the witness solution and the original one.

Lemma 5 Suppose that

max {‖R‖∞, ‖E‖∞} ≤
α

m
γ,

λδ =
2KSS

1− 2KSSR

(
1 +

α

m

)
γ, (36)

then
a) ‖∆̃R‖∞,SR

≤ C3γ for some C3 > 0.

b) ‖Z̃‖∞,Sc
M
< γ.

Proof Applying definitions (29) and (30) to optimality condition considered in second step
of primal-dual witness method construction, gives the following equivalent equation

J∗M
−1∆̃JJ

∗
M
−1 − Σ∗R −R

(
∆̃J

)
+ E + Z̃ = 0. (37)

Above equation is a p × p matrix equation. We can rewrite it as a linear equation with
size p2 if we use the vectorized form of matrices. Vectorized form of a matrix D ∈ Rp×p is
a column vector D ∈ Rp2

which is composed by concatenating the rows of matrix D in a
single column vector. In the vectorized form, we have

vec
(
J∗M
−1∆̃JJ

∗
M
−1) =

(
J∗M
−1 ⊗ J∗M−1)∆̃J = Γ∗∆̃J .

Decomposing the vectorized form of (37) into three disjoint partitions S, SR and ScM gives
the following decomposed form




Γ∗SS Γ∗SSR
Γ∗SSc

M

Γ∗SRS
Γ∗SRSR

Γ∗SRS
c
M

Γ∗Sc
MS Γ∗Sc

MSR
Γ∗Sc

MSc
M







(
∆̃J

)
S−→

λδ
0


−




0(
Σ
∗
R

)
SR

0


+




(
−R+ E + Z̃

)
S(

−R+ E + Z̃
)
SR(

−R+ E + Z̃
)
Sc
M


 = 0,

(38)
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where we used the equalities
(
∆̃J

)
SR

=
−→
λδ and

(
∆̃J

)
Sc
M

= 0. Note that vector
−→
λδ only

includes ±λδ entries according to the constraints in the modified program. Also note that
Σ∗R is zero in sets S and ScM . We also dropped the argument ∆̃J from remainder function

R
(
∆̃J

)
to simplify the notation.

Similar to the original program, the matrix Z̃ is composed of two parts, Z̃β and Z̃γ , i.e.,

Z̃ = Z̃β + γZ̃γ . Matrix Z̃β = Σ̃R from equation (22), includes Lagrangian multipliers and

Z̃γ ∈ ∂‖J̃M‖1,off . For set S,
(
Z̃β
)
S

= 0, since we don’t have any constraint in the program
and therefore the Lagrangian multipliers are zero. Applying this to the first row of equation

(38) and since Γ∗SS is invertible, we have the following for error ∆̃J in set S

(
∆̃J

)
S

= Γ∗SS
−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]
, (39)

In set SR, Z̃SR
=
(
Σ̃R

)
SR

+ γ
(
Z̃γ
)
SR

. Applying this to the second row of equation (38)
results

Γ∗SRS

(
∆̃J

)
S

+ Γ∗SRSR

−→
λδ +

(
∆̃R

)
SR

+ γ
(
Z̃γ
)
SR
−RSR

+ ESR
= 0,

Recall that we defined ∆̃R := Σ̃R − Σ∗R. Substituting (39) in above equation results the

following for error ∆̃R in set SR

(
∆̃R

)
SR

=− Γ∗SRS
Γ∗SS

−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]

− Γ∗SRSR

−→
λδ − γ

(
Z̃γ
)
SR

+RSR
− ESR

.

