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Abstract

Early stopping is a form of regularization based on choosing when to stop running an
iterative algorithm. Focusing on non-parametric regression in a reproducing kernel Hilbert
space, we analyze the early stopping strategy for a form of gradient-descent applied to
the least-squares loss function. We propose a data-dependent stopping rule that does not
involve hold-out or cross-validation data, and we prove upper bounds on the squared error
of the resulting function estimate, measured in either the L2(P) and L2(Pn) norm. These
upper bounds lead to minimax-optimal rates for various kernel classes, including Sobolev
smoothness classes and other forms of reproducing kernel Hilbert spaces. We show through
simulation that our stopping rule compares favorably to two other stopping rules, one based
on hold-out data and the other based on Stein’s unbiased risk estimate. We also establish
a tight connection between our early stopping strategy and the solution path of a kernel
ridge regression estimator.

Keywords: early stopping, non-parametric regression, kernel ridge regression, stopping
rule, reproducing kernel hilbert space, rademacher complexity, empirical processes

1. Introduction

The phenomenon of overfitting is ubiquitous throughout statistics. It is especially problem-
atic in nonparametric problems, where some form of regularization is essential in order to
prevent it. In the non-parametric setting, the most classical form of regularization is that
of Tikhonov regularization, where a quadratic smoothness penalty is added to the least-
squares loss. An alternative and algorithmic approach to regularization is based on early
stopping of an iterative algorithm, such as gradient descent applied to the unregularized
loss function. The main advantage of early stopping for regularization, as compared to
penalized forms, is lower computational complexity.
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The idea of early stopping has a fairly lengthy history, dating back to the 1970’s in
the context of the Landweber iteration. For instance, see the paper by Strand (1974) as
well as the subsequent papers (Anderssen and Prenter, 1981; Wahba, 1987). Early stopping
has also been widely used in neural networks (Morgan and Bourlard, 1990), for which
stochastic gradient descent is used to estimate the network parameters. Past work has
provided intuitive arguments for the benefits of early stopping. Roughly speaking, it is
clear that each step of an iterative algorithm will reduce bias but increase variance, so
early stopping ensures the variance of the estimator is not too high. However, prior to
the 1990s, there had been little theoretical justification for these claims. A more recent
line of work has developed a theory for various forms of early stopping, including boosting
algorithms (Bartlett and Traskin, 2007; Buhlmann and Yu, 2003; Freund and Schapire, 1997;
Jiang, 2004; Mason et al., 1999; Yao et al., 2007; Zhang and Yu, 2005), greedy methods
(Barron et al., 2008), gradient descent over reproducing kernel Hilbert spaces (Caponneto,
2006; Caponetto and Yao, 2006; Vito et al., 2010; Yao et al., 2007), the conjugate gradient
algorithm (Blanchard and Kramer, 2010), and the power method for eigenvalue computation
(Orecchia and Mahoney, 2011). Most relevant to our work is the paper of Buhlmann and Yu
(2003), who derived optimal mean-squared error bounds for L2-boosting with early stopping
in the case of fixed design regression. However, these optimal rates are based on an “oracle”
stopping rule, one that cannot be computed based on the data. Thus, their work left open
the following natural question: is there a data-dependent and easily computable stopping
rule that produces a minimax-optimal estimator?

The main contribution of this paper is to answer this question in the affirmative for
a certain class of non-parametric regression problems, in which the underlying regression
function belongs to a reproducing kernel Hilbert space (RKHS). In this setting, a stan-
dard estimator is the method of kernel ridge regression (Wahba, 1990), which minimizes a
weighted sum of the least-squares loss with a squared Hilbert norm penalty as a regularizer.
Instead of a penalized form of regression, we analyze early stopping of an iterative update
that is equivalent to gradient descent on the least-squares loss in an appropriately chosen
coordinate system. By analyzing the mean-squared error of our iterative update, we derive
a data-dependent stopping rule that provides the optimal trade-off between the estimated
bias and variance at each iteration. In particular, our stopping rule is based on the first time
that a running sum of step-sizes after t steps increases above the critical trade-off between
bias and variance. For Sobolev spaces and other types of kernel classes, we show that the
function estimate obtained by this stopping rule achieves minimax-optimal estimation rates
in both the empirical and generalization norms. Importantly, our stopping rule does not
require the use of cross-validation or hold-out data.

In more detail, our first main result (Theorem 1) provides bounds on the squared pre-
diction error for all iterates prior to the stopping time, and a lower bound on the squared
error for all iterations after the stopping time. These bounds are applicable to the case of
fixed design, where as our second main result (Theorem 2) provides similar types of upper
bounds for randomly sampled covariates. These bounds are stated in terms of the squared
L2(P) norm or generalization error, as opposed to the in-sample prediction error, or equiv-
alently, the L2(Pn) seminorm defined by the data. Both of these theorems apply to any
reproducing kernel, and lead to specific predictions for different kernel classes, depending on
their eigendecay. For the case of low rank kernel classes and Sobolev spaces, we prove that
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our stopping rule yields a function estimate that achieves the minimax optimal rate (up
to a constant pre-factor), so that the bounds from our analysis are essentially unimprov-
able. Our proof is based on a combination of analytic techniques (Buhlmann and Yu, 2003)
with techniques from empirical process theory (van de Geer, 2000). We complement these
theoretical results with simulation studies that compare its performance to other rules, in
particular a method using hold-out data to estimate the risk, as well as a second method
based on Stein’s Unbiased Risk Estimate (SURE). In our experiments for first-order Sobolev
kernels, we find that our stopping rule performs favorably compared to these alternatives,
especially as the sample size grows. In Section 3.4, we provide an explicit link between our
early stopping strategy and the kernel ridge regression estimator.

2. Background and Problem Formulation

We begin by introducing some background on non-parametric regression and reproducing
kernel Hilbert spaces, before turning to a precise formulation of the problem studied in this
paper.

2.1 Non-parametric Regression and Kernel Classes

Suppose that our goal is to use a covariate X ∈ X to predict a real-valued response Y ∈ R.
We do so by using a function f : X → R, where the value f(x) represents our prediction
of Y based on the realization X = x. In terms of mean-squared error, the optimal choice
is the regression function defined by f∗(x) : = E[Y | x]. In the problem of non-parametric
regression with random design, we observe n samples of the form {(xi, yi), i = 1, . . . , n},
each drawn independently from some joint distribution on the Cartesian product X × R,
and our goal is to estimate the regression function f∗. Equivalently, we observe samples of
the form

yi = f∗(xi) + wi, for i = 1, 2, . . . , n,

where wi : = yi − f∗(xi) are independent zero-mean noise random variables. Throughout
this paper, we assume that the random variables wi are sub-Gaussian with parameter σ,
meaning that

E[etwi ] ≤ et2σ2/2 for all t ∈ R.

For instance, this sub-Gaussian condition is satisfied for normal variates wi ∼ N(0, σ2), but
it also holds for various non-Gaussian random variables. Parts of our analysis also apply
to the fixed design setting, in which we condition on a particular realization {xi}ni=1 of the
covariates.

In order to estimate the regression function, we make use of the machinery of reproducing
kernel Hilbert spaces (Aronszajn, 1950; Wahba, 1990; Gu and Zhu, 2001). Using P to denote
the marginal distribution of the covariates, we consider a Hilbert space H ⊂ L2(P), meaning
a family of functions g : X → R, with ‖g‖L2(P) <∞, and an associated inner product 〈·, ·〉H
under which H is complete. The space H is a reproducing kernel Hilbert space (RKHS)
if there exists a symmetric function K : X × X → R+ such that: (a) for each x ∈ X , the
function K(·, x) belongs to the Hilbert space H, and (b) we have the reproducing relation
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f(x) = 〈f, K(·, x)〉H for all f ∈ H. Any such kernel function must be positive semidefinite.
Moreover, under suitable regularity conditions, Mercer’s theorem (1909) guarantees that
the kernel has an eigen-expansion of the form

K(x, x′) =
∞∑
k=1

λkφk(x)φk(x
′),

where λ1 ≥ λ2 ≥ λ3 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, and {φk}∞k=1

are the associated eigenfunctions, taken to be orthonormal in L2(P). The decay rate of the
eigenvalues will play a crucial role in our analysis.

Since the eigenfunctions {φk}∞k=1 form an orthonormal basis, any function f ∈ H has
an expansion of the form f(x) =

∑∞
k=1

√
λkakφk(x), where for all k such that λk > 0, the

coefficients

ak : =
1√
λk
〈f, φk〉L2(P) =

∫
X
f(x)φk(x) dP(x)

are rescaled versions of the generalized Fourier coefficients.1 Associated with any two
functions in H—where f =

∑∞
k=1

√
λkakφk and g =

∑∞
k=1

√
λkbkφk—are two distinct inner

products. The first is the usual inner product in the space L2(P)—namely,
〈f, g〉L2(P) : =

∫
X f(x)g(x) dP(x). By Parseval’s theorem, it has an equivalent representation

in terms of the rescaled expansion coefficients and kernel eigenvalues—that is,

〈f, g〉L2(P) =

∞∑
k=1

λkakbk.

The second inner product, denoted by 〈f, g〉H, is the one that defines the Hilbert space; it
can be written in terms of the rescaled expansion coefficients as

〈f, g〉H =

∞∑
k=1

akbk.

Using this definition, the unit ball for the Hilbert space H with eigenvalues {λk}∞k=1 and
eigenfunctions {φk}∞k=1 takes the form

BH(1) : =
{
f =

∞∑
k=1

√
λkbkφk for some

∞∑
k=1

b2k ≤ 1
}
.

