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Abstract

The analysis of comorbidity is an open and complex research field in the branch of psy-
chiatry, where clinical experience and several studies suggest that the relation among the
psychiatric disorders may have etiological and treatment implications. In this paper, we
are interested in applying latent feature modeling to find the latent structure behind the
psychiatric disorders that can help to examine and explain the relationships among them.
To this end, we use the large amount of information collected in the National Epidemiologic
Survey on Alcohol and Related Conditions (NESARC) database and propose to model these
data using a nonparametric latent model based on the Indian Buffet Process (IBP). Due
to the discrete nature of the data, we first need to adapt the observation model for discrete
random variables. We propose a generative model in which the observations are drawn from
a multinomial-logit distribution given the IBP matrix. The implementation of an efficient
Gibbs sampler is accomplished using the Laplace approximation, which allows integrating
out the weighting factors of the multinomial-logit likelihood model. We also provide a
variational inference algorithm for this model, which provides a complementary (and less
expensive in terms of computational complexity) alternative to the Gibbs sampler allowing
us to deal with a larger number of data. Finally, we use the model to analyze comorbidity
among the psychiatric disorders diagnosed by experts from the NESARC database.

Keywords: Bayesian nonparametrics, Indian buffet process, categorical observations,
multinomial-logit function, Laplace approximation, variational inference

∗. Both authors contributed equally.

c©2014 Francisco J. R. Ruiz, Isabel Valera, Carlos Blanco and Fernando Perez-Cruz..



Ruiz, Valera, Blanco and Perez-Cruz

1. Introduction

Health care increasingly needs to address the management of individuals with multiple
coexisting diseases, who are now the norm, rather than the exception. In the United
States, about 80% of Medicare spending is devoted to patients with four or more chronic
conditions, with costs growing as the number of chronic conditions increases (Wolff et al.,
2002). This explains the growing interest of researchers in the impact of comorbidity on a
range of outcomes, such as mortality, health-related quality of life, functioning, and quality
of health care. However, attempts to study the impact of comorbidity are complicated by
the lack of consensus about how to define and measure it (Valderas et al., 2009).

Comorbidity becomes particularly relevant in psychiatry, where clinical experience and
several studies suggest that the relation among the psychiatric disorders may have etiologi-
cal and treatment implications. Several studies have focused on the search of the underlying
interrelationships among psychiatric disorders, which can be useful to analyze the structure
of the diagnostic classification system, and guide treatment approaches for each disorder
(Blanco et al., 2013). Krueger (1999) found that 10 psychiatric disorders (available in
the National Comorbidity Survey) can be explained by only two correlated factors, one
corresponding to internalizing disorders and the other to externalizing disorders. The exis-
tence of the internalizing and the externalizing factors was also confirmed by Kotov et al.
(2011). More recently, Blanco et al. (2013) have used factor analysis to find the latent fea-
ture structure under 20 common psychiatric disorders, drawing on data from the National
Epidemiologic Survey on Alcohol and Related Conditions (NESARC). In particular, the
authors found that three correlated factors, one related to externalizing, and the other two
to internalizing disorders, characterized well the underlying structure of these 20 diagnoses.
From a statistical point of view, the main limitation of this study lies on the use of factor
analysis, which assumes that the number of factors is known and that the observations are
Gaussian distributed. However, the latter assumption does not fit the observed data, since
they are discrete in nature.

In order to avoid the model selection step needed to infer the number of factors in
factor analysis, we can resort to Bayesian nonparametric tools, which allow an open-ended
number of degrees of freedom in a model (Jordan, 2010). In this paper, we apply the
Indian Buffet Process (IBP) (Griffiths and Ghahramani, 2011), because it allows us to infer
which latent features influence the observations and how many features there are. We
adapt the observation model for discrete random variables, as the discrete nature of the
data does not allow using the standard Gaussian observation model. There are several
options for modeling discrete outputs given the hidden latent features, like a Dirichlet
distribution or sampling from the features, but we opted for the generative model partially
introduced by Ruiz et al. (2012), in which the observations are drawn from a multinomial-
logit distribution, because it resembles the standard Gaussian observation model, as the
observation probability distribution depends on the IBP matrix weighted by some factors.

The IBP model combined with discrete observations has already been tackled in several
related works. Williamson et al. (2010) propose a model that combines properties from
both the hierarchical Dirichlet process (HDP) and the IBP, called IBP compound Dirichlet
(ICD) process. They apply the ICD to focused topic modeling, where the instances are
documents and the observations are words from a finite vocabulary, and focus on decoupling
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the prevalence of a topic in a document and its prevalence in all documents. Despite the
discrete nature of the observations under this model, these assumptions are not appropriate
for observations such as the set of possible diagnoses or responses to the questions from
the NESARC database, since categorical observations can only take values from a finite
set where elements do not present any particular ordering. Titsias (2007) introduced the
infinite gamma-Poisson process as a prior probability distribution over non-negative integer
valued matrices with a potentially infinite number of columns, and he applied it to topic
modeling of images. In this model, each (discrete) component in the observation vector
of an instance depends only on one of the active latent features of that object, randomly
drawn from a multinomial distribution. Therefore, different components of the observation
vector might be equally distributed. Our model is more flexible in the sense that it allows
different probability distributions for every component in the observation vector, which
is accomplished by weighting differently the latent variables. Furthermore, a preliminary
version of this model has been successfully applied to identify the factors that model the
risk of suicide attempts (Ruiz et al., 2012).

The rest of the paper is organized as follows. In Section 2, we review the IBP model
and the basic Gibbs sampling inference for the IBP, and set the notation used throughout
the paper. In Section 3, we propose the generative model which combines the IBP with
discrete observations generated from a multinomial-logit distribution. In this section, we
focus on the inference based on the Gibbs sampler, where we make use of the Laplace
approximation to integrate out the random weighting factors in the observation model. In
Section 4, we develop a variational inference algorithm that presents lower computational
complexity than the Gibbs sampler. In Section 5, we validate our model on synthetic data
and apply it over the real data extracted from the NESARC database. Finally, Section 6 is
devoted to the conclusions.

2. The Indian Buffet Process

Unsupervised learning aims to recover the latent structure responsible for generating the
observed properties of a set of objects. In latent feature modeling, the properties of each
object can be represented by an unobservable vector of latent features, and the observations
are generated from a distribution determined by those latent feature values. Typically, we
have access to the set of observations and the main goal of latent feature modeling is to
find out the latent variables that represent the data.

The most common nonparametric tool for latent feature modeling is the Indian Buffet
Process (IBP). The IBP places a prior distribution over binary matrices, in which the
number of rows is finite but the number of columns (features) K is potentially unbounded,
that is, K → ∞. This distribution is invariant to the ordering of the features and can be
derived by taking the limit of a properly defined distribution over N ×K binary matrices
as K tends to infinity (Griffiths and Ghahramani, 2011), similarly to the derivation of the
Chinese restaurant process as the limit of a Dirichlet-multinomial model (Aldous, 1985).
However, given a finite number of data points N , it ensures that the number of non-zero
columns, namely, K+, is finite with probability one.

Let Z be a random N ×K binary matrix distributed following an IBP, i.e., Z ∼ IBP(α),
where α is the concentration parameter of the process, which controls the number of non-zero
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columns K+. The nth row of Z, denoted by zn•, represents the vector of latent features of the
nth data point, and every entry nk is denoted by znk. Note that each element znk ∈ {0, 1}
indicates whether the kth feature contributes to the nth data point. Since only the K+ non-
zero columns of Z contain the features of interest, and due to the exchangeability property
of the features under the IBP prior, they are usually grouped in the left hand side of the
matrix, as illustrated in Figure 1.

Given a binary latent feature matrix Z, we assume that the N×D observation matrix X,
where the nth row contains a D-dimensional observation vector xn•, is distributed according
to a probability distribution p(X|Z). For instance, in the standard observation model
by Griffiths and Ghahramani (2011), p(X|Z) is a Gaussian probability density function.
Throughout the paper, we denote by x•d the dth column of X, and the elements in X by
xnd.