Taking `∞ element-wise norm from above equation and using inequality ‖Ax‖∞ ≤ |||A|||∞‖x‖∞
for any matrix A ∈ Rr×s and vector x ∈ Rs, results the bound

‖∆̃R‖∞,SR
≤ |||−Γ∗SRS

Γ∗SS
−1Γ∗SSR

+ Γ∗SRSR
|||∞λδ + |||Γ∗SRS

Γ∗SS
−1|||∞

[
‖RS‖∞ + ‖ES‖∞ + γ

]

+
(
‖RSR

‖∞ + ‖ESR
‖∞ + γ

)
,

where we used the fact that ‖−→λδ‖∞ = λδ and ‖Z̃γ‖∞ = 1. Now if we apply the assumptions
mentioned in the lemma,

‖∆̃R‖∞,SR
≤
[

2KSS(m+ α)

m(1− 2KSSR
)
|||−Γ∗SRS

Γ∗SS
−1Γ∗SSR

+ Γ∗SRSR
|||∞

+
(
1 +

2α

m

)(
1 + |||Γ∗SRS

Γ∗SS
−1|||∞

)]
γ = C3γ, (40)

which proves part (a) of the Lemma.
Now if we substitute (39) in the equation from third row of (38), we have

Z̃Sc
M

= −Γ∗Sc
MSΓ∗SS

−1
[
−Γ∗SSR

−→
λδ +RS − ES − γ

(
Z̃γ
)
S

]
− Γ∗Sc

MSR

−→
λδ +RSc

M
− ESc

M
.

Taking `∞ element-wise norm from above equation gives the following bound

‖Z̃‖∞,Sc
M
≤ |||Γ∗Sc

MSΓ∗SS
−1Γ∗SSR

− Γ∗Sc
MSR
|||∞λδ + |||Γ∗Sc

MSΓ∗SS
−1|||∞

[
‖RS‖∞ + ‖ES‖∞ + γ

]
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+ ‖RSc
M
‖∞ + ‖ESc

M
‖∞,

where we used the fact that ‖Z̃γ‖∞ = 1. Applying assumption (A.4) to above bound results

‖Z̃‖∞,Sc
M
≤ (1− α)λδ + (2− α) [‖R‖∞ + ‖E‖∞] + (1− α)γ.

Using assumptions stated in the Lemma, we have

‖Z̃‖∞,Sc
M
≤
[

2KSS

1− 2KSSR

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ

<

[
4KSS

(
1 +

α

m

)
(1− α) + (2− α)

2α

m
+ (1− α)

]
γ

<

[
4KSS

m− (m− 1)α

m
+

4α

m
+ (1− α)

]
γ ≤ γ,

where we used the bound on KSSR
in assumption (A.4) in the second inequality and the

fact that α > 0 in the third inequality. Final inequality is derived from assumption (A.5)
which finishes the proof of part (b).

E.3 Control of Remainder

In the following Lemma which is stated and proved in lemma 5 in Ravikumar et al. (2011),
the argument ∆̃J controls the remainder function behavior.

Lemma 6 Suppose that the element-wise `∞ bound ‖∆̃J‖∞ ≤ 1
lKMd for some l > 1 holds.

Then
R
(
∆̃J

)
=
(
J∗M
−1∆̃J

)2
QJ∗M

−1,

where Q :=
∑∞

k=0(−1)k
(
J∗M
−1∆̃J

)k
with bound |||QT |||∞ ≤ l

l−1 . Also, in terms of element-
wise `∞ norm, we have

‖R
(
∆̃J

)
‖∞ ≤

l

l − 1
d‖∆̃J‖2∞K3

M .

E.4 Control of ∆̃J

According to the primal-dual witness solutions construction, we have the error bounds on
∆̃J within the sets SR and ScM such that ‖∆̃J‖∞,SR

= λδ and ‖∆̃J‖∞,Sc
M

= 0. In the

following lemma, we propose some conditions to control the error ‖∆̃J‖∞,S .

Lemma 7 Suppose that

r := 2KSSR
λδ + 2KSS

(
‖E‖∞ + γ

)
≤ min

{
1

ldKM
,

l − 1

2ldKSSK3
M

}
,

then we have the following element-wise `∞ bound for
(
∆̃J

)
S

,

‖∆̃J‖∞,S ≤ r.
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The proof is within the same lines of Lemma 6 proof in Ravikumar et al. (2011) but with
some modifications since the error ‖∆̃J‖∞,SR

is not zero and therefore the nonzero value
λδ arises in the final result. Since the modified optimization program (21) is different with
the modified program in Ravikumar et al. (2011), it is worth discussing about existing a
unique solution for the modified optimization program (21). This uniqueness can be shown
with similar discussion presented in Appendix B for uniqueness of the solution of original
program (19). We only need to show that there is no problem in uniqueness by removing the
off-diagonal constaraints for set S in the modified program. By Lagrangian duality, the `1
penalty term γ‖JM‖1,off can be moved to constraints as ‖JM‖1,off ≤ C(γ) for some bounded
C(γ). Therefore, the off-diagonal entries in set S where the corresponding constraints were
relaxed in the modified program are still bounded because of this `1 constraint. Hence, the
modified program (21) has a unique solution.

