Journal of Machine Learning Research 15 (2014) 3915-3919 Submitted 7/13; Revised 5/14; Published 11/14

BayesOpt: A Bayesian Optimization Library for Nonlinear
Optimization, Experimental Design and Bandits

Ruben Martinez-Cantin RMCANTIN@QUNIZAR.ES
Centro Universitario de la Defensa
Zaragoza, 50090, Spain

Editor: Baldzs Kégl

Abstract

BayesOpt is a library with state-of-the-art Bayesian optimization methods to solve nonlin-
ear optimization, stochastic bandits or sequential experimental design problems. Bayesian
optimization characterized for being sample efficient as it builds a posterior distribution to
capture the evidence and prior knowledge of the target function. Built in standard C++,
the library is extremely efficient while being portable and flexible. It includes a common
interface for C, C++, Python, Matlab and Octave.

Keywords: Bayesian optimization, efficient global optimization, sequential model-based
optimization, sequential experimental design, Gaussian processes

1. Introduction

Bayesian optimization (Mockus, 1989; Brochu et al., 2010) is a special case of nonlinear op-
timization where the algorithm decides which point to explore next based on the analysis of
a distribution over functions P(f), for example a Gaussian process or other surrogate model.
The decision is taken based on a certain criterion C(-) called acquisition function. Bayesian
optimization has the advantage of having a memory of all the observations, encoded in the
posterior of the surrogate model P(f|D) (see Figure 1). Usually, this posterior distribution
is sequentially updated using a nonparametric model. In this setup, each observation im-
proves the knowledge of the function in all the input space, thanks to the spatial correlation
(kernel) of the model. Consequently, it requires a lower number of iterations compared
to other nonlinear optimization algorithms. However, updating the posterior distribution
and maximizing the acquisition function increases the cost per sample. Thus, Bayesian
optimization is normally used to optimize expensive target functions f(-), which can be
multimodal or without closed form. The quality of the prior and posterior information
about the surrogate model is of paramount importance for Bayesian optimization, because
it can reduce considerably the number of evaluations to achieve the same performance.

2. BayesOpt Library

BayesOpt uses a surrogate model of the form: f(x) = ¢(x)Tw +¢(x), where we have e(x) ~
TP (0,02(K(0) + 02I)). Here, TP() means a Student-t process or a mixture of Student-t
processes, with the Gaussian process as a special case. This model can be considered as a
linear regression model ¢(x)?'w with heteroscedastic perturbation ¢(x), as a nonparametric

(©2014 Ruben Martinez-Cantin.

MARTINEZ- CANTIN

(Input: target f(-), priors P(f), P(0), criterion C(-), budget N Output: x* W

Build a data set D of points X = x7 ...x; and its response y = y1 ...y; using an initial design.

While i < N
e Update the distribution with all data available, for example, P(f|D) « [P(D|f,0)P(f)P(0) df
e Select the point x; which maximizes the criterion: x; = arg max C(x|P(f|D)). Observe y; = f(x;)
e Augment the data with the new point and response: D < DU {x;,y; } i i+1

Figure 1: General algorithm for Bayesian optimization.

process with nonzero mean function or as a semiparametric model. The library allows to
define priors on w, o2 and 6. The marginal posterior P(f|D) can be computed in closed
form, except for the kernel parameters 0. BayesOpt allows to use different approximations
based on empirical Bayes (Santner et al., 2003) or MCMC (Snoek et al., 2012) on P(6|D).

2.1 Implementation

Efficiency has been one of the main objectives during development. We found evidence that
updating € every iteration might be unnecessary or even counterproductive (Bull, 2011).
For empirical Bayes (ML or MAP of), we found that a combination of global and local
derivative-free methods such as DIRECT (Jones et al., 1993) and BOBYQA (Powell, 2009)
marginally outperforms gradient-based method, in CPU time, for optimizing € by avoiding
the overhead of computing the marginal likelihood derivative.

