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Abstract

We propose an extensive analysis of the behavior of majority votes in binary classification.
In particular, we introduce a risk bound for majority votes, called the C-bound, that takes
into account the average quality of the voters and their average disagreement. We also
propose an extensive PAC-Bayesian analysis that shows how the C-bound can be estimated
from various observations contained in the training data. The analysis intends to be self-
contained and can be used as introductory material to PAC-Bayesian statistical learning
theory. It starts from a general PAC-Bayesian perspective and ends with uncommon PAC-
Bayesian bounds. Some of these bounds contain no Kullback-Leibler divergence and others
allow kernel functions to be used as voters (via the sample compression setting). Finally,
out of the analysis, we propose the MinCq learning algorithm that basically minimizes the
C-bound. MinCq reduces to a simple quadratic program. Aside from being theoretically
grounded, MinCq achieves state-of-the-art performance, as shown in our extensive empirical
comparison with both AdaBoost and the Support Vector Machine.

Keywords: majority vote, ensemble methods, learning theory, PAC-Bayesian theory,
sample compression

1. Previous Work and Implementation

This paper can be considered as an extended version of Lacasse et al. (2006) and Laviolette
et al. (2011), and also contains ideas from Laviolette and Marchand (2005, 2007) and Ger-
main et al. (2009, 2011). We unify this previous work, revise the mathematical approach,
add new results and extend empirical experiments.

The source code to compute the various PAC-Bayesian bounds presented in this paper
and the implementation of the MinCq learning algorithm is available at:

http://graal.ift.ulaval.ca/majorityvote/

c©2015 Pascal Germain, François Laviolette, Alexandre Lacasse, Mario Marchand and Jean-Francis Roy.
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2. Introduction

In binary classification, many state-of-the-art algorithms output prediction functions that
can be seen as a majority vote of “simple” classifiers. Firstly, ensemble methods such
as Bagging (Breiman, 1996), Boosting (Schapire and Singer, 1999) and Random Forests
(Breiman, 2001) are well-known examples of learning algorithms that output majority votes.
Secondly, majority votes are also central in the Bayesian approach (see Gelman et al., 2004,
for an introductory text); in this setting, the majority vote is generally called the Bayes
Classifier. Thirdly, it is interesting to point out that classifiers produced by kernel methods,
such as the Support Vector Machine (SVM) (Cortes and Vapnik, 1995), can also be viewed
as majority votes. Indeed, to classify an example x, the SVM classifier computes

sgn

( |S|∑
i=1

αi yi k(xi, x)

)
, (1)

where k(·, ·) is a kernel function, and the input-output pairs (xi, yi) represent the examples
from the training set S. Thus, one can interpret each yi k(xi, ·) as a voter that chooses (with
confidence level |k(xi, x)|) between two alternatives (“positive” or “negative”), and αi as the
respective weight of this voter in the majority vote. Then, if the total confidence-multiplied
weight of each voter that votes positive is greater than the total confidence-multiplied weight
of each voter that votes negative, the classifier outputs a +1 label (and a −1 label in the
opposite case). Similarly, each neuron of the last layer of an artificial neural network can
be interpreted as a majority vote, since it outputs a real value given by K(

∑
iwigi(x)) for

some activation function K.1

In practice, it is well known that the classifier output by each of these learning algorithms
performs much better than any of its voters individually. Indeed, voting can dramatically
improve performance when the “community” of classifiers tends to compensate for individual
errors. In particular, this phenomenon explains the success of Boosting algorithms (e.g.,
Schapire et al., 1998). The first aim of this paper is to explore how bounds on the generalized
risk of the majority vote are not only able to theoretically justify learning algorithms but also
to detect when the voted combination provably outperforms the average of its voters. We
expect that this study of the behavior of a majority vote should improve the understanding
of existing learning algorithms and even lead to new ones. We indeed present a learning
algorithm based on these ideas at the end of the paper.

The PAC-Bayesian theory is a well-suited approach to analyze majority votes. Initiated
by McAllester (1999), this theory aims to provide Probably Approximately Correct guar-
antees (PAC guarantees) to “Bayesian-like” learning algorithms. Within this approach, one
considers a prior2 distribution P over a space of classifiers that characterizes its prior belief
about good classifiers (before the observation of the data) and a posterior distribution Q
(over the same space of classifiers) that takes into account the additional information pro-
vided by the training data. The classical PAC-Bayesian approach indirectly bounds the risk

1. In this case, each voter gi has incoming weights which are also learned (often by back propagation of
errors) together with the weights wi. The analysis presented in this paper considers fixed voters. Thus,
the PAC-Bayesian theory for artificial neural networks remains to be done. Note however that the recent
work by McAllester (2013) provides a first step in that direction.

2. Priors have been used for many years in statistics. The priors in this paper have only indirect links with
the Bayesian priors. We nevertheless use this language, since it comes from previous work.
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of a Q-weighted majority vote by bounding the risk of an associate (stochastic) classifier,
called the Gibbs classifier. A remarkable result, known as the “PAC-Bayesian Theorem”,
provides a risk bound for the “true” risk of the Gibbs classifier, by considering the empir-
ical risk of this Gibbs classifier on the training data and the Kullback-Leibler divergence
between a posterior distribution Q and a prior distribution P . It is well known (Lang-
ford and Shawe-Taylor, 2002; McAllester, 2003b; Germain et al., 2009) that the risk of the
(deterministic) majority vote classifier is upper-bounded by twice the risk of the associ-
ated (stochastic) Gibbs classifier. Unfortunately, and especially if the involved voters are
weak, this indirect bound on the majority vote classifier is far from being tight, even if the
PAC-Bayesian bound itself generally gives a tight bound on the risk of the Gibbs classifier.
In practice, as stated before, the “community” of classifiers can act in such a way as to
compensate for individual errors. When such compensation occurs, the risk of the majority
vote is then much lower than the Gibbs risk itself and, a fortiori, much lower than twice the
Gibbs risk. By limiting the analysis to Gibbs risk only, the commonly used PAC-Bayesian
framework is unable to evaluate whether or not this compensation occurs. Consequently,
this framework cannot help in producing highly accurate voted combinations of classifiers
when these classifiers are individually weak.

In this paper, we tackle this problem by studying the margin of the majority vote as
a random variable. The first and second moments of this random variable are respectively
linked with the risk of the Gibbs classifier and the expected disagreement between the voters
of the majority vote. As we will show, the well-known factor of two used to bound the risk
of the majority vote is recovered by applying Markov’s inequality to the first moment of the
margin. Based on this observation, we show that a tighter bound, that we call the C-bound,
is obtained by considering the first two moments of the margin, together with Chebyshev’s
inequality.

Section 4 presents, in a more detailed way, the work on the C-bound originally presented
in Lacasse et al. (2006). We then present both theoretical and empirical studies that show
that the C-bound is an accurate indicator of the risk of the majority vote. We also show that
the C-bound can be smaller than the risk of the Gibbs classifier and can even be arbitrarily
close to zero even if the risk of the Gibbs classifier is close to 1/2. This indicates that
the C-bound can effectively capture the compensation of the individual errors made by the
voters.

We then develop PAC-Bayesian guarantees on the C-bound in order to obtain an upper
bound on the risk of the majority vote based on empirical observations. Section 5 presents
a general approach of the PAC-Bayesian theory by which we recover the most commonly
used forms of the bounds of McAllester (1999, 2003a) and Langford and Seeger (2001);
Seeger (2002); Langford (2005). Thereafter, we extend the theory to obtain upper bounds
on the C-bound in two different ways. The first method is to separately bound the risk
of the Gibbs classifier and the expected disagreement—which are the two fundamental
ingredients that are present in the C-bound. Since the expected disagreement does not
rely on labels, this strategy is well-suited for the semi-supervised learning framework. The
second method directly bounds the C-bound and empirically improves the achievable bounds
in the supervised learning framework.
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Sections 6 and 7 bring together relatively new PAC-Bayesian ideas that allow us, for one
part, to derive a PAC-Bayesian bound that does not rely on the Kullback-Leibler divergence
between the prior and posterior distributions (as in Catoni, 2007; Germain et al., 2011;
Laviolette et al., 2011) and, for the other part, to extend the bound to the case where the
voters are defined using elements of the training data, e.g., voters defined by kernel functions
yik(xi, ·). This second approach is based on the sample compression theory (Floyd and
Warmuth, 1995; Laviolette and Marchand, 2007; Germain et al., 2011). In PAC-Bayesian
theory, the sample compression approach is a priori problematic, since a PAC-Bayesian
bound makes use of a prior distribution on the set of all voters that has to be defined before
observing the data. If the voters themselves are defined using a part of the data, there is
an apparent contradiction that has to be overcome.

Based on the foregoing, a learning algorithm, that we call MinCq, is presented in Sec-
tion 8. The algorithm basically minimizes the C-bound, but in a particular way that is, inter
alia, justified by the PAC-Bayesian analysis of Sections 6 and 7. This algorithm was origi-
nally presented in Laviolette et al. (2011). Given a set of voters (either classifiers or kernel
functions), MinCq builds a majority vote classifier by finding the posterior distribution Q
on the set of voters that minimizes the C-bound. Hence, MinCq takes into account not
only the overall quality of the voters, but also their respective disagreements. In this way,
MinCq builds a “community” of voters that can compensate for their individual errors.
Even though the C-bound consists of a relatively complex quotient, the MinCq learning
algorithm reduces to a simple quadratic program. Moreover, extensive empirical experi-
ments confirm that MinCq is very competitive when compared with AdaBoost (Schapire
and Singer, 1999) and the Support Vector Machine (Cortes and Vapnik, 1995).

In Section 9, we conclude by pointing out recent work that uses the PAC-Bayesian
theory to tackle more sophisticated machine learning problems.

3. Basic Definitions

We consider classification problems where the input space X is an arbitrary set and the
output space is a discrete set denoted Y. An example (x, y) is an input-output pair where
x ∈ X and y ∈ Y. A voter is a function X → Y for some output space Y related to Y.
Unless otherwise specified, we consider the binary classification problem where Y = {−1, 1}
and then we either consider Y as Y itself, or its convex hull [−1,+1]. In this paper, we
also use the following convention: f denotes a real-valued voter (i.e., Y = [−1, 1]), and h
denotes a binary-valued voter (i.e., Y = {−1, 1}). Note that this notion of voters is quite
general, since any uniformly bounded real-valued set of functions can be viewed as a set of
voters when properly normalized.

We consider learning algorithms that construct majority votes based on a (finite) set H
of voters. Given any x ∈ X , the output BQ(x) of a Q-weighted majority vote classifier BQ
(sometimes called the Bayes classifier) is given by

BQ(x)
def
= sgn

[
E
f∼Q

f(x)

]
, (2)

where sgn(a) = 1 if a > 0, sgn(a) = −1 if a < 0, and sgn(0) = 0.
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Thus, in case of a tie in the majority vote – i.e., Ef∼Qf(x)=0 –, we consider that the
majority vote classifier abstains – i.e., BQ(x) = 0. There are other possible ways to handle
this particular case. In this paper, we choose to define sgn(0) = 0 because it simplifies the
forthcoming analysis.