The class of reproducing kernel Hilbert spaces contains many interesting classes that are
widely used in practice, including polynomials of degree d, Sobolev spaces of varying smooth-
ness, and Gaussian kernels. For more background and examples on reproducing kernel
Hilbert spaces, we refer the reader to various standard references (Aronszajn, 1950; Saitoh,
1988; Schölkopf and Smola, 2002; Wahba, 1990; Weinert, 1982).

Throughout this paper, we assume that any function f in the unit ball of the Hilbert
space is uniformly bounded, meaning that there is some constant B <∞ such that

‖f‖∞ : = sup
x∈X
|f(x)| ≤ B for all f ∈ BH(1). (1)

1. We have chosen this particular rescaling for later theoretical convenience.
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This boundedness condition (1) is satisfied for any RKHS with a kernel such that
supx∈X K(x, x) ≤ B. Kernels of this type include the Gaussian and Laplacian kernels,
the kernels underlying Sobolev and other spline classes, as well as as well as any trace
class kernel with trignometric eigenfunctions. The boundedness condition (1) is quite stan-
dard in non-asymptotic analysis of non-parametric regression procedures (e.g., van de Geer,
2000). We study non-parametric regression when the unknown function f∗ is viewed as
fixed, meaning that no prior is imposed on the function space.

2.2 Gradient Update Equation

We now turn to the form of the gradient update that we study in this paper. Given the
samples {(xi, yi)}ni=1, consider minimizing the least-squares loss function

L(f) : =
1

2n

n∑
i=1

(
yi − f(xi)

)2
over some subset of the Hilbert space H. By the representer theorem (Kimeldorf and
Wahba, 1971), it suffices to restrict attention to functions f belonging to the span of the
kernel functions defined on the data points—namely, the span of {K(·, xi), i = 1, . . . , n}.
Accordingly, we adopt the parameterization

f(·) =
1√
n

n∑
i=1

ωiK(·, xi), (2)

for some coefficient vector ω ∈ Rn. Here the rescaling by 1/
√
n is for later theoretical

convenience.

Our gradient descent procedure is based on a parameterization of the least-squares loss
that involves the empirical kernel matrix K ∈ Rn×n with entries

[K]ij =
1

n
K(xi, xj) for i, j = 1, 2, . . . , n.

For any positive semidefinite kernel function, this matrix must be positive semidefinite, and
so has a unique symmetric square root denoted by

√
K. By first introducing the convenient

shorthand yn1 : =
(
y1 y2 · · · yn

)
∈ Rn, we can write the least-squares loss in the form

L(ω) =
1

2n
‖yn1 −

√
nKω‖22.

A direct approach would be to perform gradient descent on this form of the least-squares
loss. For our purposes, it turns out to be more natural to perform gradient descent in
the transformed co-ordinate system θ =

√
K ω. Some straightforward calculations (see

Appendix A for details) yield that the gradient descent algorithm in this new co-ordinate
system generates a sequence of vectors {θt}∞t=0 via the recursion

θt+1 = θt − αt
(
K θt −

1√
n

√
K yn1

)
, (3)
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where {αt}∞t=0 is a sequence of positive step sizes (to be chosen by the user). We assume
throughout that the gradient descent procedure is initialized with θ0 = 0.

The parameter estimate θt at iteration t defines a function estimate ft in the following
way. We first compute2 the weight vector ωt =

√
K−1 θt, which then defines the function

estimate ft(·) = 1√
n

∑n
i=1 ω

t
iK(·, xi) as before. In this paper, our goal is to study how

the sequence {ft}∞t=0 evolves as an approximation to the true regression function f∗. We
measure the error in two different ways: the L2(Pn) norm

‖ft − f∗‖2n : =
1

n

n∑
i=1

(
ft(xi)− f∗(xi)

)2
compares the functions only at the observed design points, whereas the L2(P)-norm

‖ft − f∗‖22 : = E
[(
ft(X)− f∗(X)

)2]
corresponds to the usual mean-squared error.

2.3 Overfitting and Early Stopping

In order to illustrate the phenomenon of interest in this paper, we performed some sim-
ulations on a simple problem. In particular, we formed n = 100 i.i.d. observations of
the form y = f∗(xi) + wi, where wi ∼ N(0, 1), and using the fixed design xi = i/n for
i = 1, . . . , n. We then implemented the gradient descent update (3) with initialization
θ0 = 0 and constant step sizes αt = 0.25. We performed this experiment with the regression
function f∗(x) = |x− 1/2| − 1/2, and two different choices of kernel functions. The kernel
K(x, x′) = min{x, x′} on the unit square [0, 1]× [0, 1] generates an RKHS of Lipschitz func-
tions, whereas the Gaussian kernel K(x, x′) = exp(−1

2(x− x′)2) generates a smoother class
of infinitely differentiable functions.

Figure 1 provides plots of the squared prediction error ‖ft − f∗‖2n as a function of the
iteration number t. For both kernels, the prediction error decreases fairly rapidly, reaching
a minimum before or around T ≈ 20 iterations, before then beginning to increase. As the
analysis of this paper will clarify, too many iterations lead to fitting the noise in the data
(i.e., the additive perturbations wi), as opposed to the underlying function f∗. In a nutshell,
the goal of this paper is to quantify precisely the meaning of “too many” iterations, and in
a data-dependent and easily computable manner.

3. Main Results and Consequences

In more detail, our main contribution is to formulate a data-dependent stopping rule, mean-
ing a mapping from the data {(xi, yi)}ni=1 to a positive integer T̂ , such that the two forms
of prediction error ‖f

T̂
− f∗‖n and ‖f

T̂
− f∗‖2 are minimal. In our formulation of such a

2. If the empirical matrix K is not invertible, then we use the pseudoinverse. Note that it may appear
as though a matrix inversion is required to estimate ωt for each t which is computationally intensive.

However, the weights ωt may be computed directly via the iteration ωt+1 = ωt−αtK(ωt− yn1√
n
). However,

the equivalent update (3) is more convenient for our analysis.
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Figure 1: Behavior of gradient descent update (3) with constant step size α = 0.25 applied
to least-squares loss with n = 100 with equi-distant design points xi = i/n for
i = 1, . . . , n, and regression function f∗(x) = |x−1/2|−1/2. Each panel gives plots
the L2(Pn) error ‖ft−f∗‖2n as a function of the iteration number t = 1, 2, . . . , 100.
(a) For the first-order Sobolev kernel K(x, x′) = min{x, x′}. (b) For the Gaussian
kernel K(x, x′) = exp(−1

2(x− x′)2).

stopping rule, two quantities play an important role: first, the running sum of the step sizes

ηt : =
t−1∑
τ=0

ατ ,

and secondly, the eigenvalues λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n ≥ 0 of the empirical kernel matrix K
previously defined (2.2). The kernel matrix and hence these eigenvalues are computable
from the data. We also note that there is a large body of work on fast computation of
kernel eigenvalues (e.g., see Drineas and Mahoney, 2005 and references therein).

3.1 Stopping Rules and General Error Bounds

Our stopping rule involves the use of a model complexity measure, familiar from past work
on uniform laws over kernel classes (Bartlett et al., 2005; Koltchinskii, 2006; Mendelson,
2002), known as the local empirical Rademacher complexity. For the kernel classes studied
in this paper, it takes the form

R̂K(ε) : =

[
1

n

n∑
i=1

min
{
λ̂i, ε

2
}]1/2

. (4)

For a given noise variance σ > 0, a closely related quantity—one of central importance to
our analysis—is the critical empirical radius ε̂n > 0, defined to be the smallest positive
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solution to the inequality

R̂K(ε) ≤ ε2/(2eσ). (5)

The existence and uniqueness of ε̂n is guaranteed for any reproducing kernel Hilbert space;
see Appendix D for details. As clarified in our proof, this inequality plays a key role in
trading off the bias and variance in a kernel regression estimate.

Our stopping rule is defined in terms of an analogous inequality that involves the running
sum ηt =

∑t−1
τ=0 ατ of the step sizes. Throughout this paper, we assume that the step sizes

are chosen to satisfy the following properties:

• Boundedness: 0 ≤ ατ ≤ min{1, 1/λ̂1} for all τ = 0, 1, 2, . . ..

• Non-increasing: ατ+1 ≤ ατ for all τ = 0, 1, 2, . . ..

• Infinite travel: the running sum ηt =
∑t−1

τ=0 ατ diverges as t→ +∞.

We refer to any sequence {ατ}∞τ=0 that satisfies these conditions as a valid stepsize sequence.
We then define the stopping time

T̂ : = arg min

{
t ∈ N | R̂K

(
1/
√
ηt
)
> (2eσηt)

−1
}
− 1. (6)

As discussed in Appendix D, the integer T̂ belongs to the interval [0,∞) and is unique
for any valid stepsize sequence. As will be clarified in our proof, the intuition underlying
the stopping rule (6) is that the sum of the step-sizes ηt acts as a tuning parameter that
controls the bias-variance tradeoff. The minimizing value is specified by a fixed point of the
local Rademacher complexity, in a manner analogous to certain calculations in empirical
process theory (van de Geer, 2000; Mendelson, 2002). The stated choice of T̂ optimizes the
bias-variance trade-off.

The following result applies to any sequence {ft}∞t=0 of function estimates generated by
the gradient iteration (3) with a valid stepsize sequence.

Theorem 1 Given the stopping time T̂ defined by the rule (6) and critical radius ε̂n defined
in Equation (5), there are universal positive constants (c1, c2) such that the following events
hold with probability at least 1− c1 exp(−c2nε̂2n):

(a) For all iterations t = 1, 2, ..., T̂ :

‖ft − f∗‖2n ≤
4

e ηt
.