One of the most critical components, in terms of computational cost, is the computa-
tion of the inverse of the kernel matrix K—! (Rasmussen and Nickisch, 2010). We compared
different numerical solutions and we found that the Cholesky decomposition method outper-
forms any other method in terms of performance and numerical stability. Furthermore, we
can exploit the structure of the Bayesian optimization algorithm in two ways. First, points
arrive sequentially. Thus, we can do incremental computations of matrices and vectors,
except when the distribution of the kernel parameters P(6|D) is updated. For example, at
each iteration, we know that only n new elements will appear in the correlation matrix K,
that is, the correlation of the new point with each of the existing points. The rest of the
matrix remains invariant. Thus, instead of computing the whole Cholesky decomposition of
K, being O(n?), we just add a new row of elements to the Cholesky decomposition, which is
O(n?). Second, finding the optimal decision at each iteration x; requires multiple queries of
the acquisition function from the same posterior C(x|P(f|D)) (see Figure 1). Thus, we can
precompute some terms of the posterior and criterion functions that are independent of the
query point x. To our knowledge, this is the first software for Gaussian processes/Bayesian
optimization that exploits the idea of precomputing terms for multiple queries.

Table 1 compares CPU time (single thread) and accuracy of two different configurations
of BayesOpt with respect to other open source libraries. SMAC (Hutter et al., 2011),
HyperOpt (Bergstra et al., 2011) and Spearmint (Snoek et al., 2012) used the HPOlib
(Eggensperger et al., 2013) timing system, based on runsolver. DiceOptim (Roustant
et al., 2012) used R timing system (proc.time). For BayesOpt, standard ctime was used.

Another main objective has been flexibility. The user can easily select among different
algorithms, hyperpriors, kernels or mean functions. Currently, the library supports contin-

3916

BAYESOPT: A BAYESIAN OPTIMIZATION LIBRARY

Branin (2D) Camelback (2D)

Gap 50 samp. Gap 200 samp. |t 200 sam. | ID | Gap 50 samp. Gap 100 samp. |t 100 sam. | ID
SMAC 0.19444 (0.195) | 0.06780 (0.059) | 147.3 (1.3)| 0 | 0.08534 (0.103) | 0.03772 (0.034) | 70.5 (0.9)| 0
HyperOpt | 0.69499 (0.414) | 0.07507 (0.059) | 23.5 (0.2) | 0 | 0.10941 (0.050) | 0.03383 (0.025) | 8.0 (0.09) | 0
Spearmint | 1.48953 (1.468) | 0.00000 (0.000) | 7530 (30) | 2 | 0.00005 (0.000) | 0.00004 (0.000) | 1674 (8)] 2
DiceOptim | 0.00004 (0.000) | 0.00003 (0.000) 624 (35)| 5 | 0.80861 (0.417) | 0.35811 (0.350) 215 (10) | 5
BayesOpt1 | 1.16844 (1.745) | 0.00000 (0.000) | 8.6 (0.07) | 5 | 0.00852 (0.021) | 0.00000 (0.000) | 2.2 (0.2)| 5
BayesOpt2 | 0.04742 (0.116) | 0.00000 (0.000) | 1802 (78) | 2 | 0.00000 (0.000) | 0.00000 (0.000) | 147 (1.3)| 2

Hartmann (6D) Configuration - 6 learning

Gap 50 samp. Gap 200 samp. |t 200 sam. | ID
SMAC 1.23130 (0.645) | 0.31628 (0.249) | 155.9 (1.3) | 0 | Default HPOIib
HyperOpt | 1.21979 (0.496) | 0.39065 (0.208) | 33.3 (0.3) | 0 | Default HPOIib
Spearmint | 2.13990 (0.659) | 0.59980 (0.866) | 8244 (106) | 2 | Def. HPOlib, MCMC (10 particles, 100 burn-in)
DiceOptim | 0.06008 (0.063) | 0.06004 (0.063) | 1267 (316) | 10 | ML, Genoud 50 pop., 20 gen., 5 wait, 5 burn-in
BayesOptl | 0.06476 (0.047) | 0.02385 (0.048) | 39.0 (0.04) | 10 | MAP, DIRECT+BOBYQA every 20 iterations.
BayesOpt2 | 1.05608 (0.831) | 0.04769 (0.058) | 4093 (56) | 2 | MCMC (10 particles, 100 burn-in)