Z =

2
6664

z11 z12 · · · z1K+
0 0 · · ·

z21 z22 · · · z2K+
0 0 · · ·

...
...

. . .
...

...
...

. . .

zN1 zN2 · · · zNK+
0 0 · · ·

3
7775

K+ non-zero columns

K columns (features)

N
d
a
ta

p
o
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ts

Figure 1: Illustration of an IBP matrix.

2.1 The Stick-Breaking Construction

The stick-breaking construction of the IBP is an equivalent representation of the IBP prior,
useful for inference algorithms other than Gibbs sampling, such as slice sampling or varia-
tional inference algorithms (Teh et al., 2007; Doshi-Velez et al., 2009).

In this representation, the probability of each latent feature being active is represented
explicitly by a random variable. In particular, the probability of feature znk taking value 1
is denoted by ωk, that is,

znk ∼ Bernouilli(ωk).

Since this probability does not depend on n, the stick-breaking representation explicitly
shows that the ordering of the data does not affect the distribution.

The probabilities ωk are, in turn, generated by first drawing a sequence of independent
random variables v1, v2, . . . from a beta distribution of the form

vk ∼ Beta(α, 1).

Given the sequence of variables v1, v2, . . ., the probability ω1 is assigned to v1, and each
subsequent ωk is obtained as

ωk =
k∏

i=1

vi,
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resulting in a decreasing sequence of probabilities ωk. Specifically, the expected probability
of feature znk being active decreases exponentially with the index k.

This construction can be understood with the stick-breaking process illustrated in Fig-
ure 2. Starting with a stick of length 1, at each iteration k = 1, 2, . . ., a piece is broken off
at a point vk relative to the current length of the stick. The variable ωk corresponds to the
length of the stick just broken off, and the other piece of the stick is discarded.

1

!1 = v1

!2 = !1v2

!3 = !2v3

. . .

k = 1

k = 2

k = 3

Figure 2: Illustration of the stick-breaking construction of the IBP.

2.2 Inference

Markov Chain Monte Carlo (MCMC) methods have been broadly applied to infer the la-
tent structure Z from a given observation matrix X (see, e.g., in Griffiths and Ghahramani
(2011); Williamson et al. (2010); Van Gael et al. (2009); Titsias (2007)), being Gibbs sam-
pling the standard method of choice. This algorithm iteratively samples the value of each
element znk given the remaining variables, that is, it samples from

p(znk = 1|X,Z¬nk) ∝ p(X|Z)p(znk = 1|Z¬nk), (1)

where Z¬nk denotes all the entries of Z other than znk. The conditional distribution p(znk =
1|Z¬nk) can be readily derived from the exchangeable IBP and can be written as

p(znk = 1|Z¬nk) =
m−n,k
N

,

where m−n,k is the number of data points with feature k, not including n, i.e., m−n,k =∑
i 6=n zik. For each data point n, after having sampled all elements znk for the K+ non-

zero columns in Z, the algorithm samples from a distribution (where the prior is a Poisson
distribution with mean α/N) a number of new features necessary to explain that data point.

Although MCMC methods perform exact inference, they typically suffer from high com-
putational complexity. To solve this limitation, variational inference algorithms can be
applied instead at a lower computational cost, at the expense of performing approximate
inference (Jordan et al., 1999). A variational inference algorithm for the IBP under the stan-
dard Gaussian observation model is presented by Doshi-Velez et al. (2009). This algorithm
makes use of the stick breaking construction of the IBP, summarized above.
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3. Observation Model

Unlike the standard Gaussian observation model, let us consider discrete observations, that
is, each element xnd ∈ {1, . . . , Rd}, where this finite set contains the indexes to all the
possible values of xnd. For simplicity and without loss of generality, we consider that
Rd = R, but the following results can be readily extended to a different cardinality per
input dimension, as well as mixing continuous variables with discrete variables, since given
the latent feature matrix Z the columns of X are assumed to be independent.

We introduce the K × R matrices Bd and the length-R row vectors bd
0 to model the

probability distribution over X, such that Bd links the latent features with the dth column
of the observation matrix X, denoted by x•d, and bd

0 is included to model the bias term
in the distribution over the data points. This bias term plays the role of a latent variable
that is always active. For a categorical observation space, if we do not have a bias term and
all latent variables are inactive, the model assumes that all the outcomes are independent
and equally likely, which is not a suitable assumption in most cases. In our application, the
bias term is used to model the people that do not suffer from any disorder and it captures
the baseline diagnosis in the general population. Additionally, this bias term simplifies the
inference since the latent features of those subjects that are not diagnosed any disorder do
not need to be sampled.

Hence, we assume that the probability of each element xnd taking value r (r = 1, . . . , R),
denoted by πrnd, is given by the multiple-logistic function, i.e.,

πrnd = p(xnd = r|zn•,Bd,bd
0) =

exp (zn•b
d
•r + bd0r)

R∑

r′=1

exp (zn•b
d
•r′ + bd0r′)

, (2)

where bd
•r denotes the rth column of Bd and bd0r denotes the rth element of vector bd

0. Note
that the matrices Bd are used to weight differently the contribution of each latent feature
to every component d, similarly as in the standard Gaussian observation model in Griffiths
and Ghahramani (2011). We assume that the mixing vectors bd

•r are Gaussian distributed
with zero mean and covariance matrix Σb = σ2BI, and the elements bd0r are also Gaussian
distributed with zero mean and variance σ2B. The corresponding graphical model is shown
in Figure 3.

Z

X
Bd

bd
0

�2
B

d = 1, . . . , D

↵

Figure 3: Graphical probabilistic model of the IBP with discrete observations.

The choice of the observation model in Eq. (2), which combines the multiple-logistic
function with Gaussian parameters, is based on the fact that it induces dependencies among
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the probabilities πrnd that cannot be captured with other distributions, such as the Dirich-
let distribution (Blei and Lafferty, 2007). Furthermore, this multinomial-logistic normal
distribution has been widely used to define probability distributions over discrete random
variables (Williams and Barber, 1998; Blei and Lafferty, 2007).

We consider that elements xnd are independent given the latent feature matrix Z, the
weighting matrices Bd and the weighting vectors bd

0. Then, the likelihood for any matrix
X can be expressed as

p(X|Z,B1, . . . ,BD,b1
0, . . . ,b

D
0 ) =

N∏

n=1

D∏

d=1

p(xnd|zn•,Bd,bd
0) =

N∏

n=1

D∏

d=1

πxnd
nd . (3)

3.1 Laplace Approximation for Gibbs Sampling Inference

In Section 2, the (heuristic) Gibbs sampling algorithm for posterior inference over the latent
variables of the IBP, detailed in Griffiths and Ghahramani (2011), has been briefly reviewed.
To sample from Eq. (1), we need to integrate out Bd and bd

0 in (3), as sequentially sampling
from the posterior distribution of these variables is intractable, for which an approximation
is required. We rely on the Laplace approximation to integrate out the parameters Bd

and bd
0 for simplicity and ease of implementation. We first consider the finite form of the

proposed model, where K is bounded.
We can simplify the notation in Eqs. 2 and 3 by considering an extended latent feature

matrix Z of size N × (K + 1), in which the elements of the first column are equal to one,
and D extended weighting matrices Bd of size (K + 1) × R, in which the first row equals
the vector bd

0. With these definitions, Eq. (2) can be rewritten as

πrnd = p(xnd = r|zn•,Bd) =
exp (zn•b

d
•r)

R∑

r′=1

exp (zn•b
d
•r′)

.

Unless otherwise specified, we use the simplified notation throughout this section. For this
reason, the index k over the latent variables takes the values in {0, 1, . . . ,K}, with zn0 = 1
for all n.