We adopt the PAC setting where each example (x, y) is drawn i.i.d. according to a
fixed, but unknown, probability distribution D on X×Y. The training set of m examples
is denoted by S = 〈 (x1, y1), . . . , (xm, ym) 〉 ∼ Dm. Throughout the paper, D′ generically
represents either the true (and unknown) distribution D, or its empirical counterpart US

(i.e., the uniform distribution over the training set S). Moreover, for notational simplicity,
we often replace US by S.

In order to quantify the accuracy of a voter, we use a loss function L : Y×Y → [0, 1] .
The PAC-Bayesian theory traditionally considers majority votes of binary voters of the form

h : X → {−1, 1}, and the zero-one loss L01

(
h(x), y

) def
= I

(
h(x) 6= y

)
, where I(a) = 1 if

predicate a is true and 0 otherwise.
The extension of the zero-one loss to real-valued voters (of the form f : X → [−1, 1]) is

given by the following definition.

Definition 1 In the (more general) case where voters are functions f : X → [−1, 1], the
zero-one loss L01 is defined by

L01

(
f(x), y

) def
= I

(
y · f(x) ≤ 0

)
.

Hence, a voter abstention – i.e., when f(x) outputs exactly 0 – results in a loss of 1. Clearly,
other choices are possible for this particular case.3

In this paper, we also consider the linear loss L` defined as follows.

Definition 2 Given a voter f : X → [−1, 1], the linear loss L` is defined by

L`
(
f(x), y

) def
=

1

2

(
1− y · f(x)

)
.

Note that the linear loss is equal to the zero-one loss when the output space is binary. That
is, for any (h(x), y) ∈ {−1, 1}2, we always have

L`
(
h(x), y

)
= L01

(
h(x), y

)
, (3)

because L`
(
h(x), y

)
= 1 if h(x) 6= y, and L`

(
h(x), y

)
= 0 if h(x) = y. Hence, we generalize

all definitions implying classifiers to voters using the equality of Equation (3) as an inspi-
ration. Figure 1 illustrates the difference between the zero-one loss and the linear loss for
real-valued voters. Remember that in the case y f(x) = 0 , the loss is 1 (see Definition 1).

Definition 3 Given a loss function L and a voter f , the expected loss ELD′(f) of f relative
to distribution D′ is defined as

ELD′(f)
def
= E

(x,y)∼D′
L
(
f(x), y

)
.

3. As an example, when f(x) outputs 0, the loss may be 1/2. However, we choose for this unlikely event
the worst loss value – i.e., L01(0, y) = 1 – because it simplifies the majority vote analysis.
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Figure 1: The zero-one loss L01 and the linear loss L` as a function of yf(x).

In particular, the empirical expected loss on a training set S is given by

ELS(f) =
1

m

m∑
i=1

L
(
f(xi), yi

)
.

We therefore define the risk of the majority vote RD′(BQ) as follows.

Definition 4 For any probability distribution Q on a set of voters, the Bayes risk RD′(BQ),
also called risk of the majority vote, is defined as the expected zero-one loss of the majority
vote classifier BQ relative to D′. Hence,

RD′(BQ)
def
= EL01D′ (BQ) = E

(x,y)∼D′
I
(
BQ(x) 6= y

)
= E

(x,y)∼D′
I
(

E
f∼Q

y · f(x) ≤ 0
)
.

Remember from the definition of BQ (Equation 2) that the majority vote classifier abstains
in the case of a tie on an example (x, y). Therefore, the above Definition 4 implies that the
Bayes risk is 1 in this case, as R〈(x,y)〉(BQ)=L01(0, y)=1. In practice, a tie in the vote is a
rare event, especially if there are many voters.

The output of the deterministic majority vote classifier BQ is closely related to the
output of a stochastic classifier called the Gibbs classifier. To classify an input example x,
the Gibbs classifier GQ randomly chooses a voter f according to Q and returns f(x). Note
the stochasticity of the Gibbs classifier: it can output different values when given the same
input x twice. We will see later how the link between BQ and GQ is used in the PAC-
Bayesian theory.

In the case of binary voters, the Gibbs risk corresponds to the probability that GQ
misclassifies an example of distribution D′. Hence,

RD′(GQ) = Pr
(x,y)∼D′
h∼Q

(
h(x) 6= y

)
= E

h∼Q
EL01D′ (h) = E

(x,y)∼D′
E
h∼Q

I
(
h(x) 6= y

)
.

In order to handle real-valued voters, we generalize the Gibbs risk as follows.

Definition 5 For any probability distribution Q on a set of voters, the Gibbs risk RD′(GQ)
is defined as the expected linear loss of the Gibbs classifier GQ relative to D′. Hence,

RD′(GQ)
def
= E

f∼Q
EL`D′(f) =

1

2

(
1− E

(x,y)∼D′
E
f∼Q

y · f(x)

)
.
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Remark 6 It is well known in the PAC-Bayesian literature (e.g., Langford and Shawe-
Taylor, 2002; McAllester, 2003b; Germain et al., 2009) that the Bayes risk RD′(BQ) is
bounded by twice the Gibbs risk RD′(GQ). This statement extends to our more general
definition of the Gibbs risk (Definition 5).

Proof Let (x, y) ∈ X × {−1, 1} be any example. We claim that

R〈(x,y)〉(BQ) ≤ 2R〈(x,y)〉(GQ) . (4)

Notice that R〈(x,y)〉(BQ) is either 0 or 1 depending of the fact that BQ errs or not on (x, y).
In the case where R〈(x,y)〉(BQ) = 0, Equation (4) is trivially true. If R〈(x,y)〉(BQ) = 1, we
know by the last equality of Definition 4 that E

f∼Q
y ·f(x) ≤ 0. Therefore, Definition 5 gives

2 ·R〈(x,y)〉(GQ) = 2 · 1

2

(
1− E

f∼Q
y · f(x)

)
≥ 1 = R〈(x,y)〉(BQ) ,

which proves the claim.
Now, by taking the expectation according to (x, y) ∼ D′ on each side of Equation (4),

we obtain

RD′(BQ) = E
(x,y)∼D′

R〈(x,y)〉(BQ) ≤ E
(x,y)∼D′

2R〈(x,y)〉(GQ) = 2RD′(GQ) ,

as wanted.

Thus, PAC-Bayesian bounds on the risk of the majority vote are usually bounds on
the Gibbs risk, multiplied by a factor of two. Even if this type of bound can be tight in
some situations, the factor two can also be misleading. Langford and Shawe-Taylor (2002)
have shown that under some circumstances, the factor of two can be reduced to (1 + ε).
Nevertheless, distributions Q on voters giving RD′(GQ) � RD′(BQ) are common. The
extreme case happens when the expected linear loss on each example is just below one half
– i.e., for all (x, y), Ef∼Q y f(x) = 1

2−ε –, leading to a perfect majority vote classifier but
an almost inaccurate Gibbs classifier. Indeed, we have RD′(GQ) = 1

2−ε and RD′(BQ) = 0.
Therefore, in this circumstance, the bound RD′(BQ) ≤ 1−2ε, given by Remark 6, fails to
represent the perfect accuracy of the majority vote. This problem is due to the fact that the
Gibbs risk only considers the loss of the average output of the population of voters. Hence,
the bound of Remark 6 states that the majority vote is weak whenever every individual voter
is weak. The bound cannot capture the fact that it might happen that the “community” of
voters compensates for individual errors. To overcome this lacuna, we need a bound that
compares the output of voters between them, not only the average quality of each voter
taken individually.

We can compare the output of binary voters by considering the probability of disagree-
ment between them:

Pr
x∼D′X
h1,h2∼Q

(
h1(x) 6= h2(x)

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
I
(
h1(x) 6= h2(x)

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
I
(
h1(x) · h2(x) 6= 1

)
= E

x∼D′X
E

h1∼Q
E

h2∼Q
L01

(
h1(x)·h2(x) , 1

)
,
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where D′X denotes the marginal on X of distribution D′. Definition 7 extends this notion
of disagreement to real-valued voters.

Definition 7 For any probability distribution Q on a set of voters, the expected disagree-
ment dD

′
Q relative to D′ is defined as

dD
′

Q
def
= E

x∼D′X
E

f1∼Q
E

f2∼Q
L`
(
f1(x)·f2(x) , 1

)
=

1

2

(
1− E

x∼D′X
E

f1∼Q
E

f2∼Q
1 · f1(x) · f2(x)

)
=

1

2

(
1− E

x∼D′X

[
E
f∼Q

f(x)

]2)
.

Notice that the value of dD
′

Q does not depend on the labels y of the examples (x, y) ∼ D′.
Therefore, we can estimate the expected disagreement with unlabeled data.

4. Bounds on the Risk of the Majority Vote

The aim of this section is to introduce the C-bound, which upper-bounds the risk of the
majority vote (Definition 4) based on the Gibbs risk (Definition 5) and the expected dis-
agreement (Definition 7). We start by studying the margin of a majority vote as a random
variable (Section 4.1). From the first moment of the margin, we easily recover the well-
known bound of twice the Gibbs risk presented by Remark 6 (Section 4.2). We therefore
suggest extending this analysis to the second moment of the margin to obtain the C-bound
(Section 4.3). Finally, we present some statistical properties of the C-bound (Section 4.4)
and an empirical study of its predictive power (Section 4.5).

4.1 The Margin of the Majority Vote and its Moments

The bounds on the risk of a majority vote classifier proposed in this section result from the
study of the weighted margin of the majority vote as a random variable.

Definition 8 Let MD′

Q be the random variable that, given any example (x, y) drawn ac-
cording to D′, outputs the margin of the majority vote BQ on that example, which is

MQ(x, y)
def
= E

f∼Q
y · f(x) .

From Definitions 4 and 8, we have the following nice property:4

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
. (5)

4. Note that for another choice of the zero-one loss definition (Definition 1), the tie in the majority vote –
i.e., when MQ(x, y) = 0 – would have been more complicated to handle, and the statement should have
been relaxed to

Pr
(x,y)∼D′

(
MQ(x, y) < 0

)
≤ RD′(BQ) ≤ Pr

(x,y)∼D′

(
MQ(x, y) ≤ 0

)
.
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The margin is not only related to the risk of the majority vote, but also to Gibbs risk.
For that purpose, let us consider the first moment µ1(MD′

Q ) of the random variable MD′

Q

which is defined as
µ1(MD′

Q )
def
= E

(x,y)∼D′
MQ(x, y) . (6)

We can now rewrite the Gibbs risk (Definition 5) as a function of µ1(MD′

Q ), since

RD′(GQ) = E
f∼Q

EL`D′(f) =
1

2

(
1− E

(x,y)∼D′
E
f∼Q

y · f(x)

)
=

1

2

(
1− E

(x,y)∼D′
MQ(x, y)

)
=

1

2

(
1− µ1(MD′

Q )
)
. (7)

Similarly, we can rewrite the expected disagreement as a function of the second moment
of the margin. We use µ2(MD′

Q ) to denote the second moment. Since y ∈ {−1, 1} and,

therefore, y2 = 1, the second moment of the margin does not rely on labels. Indeed, we
have

µ2(MD′

Q )
def
= E

(x,y)∼D′

[
MQ(x, y)

]2
(8)

= E
(x,y)∼D′

y2 ·
[

E
f∼Q

f(x)
]2

= E
x∼D′X

[
E
f∼Q

f(x)
]2
.