(b) At the iteration T̂ chosen according to the stopping rule (6), we have

‖f
T̂
− f∗‖2n ≤ 12 ε̂2n.

(c) Moreover, for all t > T̂ ,

E[‖ft − f∗‖2n] ≥ σ2

4
ηtR̂2

K(η
−1/2
t ).

342



Early Stopping and Non-parametric Regression

3.1.1 Remarks

Although the bounds (a) and (b) are stated as high probability claims, a simple integra-
tion argument can be used to show that the expected mean-squared error (over the noise
variables, with the design fixed) satisfies a bound of the form

E
[
‖ft − f∗‖2n

]
≤ 4

e ηt
for all t ≤ T̂ .

To be clear, note that the critical radius ε̂n cannot be made arbitrarily small, since it
must satisfy the defining inequality (5). But as will be clarified in corollaries to follow,
this critical radius is essentially optimal: we show how the bounds in Theorem 1 lead to
minimax-optimal rates for various function classes. The interpretation of Theorem 1 is as
follows: if the sum of the step-sizes ηt remains below the threshold defined by (6), applying
the gradient update (3) reduces the prediction error. Moreover, note that for Hilbert spaces
with a larger kernel complexity, the stopping time T̂ is smaller, since fitting functions in a
larger class incurs a greater risk of overfitting.

Finally, the lower bound (c) shows that for large t, running the iterative algorithm
beyond the optimal stopping point leads to inconsistent estimators for infinite rank kernels.
More concretely, let us suppose that λ̂i > 0 for all 1 ≤ i ≤ n. In this case, we have

ηtR̂2
K(η

−1/2
t ) =

1

n

n∑
i=1

min(λ̂iηt, 1),

which converges to 1 as t→. Consequently, part (c) implies that lim inft→∞ E[‖ft−f∗‖2n] ≥
σ2

4 as t→∞, thereby showing the inconsistency of the method.

The statement of Theorem 1 is for the case of fixed design points {xi}ni=1, so that the
probability is taken only over the sub-Gaussian noise variables {wi}ni=1 In the case of random
design point xi ∼ P i.i.d. , we can also provide bounds on generalization error in the form
the L2(P)-norm ‖ft−f∗‖2. In this setting, for the purposes of comparing to minimax lower
bounds, it is also useful to state some results in terms of the population analog of the local
empirical Rademacher complexity (4), namely the quantity

RK(ε) : =

[
1

n

∞∑
j=1

min
{
λj , ε

2
}]1/2

, (7)

where λj correspond to the eigenvalues of the population kernel K defined in (3). Using
this complexity measure, we define the critical population rate εn to be the smallest positive
solution to the inequality

40RK(ε) ≤ ε2

σ
. (8)

(Our choice of the pre-factor 40 is for later theoretical convenience.) In contrast to the
critical empirical rate ε̂n, this quantity is not data-dependent, since it is specified by the
population eigenvalues of kernel operator underlying the RKHS.
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Theorem 2 (Random design) Suppose that in addition to the conditions of Theorem 1,
the design variables {xi}ni=1 are sampled i.i.d. according to P and that the population critical
radius εn satisfies inequality (8). Then there are universal constants cj , j = 1, 2, 3 such that

‖f
T̂
− f∗‖22 ≤ c3ε2n

with probability at least 1− c1 exp(−c2nε2n).

Theorems 1 and 2 are general results that apply to any reproducing kernel Hilbert space.
Their proofs involve combination of direct analysis of our iterative update (3), combined
with techniques from empirical process theory and concentration of measure (van de Geer,
2000; Ledoux, 2001); see Section 4 for the details.

It is worthwhile to compare with the past work of Buhlmann and Yu (2003) (hereafter
BY), who also provide some theory for gradient descent, referred to as L2-boosting in their
paper, but focusing exclusively on the fixed design case. Our theory applies to random as
well as fixed design, and a broader set of stepsize choices. The most significant difference
between Theorem 1 in our paper and Theorem 3 of BY is that we provide a data-dependent
stopping rule, whereas their analysis does not lead to a stopping rule that can be computed
from the data.

3.2 Consequences for Specific Kernel Classes

Let us now illustrate some consequences of our general theory for special choices of kernels
that are of interest in practice.

3.2.1 Kernels with Polynomial Eigendecay

We begin with the class of RKHSs whose eigenvalues satisfy a polynomial decay condition,
meaning that

λk ≤ C
(1

k

)2β
for some β > 1/2 and constant C. (9)

Among other examples, this type of scaling covers various types of Sobolev spaces, consisting
of functions with β derivatives (Birman and Solomjak, 1967; Gu, 2002). As a very special
case, the first-order Sobolev kernel K(x, x′) = min{x, x′} on the unit square [0, 1]× [0, 1]
generates an RKHS of functions that are differentiable almost everywhere, given by

H : =
{
f : [0, 1]→ R | f(0) = 0,

∫ 1

0
(f ′(x))2dx <∞

}
, (10)

For the uniform measure on [0, 1], this class exhibits polynomial eigendecay (9) with β = 1.
For any class that satisfies the polynomial decay condition, we have the following corollary:

Corollary 3 Suppose that in addition to the assumptions of Theorem 2, the kernel class
H satisfies the polynomial eigenvalue decay (9) for some parameter β > 1/2. Then there is
a universal constant c5 such that

E
[
‖f
T̂
− f∗‖22] ≤ c5

(σ2
n

) 2β
2β+1 . (11)
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Moreover, if λk ≥ c (1/k)2β for all k = 1, 2, . . ., then

E
[
‖ft − f∗‖22

]
≥ 1

4
min

{
1, σ2

(ηt)
1
2β

n

}
for all iterations t = 1, 2, . . ..

The proof, provided in Section 4.3, involves showing that the population critical rate (7)

is of the order O(n
− 2β

2β+1 ). By known results on non-parametric regression (Stone, 1985;
Yang and Barron, 1999), the error bound (11) is minimax-optimal.

In the special case of the first-order spline family (10), Corollary 3 guarantees that

E[‖f
T̂
− f∗‖22] -

(σ2
n

)2/3
. (12)

In order to test the accuracy of this prediction, we performed the following set of simulations.
First, we generated samples from the observation model

yi = f∗(xi) + wi, for i = 1, 2, . . . , n, (13)

where xi = i/n, and wi ∼ N(0, σ2) are i.i.d. noise terms. We present results for the
function f∗(x) = |x − 1/2| − 1/2, a piecewise linear function belonging to the first-order
Sobelev class. For all our experiments, the noise variance σ2 was set to one, but so as to
have a data-dependent method, this knowledge was not provided to the estimator. There
is a large body of work on estimating the noise variance σ2 in non-parametric regression.
For our simulations, we use a simple method due to Hall and Marron (1990). They proved
that their estimator is ratio consistent, which is sufficient for our purposes.

For a range of sample sizes n between 10 and 300, we performed the updates (3) with
constant stepsize α = 0.25, stopping at the specified time T̂ . For each sample size, we per-
formed 10, 000 independent trials, and averaged the resulting prediction errors. In panel (a)
of Figure 2, we plot the mean-squared error versus the sample size, which shows consistency
of the method. The bound (12) makes a more specific prediction: the mean-squared error
raised to the power −3/2 should scale linearly with the sample size. As shown in panel (b) of
Figure 2, the simulation results do indeed reveal this predicted linear relationship. We also
performed the same experiments for the case of randomly drawn designs xi ∼ Unif(0, 1).
In this case, we observed similar results, but with more trials required to average out the
additional randomness in the design.

3.2.2 Finite Rank Kernels

We now turn to the class of RKHSs based on finite-rank kernels, meaning that there is some
finite integer m <∞ such that λj = 0 for all j ≥ m+ 1. For instance, the kernel function
K(x, x′) = (1 + xx′)2 is a finite rank kernel with m = 2, and it generates the RKHS of all
quadratic functions. More generally, for any integer d ≥ 2, the kernel K(x, x′) = (1 + xx′)d

generates the RKHS of all polynomials with degree at most d. For any such kernel, we have
the following corollary:

Corollary 4 If, in addition to the conditions of Theorem 2, the kernel has finite rank m,
then

E
[
‖f̂
T̂
− f∗‖22

]
≤ c5 σ2

m

n
.
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Figure 2: Prediction error obtained from the stopping rule (6) applied to a regression model
with n samples of the form f∗(xi) + wi at equidistant design points xi = i/n for
i = 0, 1, . . . 99, and i.i.d. Gaussian noise wi ∼ N(0, 1). For these simulations, the
true regression function is given by f∗(x) = |x− 1

2 | −
1
2 . (a) Mean-squared error

(MSE) using the stopping rule (6) versus the sample size n. Each point is based
on 10, 000 independent realizations of the noise variables {wi}ni=1. (b) Plots of
the quantity MSE−3/2 versus sample size n. As predicted by the theory, this
form of plotting yields a straight line.

For any rank m-kernel, the rate m
n is minimax optimal in terms of squared L2(P) error; this

fact follows as a consequence of more general lower bounds due to Raskutti et al. (2012).

3.3 Comparison with Other Stopping Rules

In this section, we provide a comparison of our stopping rule to two other stopping rules,
as well as a oracle method that involves knowledge of f∗, and so cannot be computed in
practice.