Recall that our model assumes independence among the observations given the hidden
latent variables. Then, the posterior p(B1, . . . ,BD|X,Z) factorizes as

p(B1, . . . ,BD|X,Z) =
D∏

d=1

p(Bd|x•d,Z) =
D∏

d=1

p(x•d|Bd,Z)p(Bd)

p(x•d|Z)
.

Hence, we only need to deal with each term p(Bd|x•d,Z) individually. The marginal likeli-
hood p(x•d|Z), which we are interested in, can be obtained as

p(x•d|Z) =

∫
p(x•d|Bd,Z)p(Bd)dBd. (4)

Although the prior p(Bd) is Gaussian, due to the non-conjugacy with the likelihood term,
the computation of this integral, as well as the computation of the posterior p(Bd|x•d,Z),
turns out to be intractable.
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Following a similar procedure as in Gaussian processes for multiclass classification
(Williams and Barber, 1998), we approximate the posterior p(Bd|x•d,Z) as a Gaussian
distribution using Laplace’s method. In order to obtain the parameters of the Gaussian
distribution, we define f(Bd) as the un-normalized log-posterior of p(Bd|x•d,Z), i.e.,

f(Bd) = log p(x•d|Bd,Z) + log p(Bd). (5)

As proven in Appendix A, the function f(Bd) is a strictly concave function of Bd and
therefore it has a unique maximum, which is reached at Bd

MAP, denoted by the subscript
‘MAP’ (maximum a posteriori) because it coincides with the mean of the Gaussian distri-
bution in the Laplace’s approximation. We resort to Newton’s method to compute Bd

MAP.
We stack the columns of Bd into βd, i.e., βd = Bd(:) for avid Matlab users. The

posterior p(Bd|x•d,Z) can be approximated as

p(βd|x•d,Z) ≈ N
(
βd
∣∣∣βd

MAP, (−∇∇f)|βd
MAP

)
,

where βd
MAP contains all the columns of Bd

MAP stacked into a vector and ∇∇f is the Hessian
of f(βd). Hence, by taking the second-order Taylor series expansion of f(βd) around its
maximum, the computation of the marginal likelihood in (4) results in a Gaussian integral,
whose solution can be expressed as

log p(x•d|Z) ≈ − 1

2σ2B
trace

{
(Bd

MAP)>Bd
MAP

}

− 1

2
log

∣∣∣∣∣IR(K+1) + σ2B

N∑

n=1

(
diag(π̂nd)− (π̂nd)>π̂nd

)
⊗ (z>n•zn•)

∣∣∣∣∣+ log p(x•d|Bd
MAP,Z),

(6)

where π̂nd is the vector πnd =
[
π1nd, π

2
nd, . . . , π

R
nd

]
evaluated at Bd = Bd

MAP, and diag(π̂nd)
is a diagonal matrix with the values of π̂nd as its diagonal elements.

Similarly as in Griffiths and Ghahramani (2011), it is straightforward to prove that the
limit of Eq. (6) is well-defined if Z has an unbounded number of columns, that is, as K →∞.
The resulting expression for the marginal likelihood p(x•d|Z) can be readily obtained from
Eq. (6) by replacing K by K+, Z by the submatrix containing only the non-zero columns
of Z, and Bd

MAP by the submatrix containing the K++1 corresponding rows.

3.2 Speeding Up the Matrix Inversion

In this section, we propose a method that reduces the complexity of computing the inverse
of the Hessian for Newton’s method (as well as its determinant) from O(R3K3

+ +NR2K2
+)

to O(RK3
+ + NR2K2

+), effectively accelerating the inference procedure for large values of
R.

Let us denote with Z the matrix that contains only the K+ + 1 non-zero columns of
the extended full IBP matrix. The inverse of the Hessian for Newton’s method, as well as
its determinant in (6), can be efficiently carried out if we rearrange the inverse of ∇∇f as
follows:

(−∇∇f)−1 =

(
D−

N∑

n=1

vnv>n

)−1
,
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where vn = (πnd)>⊗z>n• and D is a block-diagonal matrix, in which each diagonal submatrix
is given by

Dr =
1

σ2B
IK++1 + Z> diag (πr

•d) Z, (7)

with πr
•d =

[
πr1d, . . . , π

r
Nd

]>
. Since vnv>n is a rank-one matrix, we can apply the Wood-

bury identity (Woodbury, 1949) N times to invert the matrix −∇∇f , similar to the RLS
(Recursive Least Squares) updates (Haykin, 2002). At each iteration n = 1, . . . , N , we
compute

(D(n))−1 =
(
D(n−1) − vnv>n

)−1
= (D(n−1))−1 +

(D(n−1))−1vnv>n (D(n−1))−1

1− v>n (D(n−1))−1vn
. (8)

For the first iteration, we define D(0) as the block-diagonal matrix D, whose inverse
matrix involves computing the R matrix inversions of size (K+ + 1) × (K+ + 1) of the
matrices in (7), which can be efficiently solved applying the Matrix Inversion Lemma. After
N iterations of (8), it turns out that (−∇∇f)−1 = (D(N))−1.

In practice, there is no need to iterate over all observations, since all subjects sharing
the same latent feature vector zn• and observation xnd can be grouped together, therefore
requiring (at most) R2K+ iterations instead of N . In our applications, it provides significant
savings in run-time complexity, since R2K+ � N .

For the determinant in (6), similar recursions can be applied using the Matrix De-
terminant Lemma (Harville, 1997), which states that |D + vu>| = (1 + v>Du)|D|, and
|D(0)| = ∏R

r=1 |Dr|.

4. Variational Inference

Variational inference provides a complementary (and less expensive in terms of computa-
tional complexity) alternative to MCMC methods as a general source of approximation
methods for inference in large-scale statistical models (Jordan et al., 1999). In this section,
we adapt the infinite variational approach for the linear-Gaussian model with respect to
a full IBP prior introduced by Doshi-Velez et al. (2009) to the model proposed in Sec-
tion 3. This approach assumes the (truncated) stick-breaking construction for the IBP in
Section 2.1, which bounds the number of columns of the IBP matrix by a finite (but large
enough) value, K. Then, in the truncated stick-breaking process, ωk =

∏k
i=1 vi for k ≤ K

and zero otherwise.

The hyperparameters of the model are contained in the set H = {α, σ2B} and, similarly,
Ψ = {Z,B1, . . . ,BD,b1

0, . . . ,b
D
0 , v1, . . . , vK} denotes the set of unobserved variables in the

model. Under the truncated stick-breaking construction for the IBP, the joint probability
distribution over all the variables p(Ψ,X|H) can be factorized as

p(Ψ,X|H) =

K∏

k=1

(
p(vk|α)

N∏

n=1

p(znk|{vi}ki=1)

)
D∏

d=1

(
p(bd

0|σ2B)

K∏

k=1

p(bd
k•|σ2B)

)

×
N∏

n=1

D∏

d=1

p(xnd|zn•,Bd,bd
0),
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where bd
k• is the kth row of matrix Bd.

We approximate p(Ψ|X,H) with the variational distribution q(Ψ) given by

q(Ψ) =
K∏

k=1

(
q(vk|τk1, τk2)

N∏

n=1

q(znk|νnk)

)
K∏

k=0

R∏

r=1

D∏

d=1

q(bdkr|φdkr, (σdkr)
2
),

where the elements of matrix Bd are denoted by bdkr, and

q(vk|τk1, τk2) = Beta(τk1, τk2),

q(bdkr|φdkr, (σdkr)
2
) = N (φdkr, (σ

d
kr)

2
),

q(znk|νnk) = Bernoulli(νnk).