Hence, from the last equality and Definition 7, the expected disagreement can be expressed
as

dD
′

Q =
1

2

(
1− E

x∼D′X

[
E
f∼Q

f(x)

]2)
=

1

2

(
1− µ2(MD′

Q )
)
. (9)

Equation (9) shows that 0 ≤ dD
′

Q ≤ 1/2, since 0 ≤ µ2(MD′

Q ) ≤ 1. Furthermore, we
can upper-bound the disagreement more tightly than simply saying it is at most 1/2 by
making use of the value of the Gibbs risk. To do so, let us write the variance of the margin
as

Var(MD′

Q )
def
= Var

(x,y)∼D′

(
MQ(x, y)

)
= µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2
. (10)

Therefore, as the variance cannot be negative, it follows that

µ2(MD′

Q ) ≥
(
µ1(MD′

Q )
)2
,
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which implies that

1− 2 · dD′Q ≥ (1− 2 ·RD′(GQ))2 . (11)

Easy calculation then gives the desired bound of dD
′

Q (that is based on the Gibbs risk):

dD
′

Q ≤ 2 ·RD′(GQ) ·
(
1−RD′(GQ)

)
. (12)

We therefore have the following proposition.

Proposition 9 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, we have

dD
′

Q ≤ 2 ·RD′(GQ) ·
(
1−RD′(GQ)

)
≤ 1

2
.

Moreover, if dD
′

Q = 1
2 then RD′(GQ) = 1

2 .

Proof Equation (12) gives the first inequality. The rest of the proposition directly fol-
lows from the fact that f(x) = 2x(1− x) is a parabola whose (unique) maximum is at the
point (1

2 ,
1
2).

4.2 Rediscovering the bound RD′(BQ) ≤ 2 ·RD′(GQ)

The well-known factor of two with which one can transform a bound on the Gibbs risk
RD′(GQ) into a bound on the risk RD′(BQ) of the majority vote is usually justified by
an argument similar to the one given in Remark 6. However, as shown by the proof of
Proposition 10, the result can also be obtained by considering that the risk of the majority
vote is the probability that the margin MD′

Q is lesser than or equal to zero (Equation 5) and
by simply applying Markov’s inequality (Lemma 46, provided in Appendix A).

Proposition 10 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, we have

RD′(BQ) ≤ 2 ·RD′(GQ) .

Proof Starting from Equation (5) and using Markov’s inequality (Lemma 46), we have

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
= Pr

(x,y)∼D′

(
1−MQ(x, y) ≥ 1

)
≤ E

(x,y)∼D′

(
1−MQ(x, y)

)
(Markov’s inequality)

= 1− E
(x,y)∼D′

MQ(x, y)

= 1− µ1(MD′

Q )

= 2 ·RD′(GQ) .

The last equality is directly obtained from Equation (7).
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Figure 2: Contour plots of the C-bound.

This proof highlights that we can upper-bound RD′(BQ) by considering solely the first
moment of the margin µ1(MD′

Q ). Once we realize this fact, it becomes natural to extend
this result to higher moments. We do so in the following subsection where we make use of
Chebyshev’s inequality (instead of Markov’s inequality), which uses not only the first, but
also the second moment of the margin. This gives rise to the C-bound of Theorem 11.

4.3 The C-bound: a Bound on RD′(BQ) That Can Be Much Smaller Than RD′(GQ)

Here is the bound on which most of the results of this paper are based. We refer to it as the
C-bound. It was first introduced (but in a different form) in Lacasse et al. (2006).5 We give
here three different (but equivalent) forms of the C-bound. Each one highlights a different
property or behavior of the bound. Figure 2 illustrates these behaviors.

It is interesting to note that the proof of Theorem 11 below has the same starting point as
the proof of Proposition 10, but uses Chebyshev’s inequality instead of Markov’s inequality
(respectively Lemmas 48 and 46, both provided in Appendix A). Therefore, Theorem 11 is
based on the variance of the margin in addition of its mean.

Theorem 11 (The C-bound) For any distribution Q on a set of voters and any distri-
bution D′ on X×{−1, 1}, if µ1(MD′

Q ) > 0 (i.e., RD′(GQ) < 1/2), we have

RD′(BQ) ≤ CD′Q ,

where

CD′Q
def
=

Var(MD′

Q )

µ2(MD′

Q )︸ ︷︷ ︸
First form

= 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )︸ ︷︷ ︸
Second form

= 1−

(
1− 2 ·RD′(GQ)

)2

1− 2 · dD′Q︸ ︷︷ ︸
Third form

.

5. We present the form used by Lacasse et al. (2006) in Remark 12 at the end of the present subsection.
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Proof Starting from Equation (5) and using the one-sided Chebyshev inequality (Lem-
ma 48), with X=−MQ(x, y), µ = E

(x,y)∼D′

(
−MQ(x, y)

)
and a = E

(x,y)∼D′
MQ(x, y), we obtain

RD′(BQ) = Pr
(x,y)∼D′

(
MQ(x, y) ≤ 0

)
= Pr

(x,y)∼D′

(
−MQ(x, y) + E

(x,y)∼D′
MQ(x, y) ≥ E

(x,y)∼D′
MQ(x, y)

)

≤
Var

(x,y)∼D′
(MQ(x, y))

Var
(x,y)∼D′

(MQ(x, y)) +

(
E

(x,y)∼D′
MQ(x, y)

)2 (Chebyshev’s inequality)

=
Var(MD′

Q )

µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2

+
(
µ1(MD′

Q )
)2 =

Var(MD′

Q )

µ2(MD′

Q )
(13)

=
µ2(MD′

Q ) −
(
µ1(MD′

Q )
)2

µ2(MD′

Q )

= 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )
(14)

= 1−

(
1− 2 ·RD′(GQ)

)2
1− 2 · dD′Q

. (15)

Lines (13) and (14) respectively present the first and the second forms of CD′Q , and follow

from the definitions of µ1(MD′

Q ), µ2(MD′

Q ), and Var(MD′

Q ) (see Equations 6, 8 and 10).

The third form of CD′Q is obtained at Line (15) using µ1(MD′

Q ) = 1 − 2 · RD′(GQ) and

µ2(MD′

Q ) = 1− 2 · dD′Q , which can be derived directly from Equations (7) and (9).

The third form of the C-bound shows that the bound decreases when the Gibbs risk RD′(GQ)
decreases or when the disagreement dD

′
Q increases. This new bound therefore suggests that

a majority vote should perform a trade-off between the Gibbs risk and the disagreement
in order to achieve a low Bayes risk. This is more informative than the usual bound of
Proposition 10, which focuses solely on the minimization of the Gibbs risk.

The first form of the C-bound highlights that its value is always positive (since the
variance and the second moment of the margin are positive), whereas the second form of the
C-bound highlights that it cannot exceed one. Finally, the fact that dD

′
Q = 1

2 ⇒ RD′(GQ) = 1
2

(Proposition 9) implies that the bound is always defined, since RD′(GQ) is here assumed to
be strictly less than 1

2 .

Remark 12 As explained before, the C-bound was originally stated in Lacasse et al. (2006),
but in a different form. It was presented as a function of WQ(x, y), the Q-weight of voters
making an error on example (x, y). More precisely, the C-bound was presented as follows:

CDQ =

Var
(x,y)∼D′

(
WQ(x, y)

)
Var

(x,y)∼D′

(
WQ(x, y)

)
+ (1/2−RD′(GQ))2 .
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It is easy to show that this form is equivalent to the three forms stated in Theorem 11, and
that WQ(x, y) and MQ(x, y) are related by

WQ(x, y)
def
= E

f∼Q
L`
(
f(x), y

)
=

1

2

(
1− y · E

f∼Q
f(x)

)
=

1

2

(
1−MQ(x, y)

)
.

However, we do not discuss further this form of the C-bound here, since we now consider
that the margin MQ(x, y) is a more natural notion than WQ(x, y).

4.4 Statistical Analysis of the C-bound’s Behavior

This section presents some properties of the C-bound. In the first place, we discuss the
conditions under which the C-bound is optimal, in the sense that if the only information
that one has about a majority vote is the first two moments of its margin distribution, it
is possible that the value given by the C-bound is the Bayes risk, i.e., CD′Q = RD′(BQ).6

In the second place, we show that the C-bound can be arbitrarily small, especially in the
presence of “non-correlated” voters, even if the Gibbs risk is large, i.e., CD′Q � RD′(GQ).

4.4.1 Conditions of Optimality

For the sake of simplicity, let us focus on a random variable M that represents a margin
distribution (here, we ignore underlying distributions Q on H and D′ on X×{−1, 1}) of
first moment µ1(M) and second moment µ2(M). By Equation (5), we have

R(BM )
def
= Pr (M ≤ 0) . (16)

Moreover, R(BM ) is upper-bounded by CM , the C-bound given by the second form of
Theorem 11,

CM def
= 1−

(
µ1(M)

)2
µ2(M)

. (17)

The next proposition shows when the C-bound can be achieved.

Proposition 13 (Optimality of the C-bound) Let M be any random variable that rep-

resents the margin of a majority vote. Then there exists a random variable M̃ such that

µ1(M̃) = µ1(M) , µ2(M̃) = µ2(M) , and C
M̃

= CM = R(B
M̃

) (18)

if and only if
0 < µ2(M) ≤ µ1(M) . (19)

Proof First, let us show that (19) implies (18). Given 0 < µ2(M) ≤ µ1(M), we consider

a distribution M̃ concentrated in two points defined as

M̃ =


0 with probability CM = 1−

(
µ1(M)

)2
µ2(M)

,

µ2(M)

µ1(M)
with probability 1− CM =

(
µ1(M)

)2
µ2(M)

.

6. In other words, the optimality of the C-bound means here that there exists a random variable with the
same first moments as the margin distribution, such that Chebyshev’s inequality of Lemma 48 is reached.
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This distribution has the required moments, as

µ1(M̃) =

(
µ1(M)

)2
µ2(M)

[
µ2(M)

µ1(M)

]
= µ1(M) , and µ2(M̃) =

(
µ1(M)

)2
µ2(M)

[
µ2(M)

µ1(M)

]2
= µ2(M) .

It follows directly from Equation (17) that C
M̃

= CM . Moreover, by Equation (16) and

because µ2(M)
µ1(M) > 0, we obtain as desired

R(B
M̃

) = Pr (M̃ ≤ 0) = CM .

Now, let us show that (18) implies (19). Consider a distribution M̃ such that the
equalities of Line (18) are satisfied. By Proposition 10 and Equation (7), we obtain the
inequality

CM = R(B
M̃

) ≤ 1− µ1(M̃) = 1− µ1(M) .

Hence, by the definition of CM , we have

1−
(
µ1(M)

)2
µ2(M)

≤ 1− µ1(M) ,

which, by straightforward calculations, implies 0 < µ2(M) ≤ µ1(M) , and we are done.

We discussed in Section 4.1 the multiple connections between the moments of the margin,
the Gibbs risk and the expected disagreement of a majority vote. In the next proposition,
we exploit these connections to derive expressions equivalent to Line (19) of Proposition 13.
Thus, this shows three (equivalent) necessary conditions under which the C-bound is opti-
mal.

Proposition 14 For any distribution Q on a set of voters and any distribution D′ on
X×{−1, 1}, if µ1(MD′

Q ) > 0 (i.e., RD′(GQ) < 1/2), then the three following statements are
equivalent:

(i) µ2(MD′

Q ) ≤ µ1(MD′

Q ) ;

(ii) RD′(GQ) ≤ dD
′

Q ;

(iii) CD′Q ≤ 2RD′(GQ) .