3.3.1 Hold-out Method

We begin by comparing to a simple hold-out method that performs gradient descent using
50% of the data, and uses the other 50% of the data to estimate the risk. In more detail,
assuming that the sample size is even for simplicity, we split the full data set {xi}ni=1 into two
equally sized subsets Str and Ste. The data indexed by the training set Str is used to estimate
the function ftr,t using the gradient descent update (3). At each iteration t = 0, 1, 2, . . .,

the data indexed by Ste is used to estimate the risk via RHO(ft) = 1
n

∑
i∈Ste

(
yi− ftr,t(xi)

)2
,

which defines the stopping rule

T̂HO : = arg min

{
t ∈ N | RHO(ftr, t+1) > RHO(ftr,t)

}
− 1. (14)
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A line of past work (Yao et al., 2007; Bauer et al., 2007; Caponneto, 2006; Caponetto and
Yao, 2006, 2010; Vito et al., 2010) has analyzed stopping rules based on this type of hold-out
rule. For instance, Caponneto (2006) analyzes a hold-out method, and shows that it yields
rates that are optimal for Sobolev spaces with β ≤ 1 but not in general. A major drawback
of using a hold-out rule is that it “wastes” a constant fraction of the data, thereby leading
to inflated mean-squared error.

3.3.2 SURE Method

Alternatively, we can use Stein’s Unbiased Risk estimate (SURE) to define another stopping
rule. Gradient descent is based on the shrinkage matrix S̃t =

∏t−1
τ=0 (I − ατK). Based on

this fact, it can be shown that the SURE estimator (Stein, 1981) takes the form

RSU(ft) =
1

n
{nσ2 + (yn1 )T (S̃t)

2yn1 − 2σ2 trace(S̃t)}.

This risk estimate can be used to define the associated stopping rule

T̂SU : = arg min

{
t ∈ N | RSU(ft+1) > RSU(ft)

}
− 1. (15)

In contrast with hold-out, the SURE stopping rule (15) makes use of all the data. However,
we are not aware of any theoretical guarantees for early stopping based on the SURE rule.

For any valid sequence of stepsizes, it can be shown that both stopping rules (14) and
(15) define a unique stopping time. Note that our stopping rule T̂ based on (6) requires
estimation of both the empirical eigenvalues, and the noise variance σ2. In contrast, the
SURE-based rule requires estimation of σ2 but not the empirical eigenvalues, whereas the
hold-out rule requires no parameters to be estimated, but a percentage of the data is used
to estimate the risk.

3.3.3 Oracle Method

As a third point of reference, we also plot the mean-squared error for an “oracle” method.
It is allowed to base its stopping time on the exact in-sample prediction error ROR(ft) =
‖ft − f∗‖2n, which defines the oracle stopping rule

T̂OR : = arg min

{
t ∈ N | ROR(ft+1) > ROR(ft)

}
− 1. (16)

Note that this stopping rule is not computable from the data, since it assumes exact knowl-
edge of the function f∗ that we are trying to estimate.

In order to compare our stopping rule (6) with these alternatives, we generated i.i.d.
samples from the previously described model (see Equation (13) and the following discus-
sion). We varied the sample size n from 10 to 300, and for each sample size, we performed
M = 10, 000 independent trials (randomizations of the noise variables {wi}ni=1), and com-
puted the average of squared prediction error over these M trials.

Figure 3 compares the resulting mean-squared errors of our stopping rule (6), the hold-
out stopping rule (14), the SURE-based stopping rule (15), and the oracle stopping rule (16).
Panel (a) shows the mean-squared error versus sample size, whereas panel (b) shows the
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Figure 3: Illustration of the performance of different stopping rules for kernel gradient de-
scent with the kernel K(x, x) = min{|x|, |x′|} and noisy samples of the function
f∗(x) = |x − 1

2 | −
1
2 . In each case, we applied the gradient update (3) with con-

stant stepsizes αt = 1 for all t. Each curve corresponds to the mean-squared error,
estimated by averaging over M = 10, 000 independent trials, versus the sample
size for n ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300}. Each panel shows MSE
curves for four different stopping rules: (i) the stopping rule (6); (ii) holding out
50% of the data and using (14); (iii) the SURE stopping rule (15); and (iv) the
oracle stopping rule (14). (a) MSE versus sample size on a standard scale. (b)
MSE versus sample size on a log-log scale.

same curves in terms of logarithm of mean-squared error. Our proposed rule exhibits better
performance than the hold-out and SURE-based rules for sample sizes n larger than 50. On
the flip side, since the construction of our stopping rule is based on the assumption that f∗

belongs to a known RKHS, it is unclear how robust it would be to model mis-specification.
In contrast, the hold-out and SURE-based stopping rules are generic methods, not based
directly on the RKHS structure, so might be more robust to model mis-specification. Thus,
one interesting direction is to explore the robustness of our stopping rule. On the theoret-
ical front, it would be interesting to determine whether the hold-out and/or SURE-based
stopping rules can be proven to achieve minimax optimal rates for general kernels, as we
have established for our stopping rule.

3.4 Connections to Kernel Ridge Regression

We conclude by presenting an interesting link between our early stopping procedure and
kernel ridge regression. The kernel ridge regression (KRR) estimate is defined as

f̂ν : = arg min
f∈H

{ 1

2n

n∑
i=1

(yi − f(xi))
2 +

1

2ν
‖f‖2H

}
, (17)
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where ν is the (inverse) regularization parameter. For any ν <∞, the objective is strongly
convex, so that the KRR solution is unique.

Friedman and Popescu (2004) observed through simulations that the regularization
paths for early stopping of gradient descent and ridge regression are similar, but did not
provide any theoretical explanation of this fact. As an illustration of this empirical phe-
nomenon, Figure 4 compares the prediction error ‖f̂ν − f∗‖2n of the kernel ridge regression
estimate over the interval ν ∈ [1, 100] versus that of the gradient update (3) over the first
100 iterations. Note that the curves, while not identical, are qualitatively very similar.
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Figure 4: Comparison of the prediction error of the path of kernel ridge regression esti-
mates (17) obtained by varying ν ∈ [1, 100] to those of the gradient updates (3)
over 100 iterations with constant step size. All simulations were performed with
the kernel K(x, x′) = min{|x|, |x′|} based on n = 100 samples at the design points
xi = i/n with f∗(x) = |x− 1

2 | −
1
2 . (a) Noise variance σ2 = 1. (b) Noise variance

σ2 = 2.

From past theoretical work (van de Geer, 2000; Mendelson, 2002), kernel ridge regression
with the appropriate setting of the penalty parameter ν is known to achieve minimax-
optimal error for various kernel classes. These classes include the Sobolev and finite-rank
kernels for which we have previously established that our stopping rule (6) yields optimal
rates. In this section, we provide a theoretical basis for these connections. More precisely,
we prove that if the inverse penalty parameter ν is chosen using the same criterion as
our stopping rule, then the prediction error satisfies the same type of bounds, with ν now
playing the role of the running sum ηt.

Define ν̂ > 0 to be the smallest positive solution to the inequality(
4σν

)−1
< R̂K(1/

√
ν
)
. (18)

Note that this criterion is identical to the one underlying our stopping rule, except that the
continuous parameter ν replaces the discrete parameter ηt =

∑t−1
τ=0 ατ .
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Proposition 5 Consider the kernel ridge regression estimator (17) applied to n i.i.d. sam-
ples {(xi, yi)} with σ-sub Gaussian noise. Then there are universal constants (c1, c2, c3) such
that with probability at least 1− c1 exp(−c2 n ε̂2n):

(a) For all 0 < ν ≤ ν̂, we have

‖f̂ν − f∗‖2n ≤
2

ν

(b) With ν̂ chosen according to the rule (18), we have

‖f̂ν̂ − f∗‖2n ≤ c3 ε̂2n.

(c) Moreover, for all ν > ν̂, we have

E[‖f̂ν − f∗‖2n] ≥ σ2

4
νR̂2

K(ν−1/2).

Note that apart from a slightly different leading constant, the upper bound (a) is iden-
tical to the upper bound in Theorem 1 part (a). The only difference is that the inverse
regularization parameter ν replaces the running sum ηt =

∑t−1
τ=0 ατ . Similarly, part (b) of

Proposition 5 guarantees that the kernel ridge regression (17) has prediction error that is
upper bounded by the empirical critical rate ε̂2n, as in part (b) of Theorem 1. Let us em-
phasize that bounds of this type on kernel ridge regression have been derived in past work
(Mendelson, 2002; Zhang, 2005; van de Geer, 2000). The novelty here is that the structure
of our result reveals the intimate connection to early stopping, and in fact, the proofs follow
a parallel thread.

In conjunction, Proposition 5 and Theorem 1 provide a theoretical explanation for why,
as shown in Figure 4, the paths of the gradient descent update (3) and kernel ridge re-
gression estimate (17) are so similar. However, it is important to emphasize that from a
computational point of view, early stopping has certain advantages over kernel ridge re-
gression. In general, solving a quadratic program of the form (17) requires on the order
of O(n3) basic operations, and this must be done repeatedly for each new choice of ν. On
the other hand, by its very construction, the iterates of the gradient algorithm correspond
to the desired path of solutions, and each gradient update involves multiplication by the
kernel matrix, incurring O(n2) operations.

4. Proofs

We now turn to the proofs of our main results. The main steps in each proof are provided
in the main text, with some of the more technical results deferred to the appendix.

4.1 Proof of Theorem 1

In order to derive upper bounds on the L2(Pn)-error in Theorem 1, we first rewrite the
gradient update (3) in an alternative form. For each iteration t = 0, 1, 2, . . ., let us introduce
the shorthand

ft(x
n
1 ) : =

[
ft(x1) ft(x2) · · · ft(xn)

]
∈ Rn,
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corresponding to the n-vector obtained by evaluating the function f t at all design points,
and the short-hand

w : =
[
w1, w2, ..., wn

]
∈ Rn,

corresponding to the vector of zero mean sub-Gaussian noise random variables. From
Equation (2), we have the relation

f t(xn1 ) =
1√
n
K ωt =

1√
n

√
K θt.