Inference involves optimizing the variational parameters of q(Ψ) to minimize the Kullback-
Leibler divergence from q(Ψ) to p(Ψ|X,H), i.e., DKL(q||p). This optimization is equivalent
to maximizing a lower bound on the evidence p(X|H), since

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q],

(9)

where Eq[·] denotes the expectation with respect to the distribution q(Ψ), H[q] is the entropy
of distribution q(Ψ) and

Eq [log p(Ψ,X|H)] =

K∑

k=1

Eq [log p(vk|α)] +

D∑

d=1

K∑

k=1

Eq

[
log p(bd

k•|σ2B)
]

+

D∑

d=1

Eq

[
log p(bd

0|σ2B)
]

+

K∑

k=1

N∑

n=1

Eq

[
log p(znk|{vi}ki=1)

]
+

N∑

n=1

D∑

d=1

Eq

[
log p(xnd|zn•,Bd,bd

0)
]
.

(10)

The derivation of the lower bound in (9) is straightforward, with the exception of the terms
Eq

[
log p(znk|{vi}ki=1)

]
and Eq

[
log p(xnd|zn•,Bd,bd

0)
]

in (10), which have no closed-form
solution, so we instead need to bound them. Deriving these bounds leads to a new bound
L(H,Hq), which can be obtained in closed-form, such that log p(X|H) ≥ L(H,Hq), being
Hq the full set of variational parameters. The final expression for L(H,Hq), as well as the
details on the derivation of the bound, are provided in Appendix B.

In order to maximize the lower bound L(H,Hq), we need to optimize with respect to
the value of the variational parameters. To this end, we can iteratively maximize the bound
with respect to each variational parameter by taking the derivative of L(H,Hq) and setting
it to zero. This procedure readily leads to the following fixed-point equations:

1. For the variational Beta distribution q(vk|τk1, τk2),

τk1 = α+
K∑

m=k

(
N∑

n=1

νnm

)
+

K∑

m=k+1

(
N −

N∑

n=1

νnm

)(
m∑

i=k+1

λmi

)
,

τk2 = 1 +
K∑

m=k

(
N −

N∑

n=1

νnm

)
λmk.
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2. For the Bernoulli distribution q(znk|νnk),

νnk =
1

1 + exp(−Ank)
,

where

Ank =
k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]−
[

k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

]

+
D∑

d=1

(
φdkxnd

− ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

)(
1− exp

(
φdkr +

1

2
(σdkr)

2
))
×

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2
))]

 ,

and ψ(·) stands for the digamma function (Abramowitz and Stegun, 1972, p. 258–259).

3. For the feature assignments, which are Bernoulli distributed given the feature prob-
abilities, we have lower bounded Eq

[
log p(znk|{vi}ki=1)

]
by using the multinomial ap-

proach in Doshi-Velez et al. (2009) (see Appendix B for further details). This approx-
imation introduces the auxiliary multinomial distribution λk = [λk1, . . . , λkk], where
each λki can be updated as

λki ∝ exp

(
ψ(τi2) +

i−1∑

m=1

ψ(τm1)−
i∑

m=1

ψ(τm1 + τm2)

)
,

where the proportionality ensures that λk is a valid distribution.

4. The maximization with respect to the variational parameters φdkr, φ
d
0r, (σdkr)

2
, and

(σd0r)
2 has no analytical solution, and therefore, we need to resort to a numerical

method to find the maximum, such as Newton’s method or conjugate gradient al-
gorithm, for which the first and the second derivatives1 (given in Appendix C) are
required.

5. Finally, we lower bound the likelihood term Eq

[
log p(xnd|zn•,Bd,bd

0)
]

by resorting to a
first-order Taylor series expansion around the auxiliary variables ξ−1nd for n = 1, . . . , N
and d = 1, . . . , D (see Appendix B for further details), which are optimized by the
expression

ξnd =

[
R∑

r=1

exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]−1

.

1. Note that the second derivatives are strictly negative and, therefore, the maximum with respect to each
parameter is unique.
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5. Experiments

In this section, we first use a toy example to show how our model with discrete observations
works and then we turn to two experiments over the NESARC database.

5.1 Inference over Synthetic Images

We generate an illustrative example inspired by the example in Griffiths and Ghahramani
(2011) to show that the proposed model works as expected. We define four base black-and-
white images, shown in Figure 4a, that can be present with probability 0.3, independently
of the others. These base images are combined to create a binary composite image. We also
multiply each white pixel independently with equiprobable binary noise, hence each white
pixel in the composite image can be turned black 50% of the times, while black pixels always
remain black. We generate 200 observations to learn the IBP model (several examples can
be found in Figure 4c). The Gibbs sampler has been initialized with K+ = 2, setting each
znk = 1 with probability 1/2, and setting the hyperparameters to α = 0.5 and σ2B = 1.

After 350 iterations, the Gibbs sampler returns four latent features. Each of the four
features recovers one of the base images with a different ordering, which is inconsequential.
In Figure 4b, we have plotted the posterior probability for each pixel being white, when
only one of the components is active. As expected, the black pixels are known to be black
(almost zero probability of being white) and the white pixels have about a 50/50 chance of
being black or white, due to the multiplicative noise. The Gibbs sampler has used as many
as eleven hidden features, as shown in Figure 4e, but after less than 50 iterations, the first
four features represent the base images and the others just lock on to a noise pattern, which
eventually fades away.

In Figure 4d, we depict the posterior probability of pixels being white for the four
images in Figure 4c, given the inferred latent feature vectors for these observations. Note
that the model behaves as expected and properly captures the generative process, even for
those observations which do not possess any latent features, for which the vectors bd

0 do
not provide significant information about the black-or-white probabilities.

5.2 Comorbidity Analysis of Psychiatric Disorders

In the present study, our objective is to provide an alternative to the factor analysis approach
used by Blanco et al. (2013) with the IBP for discrete observations introduced in the present
paper. We build an unsupervised model taking the 20 disorders used by Blanco et al. (2013)
as input data, drawn from the NESARC data.

The NESARC database was designed to estimate the prevalence of psychiatric disorders,
as well as their associated features and level of disability. The NESARC had two waves
of interviews (first wave in 2001-2002 and second wave in 2004-2005). For the following
experimental results, we only use the data from the first wave, for which 43,093 people were
selected to represent the U.S. population of 18 years of age and older. Through 2,991 entries,
the NESARC collects data on the background of participants, alcohol and other drug use
and use disorders, and other mental disorders. Public use data are currently available for
this wave of data collection.2

2. See http://aspe.hhs.gov/hsp/06/catalog-ai-an-na/nesarc.htm
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Figure 4: Experimental results of the infinite binary multinomial-logistic model over the
image data set. (a) The four base images used to generate the 200 observations.
(b) Probability of each pixel being white, when a single feature is active (ordered
to match the images on the left), computed using the matrices Bd

MAP. (c) Four
data points generated as described in the text. The numbers above each figure
indicate which features are present in that image. (d) Probabilities of each pixel
being white after 350 iterations of the Gibbs sampler inferred for the four data
points on (c). The numbers above each figure show the inferred value of zn• for
these data points. (e) The number of latent features K+ and (f) the approximate
log of p(X|Z) over the 200 iterations of the Gibbs sampler.

The 20 disorders include substance use disorders (alcohol abuse and dependence, drug
abuse and dependence and nicotine dependence), mood disorders (major depressive disor-
der (MDD), bipolar disorder and dysthymia), anxiety disorders (panic disorder, social anx-
iety disorder (SAD), specific phobia and generalized anxiety disorder (GAD)), pathological
gambling (PG) and seven personality disorders (avoidant, dependent, obsessive-compulsive
(OC), paranoid, schizoid, histrionic and antisocial personality disorders (PDs)).

We run the Gibbs sampler over 3, 500 randomly chosen subjects out of the 43,093 par-
ticipants in the survey, having initialized the sampler with an active feature, i.e., K+ = 1,
having set znk = 1 randomly with probability 0.5, and fixing α = 1 and σ2B = 1. After
convergence, we run an additional Gibbs sampler with 10 iterations for each of the remain-
ing subjects in the database, restricted to their latent features (that is, we fix the latent
features learned for the 3, 500 subjects to sample the feature vector of each subject). Then,
we run additional iterations of the Gibbs sampler over the whole database, finally obtaining
three latent features. In order to speed up the sampling procedure, we do not sample the
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Figure 5: Probabilities of suffering from the 20 considered disorders. These probabilities
have been obtained using the matrices Bd

MAP, when none or a single latent feature
is active. The legend shows the latent feature vector corresponding to each curve.
The baseline has been obtained taking into account the 43, 093 subjects in the
database.

rows of Z corresponding to those subjects who do not suffer from any of the 20 disorders,
but instead fix these latent features to zero. The idea is that the bd

0 terms must capture
the general population that does not suffer from any psychiatric disorder, and we use the
active components of the matrix Z to characterize the disorders.