Proof The truth of (i)⇔ (ii) is a direct consequence of Equations (7) and (9). To prove
(ii)⇔ (iii), we express CD′Q in its third form. Straightforward calculations give

CD′Q = 1− (1− 2RD′(GQ))2

1− 2 dD
′

Q

≤ 2RD′(GQ) ⇐⇒ RD′(GQ) ≤ dD
′

Q .

Propositions 13 and 14 illustrate an interesting result: the C-bound is optimal if and only if
its value is lower than twice the Gibbs risk, the classical bound on the risk of the majority
vote (see Proposition 10).
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4.4.2 The C-bound Can Be Arbitrarily Small, Even for Large Gibbs Risks

The next result shows that, when the number of voters tends to infinity (and the weight of
each voter tends to zero), the variance of MQ will tend to 0 provided that the average of the
covariance of the outputs of all pairs of distinct voters is ≤ 0. In particular, the variance
will always tend to 0 if the risk of the voters is pairwise independent. To quantify the
independence between voters, we use the concept of covariance of a pair of voters (f1, f2):

CovD′ (f1, f2)
def
= Cov

(x,y)∼D′

(
y · f1(x), y · f2(x)

)
= E

(x,y)∼D′
f1(x)f2(x)−

(
E

(x,y)∼D′
f1(x)

)(
E

(x,y)∼D′
f2(x)

)
.

Note that the covariance CovD′ (f1, f2) is zero when f1 and f2 are independent (uncorrelated).

Proposition 15 For any countable set of voters H, any distribution Q on H, and any
distribution D′ on X×{−1, 1}, we have

Var(MD′

Q ) ≤
∑
f∈H

Q2(f) +
∑
f1∈H

∑
f2∈H:
f2 6=f1

Q(f1)Q(f2) · CovD′ (f1, f2) .

Proof By the definition of the margin (Definition 8), we rewrite MQ(x, y) as a sum of
random variables:

Var
(x,y)∼D′

(
MQ(x, y)

)
= Var

(x,y)∼D′

(∑
f∈H

Q(f) · y · f(x)

)

=
∑
f∈H

Q2(f) Var
(x,y)∼D′

(
y · f(x)

)
+
∑
f1∈H

∑
f2∈H:
f2 6=f1

Q(f1)Q(f2) Cov
(x,y)∼D′

(
y · f1(x), y · f2(x)

)
.

The inequality is a consequence of the fact that ∀f ∈ H : Var
(x,y)∼D′

(
y · f(x)

)
≤ 1.

The key observation that comes out of this result is that
∑

f∈HQ
2(f) is usually much

smaller than one. Consider, for example, the case where Q is uniform on H with |H| = n.
Then

∑
f∈HQ

2(f) = 1/n. Moreover, if CovD′ (f1, f2) ≤ 0 for each pair of distinct classifiers

in H, then Var(MD′

Q ) ≤ 1/n. Hence, in these cases, we have that CD′Q ∈ O(1/n) whenever

1−2RD′(GQ) and 1−2 dD
′

Q are larger than some positive constants independent of n. Thus,
even when RD′(GQ) is large, we see that the C-bound can be arbitrarily close to 0 as we
increase the number of classifiers having non-positive pairwise covariance of their risk. More
precisely, we have

Corollary 16 Given n independent voters under a uniform distribution Q, we have

RD′(BQ) ≤ CD′Q ≤ 1

n·
(

1−2 dD
′

Q

) ≤ 1

n·
(

1−2RD′(GQ)
)2 .
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Proof The first inequality directly comes from the C-bound (Theorem 11). The second
inequality is a consequence of Proposition 15, considering that in the case of a uniform
distribution of independent voters, we have CovD′ (f1, f2) = 0, and then Var(MD′

Q ) ≤ 1/n.
Applying this to the first form of the C-bound, we obtain

CD′Q =
Var(MD′

Q )

µ2(MD′

Q )
=

Var(MD′

Q )

1−2 dD
′

Q

≤
1
n

1−2 dD
′

Q

=
1

n·
(

1−2 dD
′

Q

) .
To obtain the third inequality, we simply apply Equation (11), and we are done.

4.5 Empirical Study of The Predictive Power of the C-bound

To further motivate the use of the C-bound, we investigate how its empirical value relates
to the risk of the majority vote by conducting two experiments. The first experiment shows
that the C-bound clearly outperforms the individual capacity of the other quantities of
Theorem 11 in the task of predicting the risk of the majority vote. The second experiment
shows that the C-bound is a great stopping criterion for Boosting algorithms.

4.5.1 Comparison with Other Indicators

We study how RD′(GQ), Var(MD′

Q ), dD
′

Q and CD′Q are respectively related to RD′(BQ). Note
that these four quantities appear in the first form or the third form of the C-bound (Theo-
rem 11). We omit here the moments µ1(MD′

Q ) and µ2(MD′

Q ) required by the second form of

the C-bound, as there is a linear relation between µ1(MD′

Q ) and RD′(GQ), as well as between

µ2(MD′

Q ) and dD
′

Q .

The results of Figure 3 are obtained with the AdaBoost algorithm of Schapire and Singer
(1999), used with “decision stumps” as weak learners, on several UCI binary classification
data sets (Blake and Merz, 1998). Each data set is split into two halves: a training set S
and a testing set T . We run AdaBoost on set S for 100 rounds and compute the quantities
RT (GQ), Var(MT

Q), dTQ and CTQ on set T at every 5 rounds of boosting. That is, we study
20 different majority vote classifiers per data set.

In Figure 3a, we see that we almost always have RT (BQ) < RT (GQ). There is, however,
no clear correlation between RT (BQ) and RT (GQ). We also see no clear correlation between
RT (BQ) and Var(MT

Q) or between RT (BQ) and dTQ in Figures 3b and 3c respectively, except
that generally RT (BQ) > Var(MT

Q) and RT (BQ) < dTQ . In contrast, Figure 3d shows a

strong correlation between CTQ and RT (BQ). Indeed, it is almost a linear relation! Therefore,
the C-bound seems well-suited to characterize the behavior of the Bayes risk, whereas each
of the individual quantities contained in the C-bound is insufficient to do so.

4.5.2 The C-bound as a Stopping Criterion for Boosting

We now evaluate the accuracy of the empirical value of the C-bound as a model selection
tool. More specifically, we compare its ability to act as a stopping criterion for the AdaBoost
algorithm.
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Figure 3: RT (BQ) versus RT (GQ), Var(MT
Q), dTQ and CTQ respectively.

We use the same version of the algorithm and the same data sets as in the previous
experiment. However, for this experiment, each data set is split into a training set S of
at most 400 examples and a testing set T containing the remaining examples. We run
AdaBoost on set S for 1000 rounds. At each round, we compute the empirical C-bound
CSQ (on the training set). Afterwards, we select the majority vote classifier with the lowest

value of CSQ and compute its Bayes risk RT (BQ) (on the test set). We compare this stopping
criterion with three other methods. For the first method, we compute the empirical Bayes
risk RS(BQ) at each round of boosting and, after that, we select the one having the lowest
such risk.7 The second method consists in performing 5-fold cross-validation and selecting
the number of boosting rounds having the lowest cross-validation risk. Finally, the third
method is to reserve 10% of S as a validation set, train AdaBoost on the remaining 90%,

7. When several iterations have the same value of RS(BQ), we select the earlier one.
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Data Set Information Risk RT (BQ) by Stopping Criterion (and number of rounds performed)

Name |S| |T | C-bound CSQ Risk RS(BQ) Validation Set Cross-Validation 1000 rounds

Adult 400 11409 0.166 (149) 0.169 (314) 0.165 (13) 0.166 (97) 0.172
BreastCancer 341 342 0.050 (127) 0.047 (48) 0.041 (57) 0.047 (108) 0.058
Credit-A 326 327 0.187 (346) 0.199 (854) 0.156 (9) 0.174 (47) 0.199
Glass 107 107 0.252 (72) 0.196 (299) 0.346 (6) 0.290 (35) 0.196
Haberman 147 147 0.320 (27) 0.320 (45) 0.279 (1) 0.320 (38) 0.340
Heart 148 149 0.215 (124) 0.289 (950) 0.181 (31) 0.195 (14) 0.289
Ionosphere 175 176 0.085 (210) 0.120 (56) 0.142 (2) 0.114 (67) 0.085
Letter:AB 400 1155 0.005 (42) 0.014 (17) 0.061 (2) 0.005 (60) 0.010
Letter:DO 400 1158 0.041 (179) 0.041 (44) 0.143 (1) 0.044 (83) 0.043
Letter:OQ 400 1136 0.050 (65) 0.050 (138) 0.063 (26) 0.044 (118) 0.049
Liver 172 173 0.289 (541) 0.289 (743) 0.335 (5) 0.289 (603) 0.295
Mushroom 400 7724 0.010 (612) 0.024 (38) 0.079 (6) 0.024 (51) 0.010
Sonar 104 104 0.192 (688) 0.250 (20) 0.317 (2) 0.163 (34) 0.202
Tic-tac-toe 400 558 0.389 (59) 0.364 (2) 0.358 (5) 0.403 (9) 0.389
USvotes 217 218 0.032 (11) 0.041 (598) 0.032 (16) 0.028 (1) 0.046
Waveform 400 7600 0.101 (145) 0.102 (178) 0.106 (13) 0.103 (22) 0.115
Wdbc 284 285 0.049 (40) 0.060 (19) 0.091 (2) 0.046 (10) 0.060

Statistical Comparison Tests

CSQ vs RS(BQ) CSQ vs Validation Set CSQ vs Cross-Validation CSQ vs 1000 rounds

Poisson binomial test 91% 86% 57% 90%
Sign test (p-value) 0.05 0.23 0.60 0.02

Table 1: Comparison of various stopping criteria over 1000 rounds of boosting. The Poisson
binomial test gives the probability that CSQ is a better stopping criterion than every
other approach. The sign test gives a p-value representing the probability that the
null hypothesis is true (i.e., the CSQ stopping criterion has the same performance
as every other approach).

and keep the majority vote with the lowest Bayes risk on the validation set. Note that this
last method differs from the others because AdaBoost sees 10% fewer examples during the
learning process, but this is the price to pay for using a validation set.