Consequently, by multiplying both sides of the gradient update (3) by
√
K, we find that

the sequence {ft(xn1 )}∞t=0 evolves according to the recursion

ft+1(x
n
1 ) = ft(x

n
1 )− αtK (ft(x

n
1 )− yn1 ) =

(
In×n − αtK

)
ft(x

n
1 ) + αtK yn1 . (19)

Since θ0 = 0, the sequence is initialized with f0(x
n
1 ) = 0. The recursion (19) lies at the

heart of our analysis.
Letting r = rank(K), the empirical kernel matrix has the eigendecomposition K =

UΛUT , where U ∈ Rn×n is an orthonormal matrix (satisfying UUT = UTU = In×n) and

Λ : = diag(λ̂1, λ̂2, . . . , λ̂r, 0, 0, · · · , 0)

is the diagonal matrix of eigenvalues, augmented with n− r zero eigenvalues as needed. We
then define a sequence of diagonal shrinkage matrices St as follows:

St : =

t−1∏
τ=0

(In×n − ατΛ) ∈ Rn×n.

The matrix St indicates the extent of shrinkage towards the origin; since 0 ≤ αt ≤
min{1, 1/λ̂1} for all iterations t, in the positive semodefinite ordering, we have the sandwich
relation

0 � St+1 � St � In×n.

Moreover, the following lemma shows that the L2(Pn)-error at each iteration can be bounded
in terms of the eigendecomposition and these shrinkage matrices:

Lemma 6 (Bias/variance decomposition) At each iteration t = 0, 1, 2, . . .,

‖ft − f∗‖2n ≤
2

n

r∑
j=1

(St)2jj [U
T f∗(xn1 )]2j +

2

n

n∑
j=r+1

[UT f∗(xn1 )]2j︸ ︷︷ ︸
Squared Bias B2

t

+
2

n

r∑
j=1

(1− Stjj)2[UTw]2j︸ ︷︷ ︸
Variance Vt

.

(20)

Moreover, we have the lower bound E[‖ft − f∗‖2n] ≥ E[Vt].
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See Appendix B.1 for the proof of this intermediate claim.
In order to complete the proof of the upper bound in Theorem 1, our next step is to

obtain high probability upper bounds on these two terms. We summarize our conclusions
in an additional lemma, and use it to complete the proof of Theorem 1(a) before returning
to prove it.

Lemma 7 (Bounds on the bias and variance) For all iterations t = 1, 2, . . ., the squared
bias is upper bounded as

B2
t ≤

1

e ηt
, (21)

Moreover, there is a universal constant c1 > 0 such that, for any iteration t = 1, 2, . . . , T̂ ,

Vt ≤ 5σ2 ηtR2
K

(
1/
√
ηt
)

(22)

with probability at least 1− exp
(
− c1 nε̂2n

)
. Moreover we have E[Vt] ≥ σ2

4 ηtR
2
K

(
1/
√
ηt
)
.

We can now complete the proof of Theorem 1(a). Conditioned on the event Vt ≤
5σ2ηtR2

K

(
1/
√
ηt
)
, we have

‖ft − f∗‖2n
(i)

≤ B2
t + Vt

(ii)

≤ 1

e ηt
+ 5σ2 ηtR2

K

(
1/
√
ηt
) (iii)

≤ 4

e ηt
,

where inequality (i) follows from (20) in Lemma 6, and inequality (ii) follows from the
bounds in Lemma 7 and (iii) follows since t ≤ T̂ . The lower bound (c) follows from (22).

Turning to the proof of part (b), using the upper bound from (a)

‖f
T̂
− f∗‖2n ≤

1

e η
T̂

+
5

η
T̂

≤ 4

eη
T̂

.

Based on the definition of T̂ and ε̂n, we are guaranteed that 1
η
T̂+1
≤ ε̂2n, Moreover, by the

non-decreasing nature of our step sizes, we have α
T̂+1
≤ α

T̂
, which implies that η

T̂+1
≤ 2η

T̂
,

and hence

1

η
T̂

≤ 2

η
T̂+1

≤ 2ε̂2n.

Putting together the pieces establishes the bound claimed in part (b).
It remains to establish the bias and variance bounds stated in Lemma 7, and we do so

in the following subsections. The following auxiliary lemma plays a role in both proofs:

Lemma 8 (Properties of shrinkage matrices) For all indices j ∈ {1, 2, . . . , r}, the
shrinkage matrices St satisfy the bounds

0 ≤ (St)2jj ≤
1

2eηtλ̂j
, and (23)

1

2
min{1, ηtλ̂j} ≤ 1− Stjj ≤ min{1, ηtλ̂j}. (24)

See Appendix B.2 for the proof of this result.
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4.1.1 Bounding the Squared Bias

Let us now prove the upper bound (21) on the squared bias. We bound each of the two
terms in the definition (20) of B2

t in term. Applying the upper bound (23) from Lemma 8,
we see that

2

n

r∑
j=1

(St)2jj [U
T f∗(xn1 )]2j ≤

1

e n ηt

r∑
j=1

[UT f∗(xn1 )]2j

λ̂j
.

Now consider the linear operator ΦX : `2(N)→ Rn defined element-wise via [ΦX ]jk = φj(xk).
Similarly, we define a (diagonal) linear operator D : `2(N)→ `2(N) with entries [D]jj = λj
and [D]jk = 0 for j 6= k. With these definitions, the vector f (xn1 ) ∈ Rn can be expressed in
terms of some sequence a ∈ `2(N) in the form

f (xn1 ) = ΦXD
1/2a.

In terms of these quantities, we can write K = 1
nΦXDΦT

X . Moreover, as previously noted,

we also have K = UΛUT where Λ = diag{λ̂1, λ̂2, . . . , λ̂n}, and U ∈ Rn×n is orthonormal.
Combining the two representations, we conclude that

ΦXD
1/2

√
n

= UΛ1/2Ψ∗,

for some linear operator Ψ : Rn → `2(N) (with adjoint Ψ∗) such that Ψ∗Ψ = In×n. Using
this equality, we have

1

e ηt n

r∑
j=1

[UT f∗(X)]2j

λ̂j
=

1

e ηt n

r∑
j=1

[UTΦXD
1/2a]2j

λ̂j

=
1

e ηt

r∑
j=1

[UTUΛ1/2V ∗a]2j

λ̂j

=
1

e ηt

r∑
j=1

λ̂j [Ψ∗a]2j

λ̂j

≤ 1

e ηt
‖Ψ∗a‖22

≤ 1

e ηt
, (25)

Here the final step follows from the fact that Ψ is a unitary operator, so that
‖Ψ∗a‖22 ≤ ‖a‖22 = ‖f∗‖2H ≤ 1.
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Turning to the second term in the definition (20), we have

n∑
j=r+1

[UT f∗(xn1 )]2j =
2

n

n∑
j=r+1

[UTΦXD
1/2a]2j

=

n∑
j=r+1

[UTUΛ1/2Ψ∗a]2j

=
n∑

j=r+1

[Λ1/2Ψ∗a]2j

= 0, (26)

where the final step uses the fact that Λ
1/2
jj = 0 for all j ∈ {r + 1, . . . , n} by construc-

tion. Combining the upper bounds (25) and (26) with the definition (20) of B2
t yields the

claim (21).

4.1.2 Controlling the Variance

Let us now prove the bounds (22) on the variance term Vt. (To simplify the proof, we
assume throughout that σ = 1; the general case can be recovered by a simple rescaling
argument). By the definition of Vt, we have

Vt =
2

n

r∑
j=1

(1− Stjj)2[UTw]2j =
2

n
trace(UQUT wwT ),

where Q = diag{(1 − Stjj)2, j = 1, . . . , n} is a diagonal matrix. Since E[wwT ] ≤ In×n by

assumption, we have E[Vt] = 2
n trace(Q). Using the upper bound in Equation (24) from

Lemma 8, we have

1

n
trace(Q) ≤ 1

n

r∑
j=1

min{1, (ηtλ̂j)2} = ηt

(
RK(1/

√
ηt)

)2

,

where the final equality uses the definition of RK . Putting together the pieces, we see that

E[Vt] ≤ 2 ηt

(
RK(1/

√
ηt)

)2

.

Similarly, using the lower bound in Equation (24), we can show that

E[Vt] ≥
σ2

4
ηt

(
RK(1/

√
ηt)

)2

.

Our next step is to obtain a bound on the two-sided tail probability P[|Vt−E[Vt]| ≥ δ], for
which we make use of a result on two-sided deviations for quadratic forms in sub-Gaussian
variables. In particular, consider a random variable of the form Qn =

∑n
i,j=1 aij(ZiZj −
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E[ZiZj ]) where {Zi}ni=1 are i.i.d. zero-mean and sub-Gaussian variables (with parameter
1). Wright (1973) proves that there is a constant c such that

P
[
|Q− E[Q]| ≥ δ

]
≤ exp

(
− c min

{ δ

|||A|||op
,
δ2

|||A|||2F

})
for all u > 0, (27)

where (|||A|||op, |||A|||F) are (respectively) the operator and Frobenius norms of the matrix
A = {aij}ni,j=1.

If we apply this result with A = 2
nUQU

T and Zi = wi, then we have Q = Vt, and
moreover

|||A|||op ≤
2

n
, and

|||A|||2F =
4

n2
trace(UTQUTUQUT ) =

4

n2
trace(Q2) ≤ 4

n2
trace(Q) ≤ 4

n
ηt

(
RK(1/

√
ηt)

)
.