Table 1: Mean (and standard deviation) of the optimization gap, f(Xpest) — f(Xopt), and
time (in seconds) for 10 runs for different number of samples (including initial
design) to illustrate the convergence of each method. ID represent the number of
samples of the initial design for each algorithm and problem.

uous, discrete and categorical optimization. We also provide a method for optimization in
high-dimensional spaces (Wang et al., 2013). The initial set of points (initial design, see
Figure 1) can be selected using well-known methods such as latin hypercube sampling or
Sobol sequences. BayesOpt relies on a factory-like design for the components of the opti-
mization process. They can be selected and combined at runtime while maintaining a simple
structure. This has two major advantages. First, it simplifies creating new components.
For example, a new kernel can be defined by inheriting the abstract kernel or one of the
existing kernels. Then, the new kernel is automatically integrated in the library. Second,
inspired by the GPML toolbox by Rasmussen and Nickisch (2010), we can easily combine
different components, like a linear combination of kernels or multiple criteria. This can be
used to optimize a function considering an additional cost for each sample, for example, the
cost of moving a sensor while maximizing the information (Marchant and Ramos, 2012).
BayesOpt also implements metacriteria algorithms, like the bandit algorithm GP-Hedge by
Hoffman et al. (2011) that can be used to automatically select the most suitable criteria
during the optimization. Examples of these combinations can be found in Section 2.3.2.

The third objective is correctness. For example, the library is thread and exception
safe, allowing parallelized calls. Parts that are sensible to numerical issues, such as the GP-
Hedge algorithm, have been implemented with variation of the actual algorithm to avoid
over- or underflow issues. The library internally uses NLOPT by Johnson (2014) for the
inner optimization loops (optimize criteria, learn kernel parameters, etc.).

The library can be found at: https://github.com/rmcantin/bayesopt/

2.2 Compatibility

BayesOpt has been designed to be highly compatible in many platforms and setups. It has
been tested and compiled in different operating systems (Linux, Mac OS, Windows), with

3917

https://github.com/rmcantin/bayesopt/

MARTINEZ-CANTIN

different compilers (Visual Studio, GCC, Clang, MinGW). The core of the library is written
in C++, however, it provides interfaces for C, Python and Matlab/Octave.

2.3 Using the Library

There is a common API implemented for several languages and programming paradigms.
Before running the optimization we need to follow two simple steps:

2.3.1 TARGET FUNCTION DEFINITION

Defining the function that we want to optimize can be achieved in two ways. We can
directly send the function (or a pointer) to the optimizer based on a function template. For
example, in C/C++:

double my_function (unsigned int n_query, const double xquery,
double xgradient , void xfunc_data);

The gradient has been included for future compatibility. Python, Matlab and Octave inter-
faces define a similar template function.

For a more object-oriented approach, we can inherit the abstract module and define
the virtual methods. Using this approach, we can also include nonlinear constraints in the
checkReachability method. This is available for C++ and Python. For example, in C++:

class MyOptimization: public bayesopt:: ContinuousModel {
public:
MyOptimization(size_t dim, bopt-params param): ContinousModel(dim,param) {}
double evaluateSample (const boost::numeric:: ublas:: vector<double> &query)
{ // My function here }s
bool checkReachability (const boost::numeric:: ublas:: vector<double> &query)
{ // My constraints here }s

)