Table 1 compares the Bayes risks on the test set RT (BQ) of the majority vote classifiers
selected by the different stopping criteria. We compute the probability of C-bound being
a better stopping criteria than every other methods with two statistical tests: the Poisson
binomial test (Lacoste et al., 2012) and the sign test (Mendenhall, 1983). Both statistical
tests suggest that the empirical C-bound is a better model selection tool than the empirical
Bayes risk (as usual in machine learning tasks, this method is prone to overfitting) and
the validation set (although this method performs very well sometimes, it suffers from
the small quantity of training examples on several tasks). The empirical C-bound and the
cross-validation methods obtain a similar accuracy. However, the cross-validation procedure
needs more running time. We conclude that the empirical C-bound is a surprisingly good
stopping criterion for Boosting.
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5. A PAC-Bayesian Story: From Zero to a PAC-Bayesian C-bound

In this section, we present a PAC-Bayesian theory that allows one to estimate the C-bound
value CDQ from its empirical estimate CSQ. From there, we derive bounds on the risk of
the majority vote RD(BQ) based on empirical observations. We first recall the classical
PAC-Bayesian bound (here called the PAC-Bound 0) that bounds the true Gibbs risk by its
empirical counterpart. We then present two different PAC-Bayesian bounds on the majority
vote classifier (respectively called PAC-Bounds 1 and 2). A third bound, PAC-Bound 3,
will be presented in Section 6. This analysis intends to be self-contained, and can act as an
introduction to PAC-Bayesian theory.8

The first PAC-Bayesian theorem was proposed by McAllester (1999). Given a set of
voters H, a prior distribution P on H chosen before observing the data, and a posterior
distribution Q on H chosen after observing a training set S∼Dm (Q is typically chosen by
running a learning algorithm on S), PAC-Bayesian theorems give tight risk bounds for the
Gibbs classifier GQ. These bounds on RD(GQ) usually rely on two quantities:

a) The empirical Gibbs risk RS(GQ), that is computed on the m examples of S,

RS(GQ) =
1

m

m∑
i=1

E
f∼Q

L`(f(xi), yi) .

b) The Kullback-Leibler divergence between distributions Q and P , that measures “how
far” the chosen posterior Q is from the prior P ,

KL(Q‖P )
def
= E

f∼Q
ln
Q(f)

P (f)
. (20)

Note that the obtained PAC-Bayesian bounds are uniformly valid for all possible posteri-
ors Q.

In the following, we present a very general PAC-Bayesian theorem (Section 5.1), and we
specialize it to obtain a bound on the Gibbs risk RD(GQ) that is converted in a bound on
the risk of the majority vote RD(BQ) by the factor 2 of Proposition 10 (Section 5.2). Then,
we define new losses that rely on a pair of voters (Section 5.3). These new losses allow
us to extend the PAC-Bayesian theory to directly bound RD(BQ) through the C-bound
(Sections 5.4 and 5.5). For each proposed bound, we explain the algorithmic procedure
required to compute its value.

5.1 General PAC-Bayesian Theory for Real-Valued Losses

A key step of most PAC-Bayesian proofs is summarized by the following Change of measure
inequality (Lemma 17).

We present here the same proof as in Seldin and Tishby (2010) and McAllester (2013).
Note that the same result is derived from Fenchel’s inequality in Banerjee (2006) and
Donsker-Varadhan’s variational formula for relative entropy in Seldin et al. (2012); Tol-
stikhin and Seldin (2013).

8. We also recommend the “practical prediction tutorial” of Langford (2005), that contains an insightful
PAC-Bayesian introduction.
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Lemma 17 (Change of measure inequality) For any set H, for any distributions P
and Q on H, and for any measurable function φ : H → R, we have

E
f∼Q

φ(f) ≤ KL(Q‖P ) + ln

(
E
f∼P

eφ(f)

)
.

Proof The result is obtained by simple calculations, exploiting the definition of the KL-
divergence given by Equation (20), and then Jensen’s inequality (Lemma 47, in Appendix A)
on concave function ln(·) :

E
f∼Q

φ(f) = E
f∼Q

ln eφ(f) = E
f∼Q

ln

(
Q(f)

P (f)
· P (f)

Q(f)
· eφ(f)

)
= KL(Q‖P ) + E

f∼Q
ln

(
P (f)

Q(f)
· eφ(f)

)
≤ KL(Q‖P ) + ln

(
E
f∼Q

P (f)

Q(f)
· eφ(f)

)
(Jensen’s inequality)

≤ KL(Q‖P ) + ln

(
E
f∼P

eφ(f)

)
.

Note that the last inequality becomes an equality if Q and P share the same support.

Let us now present a general PAC-Bayesian theorem which bounds the expectation of
any real-valued loss function L : Y ×Y → [0, 1]. This theorem is slightly more general than
the PAC-Bayesian theorem of Germain et al. (2009, Theorem 2.1), that is specialized to the
expected linear loss, and therefore gives rise to a bound of the “generalized” Gibbs risk of
Definition 5. A similar result is presented in Tolstikhin and Seldin (2013, Lemma 1).

Theorem 18 (General PAC-Bayesian theorem for real-valued losses) For any dis-
tribution D on X × Y, for any set H of voters X → Y, for any loss L : Y × Y → [0, 1], for
any prior distribution P on H, for any δ ∈ (0, 1], for any m′ > 0, and for any convex
function D : [0, 1]×[0, 1]→ R, we have

Pr
S∼Dm

For all posteriors Q on H :

D( E
f∼Q

ELS(f), E
f∼Q

ELD(f)) ≤ 1

m′

[
KL(Q‖P )+ln

(
1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),E

L
D(f))

)]≥ 1− δ ,

where KL(Q‖P ) is the Kullback-Leibler divergence between Q and P of Equation (20).

Most of the time, this theorem is used with m′ = m, the size of the training set. However,
as pointed out by Lever et al. (2010), m′ does not have to be so. One can easily show
that different values of m′ affect the relative weighting between the terms KL(Q‖P ) and

ln
(

1
δES∼DmEf∼P e

m′·D(ELS (f),ELD(f))
)

in the bound. Hence, especially in situations where
these two terms have very different values, a “good” choice for the value of m′ can tighten
the bound.
Proof Note that E

f∼P
em
′·D(ELS (f),ELD(f)) is a non-negative random variable. By Markov’s

inequality (Lemma 46, in Appendix A), we have

Pr
S∼Dm

(
E
f∼P

em
′·D(ELS (f),ELD(f)) ≤ 1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),ELD(f))

)
≥ 1− δ .
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Hence, by taking the logarithm on each side of the innermost inequality, we obtain

Pr
S∼Dm

(
ln

[
E
f∼P

em
′·D(ELS (f),ELD(f))

]
≤ ln

[
1

δ
E

S∼Dm
E
f∼P

em
′·D(ELS (f),ELD(f))

])
≥ 1− δ .

We apply the change of measure inequality (Lemma 17) on the left side of innermost in-
equality, with φ(f) = m′ · D(ELS(f),ELD(f)). We then use Jensen’s inequality (Lemma 47,
in Appendix A), exploiting the convexity of D :

∀Q on H : ln

[
E
f∼P

em
′·D(ELS (f),ELD(f))

]
≥ m′ · E

f∼Q
D(ELS(f),ELD(f))−KL(Q‖P )

≥ m′ · D( E
f∼Q

ELS(f), E
f∼Q

ELD(f))−KL(Q‖P ) .

We therefore have

Pr
S∼Dm

 For all posteriors Q :

m′ · D( E
f∼Q

ELS(f), E
f∼Q

ELD(f))−KL(Q‖P )≤ ln

[
1
δ E
S∼Dm

E
f∼P

em
′·D(ELS (f),E

L
D(f))

] ≥1− δ .

The result then follows from easy calculations.

As shown in Germain et al. (2009), the general PAC-Bayesian theorem can be used to
recover many common variants of the PAC-Bayesian theorem, simply by selecting a well-
suited function D. Among these, we obtain a similar bound as the one proposed by Langford
and Seeger (2001); Seeger (2002); Langford (2005) by using the Kullback-Leibler divergence
between the Bernoulli distributions with probability of success q and probability of success p:

kl
(
q ‖ p) def

= q ln
q

p
+ (1− q) ln

1− q
1− p . (21)

Note that kl
(
q ‖ p) is a shorthand notation for KL(Q‖P ) of Equation (20), with Q = (q, 1−q)

and P = (p, 1−p). Corollary 50 (in Appendix A) shows that kl
(
q ‖ p) is a convex function.

In order to apply Theorem 18 with D(q, p) = kl(q‖p) and m′ = m, we need the next lemma.

Lemma 19 For any distribution D on X ×Y, for any voter f : X → Y, for any loss
L : Y×Y → [0, 1], and any positive integer m, we have

E
S∼Dm

exp

[
m · kl

(
ELS(f) ‖ELD(f)

)]
≤ ξ(m) ,

where

ξ(m)
def
=

m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k
. (22)

Moreover,
√
m ≤ ξ(m) ≤ 2

√
m .

Proof Let us introduce a random variable Xf that follows a binomial distribution of m
trials with a probability of success ELD(f). Hence, Xf ∼ B(m,ELD(f)) .
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As em·kl
(
· ‖ELD(f)

)
is a convex function, Lemma 51 (due to Maurer, 2004, and provided

in Appendix A), shows that

E
S∼Dm

exp

[
m · kl

(
ELS(f) ‖ELD(f)

)]
≤ E

Xf∼B(m,ELD(f))
exp

[
m · kl

(
1
mXf ‖ELD(f)

)]
.

We then have

E
Xf∼B(m,ELD(f))

emkl( 1
m
Xf‖ELD(f))

= E
Xf∼B(m,ELD(f))

(
1
mXf

ELD(f)

)Xf (
1− 1

mXf

1− ELD(f)

)m−Xf

=
m∑
k=0

Pr
Xf∼B(m,ELD(f))

(
Xf = k

)
·
(

k
m

ELD(f)

)k(
1− k

m

1− ELD(f)

)m−k

=
m∑
k=0

(
m

k

)(
ELD(f)

)k(
1− ELD(f)

)m−k
·
(

k
m

ELD(f)

)k(
1− k

m

1− ELD(f)

)m−k

=
m∑
k=0

(
m

k

)(
k

m

)k (
1− k

m

)m−k
= ξ(m) .

Maurer (2004) shows that ξ(m) ≤ 2
√
m for m ≥ 8, and ξ(m) ≥ √m for m ≥ 2. However,

the cases for m ∈ {1, 2, 3, 4, 5, 6, 7} are easy to verify computationally.

Theorem 20 below specializes the general PAC-Bayesian theorem to D(q, p) = kl(q‖p), but
still applies to any real-valued loss functions. This theorem can be seen as an intermediate
step to obtain Corollary 21 of the next section, which uses the linear loss to bound the Gibbs
risk. However, Theorem 20 below is reused afterwards in Section 5.3 to derive PAC-Bayesian
theorems for other loss functions.

Theorem 20 For any distribution D on X ×Y, for any set H of voters X → Y, for any
loss L : Y × Y → [0, 1], for any prior distribution P on H, for any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(

E
f∼Q

ELS(f)
∥∥∥ E
f∼Q

ELD(f)
)
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof By Theorem 18, with D(q, p) = kl(q‖p) and m′ = m, we have

Pr
S∼Dm

 ∀Q on H :

kl( E
f∼Q

ELS(f) ‖ E
f∼Q

ELD(f))≤ 1

m

[
KL(Q‖P )+ln

(
1

δ
E

S∼Dm
E
f∼P

em·kl(E
L
S (f) ‖E

L
D(f))

)]≥ 1− δ .

As the prior P is independent of S, we can swap the two expectations in E
S∼Dm

E
f∼P

em·kl(·‖·).

This observation, together with Lemma 19, gives

E
S∼Dm

E
f∼P

em·kl(ELS (f) ‖ELD(f)) = E
f∼P

E
S∼Dm

em·kl(ELS (f) ‖ELD(f)) ≤ E
f∼P

ξ(m) = ξ(m) .
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5.2 PAC-Bayesian Theory for the Gibbs Classifier

This section presents two classical PAC-Bayesian results that bound the risk of the Gibbs
classifier. One of these bounds is used to express a first PAC-Bayesian bound on the risk of
the majority vote classifier. Then, we explain how to compute the empirical value of this
bound by a root-finding method.