Consequently, the bound (27) implies that

P
[
|Vt − E[Vt]| ≥ δ

]
≤ exp

(
− 4c n δmin{1, δ

(
ηtRK(1/

√
ηt)

)−1
}
)
.

Since t ≤ T̂ setting δ = 3σ2ηt

(
RK(1/

√
ηt)

)
, the claim (22) follows.

4.2 Proof of Theorem 2

This proof is based on the following two steps:

• first, proving that the error ‖f
T̂
− f∗‖2 in the L2(P) norm is, with high probability,

close to the error in the L2(Pn) norm, and

• second, showing the empirical critical radius ε̂n defined in Equation (5) is upper
bounded by the population critical radius εn defined in Equation (8).

Our proof is based on a number of more technical auxiliary lemmas, proved in the
appendices. The first lemma provides a high probability bound on the Hilbert norm of the
estimate f

T̂
.

Lemma 9 There exist universal constants c1 and c2 > 0 such that ‖ft‖H ≤ 2 for all t ≤ T̂
with probability greater than or equal to 1− c1 exp(−c2nε̂2n).

See Appendix E.1 for the proof of this claim. Our second lemma shows in any bounded
RKHS, the L2(P) and L2(Pn) norms are uniformly close up to the population critical radius
εn over a Hilbert ball of constant radius:

Lemma 10 Consider a Hilbert space such that ‖g‖∞ ≤ B for all g ∈ BH(3). Then there
exist universal constants (c1, c2, c3) such that for any t ≥ εn, we have

|‖g‖2n − ‖g‖22| ≤ c1t
2,

with probability at least 1− c2 exp(−c3nt2).
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This claim follows from known results on reproducing kernel Hilbert spaces (e.g., Lemma
5.16 in the paper van de Geer, 2000 and Theorem 2.1 in the paper Bartlett et al., 2005).
Our final lemma, proved in Appendix E.2, relates the critical empirical radius ε̂n to the
population radius εn:

Lemma 11 There exist constants c1 and c2 such that ε̂n ≤ εn holds with probability at least
1− c1 exp(−c2nε2n).

With these lemmas in hand, the proof of the theorem is straightforward. First, from
Lemma 9, we have ‖f

T̂
‖H ≤ 2 and hence by triangle inequality, ‖f

T̂
− f∗‖H ≤ 3 with high

probability as well. Next, applying Lemma 10 with t = εn, we find that

‖f
T̂
− f∗‖22 ≤ ‖fT̂ − f

∗‖2n + c1ε
2
n ≤ c4(ε̂2n + ε2n),

with probability greater than 1 − c2 exp(−c3nε2n). Finally, applying Lemma 11 yields that
the bound ‖f

T̂
− f∗‖22 ≤ cε2n holds with the claimed probability.

4.3 Proof of Corollaries

In each case, it suffices to upper bound the generalization rate ε2n previously defined.

4.3.1 Proof of Corollary 4

In this case, we have

RK(ε) =
1√
n

√√√√ m∑
j=1

min{λj , ε2} ≤
√
m

n
ε

so that ε2n = c′σ2mn .

4.3.2 Proof of Corollary 3

For any M ≥ 1, we have

RK(ε) =
1√
n

√√√√ ∞∑
j=1

min{C j−2β, ε2} ≤
√
M

n
ε+

√
C

n

√√√√ ∞∑
j=dMe

j−2β

≤
√
M

n
ε+

√
C ′

n

√∫ ∞
M

t−2βdt

≤
√
M

n
ε+ C ′′

1√
n

(1/M)β−
1
2 .

Setting M = ε−1/β yields RK(ε) ≤ C∗ε1−
1
2β . Consequently, the critical inequality

RK(ε) ≤ 40ε2/σ is satisfied for εn � (σ2/n)
2β

2β+1 , as claimed.
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4.4 Proof of Proposition 5

We now turn to the proof of our results on the kernel ridge regression estimate (17). The
proof follows a very similar structure to that of Theorem 1. Recall the eigendecomposition
K = UΛUT of the empirical kernel matrix, and that we use r to denote its rank. For each
ν > 0, we define the ridge shrinkage matrix

Rν : =
(
In×n + νΛ

)−1
. (28)

We then have the following analog of Lemma 7 from the proof of Theorem 1:

Lemma 12 (Bias/variance decomposition for kernel ridge regression) For any ν >
0, the prediction error for the estimate f̂ν is bounded as

‖f̂ν − f∗‖2n ≤
2

n

r∑
j=1

[Rν ]2jj [U
T f∗(xn1 )]2j +

2

n

n∑
j=r+1

[UT f∗(xn1 )]2j +
2

n

r∑
j=1

(
1−Rνjj

)2
[UTw]2j .

Note that Lemma 12 is identical to Lemma 7 with the shrinkage matrices St replaced by
their analogues Rν . See Appendix C.1 for the proof of this claim.

Our next step is to show that the diagonal elements of the shrinkage matrices Rν are
bounded:

Lemma 13 (Properties of kernel ridge shrinkage) For all indices j ∈ {1, 2, . . . , r},
the diagonal entries Rν satisfy the bounds

0 ≤ (Rνjj)
2 ≤ 1

4νλ̂j
, and (29)

1

2
min

{
1, νλ̂j

}
≤ 1−Rνjj ≤ min

{
1, νλ̂j

}
.

Note that this is the analog of Lemma 8 from Theorem 1, albeit with the constant 1
4 in the

bound (29) instead of 1
2e . See Appendix C.2 for the proof of this claim. With these lemmas

in place, the remainder of the proof follows as in the proof of Theorem 1.

5. Discussion

In this paper, we have analyzed the early stopping strategy as applied to gradient descent
on the non-parametric least squares loss. Our main contribution was to propose an easily
computable and data-dependent stopping rule, and to provide upper bounds on the empir-
ical L2(Pn) error (Theorem 1) and generlization L2(P) error (Theorem 2). We demonstrate
in Corollaries 3 and 4 that our stopping rule yields minimax optimal rates for both low
rank kernel classes and Sobolev spaces. Our simulation results confirm that our stopping
rule yields theoretically optimal rates of convergence for Lipschitz kernels, and performs fa-
vorably in comparison to stopping rules based on hold-out data and Stein’s Unbiased Risk
Estimate. We also showed that early stopping with sum of step-sizes ηt =

∑t−1
k=0 αk has

a regularization path that satisfies almost identical mean-squared error bounds as kernel
ridge regression indexed by penalty parameter ν.
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Our analysis and stopping rule may be improved and extended in a number of ways.
First, it would interesting to see how our stopping rule can be adapted to mis-specified
models. As specified, our method relies on computation of the eigenvalues of the kernel
matrix. A stopping rule based on approximate eigenvalue computations, for instance via
some form of sub-sampling (Drineas and Mahoney, 2005), would be interesting to study as
well.
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Appendix A. Derivation of Gradient Descent Updates

In this appendix, we provide the details of how the gradient descent updates (3) are obtained.
In terms of the transformed vector θ =

√
K ω, the least-squares objective takes the form

L̃(θ) : =
1

2n
‖yn1 −

√
n
√
K θ‖22 =

1

2n
‖yn1 ‖22 −

1√
n
〈yn1 ,

√
K θ〉+

1

2
(θ)TKθ.

Given a sequence {αt}∞t=0, the gradient descent algorithm operates via the recursion θt+1 =

θt − αt∇L̃(θt). Taking the gradient of L̃ yields

∇L̃(θ) = K θ − 1√
n

√
K yn1 .

Substituting into the gradient descent update yields the claim (3).

Appendix B. Auxiliary Lemmas for Theorem 1

In this appendix, we collect together the proofs of the lemmas for Theorem 1.

B.1 Proof of Lemma 6

We prove this lemma by analyzing the gradient descent iteration in an alternative co-
ordinate system. In particular, given a vector f t(xn1 ) ∈ Rn and the SVD K = UΛUT of
the empirical kernel matrix, we define the vector γt = 1√

n
UT f t(xn1 ). In this new-coordinate

system, our goal is to estimate the vector γ∗ = 1√
n
UT f∗(xn1 ). Recalling the alternative

form (19) of the gradient recursion, some simple algebra yields that the sequence {γt}∞t=0

evolves as

γt+1 = γt + αtΛ
w̃√
n
− αtΛ(γt − γ∗),
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where w̃ : = UTw is a rotated noise vector. Since γ0 = 0, unwrapping this recursion then
yields γt − γ∗ =

(
I − St

)
w̃√
n
− Stγ∗, where we have made use of the previously defined

shrinkage matrices St. Using the inequality ‖a+ b‖22 ≤ 2(‖a‖22 + ‖b‖22), we find that

‖γt − γ∗‖22 ≤ 2

n
‖(I − St)w̃‖22 + 2‖Stγ∗‖22

=
2

n
‖(I − St)w̃‖22 + 2

r∑
j=1

[St]2jj(γ
∗
jj)

2 + 2
n∑

j=r+1

(γ∗jj)
2.

where the equality uses the fact that λ̂j = 0 for all j ∈ {r + 1, . . . , n}. Finally, the
orthogonality of U implies that ‖γt − γ∗‖22 = 1

n‖f
t(xn1 ) − f∗(xn1 )‖22, from which the upper

bound (20) follows.

B.2 Proof of Lemma 8

Using the definition of St and the elementary inequality 1− u ≤ exp(−u), we have

[St]2jj =

( t−1∏
τ=0

(1− ατ λ̂j)
)2

≤ exp(−2ηtλ̂j)
(i)

≤ 1

2eηtλ̂j
,

where inequality (i) follows from the fact that sup
u∈R

{
u exp(−u)

}
= 1/e.