E.5 Spectral Norm Error Bound on Overall Covariance Matrix Σ = J−1
M − ΣR

Corollary 13 Under the same assumptions (excluding (A.6)) as Theorem 5, with proba-
bility greater than 1− 1/pc, the overall covariance matrix estimate Σ̂ = Σ̂M − Σ̂R satisfies
spectral norm error bound

|||Σ̂− Σ∗||| ≤
(
C4 +

m

α
C3

)
dδf (pτ ;n) + C5d

2
[
δf (pτ ;n)

]2
. (41)

Proof We first bound the spectral norm errors for the Markov and residual covariance
matrices Σ̂M and Σ̂R. Along the same lines as Corollary 4 proof in Ravikumar et al. (2011),
the spectral norm error |||Σ̂M − Σ∗M ||| can be bounded as

|||Σ̂M − Σ∗M ||| ≤ C4dδf (pτ ;n) + C5d
2
[
δf (pτ ;n)

]2
,

where C4 = 4
(
1 + m

α

)
KSSK

2
M and C5 = 16l

l−1

(
1 + m

α

)2
K2
SSK

3
M .

The spectral norm error |||Σ̂R − Σ∗R||| can be also bounded as

|||Σ̂R − Σ∗R||| ≤ |||Σ̂R − Σ∗R|||∞ ≤ d‖Σ̂R − Σ∗R‖∞ ≤
m

α
C3dδf (pτ ;n),

where the first inequality is the property of spectral norm which is bounded by `∞-operator
norm, second inequality is a result of the fact that Σ̂R and Σ∗R has at most d nonzero entries
in each row (since SR ⊂ SM ) and the last inequality is concluded from the upper bound on
`∞ element-wise norm error on residual matrix estimation stated in part (a) of Theorem 5.
Applying the above bounds to the overall covariance matrix estimation Σ̂ = Σ̂M − Σ̂R and
using the triangular inequality for norms, the bound in (41) is proven.

Appendix F. Proof of Corollary 9

Proof The result in this corollary is a special case of general result in Theorem 5 when
λ∗ = 0 and some minor modifications are considered in problem formulation. Note that, it is
expressed in assumption (A.1) that the off-diagonal entries of exact Markov matrix J∗M are
upper bounded by some positive λ∗. In order to extend the proof to the case of λ∗ = 0 (The
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case in this corollary), we need some minor modifications. First, the identifiability assump-
tions (A.0)-(A.3) can be ignored and instead it is assumed that the Markov part J∗M (or
equivalently Σ∗M ) is diagonal and the residual part Σ∗R has only nonzero off-diagonal entries.
Since the diagonal Markov matrix and off-diagonal residual matrix do not have any nonzero
overlapping entries, it is natural that we do not require any more identifiability assumptions.
Then, with these new assumptions, the set SM is defined as SM := SR ∪ {(i, i)|i = 1, ..., p}
where SR is defined the same as (10) and also set S is defined the same as (11) which results
that set S includes only diagonal entries. Thus, the off-diagonal entries belongs to sets SR
and ScM . Since Σ∗M is a diagonal matrix, all submatrices of Γ∗ which are indexed by sets SR
or ScM are complete zero matrices. The result is that the terms which are bounded in the
mutual incoherence condition (A.4) are already zero and thus there is no need to consider
those additional assumptions in the corollary.
By making these changes in the problem formulation, the result in Corollary 9 can be proven
within the same lines of general result proof in Theorem 5. It is only required to change the

constraint on set SR in the modified optimization program to
(
JM
)
SR

= λ sign
((

Σ∗R
)
SR

)
.
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