5.2.1 PAC-Bayesian Theorems for the Gibbs Risk

We interpret the two following results as straightforward corollaries of Theorem 20. Indeed,
from Definition 5, the expected linear loss of a Gibbs classifier GQ on a distribution D′ is
RD′(GQ). These two Corollaries are very similar to well-known PAC-Bayesian theorems. At
first, Corollary 21 is similar to the PAC-Bayesian theorem of Langford and Seeger (2001);

Seeger (2002); Langford (2005), with the exception that ln m+1
δ is replaced by ln ξ(m)

δ . Since
ξ(m) ≤ 2

√
m ≤ m + 1, this result gives slightly better bounds. Similarly, Corollary 22

provides a slight improvement of the PAC-Bayesian bound of McAllester (1999, 2003a).

Corollary 21 (Langford and Seeger, 2001; Seeger, 2002; Langford, 2005) For any distri-
bution D on X×{−1, 1}, for any set H of voters X → [−1, 1], for any prior distribution P
on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(
RS(GQ)

∥∥RD(GQ)
)
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof The result is directly obtained from Theorem 20 using the linear loss L = L` to
recover the Gibbs risk of Definition 5.

Corollary 22 (McAllester, 1999, 2003a) For any distribution D on X×{−1, 1}, for any
set H of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

RD(GQ) ≤ RS(GQ) +

√
1

2m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

Proof The result is obtained from Corollary 21 together with Pinsker’s inequality

2(q − p)2 ≤ kl(q‖p) .
We then have

Pr
S∼Dm

For all posteriors Q on H :

2·
(
RS(GQ)−RD(GQ)

)2
≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ .

The result is obtained by isolating RD(GQ) in the inequality, omitting the lower bound of
RD(GQ). Recall that the probability is “≥ 1−δ ”, hence if we omit an event, the probability
may just increase, continuing to be greater than 1−δ.
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5.2.2 A First Bound for the Risk of the Majority Vote

Let assume that the Gibbs risk RD(GQ) of a classifier is lower than or equal to 1
2 . Given

an empirical Gibbs risk RS(GQ) computed on a training set of m examples, the Kullback-
Leibler divergence KL(Q‖P ), and a confidence parameter δ, Corollary 21 says that the
Gibbs risk RD(GQ) is included (with confidence 1−δ) in the continuous set R δ

Q,S defined as

R δ
Q,S

def
=

{
r : kl

(
RS(GQ)

∥∥ r) ≤ 1

m

[
KL(Q‖P ) + ln

ξ(m)

δ

]
and r ≤ 1

2

}
. (23)

Thus, an upper bound on RD(GQ) is obtained by seeking the maximum value of R δ
Q,S . As

explained by Proposition 10, we need to multiply the obtained value by a factor 2 to have
an upper bound on RD(BQ). This methodology is summarized by PAC-Bound 0.

Note that PAC-Bound 0 is also valid when RD(GQ) is greater than 1
2 , because in this

case, 2 · supR δ
Q,S = 1 (with confidence at least 1− δ), which is a trivial upper bound

of RD(BQ).

PAC-Bound 0 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q on H : RD(BQ) ≤ 2 · supR δ

Q,S

)
≥ 1− δ .

Proof If supR δ
Q,S = 1

2 , the bound is trivially valid because RD(BQ) ≤ 1. Otherwise, the
bound is a direct consequence of Proposition 10 and Corollary 21.

As we see, the proposed bound cannot be obtained by a closed-form expression. Thus, we
need to use a strategy as the one suggested in the following.

5.2.3 Computation of PAC-Bound 0

One can compute the value r=supR δ
Q,S of PAC-Bound 0 by solving

kl
(
RS(GQ)

∥∥ r) = 1
m

[
KL(Q‖P ) + ln ξ(m)

δ

]
, with RS(GQ) ≤ r ≤ 1

2 ,

by a root-finding method. This turns out to be an easy task since the left-hand side of
the equality is a convex function of r and the right-hand side is a constant value. Note
that solving the same equation with the constraint r ≤ RS(GQ) gives a lower bound of
RD(GQ), but not a lower bound on RD(BQ). Figure 4 shows an application example of
PAC-Bound 0.

5.3 Joint Error, Joint Success, and Paired-voters

We now introduce a few notions that are necessary to obtain new PAC-Bayesian theorems
for the C-bound in Sections 5.4 and 5.5.
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kl(RS(GQ)‖r)
1
m

[
KL(Q‖P ) + ln ξ(m)

δ

]
≈ 0.0117

Figure 4: Example of application of PAC-Bound 0. We suppose that KL(Q‖P ) = 5, m =
1000 and δ = 0.05. If we observe an empirical Gibbs risk RS(GQ) = 0.30, then
RD(GQ) ∈ R δ

Q,S ≈ [0.233, 0.373] with a confidence of 95%. On the figure, the

intersections between the two curves correspond to the limits of the interval R δ
Q,S .

Then, with these values, PAC-bound 0 gives RD(BQ) . 2 · 0.373 = 0.746.

5.3.1 The Joint Error and the Joint Success

We have already defined the expected disagreement dD
′

Q of a distribution Q of voters (Defi-
nition 7). In the case of binary voters, the expected disagreement corresponds to

dD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) 6= h2(x))

)
.

Let us now define two closely related notions, the expected joint success sD
′

Q and the expected

joint error eD
′

Q . In the case of binary voters, these two concepts are expressed naturally by

eD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) 6= y)I(h2(x) 6= y)

)
,

sD
′

Q = E
h1∼Q

E
h2∼Q

(
E

(x,y)∼D′
I(h1(x) = y)I(h2(x) = y)

)
.

Let us now extend in the usual way these equations to the case of real-valued voters.

Definition 23 For any probability distribution Q on a set of voters, we define the expected
joint error eD

′
Q relative to D′ and the expected joint success sD

′
Q relative to D′ as

eD
′

Q
def
= E

f1∼Q
E

f2∼Q

(
E

(x,y)∼D′
L`(f1(x), y) · L`(f2(x), y)

)
,

sD
′

Q
def
= E

f1∼Q
E

f2∼Q

(
E

(x,y)∼D′

[
1− L`(f1(x), y)

]
·
[
1− L`(f2(x), y)

])
.
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From the definitions of the linear loss (Definition 2) and the margin (Definition 8), we
can easily see that

eD
′

Q = E
(x,y)∼D′

(
1−MQ(x, y)

2

)2

=
1

4

(
1− 2 · µ1(MD′

Q ) + µ2(MD′

Q )
)
,

sD
′

Q = E
(x,y)∼D′

(
1 +MQ(x, y)

2

)2

=
1

4

(
1 + 2 · µ1(MD′

Q ) + µ2(MD′

Q )
)
.

Remembering from Equation (9) that dD
′

Q = 1
2

(
1− µ2(MD′

Q )
)

, we can conclude that eD
′

Q ,

sD
′

Q and dD
′

Q always sum to one:9

eD
′

Q + sD
′

Q + dD
′

Q = 1 .

We can now rewrite the first moment of the margin and the Gibbs risk as

µ1(MD′

Q ) = sD
′

Q − eD
′

Q = 1− (2eD
′

Q + dD
′

Q ) ,

RD′(GQ) = 1
2 (1− sD′Q + eD

′
Q ) = 1

2 (2eD
′

Q + dD
′

Q ) . (24)

Therefore, the third form of C-bound of Theorem 11 can be rewritten as

CD′Q = 1−

(
1− (2eD

′
Q + dD

′
Q )
)2

1− 2dD
′

Q

. (25)

5.3.2 Paired-Voters and Their Losses

This first generalization of the PAC-Bayesian theorem allows us to bound separately either
dDQ, eDQ or sDQ, and therefore to bound CDQ . To prove this result, we need to define a new
kind of voter that we call a paired-voter.

Definition 24 Given two voters fi : X → [−1, 1] and fj : X → [−1, 1], the paired-voter
fij : X → [−1, 1]2 outputs a tuple:

fij(x)
def
= 〈 fi(x), fj(x) 〉 .

Given a set of votersH weighted by a distributionQ onH, we define a set of paired-votersH2

weighted by a distribution Q2 as

H2 def
= {fij : fi, fj ∈ H} , and Q2(fij)

def
= Q(fi) ·Q(fj) . (26)

We now present three losses for paired-voters. Remember that a loss function has the
form Y×Y → [0, 1], where Y is the voter’s output space. As a paired-voter output is a

9. This is fairly intuitive in the case of binary voters. Indeed, given any example (x, y) and any two binary
voters h1, h2, we have either: both voters misclassify the example – i.e., h1(x) = h2(x) 6= y –, both voters
correctly classify the example – i.e., h1(x) = h2(x) = y –, or both voters disagree – i.e., h1(x) 6= h2(x).
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tuple, our new loss functions map [−1, 1]2 × {−1, 1} to [0, 1]. Thus,

Le
(
fij(x), y

) def
= L`(fi(x), y) · L`(fj(x), y) ,

Ls
(
fij(x), y

) def
=

[
1− L`(fi(x), y)

]
·
[
1− L`(fj(x), y)

]
,

Ld
(
fij(x), y

) def
= L`(fi(x)·fj(x) , 1) . (27)

The key observation to understand the next theorems is that the expected losses of
paired-voters H2 defined by Equation (26) allow one to recover the values of eD

′
Q , sD

′
Q and

dD
′

Q . Indeed, it directly follows from Definitions 3, 7 and 23, that

eD
′

Q = E
fij∼Q2

ELeD′
(
fij

)
; sD

′
Q = E

fij∼Q2
ELsD′

(
fij

)
; dD

′
Q = E

fij∼Q2
ELdD′

(
fij

)
. (28)

5.4 PAC-Bayesian Theory For Losses of Paired-voters

As explained in Section 5.2, classical PAC-Bayesian theorems, like Corollaries 21 and 22,
provide an upper bound on RD(GQ) that holds uniformly for all posteriors Q. A bound on
RD(BQ) is typically obtained by multiplying the former bound by the usual factor of 2, as
in PAC-Bound 0.

In this subsection, we present a first bound of RD(BQ) relying on the C-bound of Theo-
rem 11. A uniform bound on CDQ is obtained using the third form of the C-bound, through a
bound on the Gibbs risk RD(GQ) and another bound on the disagreement dDQ. The desired
bound on RD(GQ) is obtained by Corollary 21 as in PAC-Bound 0. To obtain a bound
on dDQ, we capitalize on the notion of paired-voters presented in the previous section. This
allows us to express two new PAC-Bayesian bounds on the risk of a majority vote, one for
the supervised case and another for the semi-supervised case.

5.4.1 A PAC-Bayesian Theorem for eDQ, s
D
Q, or dDQ

The following PAC-Bayesian theorem can either bound the expected disagreement dDQ, the
expected joint success sDQ or the expected joint error eDQ of a majority vote (see Definitions 7
and 23).

Theorem 25 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q on H :

kl
(
αSQ
∥∥αDQ) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m)

δ

] ≥ 1− δ ,

where αD
′

Q can be either eD
′

Q , sD
′

Q or dD
′

Q .

Proof Theorem 25 is deduced from Theorem 20. We present here the proof for αD
′

Q = eD
′

Q .
The two other cases are very similar.