To examine the three latent features, we plot in Figure 5 the posterior probability of
having each of the considered disorders, when none or one of the latent features is active.
As expected, for those subjects who do not possess any feature, the probability of having
any of the disorders is below the baseline level (due to the contribution of the vectors
bd
0), defined as the empirical probability in the full sample, that is, taking into account the

43, 093 participants. Feature 1 increases the probability of having all the disorders, and thus
seems to represent a general psychopathology factor, although it may particularly increase
the risk of personality disorders. Feature 2 models substance use disorders and antisocial
personality disorder, consistent with the externalizing factor identified in previous studies
of the structure of psychiatric disorders (Krueger, 1999; Kendler et al., 2003; Vollebergh
et al., 2001; Blanco et al., 2013). Feature 3 models mood or anxiety disorders, and thus
seems to represent the internalizing factor also identified in previous studies.
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Feature vector 1 x x x 1 x x x 1

Empirical Probability 0.0748 0.0330 0.0227

(a)

Feature vector 1 1 x 1 x 1 x 1 1

Empirical Probability 0.0028 0.0012 0.0009

Product Probability 0.0025 0.0017 0.0007

(b)

Table 1: Probabilities of possessing at least (a) one latent feature, or (b) two latent features,
as given in the patterns shown in the heading rows. The symbol ‘x’ denotes either 0
or 1. The ‘empirical probability’ rows contain the probabilities extracted directly
from the inferred IBP matrix Z, while the ‘product probability’ row shows the
product of the corresponding two latent feature probabilities given in (a).

Thus, in accord to previous results from the studies on the latent structure of the
comorbidity of psychiatric disorders, detailed in Section 1, we find that the patterns of
comorbidity of common psychiatric disorders can be well described by a small number of
latent features. In addition, nosologically related disorders, such as social anxiety disorder
and avoidant personality disorder, tend to be modeled by similar features. As found in
previous results (Blanco et al., 2013), no disorder is perfectly aligned along one single latent
feature, therefore suggesting that disorders can develop through multiple etiological paths.
For instance, the risk of nicotine dependence may be particularly high in individuals with
a propensity towards externalization or internalization.

In Table 1a, we first show the empirical probability of possessing each latent feature,
that is, the number of subjects in the database that possess each latent feature divided by
the total number of subjects. We also show in Table 1b the probability of possessing at
least two features as the product of the probabilities in Table 1a (Product Probability),
and also the empirical probability. We include Table 1 to show that the three features are
nearly independent of one another, since the probability of possessing any two particular
features is close to the product of the probabilities of possessing them individually. The
differences in Table 1b are not statistically significant. Then, besides explicitly capturing
the probability of each disorder, our model also provides a way to measure independence
among the latent features. Note that although the proposed model assumes that the latent
features are independent a priori, we could have found that the empirical probability does
not correspond to the product one. Therefore, the independence among the three latent
features follows the model’s assumption and, from a psychiatric perspective, it also shows
that the three factors (internalizing, externalizing and general psychopathology factor) are
independent one another, that is, suffering from one group of disorders does not imply an
increased probability of suffering from any other group of disorders.

Finally, we remark that we have also applied the variational inference algorithm to study
the comorbidity patterns of psychiatric disorders but, since both algorithms (the variational
and the Gibbs sampler) infer the same three latent features, we only plot the results for the
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Gibbs sampling algorithm in this section and apply the variational inference algorithm in
next section.

5.3 Comorbidity Analysis of Personality Disorders

In order to identify the seven personality disorders studied in the previous section, psy-
chiatrists have established specific diagnostic criteria for each of them. These criteria cor-
respond to affirmative responses to one or several questions in the NESARC survey and
this correspondence is shown in Appendix D. Then, there exists a set of criteria to iden-
tify if a subject presents any of the following personality disorders: avoidant, dependent,
obsessive-compulsive, paranoid, schizoid, histrionic and antisocial. In the present analysis,
we consider as input data the fulfillment of the 52 criteria (i.e., R = 2) corresponding to
all the disorders for the 43,093 subjects and we apply the variational inference algorithm
truncated to K = 25 features, as detailed in Section 4, to find the latent structure of the
data.

In order to properly initialize the huge amount of variational parameters, we have pre-
viously run six Gibbs samplers over the data but taking only the criteria corresponding to
the avoidant PD and another PD (that is, the seven criteria for the avoidant PD and the
seven for the dependent PD, the criteria for the avoidant PD with the eight for the OCPD,
etc.) for 10, 000 randomly chosen subjects. After running the six Gibbs samplers, we ob-
tain 18 latent features that we group in a unique matrix Z to obtain the weighting matrices
Bd

MAP, which are used to initialize some parameters νnk and φdkr. We do this because the
variational algorithm is sensitive to the starting point and a random initialization would
not produce good solutions.

We run enough iterations of the variational algorithm to ensure convergence of the
variational lower bound (the lower bound at each iteration is shown in Figure 6). We
construct a binary matrix Z by setting each element znk = 1 if νnk > 0.5. We flip (changing
zeros by ones, and vice versa) those features possessed by more than 80% of the subjects,
obtaining only 10 latent features possessed by more than 50 subjects among the 43, 093
in the database and then recomputing the weighting matrices. In Table 2, we show the
probability of occurrence of each feature (top row), as well as the probability of having
active only one single feature (bottom row). We also show the ‘empirical’ and the ‘product’
probabilities of possessing at least two latent features in Table 3, and the probabilities of
possessing at least two features given that one of them is active in Table 4.

Features 1 2 3 4 5 6 7 8 9 10

Total 43.45 19.01 15.28 13.99 11.76 8.97 7.54 6.91 1.86 1.43

Single feature 13.48 3.62 2.22 1.34 2.27 0.49 0.76 1.07 0 0

Table 2: Probabilities (%) of possessing (top row) at least one latent feature, or (bottom
row) a single feature.

In Figure 7, we plot the probability of meeting each criterion in the general population
(dashed line) and the probability of meeting each criterion for those subjects that do not
have any active feature in our model (solid line). There are 15, 185 subjects (35.2% of the
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Features 1 2 3 4 5 6 7 8 9 10

1 9.92 8.96 8.48 5.67 7.22 4.92 3.85 1.46 1.42

2 8.26 4.43 4.54 3.67 1.90 1.43 2.08 0.71 0.21

3 6.64 2.90 3.29 2.18 3.00 2.02 1.58 0.54 0.20

4 6.08 2.66 2.14 2.79 1.91 2.39 1.40 1.25 0.03

5 5.11 2.23 1.80 1.65 1.31 1.35 0.85 0.57 0.00

6 3.90 1.71 1.37 1.26 1.05 1.10 0.80 0.44 0.14

7 3.28 1.43 1.15 1.06 0.89 0.68 0.65 0.28 0.00

8 3.00 1.31 1.06 0.97 0.81 0.62 0.52 0.51 0.07

9 0.81 0.35 0.28 0.26 0.22 0.17 0.14 0.13 0.00

10 0.62 0.27 0.22 0.20 0.17 0.13 0.11 0.10 0.03

Table 3: Probabilities (%) of possessing at least two latent features. The elements above
the diagonal correspond to the ‘empirical probability’, that is, extracted directly
from the inferred IBP matrix Z, and the elements below the diagonal correspond
to the ‘product probability’ of the corresponding two latent feature probabilities
given in the first row of Table 2.

population) which do not present any active feature, and for these people the probability
of meeting any criterion is reduced significantly.