Turning to the second set of inequalities, we have 1− [St]jj = 1−
∏t−1
τ=0 (1− ατ λ̂j). By

induction, it can be shown that

1− [St]jj ≤ 1−max{0, 1− ηtλ̂j} = min{1, ηtλ̂j}.

As for the remaining claim, we have

1−
t−1∏
τ=0

(1− ατ λ̂j)
(i)

≥ 1− exp(−ηtλ̂i)

(ii)

≥ 1− (1 + ηtλ̂i)
−1

=
ηtλ̂i

1 + ηtλ̂i

≥ 1

2
min{1, ηtλ̂i},

where step (i) follows from the inequality 1 − u ≤ exp(−u); and step (ii) follows from the
inequality exp(−u) ≤ (1 + u)−1, valid for u > 0.

Appendix C. Auxiliary Results for Proposition 5

In this appendix, we prove the auxiliary lemmas used in the proof of Proposition 5 on kernel
ridge regression.
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C.1 Proof of Lemma 12

By definition of the KRR estimate, we have

(
K + 1

ν I

)
fν(xn1 ) = Kyn1 . Consequently, some

straightforward algebra yields the relation

UT fν(xn1 ) = (I −Rν)UT yn1 ,

where the shrinkage matrix Rν was previously defined (28). The remainder of the proof
follows using identical steps to the proof of Lemma 6 with St replaced by Rν .

C.2 Proof of Lemma 13

By definition (28) of the shrinkage matrix, we have [Rν ]2jj = (1 + νλ̂j)
−2 ≤ 1

4νλ̂j
. Moreover,

we also have

1− [Rν ]jj = 1− (1 + νλ̂j)
−1 =

νλ̂j

1 + νλ̂j
≤ min{1, νλ̂j}, and

1− [Rν ]jj =
νλ̂j

1 + νλ̂j
≥ 1

2
min{1, νλ̂j}.

Appendix D. Properties of the Empirical Rademacher Complexity

In this section, we prove that the ε̂n lies in the interval (0,∞), and is unique. Recall that the

stopping point T̂ is defined as ε̂n : = arg min

{
ε > 0 | R̂K

(
ε
)
> ε2/(2eσ)

}
. Re-arranging

and substituting for R̂K
(
ε
)

yields the equivalent expression

ε̂n : = arg min

{
ε > 0 |

n∑
i=1

min
{
ε−2λ̂i, 1

}
> nε2/(4e2σ2)

}
.

Note that
∑n

i=1 min
{
ε−2λ̂i, 1

}
is non-increasing in ε while nε2 is increasing in ε. Further-

more when ε = 0, 0 = nε2 <
∑n

i=1 min
{
ε−2λ̂i, 1

}
> 0 while for ε =∞,

∑n
i=1 min

{
ηtλ̂i, 1

}
<

nε2, recalling that ηt =
∑t−1

τ=0 ατ . Hence ε̂n exists. Further, R̂K(ε) is a continuous function
of ε since it is the sum of n continuous functions, Therefore, the critical radius ε̂n exists, is
unique and satisfies the fixed point equation

R̂K
(
ε̂n
)

= ε̂2n/(2eσ).

Finally, we show that the integer T̂ belongs to the interval [0,∞) and is unique for any
valid sequence of step-sizes. Be the definition of T̂ given by the stopping rule (6) and ε̂n,
we have 1

η
T̂+1
≤ ε̂2n ≤ 1

η
T̂

. Since η0 = 0 and ηt →∞ as t→∞ and ε̂n ∈ (0,∞), there exists

a unique stopping point T̂ in the interval [0,∞).

Appendix E. Auxiliary Results for Theorem 2

This appendix is devoted to the proofs of auxiliary lemmas used in the proof for Theorem 2.
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E.1 Proof of Lemma 9

Let us write ft =
∑∞

k=0

√
λkakφk, so that ‖ft‖2H =

∑∞
k=0 a

2
k. Recall the linear opera-

tor ΦX : `2(N)→ Rn defined element-wise via [ΦX ]jk = φj(xk) and the diagonal operator
D : `2(N)→ `2(N) with entries [D]jj = λj and [D]jk = 0 for j 6= k. By the definition of the
gradient update (3), we have the relation a = 1

nD
1/2ΦT

XK
−1ft(x

n
1 ). Since 1

nΦXDΦT
X = K,

‖ft‖2H = ‖a‖22 =
1

n
ft(x

n
1 )TK−1ft(x

n
1 ). (30)

Recall the eigendecomposition K = UΛUT with Λ = diag(λ̂1, λ̂2, . . . λ̂r), and the relation
UT f t(xn1 ) = (I − St)UT yn1 . Substituting into Equation (30) yields

‖ft‖2H =
1

n
(yn1 )TU(I − St)2Λ−1UT yn1

(i)
=

1

n
(f∗(xn1 ) + w)TU(I − St)2Λ−1UT (f∗(xn1 ) + w)

=
2

n
wTU(I − St)2Λ−1UT f∗(xn1 )︸ ︷︷ ︸

At

+
1

n
wTU(I − St)2Λ−1UTw︸ ︷︷ ︸

Bt

+
1

n
f∗(xn1 )TU(I − St)2Λ−1UT f∗(xn1 )︸ ︷︷ ︸

Ct

where equality (i) follows from the observation equation yn1 = f∗(xn1 ) +w. From Lemma 8,

we have 1 − Stjj ≤ 1, and hence Ct ≤ 1
nf
∗(xn1 )TUΛ−1UT f∗(xn1 )

(i)

≤ 1, where the last step
follows from the analysis in Section 4.1.1.

It remains to derive upper bounds on the random variables At and Bt.

E.1.1 Bounding At

Since the elements of w are i.i.d, zero-mean and sub-Gaussian with parameter σ, we have
P[|At| ≥ 1] ≤ 2 exp(− n

2σ2ν2
), where ν2 : = 4

n [f∗(xn1 )]TU(I − St)4Λ−2UT f∗(xn1 ). Since (1 −
(St)jj) ≤ 1, we have

ν2 ≤ 4

n
f∗(xn1 )TU(I − St)Λ−2UT f∗(xn1 ) ≤ 4

n

r∑
j=1

[UT f∗(xn1 )]2j

λ̂2j
min(1, ηtλ̂j)

≤ 4
ηt
n

r∑
j=1

[UT f∗(xn1 )]2j

λ̂j

≤ 4ηt,

where the final inequality follows from the analysis in Section 4.1.1.

E.1.2 Bounding Bt

We begin by noting that

Bt =
1

n

r∑
j=1

(1− Stjj)2

λ̂j
[UTw]2j =

1

n
trace(UQUT , wwT ),
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where Q = diag{ (1−S
t
jj)

2

λ̂j
, j = 1, 2, . . . r}. Consequently, Bt is a quadratic form in zero-mean

sub-Gaussian variables, and using the tail bound (27), we have

P
[
|Bt − E[Bt]| ≥ 1

[
] ≤ exp(−cmin{n|||UQUT |||−1op , n

2|||UQUT |||−2F })

for a universal constant c. It remains to bound E[Bt], |||UQUT |||op and |||UQUT |||F.
We first bound the mean. Since E[wwT ] � σ2In×n by assumption, we have

E[Bt] ≤
σ2

n
trace(Q)

1

n

r∑
j=1

= (
(1− Stjj)2

λ̂j
) ≤ ηt

n

r∑
j=1

min((ηtλ̂j)
−1, ηtλ̂j)

But by the definition (6) of the stopping rule and the fact that t ≤ T̂ , we have

ηt
n

r∑
j=1

min((ηtλ̂j)
−1, ηtλ̂j) ≤ η2tR2

K(1/
√
ηt) ≤

1

σ2
,

showing that E[Bt] ≤ 1.
Turning to the operator norm, we have

|||UQUT |||op = max
j=1,...,r

(
(1− Stjj)2

λ̂j
) ≤ max

j=1,...,r
min(λ̂j

−1
, η2t λ̂j) ≤ ηt.

As for the Frobenius norm, we have

1

n
|||UQUT |||2F =

r∑
j=1

(
(1− Stjj)4

λ̂j
2 ) ≤ 1

n

r∑
j=1

min(λ̂j
−2
, η4t λ̂j

2
) ≤ η3t

n

r∑
j=1

min(η−3t λ̂j
−2
, ηtλ̂j

2
)

Using the definition of the empirical kernel complexity, we have

1

n
|||UQUT |||2F ≤ η3tR2

K(1/
√
ηt) ≤

ηt
σ2
,

where the final inequality holds for t ≤ T̂ , using the definition of the stopping rule.
Putting together the pieces, we have shown that

P[|Bt| ≥ 2 or |At| ≥ 1] ≤ exp(−cn/ηt)

for all t ≤ T̂ . Since 1
ηt
≥ ε̂2n for any t ≤ T̂ , the claim follows.

E.2 Proof of Lemma 11

In this section, we need to show that ε̂n ≤ εn. Recall that ε̂n and εn satisfy

R̂K(ε̂n) =
ε̂2n

2eσ
and RK(εn) =

ε2n
40σ

.

It suffices to prove that R̂K(εn) ≤ ε2n
2eσ using the definition of ε̂n.
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In order to prove the claim, we define the random variables

Ẑn(w, t) : = sup
‖g‖H≤1
‖g‖n≤t

∣∣ 1
n

n∑
i=1

wig(xi)
∣∣, and Zn(w, t) : = Ex

[
sup
‖g‖H≤1
‖g‖2≤t

∣∣ 1
n

n∑
i=1

wig(xi)
∣∣],

where wi ∼ N(0, 1) are i.i.d. standard normal, as well as the associated (deterministic)
functions

Q̂n(t) : = Ew
[
Ẑn(w; t)

]
and Qn(t) : = Ew

[
Zn(w; t)

]
.