Consider the set of paired-voters H2 and the posterior distribution Q2 of Equation (26).
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Also consider the prior distribution P 2 on H2 such that P 2(fij)
def
= P (fi) · P (fj) . Then

we have,

KL(Q2‖P 2) = E
fij∼Q2

ln
Q2(fij)

P 2(fij)
= E

fij∼Q2
ln
Q(fi) ·Q(fj)

P (fi) · P (fj)

= E
fij∼Q2

[
ln
Q(fi)

P (fi)
+ ln

Q(fj)

P (fj)

]
= 2 ·KL(Q‖P ) .

Finally, from Equation (28), we have E
fij∼Q2

ELeD
(
fij

)
= eDQ and E

fij∼Q2
ELeS

(
fij

)
= eSQ .

Hence, by applying Theorem 20, we are done.

5.4.2 A New Bound for the Risk of the Majority Vote

Based on the fact that Theorem 25 gives a lower bound on the expected disagreement dDQ, we
now derive PAC-Bound 1, which is a PAC-Bayesian bound for the C-bound, and therefore,
for the risk of the majority vote.

Given any prior distribution P on H, we need the interval R δ
Q,S of Equation (23),

together with

D δ
Q,S

def
=

{
d : kl(dSQ‖ d) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m)

δ

]}
. (29)

We then express the following bound on the Bayes risk.

PAC-Bound 1 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ 1−

(
1− 2 · supRδ/2Q,S

)2

1− 2 · inf Dδ/2Q,S

 ≥ 1− δ ,

where Rδ/2Q,S and Dδ/2Q,S are respectively defined by Equations (23) and (29).

Proof By Proposition 9, we have that dSQ ≤ 1
2 . This, together with the facts that m is

finite and dSQ ∈ D δ
Q,S , implies that inf Dδ/2Q,S <

1
2 , and therefore that the denominator of the

fraction in the statement of PAC-Bound 1 is always strictly positive.

Necessarily, supRδ/2Q,S ≤ 1
2 . Let us consider the two following cases.

Case 1: supRδ/2Q,S = 1
2 . Then, 1− 2 · supRδ/2Q,S = 0, and the bound on RD(BQ) is 1, which

is trivially valid.

Case 2: supRδ/2Q,S <
1
2 . Then, we can apply the third form of Theorem 11 to obtain the up-

per bound on RD(BQ). The desired bound is obtained by replacing dDQ by its lower bound
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inf Dδ/2Q,S , and RD(GQ), by its upper bound supRδ/2Q,S . The two bounds can therefore be
deduced by suitably applying Corollary 21 (replacing δ by δ/2) and Theorem 25 (replacing
αSQ by dSQ, αDQ by dDQ and δ by δ/2).

This bound has a major inconvenience: it degrades rapidly if the bounds on the nu-
merator and the denominator are not tight. Note however that in the semi-supervised
framework, we can achieve tighter results because the labels of the examples do not affect
the value of dD

′
Q (see Definition 7). Indeed, it is generally assumed in this framework that

the learner has access to a huge amount m′ of unlabeled data (i.e., m′ � m). One can then
obtain a tighter bound of the disagreement. In this context, PAC-Bound 1’ stated below is
tighter than PAC-Bound 1.

PAC-Bound 1’ (Semi-supervised bound) For any distribution D on X×{−1, 1}, for
any set H of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we
have

Pr
S∼Dm

SU∼Dm
′

unlabeled

∀Q on H : RD(BQ) ≤ 1−

(
1− 2 · supRδ/2Q,S

)2

1− 2 · inf D δ/2
Q,SU

 ≥ 1− δ .

Proof In the presence of a large amount of unlabeled data (denoted by the set SU ), one
can use Corollary 25 to obtain an accurate lower bound of dDQ. An upper bound of RD(GQ)
can also be obtained via Corollary 21 but, this time, on the labeled data S. Thus, similarly
as in the proof of PAC-Bound 1, the result follows from Theorem 11.

5.4.3 Computation of PAC-Bounds 1 and 1’

To compute PAC-Bound 1, we obtain the values of r = supRδ/2Q,S and d = inf Dδ/2Q,S by
solving

kl
(
RS(GQ)

∥∥ r) = 1
m

[
KL(Q‖P ) + ln ξ(m)

δ/2

]
, with RS(GQ) ≤ r ≤ 1

2 ,

and kl
(
dSQ
∥∥ d) = 1

m

[
2 ·KL(Q‖P ) + ln ξ(m)

δ/2

]
, with d ≤ dSQ .

These equations are very similar to the one we solved to compute PAC-Bound 0, as described

in Section 5.2.2. Once r and d are computed, the bound on RD(BQ) is given by 1− (1−2·r)2
1−2·d .

The same methodology can be used to compute PAC-Bound 1’, except that in the
semi-supervised setting, the disagreement is computed on the unlabeled data SU .

5.5 PAC-Bayesian Theory to Directly Bound the C-bound

PAC-Bounds 1 and 1’ of the last section require two approximations to upper bound CDQ :
one on RD(GQ) and another on dDQ. We introduce below an extension to the PAC-Bayesian

theory (Theorem 28) that enables us to directly bound CDQ . To do so, we directly bound any
pair of expectations among eDQ, sDQ and dDQ. For this reason, the new PAC-Bayesian theorem
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is based on a trivalent random variable instead of a Bernoulli one (which is bivalent). Note
that Seeger (2003) and Seldin and Tishby (2010) have presented more general PAC-Bayesian
theorems valid for k-valent random variables, for any positive integer k. However, our result
leads to tighter bounds for the k = 3 case.

Before we get to this new PAC-Bayesian theorem (Theorem 28), we need some prelimi-
nary results.

5.5.1 A General PAC-Bayesian Theorem for Two Losses of Paired-Voters

Theorem 26 below allows us to simultaneously bound two losses of paired-voters. This
result is inspired by the general PAC-Bayesian theorem for real-valued losses (Theorem 18).

Theorem 26 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any two losses Lα,Lβ : [−1, 1] × {−1, 1} → [0, 1] with α, β ∈ {e, s, d}, for any prior
distribution P on H, for any δ ∈ (0, 1], for any m′ > 0, and for any convex function
D(q1, q2 ‖ p1, p2), we have

Pr
S∼Dm


For all posteriors Q on H :

D

(
E

fij∼Q2
ELαS
(
fij

)
, E
fij∼Q2

E
Lβ
S

(
fij

) ∥∥∥∥ E
fij∼Q2

ELαD
(
fij

)
, E
fij∼Q2

E
Lβ
D

(
fij

))
≤ 1

m′

[
2 ·KL(Q‖P ) + ln

(
Ω

δ

)]
 ≥ 1− δ ,

where Ω
def
= E

S∼Dm
E

fij∼P 2
e
m′·D

(
ELαS
(
fij

)
, E
Lβ
S

(
fij

)∥∥∥ELαD
(
fij

)
, E
Lβ
D

(
fij

))
.

Proof To simplify the notation, first let αD
′

ij
def
= ELαD′

(
fij
)

and βD
′

ij
def
= ELβD′

(
fij
)
.

Now, since Efij∼P 2 em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij ) is a positive random variable, Markov’s inequal-

ity (Lemma 46, in Appendix A) can be applied to give

Pr
S∼Dm

(
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij ) ≤ 1

δ
E

S∼Dm
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )) ≥ 1− δ .

By exploiting the fact that ln(·) is an increasing function, and by the definition of Ω, we
obtain

Pr
S∼Dm

(
ln

[
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )] ≤ ln

[
Ω

δ

])
≥ 1− δ . (30)

We apply the change of measure inequality (Lemma 17) on the left side of innermost in-
equality, with φ(f) = m′ · D

(
αSij , β

S
ij

∥∥αDij , βDij), P = P 2 and Q = Q2. We then use Jensen’s
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inequality (Lemma 47, in Appendix A), exploiting the convexity of D :

ln

[
E

fij∼P 2
em
′·D
(
αSij ,β

S
ij

∥∥αDij ,βDij )]
≥ m′ E

fij∼Q2
D
(
αSij , β

S
ij

∥∥αDij , βDij)−KL
(
Q2
∥∥P 2

)
≥ m′ · D

(
E

fij∼Q2
αSij , E

fij∼Q2
βSij

∥∥∥∥∥ E
fij∼Q2

αDij , E
fij∼Q2

βDij

)
−KL

(
Q2
∥∥P 2

)
= m′ · D

(
E

fij∼Q2
αSij , E

fij∼Q2
βSij

∥∥∥∥∥ E
fij∼Q2

αDij , E
fij∼Q2

βDij

)
− 2 ·KL

(
Q
∥∥P ) .

The last equality KL
(
Q2
∥∥P 2

)
= 2 ·KL

(
Q
∥∥P ) has been shown in the proof of Theorem 25.

The result can then be straightforwardly obtained by inserting the last inequality into Equa-
tion (30).

5.5.2 A PAC-Bayesian Theorem for Any Pair Among eDQ, s
D
Q, and dDQ

In Section 5.1, Theorem 20 was obtained from Theorem 18. Similarly, the main theorem of
this subsection (Theorem 28) is deduced from Theorem 26. However, a notable difference
between Theorems 20 and 28 is that the former uses of the KL-divergence kl(·‖·) between
distributions of two Bernoulli (i.e., bivalent) random variables, and the latter uses the
KL-divergence kl(·, ·‖·, ·) between distributions of two trivalent random variables.

Given two trivalent random variables Yq and Yp with P (Yq = a) = q1, P (Yq = b) = q2,
P (Yq = c) = 1−q1−q2, and P (Yp = a) = p1, P (Yp = b) = p2, P (Yp = c) = 1−p1−p2, we
denote by kl(q1, q2 ‖ p1, p2) the Kullback-Leibler divergence between Yq and Yp. Thus, we
have

kl(q1, q2 ‖ p1, p2)
def
= q1 ln

q1

p1
+ q2 ln

q2

p2
+ (1− q1 − q2) ln

1− q1 − q2

1− p1 − p2
. (31)

Note that kl
(
q1, q2 ‖ p1, p2) is a shorthand notation for KL(Q‖P ) of Equation (20), with

Q = (q1, q2, 1−q1−q2) and P = (p1, p2, 1−p1−p2). Corollary 50 (in Appendix A) shows that
kl
(
q1, q2 ‖ p1, p2) is a convex function.

To be able to apply Theorem 26 with D(q1, q2 ‖ p1, p2) = kl(q1, q2‖p1, p2), we need
Lemma 27 (below). This lemma is inspired by Lemma 19. However, in contrast with
the latter, which is based on Maurer’s lemma, Lemma 27 needs a generalization of it to
trivalent random variables (instead of bivalent ones). The proof of this generalization is
provided in Appendix A, listed as Lemma 52.