We have found results that are in accordance with previous studies and at the same
time provide new information to understand personality disorders. Out of the 10 features,
6 of them directly describe personality disorders. Feature 1 increases the probability of
fulfilling the criteria for OCPD, Feature 3 increases the probability of fulfilling the criteria
for antisocial, Feature 4 increases the probability of fulfilling the criteria for paranoid,
Feature 5 increases the probability of meeting the criteria for schizoid, Feature 8 increases
the probability of fulfilling the criteria for histrionic and Feature 7 increases the probability
of meeting the criteria for avoidant and dependent. In Figure 8, we plot the probability
ratio between the probability of meeting each criterion when a single feature is active with
respect to the probability of meeting each criterion in the general population (baseline in
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Figure 6: Variational lower bound L(H,Hq) at each iteration.
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HHH
HHHk1

k2 1 2 3 4 5 6 7 8 9 10

1 100 22.83 20.63 19.53 13.05 16.62 11.33 8.85 3.37 3.27

2 52.19 100 23.33 23.90 19.32 10.00 7.51 10.95 3.75 1.09

3 58.68 29.03 100 21.54 14.29 19.66 13.25 10.34 3.51 1.29

4 60.63 32.47 23.52 100 19.97 13.65 17.05 10.02 8.92 0.20

5 48.22 31.25 18.57 23.77 100 11.11 11.49 7.24 4.88 0.00

6 80.47 21.18 33.47 21.29 14.56 100 12.23 8.92 4.86 1.53

7 65.26 18.92 26.83 31.63 17.91 14.55 100 8.65 3.66 0.03

8 55.62 30.11 22.86 20.28 12.32 11.58 9.43 100 7.39 1.07

9 78.46 38.23 28.77 67.00 30.76 23.41 14.82 27.40 100 0.12

10 99.19 14.40 13.75 1.94 0.00 9.55 0.16 5.18 0.16 100

Table 4: Probabilities (%) of possessing at least features k1 and k2 given that k1 is active,

i.e.,
(∑N

n=1 znk1znk2

)
/
(∑N

n=1 znk1

)
.
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Figure 7: Probability of meeting each criterion. The probabilities when no latent feature
is active (solid curve) have been obtained using the matrices Bd

MAP, while the
baseline (dashed curve) has been obtained taking into account the 43, 093 subjects
in the database.
(AvPD=Avoidant PD, DPD=Dependent PD, OCPD=Obsessive-compulsive PD,
PPD=Paranoid PD, SPD=Schizoid PD, HPD=Histrionic PD, APD=Antisocial
PD)

Figure 7). So, if the ratio is above one, it means that the feature increases the probability
of meeting that criterion with respect to the general population. In all these plots, we also
show the probability ratio between not having any active feature and the general population,
which serves as a reference for a low probability of fulfilling a criterion. Note that the scale
on the vertical axis may be different through all the figures for a better display. In Figure 8,
we can see that only the criteria for one of the personality disorders is systematically above
one, when one feature is active, except for Feature 7 that increases the probability for both
avoidant and dependent. In the figure, we can also notice that when one feature is active
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Figure 8: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none or a single
feature is active (the legend shows the active latent features).

the probability of the criteria for the other disorders is above the probability for the subjects
that do not have any active feature, although lower than the general population (above the
solid line and below one). It partially shows the comorbidity pattern for each personality
disorder. For example, Feature 1, besides increasing the probability of meeting the criteria
for OCPD, also increases the probability of meeting criterion 3 for schizoid and criterion
1 for histrionic. It is also important to point out that Feature 8 increases significantly the
probability of meeting criteria 1, 2, 4 and 6 for histrionic (and mildly for criterion 7), but
it does not affect criteria 3, 5 and 8, although the probability of meeting these criteria are
increased by Feature 4 (paranoid) and Feature 5 (schizoid). In a way, it indicates that
criteria 3 and 8 are more related to paranoid disorder and criterion 5 to schizoid disorder.

As seen in Figure 9, Features 2 and 6 mainly reduce the probability of meeting the criteria
for dependent PD. Feature 2 also reduces criteria 4-7 for avoidant and mildly increases
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Figure 9: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none or a single
feature is active (the legend shows the active latent features).

criterion 1 for OCPD, criterion 6 for schizoid and criteria 5 and 6 for antisocial. Feature
6 also reduces some criteria below the probability for the subjects with no active features.
But for most of the criteria the probability ratio moves between one and the ratio for the
subjects with no active feature. When these features appear by themselves, the subjects
might be similar to the subjects without any active feature, they become relevant when they
appear together with other features. These features are less likely to be isolated features
than the previous ones, as reported in Table 2. For example, Feature 2 appears frequently
with Features 1, 3, 4 and 5, as shown in Table 4, and the probability ratios are plotted
in Figure 10 and compared to the probability ratio when each feature is not accompanied
by Feature 2. We can see that when we add Feature 2 to Feature 1, the comorbidity
pattern changes significantly and it results in subjects with higher probabilities of meeting
the criteria for every other disorder except avoidant and dependent. Additionally, when we
add Feature 2 to Feature 5, we can see that meeting the criteria for schizoid is even more
probable, together with criterion 5 for histrionic.

Either Feature 1 or Features 1 and 3 typically accompany Feature 6, and Feature 6 is
seldom seen by itself (see Tables 2 and 5). In Figure 11, we show the probability ratio
when Feature 1 is active and when Features 1 and 3 are active, as reference, and when we
add Feature 6 to them. Adding Feature 6 mainly reduces the probability of meeting the
criteria for dependent. It is also relevant to point out that Features 1 and 3 increase the
probability of meeting the criteria 5 and 6 for paranoid, while Feature 4 mainly increased
the probability of meeting the criteria 1-4 for paranoid personality disorder, as shown in
Figure 8.

Feature 9 is similar to Feature 7, as it captures an increase in the probability of meeting
the criteria for avoidant and dependent, but it never appears isolated and most times it
appears together with Features 1 and 4.

Feature 10 never appears isolated and it mainly appears only with Feature 1. This
feature by itself only indicates that the probability of all the criteria should be much lower
than the subjects with no active features, except for antisocial, which behaves as the subjects
with no active features. When we add Feature 1 to Feature 10, we get that the probability
of meeting the criteria for OCDP goes to that of the subject with no active features, as can
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Figure 10: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

be seen in Figure 12. For us this is a spurious feature that is equivalent to not having any
active feature and that the variational algorithm has not been able to eliminate. This is
always a risk when working with flexible models, like BNP, in which a spurious component
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Figure 11: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or several features are active (the legend shows the active latent features).
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Figure 12: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

might appear when it should not. These components can be eliminated by common sense
in most cases or by further analysis by experts (psychiatric experts in our case). But it
can also indicate an unknown component that can point towards a new research direction
previously unknown, which is one of the attractive features of using generative models.

Besides the comorbidity patterns shown by the individual features that we have already
reported, we can also see that almost all the features are positively correlated. In Table 3, we
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Figure 13: Probability ratio of meeting each criterion, with respect to the baseline. These
probabilities have been obtained using the matrices Bd

MAP, when none, a single
or two features are active (the legend shows the active latent features).

show the probability that any two features appear together (upper triangular sub-matrix)
and the joint probability that we should observe if the features were independent (lower
triangular sub-matrix). Ignoring Feature 10, all of the other features are positively corre-
lated, except Features 2 and 7 and Features 8 and 5 that seem uncorrelated (the differences
are not statistically significant). Most of the features are strongly correlated and the dif-
ferences in Table 3 correspond to several standard deviations higher (between 3 and 42)
that we should expect from independent random observations. For example, the correla-
tion between Features 4 and 9 and Features 4 and 7 is quite high and both show subjects
with higher probability of meeting the criteria for avoidant, dependent and paranoid. The
difference between Features 7 and 9 is given by the criteria 1-4 for paranoid PD, that are
significantly increased by Feature 9 and slightly by Feature 7, as it can be seen in Figure 13.
Finally, it is worth mentioning that Feature 4 (paranoid) is the most highly correlated fea-
ture with all the others, so we can say that anyone suffering from paranoid PD has a higher
comorbidity with any other personality disorder.