By results of Mendelson (2002), there are universal constants 0 < c` ≤ cu such that for all
t2 ≥ 1/n, we have

c`RK(t) ≤ Qn(t) ≤ cuRK(t), and c`R̂K(t) ≤ Q̂n(t) ≤ cuR̂K(t).

We first appeal to the concentration of Lipschitz functions for Gaussian random variables
to show that Ẑn(w, t) and Zn(w, t) are concentrated around their respective means. For
any t > 0 and vectors w,w′ ∈ Rn, we have

|Ẑn(w, t)− Ẑn(w′, t)| ≤ sup
‖g‖n≤t
‖g‖H≤1

1

n
|
n∑
i=1

(wi − w′i)g(xi)| ≤
t√
n
‖w − w′‖2,

showing that w 7→ Ẑn(w, t) is t√
n

-Lipschitz with respect to the `2 norm. A similar calcula-

tion for w 7→ Zn(w, t) shows that

|Ex[Ẑn(w, t)]− Ex[Ẑn(w′, t)]| ≤ Ex[ sup
‖g‖2≤t
‖g‖H≤1

1

n
|
n∑
i=1

(wi − w′i)g(xi)|] ≤
t√
n
‖w − w′‖2,

so that it is also Lipschitz t√
n

. Consequently, standard concentration results (Ledoux, 2001)

imply that

P
[
|Ẑn(w, t)− Q̂n(t)| ≥ t0

]
≤ 2 exp

(
− nt20

2t2

)
, and

P
[
|Zn(w, t)−Qn(t)| ≥ t0

]
≤ 2 exp

(
− nt20

2t2

)
. (31)

Now let us condition on the two events

A(t, t0) : = {|Ẑn(w, t)− Q̂n(t)| ≤ t0}, and A′(t, t0) : = {|Zn(w, t)−Qn(t)| ≤ t0}.

We then have

R̂K(εn)
(a)

≤ Ẑn(w, εn) +
ε2n

4eσ

(b)

≤ Zn(w, 2εn) +
ε2n

4eσ

(c)

≤ 2RK(εn) +
3ε2n
8eσ

(d)

≤ ε2n
2eσ

,

where inequality (a) follows the first bound in Equation (31) with t0 = ε2n
4eσ and t = ε2n,

inequality (b) follows from Lemma 10 with t = εn, inequality (c) follows from the second

bound (31) with t0 = ε2n
8eσ and t = ε2n, and inequality (d) follows from the definition of εn.

Since the events A(t, t0) and A′(t, t0) hold with the stated probability, the claim follows.

363



Raskutti, Wainwright and Yu

References

R. S. Anderssen and P. M. Prenter. A formal comparison of methods proposed for the
numerical solution of first kind integral equations. Jour. Australian Math. Soc. (Ser. B),
22:488–500, 1981.

N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical
Society, 68:337–404, 1950.

A. R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore. Approximation and learning by
greedy algorithms. Annals of Statistics, 36(1):64–94, 2008.

P. Bartlett and M. Traskin. Adaboost is consistent. Journal of Machine Learning Research,
8:2347–2368, 2007.

P. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities. Annals of
Statistics, 33(4):1497–1537, 2005.

F. Bauer, S. Pereverzev, and L. Rosasco. On regularization algorithms in learning theory.
J. Complexity, 23:52–72, 2007.

M. S. Birman and M. Z. Solomjak. Piecewise-polynomial approximations of functions of
the classes Wα

p . Math. USSR-Sbornik, 2(3):295–317, 1967.

G. Blanchard and M. Kramer. Optimal learning rates for kernel conjugate gradient regres-
sion. In Proceedings of the NIPS Conference, 2010.

P. Buhlmann and B. Yu. Boosting with L2 loss: Regression and classification. Journal of
American Statistical Association, 98:324–340, 2003.

A. Caponetto and Y. Yao. Adaptation for regularization operators in learning theory.
Technical Report CBCL Paper #265/AI Technical Report #063, Massachusetts Institute
of Technology, September 2006.

A. Caponetto and Y. Yao. Cross-validation based adaptation for regularization operators
in learning theory. Analysis and Applications, 8(2):161–183, 2010.

A. Caponneto. Optimal rates for regularization operators in learning theory. Technical
Report CBCL Paper #264/AI Technical Report #062, Massachusetts Institute of Tech-
nology, September 2006.

P. Drineas and M. W. Mahoney. On the Nyström method for approximating a Gram matrix
for improved kernel-based learning. Journal of Machine Learning Research, 6:2153–2175,
2005.

Y. Freund and R. Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

J.H. Friedman and B. Popescu. Gradient directed regularization. Technical report, Stanford
University, 2004.

364



Early Stopping and Non-parametric Regression

C. Gu. Smoothing Spline ANOVA Models. Springer Series in Statistics. Springer, New York,
NY, 2002.

M. G. Gu and H. T. Zhu. Maximum likelihood estimation by markov chain monte carlo
approximation. J. R. Statist. Soc. B, 63:339–355, 2001.

P. Hall and J.S. Marron. On variance estimation in nonparametric regression. Biometrika,
77:415–419, 1990.

W. Jiang. Process consistency for adaboost. Annals of Statistics, 32:13–29, 2004.

G. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions. Jour. Math.
Anal. Appl., 33:82–95, 1971.

V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization.
Annals of Statistics, 34(6):2593–2656, 2006.

M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI, 2001.

L. Mason, J. Baxter, P., and M. Frean. Boosting algorithms as gradient descent. In Neural
Information Processing Systems (NIPS), December 1999.

S. Mendelson. Geometric parameters of kernel machines. In Proceedings of COLT, pages
29–43, 2002.

J. Mercer. Functions of positive and negative type and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society A, 209:415–446, 1909.

N. Morgan and H. Bourlard. Generalization and parameter estimation in feedforward nets:
Some experiments. In Proceedings of Neural Information Processing Systems, 1990.

L. Orecchia and M. W. Mahoney. Implementing regularization implicitly via approximate
eigenvector computation. In ICML ’11, 2011.

G. Raskutti, M. J. Wainwright, and B. Yu. Minimax-optimal rates for sparse additive models
over kernel classes via convex programming. Journal of Machine Learning Research, 12:
389–427, March 2012.

S. Saitoh. Theory of Reproducing Kernels and its Applications. Longman Scientific &
Technical, Harlow, UK, 1988.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

C. M. Stein. Estimation of the mean of a multivariate normal distribution. Annals of
Statistics, 9(6):1135–1151, 1981.

C. J. Stone. Additive regression and other nonparametric models. Annals of Statistics, 13
(2):689–705, 1985.

O. N. Strand. Theory and methods related to the singular value expansion and Landweber’s
iteration for integral equations of the first kind. SIAM J. Numer. Anal., 11:798–825, 1974.

365



Raskutti, Wainwright and Yu

S. van de Geer. Empirical Processes in M-Estimation. Cambridge University Press, 2000.

E. De Vito, S. Pereverzyev, and L. Rosasco. Adaptive kernel methods using the balancing
principle. Foundations of Computational Mathematics, 10(4):455–479, 2010.

G. Wahba. Three topics in ill-posed problems. In M. Engl and G. Groetsch, editors, Inverse
and ill-posed problems, pages 37–50. Academic Press, 1987.

G. Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference Series
in Applied Mathematics. SIAM, Philadelphia, PN, 1990.

H. L. Weinert, editor. Reproducing Kernel Hilbert Spaces : Applications in Statistical Signal
Processing. Hutchinson Ross Publishing Co., Stroudsburg, PA, 1982.

F. T. Wright. A bound on tail probabilities for quadratic forms in independent random
variables whose distributions are not necessarily symmetric. Annals of Probability, 1(6):
1068–1070, 1973.

Y. Yang and A. Barron. Information-theoretic determination of minimax rates of conver-
gence. Annals of Statistics, 27(5):1564–1599, 1999.

Y. Yao, L. Rosasco, and A. Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26:289–315, 2007.

T. Zhang. Learning bounds for kernel regression using effective data dimensionality. Neural
Computation, 17(9):2077–2098, 2005.

T. Zhang and B. Yu. Boosting with early stopping: Convergence and consistency. Annal
of Statistics, 33:1538–1579, 2005.

366


	Introduction
	Background and Problem Formulation
	Non-parametric Regression and Kernel Classes
	Gradient Update Equation
	Overfitting and Early Stopping

	Main Results and Consequences
	Stopping Rules and General Error Bounds
	Remarks

	Consequences for Specific Kernel Classes
	Kernels with Polynomial Eigendecay
	Finite Rank Kernels

	Comparison with Other Stopping Rules
	Hold-out Method
	SURE Method
	Oracle Method

	Connections to Kernel Ridge Regression

	Proofs
	Proof of Theorem 1
	Bounding the Squared Bias
	Controlling the Variance

	Proof of Theorem 2
	Proof of Corollaries
	Proof of Corollary 4
	Proof of Corollary 3

	Proof of Proposition 5

	Discussion
	Derivation of Gradient Descent Updates
	Auxiliary Lemmas for Theorem 1
	Proof of Lemma 6
	Proof of Lemma 8

	Auxiliary Results for Proposition 5
	Proof of Lemma 12
	Proof of Lemma 13

	Properties of the Empirical Rademacher Complexity
	Auxiliary Results for Theorem 2
	Proof of Lemma 9
	Bounding At
	Bounding Bt

	Proof of Lemma 11