2.3.2 BAYESOPT PARAMETERS

The parameters are defined in the bopt_params struct or a dictionary in Python. The
details of each parameter can be found in the included documentation. The user can define
expressions to combine different functions (kernels, criteria, etc.). All the parameters have
a default value, so it is not necessary to define all of them. For example, in Matlab:

par.surr_-name = ’sStudentTProcessNIG’; % Surrogate model and hyperpriors
% We combine Expected Improvement, Lower Confidence Bound and Thompson sampling
par.crit_-name = ’cHedge (cEI,cLCB,cThompsonSampling)’;

par.kernel_name = ’kSum(kMaternIS03,kRQIS0)’; % Sum of kernels
par.kernel_hp.mean = [1, 1]; par.kernel_hp_std = [5, 5]; % Hyperprior on kernel
par.l_type = ’L_MCMC’; % Method for learning the kernel parameters
par.sc_type = ’SC_MAP’; % Score function for learning the kernel parameters
par.n_iterations = 200; % Number of iterations <=> Budget
par.epsilon = 0.1; % Add an epsilon—greedy step for better exploration

Acknowledgments

We would like to thank Luis Montesano for his insightful comments. This work has been
supported by Spanish government grant DPI2011-25892 and CUD grant CUD2013-5.

3918

BAYESOPT: A BAYESIAN OPTIMIZATION LIBRARY

References

James Bergstra, Remi Bardenet, Yoshua Bengio, and Baldzs Kégl. Algorithms for hyper-
parameter optimization. In NIPS, pages 25462554, 2011.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on Bayesian optimization
of expensive cost functions, with application to active user modeling and hierarchical
reinforcement learning. eprint arXiv:1012.2599, arXiv.org, December 2010.

Adam D. Bull. Convergence rates of efficient global optimization algorithms. Journal of
Machine Learning Research, 12:2879-2904, 2011.

Katharina Eggensperger, Matthias Feurer, Frank Hutter, James Bergstra, Jasper Snoek,
Holger Hoos, and Kevin Leyton-Brown. Towards an empirical foundation for assessing
bayesian optimization of hyperparameters. In BayesOpt workshop (NIPS), 2013.

Matthew Hoffman, Eric Brochu, and Nando de Freitas. Portfolio allocation for Bayesian
optimization. In UAI 2011.

Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In LION-5, page 507-523, 2011.

Steven G. Johnson. The NLopt nonlinear-optimization package. http://ab-initio.mit.
edu/nlopt, 2014.

Donald R. Jones, Cary D. Perttunen, and Bruce E. Stuckman. Lipschitzian optimization
without the Lipschitz constant. Journal of Optimization Theory and Applications, 79(1):
157-181, October 1993.

Roman Marchant and Fabio Ramos. Bayesian optimisation for intelligent environmental
monitoring. In IEEE/RSJ IROS, pages 2242-2249, 2012.

Jonas Mockus. Bayesian Approach to Global Optimization, volume 37 of Mathematics and
Its Applications. Kluwer Academic Publishers, 1989.

Michael J. D. Powell. The BOBYQA algorithm for bound constrained optimization with-
out derivatives. Technical Report NA2009/06, Department of Applied Mathematics and
Theoretical Physics, Cambridge England, 2009.

Carl E. Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (GPML)
toolbox. Journal of Machine Learning Research, 11:3011-3015, 2010.

Olivier Roustant, David Ginsbourger, and Yves Deville. DiceKriging, DiceOptim: two R
packages for the analysis of computer experiments by kriging-based metamodelling and
optimization. Journal of Statistical Software, 51(1):1-55, 2012.

Thomas J. Santner, Brian J. Williams, and William I. Notz. The Design and Analysis of
Computer Ezxperiments. Springer-Verlag, 2003.

Jasper Snoek, Hugo Larochelle, and Ryan Adams. Practical Bayesian optimization of ma-
chine learning algorithms. In NIPS, pages 2960-2968, 2012.

Ziyu Wang, Masrour Zoghi, David Matheson, Frank Hutter, and Nando de Freitas. Bayesian
optimization in a billion dimensions via random embeddings. In IJCAI 2013.

3919

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

	Introduction
	BayesOpt Library
	Implementation
	Compatibility
	Using the Library
	Target Function Definition
	BayesOpt Parameters