6. Conclusions

In this paper, we have proposed a new model that combines the IBP with discrete obser-
vations using the multinomial-logit distribution. We have used the Laplace approximation
to integrate out the weighting factors, which allows us to efficiently run the Gibbs sampler.
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# Occurrences
Features

1 2 3 4 5 6 7 8 9 10

1 15185 0 0 0 0 0 0 0 0 0 0

2 5811 1 0 0 0 0 0 0 0 0 0

3 1561 0 1 0 0 0 0 0 0 0 0

4 1389 1 1 0 0 0 0 0 0 0 0

5 1021 1 0 1 0 0 0 0 0 0 0

6 977 0 0 0 0 1 0 0 0 0 0

7 958 1 0 0 0 0 1 0 0 0 0

8 956 0 0 1 0 0 0 0 0 0 0

9 946 1 0 0 1 0 0 0 0 0 0

10 687 1 0 0 0 1 0 0 0 0 0

11 576 0 0 0 1 0 0 0 0 0 0

12 553 1 0 0 0 0 0 1 0 0 0

13 495 0 1 0 0 1 0 0 0 0 0

14 486 1 0 0 0 0 0 0 1 0 0

15 460 0 0 0 0 0 0 0 1 0 0

16 451 0 1 1 0 0 0 0 0 0 0

17 438 1 0 0 0 0 0 0 0 0 1

18 414 1 0 1 0 0 1 0 0 0 0

19 385 0 1 0 1 0 0 0 0 0 0

20 370 1 1 0 1 0 0 0 0 0 0

Table 5: List of the 20 most common feature patterns.

We have also derived a variational inference algorithm, which allows dealing with larger
databases and provides accurate results.

We have applied our model to the NESARC database to find out the hidden features
that characterize the psychiatric disorders. First, we have used the Gibbs sampler to extract
the latent structure behind 20 of the most common psychiatric disorders. As a result, we
have found that the comorbidity patterns of these psychiatric disorders can be described
by only three latent features, which mainly model the internalizing disorders, the exter-
nalizing disorders, and a general psychopathology factor. Additionally, we have applied
the variational inference algorithm to analyze the relation among the 52 criteria defined by
the psychiatrists to diagnose each of the seven personality disorders (that is, externalizing
disorders). We have obtained that for most of the disorders, a latent feature appears to
model all the criteria that characterize that particular disorder. In this experiment, we have
also seen that avoidant and dependent PDs are jointly modeled by four features, and that
paranoid disorder is the most highly correlated PD with all the others.
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tially supported by a Salvador de Madariaga grant, and Carlos Blanco acknowledges NIH
grants (DA019606 and DA023200) and the New York State Psychiatric Institute for their
support. The authors also acknowledge the support of Ministerio de Ciencia e Innovación
of Spain (projects DEIPRO TEC2009-14504-C02-00, ALCIT TEC2012-38800-C03-01, and
program Consolider-Ingenio 2010 CSD2008-00010 COMONSENS). This work was also sup-
ported by the European Union 7th Framework Programme through the Marie Curie Initial
Training Network “Machine Learning for Personalized Medicine” MLPM2012, Grant No.
316861.

Appendix A. Laplace Approximation Details

In this section we provide the necessary details for the implementation of the Laplace
approximation proposed in Section 3.1. The expression in (5) can be rewritten as

f(Bd) = trace
{

Md>Bd
}
−

N∑

n=1

log

(
R∑

r=1

exp(zn•b
d
•r)

)

− 1

2σ2B
trace

{
Bd>Bd

}
− R(K + 1)

2
log(2πσ2B),

where (Md)kr counts the number of data points for which xnd = r and znk = 1, namely,
(Md)kr =

∑N
n=1 δ(xnd = r)znk, where δ(·) is the Kronecker delta function. By definition,

(Md)0r =
∑N

n=1 δ(xnd = r).

By defining (ρd)kr =

N∑

n=1

znkπ
r
nd, the gradient of f(Bd) can be derived as

∇f = Md − ρd − 1

σ2B
Bd.

To compute the Hessian, it is easier to define the gradient ∇f as a vector, instead of a
matrix, and hence we stack the columns of Bd into βd, i.e., βd = Bd(:) for avid Matlab users.
The Hessian matrix can now be readily computed taking the derivatives of the gradient,
yielding

∇∇f = − 1

σ2B
IR(K+1) +∇∇ log p(x•d|βd,Z)

= − 1

σ2B
IR(K+1) −

N∑

n=1

(
diag(πnd)− (πnd)>πnd

)
⊗ (z>n•zn•),

where diag(πnd) is a diagonal matrix with the values of the vector πnd =
[
π1nd, π

2
nd, . . . , π

R
nd

]

as its diagonal elements.
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Finally, note that, since p(x•d|βd,Z) is a log-concave function of βd (Boyd and Van-
denberghe, 2004, p. 87), −∇∇f is a positive definite matrix, which guarantees that the
maximum of f(βd) is unique.

Appendix B. Lower Bound Derivation

In this section we derive the lower bound L(H,Hq) on the evidence p(X|H). From Eq. (9),

log p(X|H) = Eq [log p(Ψ,X|H)] +H[q] +DKL(q||p)
> Eq [log p(Ψ,X|H)] +H[q].

The expectation Eq [log p(Ψ,X|H)] can be derived as

Eq [log p(Ψ,X|H)] =

K∑

k=1

Eq [log p(vk|α)]︸ ︷︷ ︸
1

+

D∑

d=1

K∑

k=1

Eq

[
log p(bd

k•|σ2B)
]

︸ ︷︷ ︸
2

+

D∑

d=1

Eq

[
log p(bd

0|σ2B)
]

︸ ︷︷ ︸
3

+

K∑

k=1

N∑

n=1

Eq

[
log p(znk|{vi}ki=1)

]

︸ ︷︷ ︸
4

+

N∑

n=1

D∑

d=1

Eq

[
log p(xnd|zn•,Bd,bd

0)
]

︸ ︷︷ ︸
5

,

(11)

where each term can be computed as shown below:

1. For the Beta distribution over vk,

Eq [log p(vk|α)] = log(α) + (α− 1) [ψ(τk1)− ψ(τk1 + τk2)] .

2. For the Gaussian distribution over vectors bd
k•,

Eq

[
log p(bd

k•|σ2B)
]

= −R
2

log(2πσ2B)− 1

2σ2B

(
R∑

r=1

(φdkr)
2 +

R∑

r=1

(σdkr)
2

)
.

3. For the Gaussian distribution over bd
0,

Eq

[
log p(bd

0|σ2B)
]

= −R
2

log(2πσ2B)− 1

2σ2B

(
R∑

r=1

(φd0r)
2 +

R∑

r=1

(σd0r)
2

)
.

4. For the feature assignments, which are Bernoulli distributed given the feature proba-
bilities, we have

Eq

[
log p(znk|{vi}ki=1)

]
=(1− νnk)Eq

[
log

(
1−

k∏

i=1

vi

)]

+ νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)] ,
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where the expectation Eq

[
log
(

1−∏k
i=1 vi

)]
has no closed-form solution. We can in-

stead lower bound it by using the multinomial approach (Doshi-Velez et al., 2009). Un-
der this approach, we introduce an auxiliary multinomial distribution λk = [λk1, . . . , λkk]
in the expectation and apply Jensen’s inequality, yielding

Eq

[
log

(
1−

k∏

i=1

vi

)]
≥

k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm),

which holds for any distribution represented by the probabilities λk1, . . . , λkk, for
1 ≤ k ≤ K. Then,

Eq

[
log p(znk|{vi}ki=1)

]
≥ (1− νnk)

[
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

]

+ νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)] .

5. For the likelihood term, we can write

Eq

[
log p(xnd|zn•,Bd,bd

0)
]

= φd0xnd
+

K∑

k=1

νnkφ
d
kxnd
−Eq

[
log

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)]
,

where the logarithm can be upper bounded by its first-order Taylor series expansion
around the auxiliary variable ξ−1nd (for n = 1, . . . , N and d = 1, . . . , D) (Blei and
Lafferty, 2007; Bouchard, 2007), yielding

log

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)
≤ ξnd

(
R∑

r=1

exp(zn•b
d
•r + bd0r)

)
− log(ξnd)− 1.

The main advantage of this bound lies on the fact that it allows us to compute the
expectation of the bound for the Gaussian distribution, since it involves the moment
generating functions of the distributions q(bd

•r) and q(bd0r). Then, we can lower bound
the likelihood term as

Eq

[
log p(xnd|zn•,Bd,bd

0)
]
≥ φd0xnd

+

K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

− ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.
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Substituting the previous results in (11), we obtain

Eq [log p(Ψ,X|H)] ≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D

2
log(2πσ2B)− 1

2σ2B

K∑

k=0

D∑

d=1

R∑

r=1

(
(φdkr)

2 + (σdkr)
2
)

+
N∑

n=1

K∑

k=1

[
νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑

d=1

[
φd0xnd

+
K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]]

.

Additionally, the entropy of the distribution q(Ψ) is given by

H[q] = Eq [log q(Ψ)]

=

K∑

k=1

Eq [log q(vk|τk1, τk2)] +

D∑

d=1

R∑

r=1

K∑

k=0

Eq

[
log q(bdkr|φdkr, (σdkr)

2
)
]

+

N∑

n=1

K∑

k=1

Eq [log q(znk|νnk)]

=

K∑

k=1

[
log

(
Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
D∑

d=1

R∑

r=1

K∑

k=0

1

2
log(2πe(σdkr)

2
) +

N∑

n=1

K∑

k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)] .
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Finally, we obtain the lower bound on the evidence p(X|H) as

log p(X|H) ≥ Eq [log p(Ψ,X|H)] +H[q]

≥
K∑

k=1

[log(α) + (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

− R(K + 1)D

2
log(2πσ2B)− 1

2σ2B

K∑

k=0

D∑

d=1

R∑

r=1

(
(φdkr)

2 + (σdkr)
2
)

+
N∑

n=1

K∑

k=1

[
νnk

k∑

i=1

[ψ(τi1)− ψ(τi1 + τi2)]

+(1− νnk)

(
k∑

m=1

λkmψ(τm2) +
k−1∑

m=1

(
k∑

n=m+1

λkn

)
ψ(τm1)

−
k∑

m=1

(
k∑

n=m

λkn

)
ψ(τm1 + τm2)−

k∑

m=1

λkm log(λkm)

)]

+
N∑

n=1

D∑

d=1

[
φd0xnd

+
K∑

k=1

νnkφ
d
kxnd

+ log(ξnd) + 1

−ξnd
R∑

r=1

[
exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]]

+
K∑

k=1

[
log

(
Γ(τk1)Γ(τk2)

Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+

D∑

d=1

R∑

r=1

K∑

k=0

1

2
log(2πe(σdkr)

2
) +

N∑

n=1

K∑

k=1

[−νnk log(νnk)− (1− νnk) log(1− νnk)]

= L(H,Hq),

where Hq = {τk1, τk2, λkm, ξnd, νnk, φdkr, φd0r, (σdkr)
2
, (σd0r)

2} (for k = 1, . . . ,K, m = 1, . . . , k,
d = 1, . . . , D, and n = 1, . . . , N) represents the set of the variational parameters.

Appendix C. Derivatives for Newton’s Method

- For the parameters of the Gaussian distribution q(bdkr|φdkr, (σdkr)
2
) for k = 1, . . . ,K,

∂

∂φdkr
L(H,Hq) = − 1

σ2B
φdkr +

N∑

n=1

[
νnkδ(xnd = r)− νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.
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∂2

∂(φdkr)
2
L(H,Hq) = − 1

σ2B
−

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

∂

∂(σdkr)
2L(H,Hq) = − 1

2σ2B
+

1

2
(σdkr)

−2 − 1

2

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

∂2

(∂(σdkr)
2
)2
L(H,Hq) = −1

2
(σdkr)

−4 − 1

4

N∑

n=1

[
νnkξnd exp

(
φd0r +

1

2
(σd0r)

2

)
exp

(
φdkr +

1

2
(σdkr)

2
)

×
∏

k′ 6=k

(
1− νnk′ + νnk′ exp

(
φdk′r +

1

2
(σdk′r)

2

))]
.

- For the parameters of the Gaussian distribution q(bd0r|φd0r, (σd0r)2),
∂

∂φd0r
L(H,Hq)

= − 1

σ2B
φd0r +

N∑

n=1

[
δ(xnd = r)− ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂2

(∂φd0r)
2
L(H,Hq)

= − 1

σ2B
−

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂

∂(σd0r)
2
L(H,Hq)

= − 1

2σ2B
+

1

2
(σd0r)

−2 − 1

2

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.

∂2

(∂(σd0r)
2)2
L(H,Hq)

= −1

2
(σd0r)

−4 − 1

4

N∑

n=1

[
ξnd exp

(
φd0r +

1

2
(σd0r)

2

) K∏

k=1

(
1− νnk + νnk exp

(
φdkr +

1

2
(σdkr)

2
))]

.
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Appendix D. Correspondence Between Criteria and Questions in
NESARC

Question Code Personality disorder and criterion

S10Q1A1-S10Q1B7 Avoidant (1 question for each diagnostic criterion)

S10Q1A8-S10Q1B15 Dependent (1 question for each diagnostic criterion)

S10Q1A16-S10Q1B17 OCPD criterion 1
S10Q1A18-S10Q1B23 OCPD criteria 2-7
S10Q1A24-S10Q1B25 OCPD criterion 8

S10Q1A26-S10Q1B29 Paranoid criteria 1-4
S10Q1A30-S10Q1A31 Paranoid criterion 5
S10Q1A32-S10Q1B33 Paranoid criteria 6-7

S10Q1A45-S10Q1B46 Schizoid criterion 1
S10Q1A47-S10Q1B48 Schizoid criteria 2-3
S10Q1A50-S10Q1B50 Schizoid criterion 4
S10Q1A43-S10Q1B43 Schizoid criterion 5
S10Q1A51-S10Q1B52 Schizoid criterion 6

S10Q1A49-S10Q1B49 or S10Q1A53-S10Q1B53 Schizoid criterion 7

S10Q1A54-S10Q1B54 or S10Q1A56-S10Q1B56 Histrionic criterion 1
S10Q1A58-S10Q1B58 or S10Q1A60-S10Q1B60 Histrionic criterion 2

S10Q1A55-S10Q1B55 Histrionic criterion 3
S10Q1A61-S10Q1B61 Histrionic criterion 4
S10Q1A64-S10Q1B64 Histrionic criterion 5

S10Q1A59-S10Q1B59 or S10Q1A62-S10Q1B62 Histrionic criterion 6
S10Q1A63-S10Q1B63 Histrionic criterion 7
S10Q1A57-S10Q1B57 Histrionic criterion 8

S11Q1A20-S11Q1A25 Antisocial, criterion 1
S11Q1A11- S11Q1A13 Antisocial, criterion 2
S11Q1A8- S11Q1A10 Antisocial, criterion 3
S11Q1A17- S11Q1A18 Antisocial, criterion 4
S11Q1A26- S11Q1A33 Antisocial, criterion 4
S11Q1A14- S11Q1A16 Antisocial, criterion 5

S11Q1A6 and S11Q1A19 Antisocial, criterion 6
S11Q8A-B Antisocial, criterion 7

Table 6: Correspondence between the criteria for each personality disorder and questions
in NESARC.
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