Lemma 27 For any distribution D on X×{−1, 1}, for any paired-voters fij, and any
positive integer m, we have

E
S∼Dm

e
m ·kl

(
ELαS (fij),E

Lβ
S (fij)

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))
≤ ξ(m) +m,

where Lα and Lβ can be any two of the three losses Ls, Le or Ld, and where ξ(m) is defined
at Equation (22). Therefore, m+

√
m ≤ ξ(m) +m ≤ m+ 2

√
m .
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Proof Let Yij be a random variable that follows a multinomial distribution with three

possible outcomes: a
def
= (1, 0), b

def
= (0, 1) and c

def
= (0, 0). The “Trinomial” distribu-

tion is chosen such that Pr (Yij =a) = ELαD (fij), Pr (Yij =b) = ELβD (fij) and Pr (Yij =c) =

1 − ELαD (fij) − ELβD (fij). Given m trials of Yij , we denote Y a
ij , Y

b
ij and Y c

ij the number

of times each outcome is observed. Note that Yij is totally defined by (Y a
ij , Y

b
ij), since

Y c
ij = m− Y a

ij − Y b
ij . We thus use the notation

Yij = (Y a
ij , Y

b
ij) ∼ Tij

def
= Trinomial

(
m, ELαD (fij), E

Lβ
D (fij)

)
.

Hence, we have

Pr
(Y aij ,Y

b
ij)∼Tij

(
Y aij =k1∧Y bij=k2

)
=
(
m
k1

)(
m−k1
k2

)[
ELαS (fij)

]k1[ELβS (fij)
]k2[

1−ELαS (fij)−ELβS (fij)
]m−k1−k2

,

for any k1 ∈ {0, ..,m} and any k2 ∈ {0, ..,m−k1}.
Now, applying Lemma 52 to the convex function em ·kl

(
· , · ‖ELαD (fij),E

Lβ
D (fij)

)
, and by the

definition of kl(·, ·‖·, ·), we have

E
S∼Dm

e
m ·kl

(
ELαS (fij),E

Lβ
S (fij)

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))

≤ E
(Y aij ,Y

b
ij)∼Tij

e
m ·kl

(
1
mY aij ,

1
mY bij

∥∥∥ ELαD (fij),E
Lβ
D

(
fij

))

= E
(Y aij ,Y

b
ij)∼Tij

(
1
mY

a
ij

ELαS (fij)

)Y aij ( 1
mY

b
ij

ELβS (fij)

)Y bij (
1− 1

mY
a
ij − 1

mY
b
ij

1− ELαS (fij)− ELβS (fij)

)m−Y aij−Y bij
.

As Yij follows a trinomial law, we then have

E
(Y aij ,Y

b
ij)∼Tij

(
1
mY

a
ij

ELαS (fij)

)Y aij ( 1
mY

b
ij

ELβS (fij)

)Y bij (
1− 1

mY
a
ij − 1

mY
b
ij

1− ELαS (fij)− ELβS (fij)

)m−Y aij−Y bij

=

m∑
k1=0

m−k1∑
k2=0

[
Pr

(Y aij ,Y
b
ij)∼Tij

(
Y aij = k1 ∧ Y bij = k2

)
×
(

k1
m

ELαS (fij)

)k1 ( k2
m

ELβS (fij)

)k2 (
1− k1

m − k2
m

1− ELαS (fij)− ELβS (fij)

)m−k1−k2 ]

=

m∑
k1=0

m−k1∑
k2=0

[(
m

k1

)(
m−k1
k2

)(
ELαS (fij)

)k1(
ELβS (fij)

)k2(
1−ELαS (fij)−ELβS (fij)

)m−k1−k2
×
(

k1
m

ELαS (fij)

)k1 ( k2
m

ELβS (fij)

)k2 (
1− k1

m − k2
m

1− ELαS (fij)− ELβS (fij)

)m−k1−k2 ]

=

m∑
k1=0

m−k1∑
k2=0

(
m

k1

)(
m−k1
k2

)(
k1
m

)k1 (k2
m

)k2 (
1− k1

m
− k2
m

)m−k1−k2
= ξ(m) +m.

The last equality has been proven by Younsi (2012). Recall that ξ(m) is defined by Equa-
tion (22).
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We are now ready to present the main result of this section. By bounding any pair of
expectations among eDQ, sDQ and dDQ, Theorem 28 is the perfect tool to directly bound the
C-bound.

Theorem 28 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q on H :

kl
(
αSQ, β

S
Q

∥∥αDQ, βDQ ) ≤ 1

m

[
2·KL(Q‖P ) + ln

ξ(m) +m

δ

] ≥ 1− δ ,

where αD
′

Q and βD
′

Q can be any two distinct choices among dD
′

Q , eD
′

Q and sD
′

Q .

Proof The result follows from Theorem 26 with D(q1, q2 ‖ p1, p2) = kl(q1, q2 ‖ p1, p2) and
m′ = m. Since Equation (28) shows that αD

′
Q = E

fij∼Q2
αD
′

ij and βD
′

Q = E
fij∼Q2

βD
′

ij , we have

Pr
S∼Dm

(
∀Q onH : kl

(
αSQ, β

S
Q ‖αDQ, βDQ

)
≤

1

m

[
2 ·KL(Q‖P ) + ln

(
1

δ
E

S∼Dm
E

fij∼P 2
emkl

(
αSij ,β

S
ij

∥∥αDij ,βDij ))]) ≥ 1− δ .

As the prior distribution P 2 is independent of S, we can swap the two expectations in

expression E
S∼Dm

E
fij∼P 2

emkl(αSij ,β
S
ij

∥∥αDij ,βDij ). This observation, together with Lemma 27, gives

E
S∼Dm

E
fij∼P 2

emkl
(
αSij ,β

S
ij

∥∥αDij ,βDij ) = E
fij∼P 2

E
S∼Dm

emkl
(
αSij ,β

S
ij

∥∥αDij ,βDij )
≤ E

fij∼P 2
ξ(m) +m

= ξ(m) +m.

A first version of Theorem 28 was proposed by Lacasse et al. (2006), with the differ-

ence that ln (m+1)(m+2)
2δ in the latter is now replaced by ln ξ(m)+m

δ in the former. Since

ξ(m) +m < (m+1)(m+2)
2 , the new theorem is therefore tighter.

5.5.3 Another Bound for the Risk of the Majority Vote

First, we need the following notation that is related to Theorem 28. Given any prior
distribution P on H,

A δ
Q,S

def
=

{
(d, e) : kl(dSQ, e

S
Q‖ d, e) ≤

1

m

[
2·KL(Q‖P ) + ln ξ(m)+m

δ

]}
. (32)

The bound is obtained by seeking the point of A δ
Q,S maximizing the C-bound. Since a

point (d, e) of A δ
Q,S expresses a disagreement d and a joint error e, we directly compute the

bound on CDQ using Equation (25).
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Note however that A δ
Q,S can contain points that are not possible in practice, i.e., points

that are not achievable with any data-generating distribution D. Indeed, by Proposition 9,
we know that

dDQ ≤ 2 ·RD(GQ) ·
(
1−RD(GQ)

)
.

Based on this property, it is possible to significantly reduce the achievable region of A δ
Q,S .

To do so, we must first rewrite this property based on dDQ and eDQ only.

dDQ ≤ 2 ·RD(GQ) ·
(
1−RD(GQ)

)
= 2 ·

(
eDQ + 1

2d
D
Q

)
·
(
1− (eDQ + 1

2d
D
Q)
)

⇔ 0 ≤ −1
2(dDQ)2 − 2eDQ · dDQ + 2eDQ − 2(eDQ)2

⇔ dDQ ≤ 2 ·
(√

eDQ − eDQ
)
. (33)

Note also that if RD(GQ) ≥ 1
2 , there is no bound on RD(BQ) better than the trivial one

RD(BQ) ≤ 1. We therefore consider only the pairs (d, e) ∈ A δ
Q,S that do not correspond to

that situation. Since RD(GQ) = 1
2(2eDQ + dDQ) (Equation 24), this is therefore equivalent to

considering only the pairs (d, e) such that 2e+ d < 1. We later show that this still gives a
valid bound. Thus, from all these ideas, we restrain A δ

Q,S (Equation 32) as follows:

Ã δ
Q,S

def
=

{
(d, e) ∈ A δ

Q,S : d ≤ 2(
√
e− e) and 2e+ d < 1

}
, (34)

and obtain the following bound that, in contrast with PAC-Bound 1, directly bounds CDQ .

PAC-Bound 2 For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ sup
(d,e)∈Ã δQ,S

1−

(
1− (2e+ d)

)2

1− 2d


 ≥ 1− δ .

Proof We need to show that the supremum value in the statement of PAC-Bound 2 is a
valid upper bound of RD(BQ). Note that if Ã δ

Q,S = ∅, then the supremum is +∞, and the

bound is trivially valid. Therefore, we assume below that Ã δ
Q,S is not empty.

Let us consider (d, e) ∈ Ã δ
Q,S . From the conditions d ≤ 2(

√
e − e) and 2e + d < 1, it

follows by straightforward calculations that d < 1
2 . This implies that

1−
(
1− (2e+ d)

)2
1− 2d

< 1 ,

because both the numerator and the denominator of the fraction are strictly positive (re-
member that 2e+ d < 1). Thus, the supremum is at most 1.
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Let us consider the three following cases.

Case 1: The supremum is not attained in Ã δ
Q,S. Note that as Ã δ

Q,S is a subset of R2, the

supremum must be attained for a pair in the closure of Ã δ
Q,S . The latter is not a closed set

only because of its 2e + d < 1 constraint. Therefore, the supremum is achieved for a pair
(d, e) in the closure for which 1− (2e+ d) = 0, implying that the value of the supremum is
in that case 1, which trivially is a valid bound for RD(BQ).

Case 2: The supremum is attained in Ã δ
Q,S and has value 1. In that case, the bound is

again trivially valid.

Case 3: The supremum is attained in Ã δ
Q,S and has a value strictly lower than 1. In

that case, there must be an ε > 0 such that 2e + d < 1 − ε for all (d, e) ∈ Ã δ
Q,S . Hence,

because of Equation (33) and Theorem 28, we have that 2eDQ + dDQ < 1− ε with probability

1−δ. Since RD(GQ) = 1
2(2eDQ + dDQ) (Equation 24), this implies that, with probability 1−δ,

RD(GQ) < 1/2− 1/2ε. Hence, with probability 1−δ, Theorem 11 is valid – i.e., CDQ bounds

RD(BQ) – and (dDQ, e
D
Q) ∈ Ã δ

Q,S . Thus,

RD(BQ) ≤ CDQ = 1−

(
1− (2eDQ + dDQ)

)2

1− 2dDQ
≤ sup

(d,e)∈Ã δQ,S

1−

(
1− (2e+ d)

)2

1− 2d

 ,
and we are done.

In some situations, we can slightly improve PAC-Bound 2 by bounding the joint error eDQ
via Theorem 25 with δ replaced by δ/2. This removes all pairs (d, e) such that e does not

belong to the set Eδ/2Q,S defined as

Eδ/2Q,S
def
=

{
e : kl(eSQ‖ e) ≤

1

m

[
2·KL(Q‖P ) + ln ξ(m)

δ/2

]}
.

Then, by applying PAC-Bound 2, with δ replaced by δ/2, one can obtain the following
slightly improved bound.

PAC-Bound 2’ For any distribution D on X×{−1, 1}, for any set H of voters X → [−1, 1],
for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

∀Q on H : RD(BQ) ≤ sup
(d,e)∈Â δ/2Q,S

1−

(
1− (2e+ d)

)2

1− 2d


 ≥ 1− δ ,

where

Â δ/2
Q,S

def
=
{

(d, e) ∈ A δ/2
Q,S : d ≤ 2(

√
e− e) , 2e+ d < 1 and e ≤ sup Eδ/2Q,S

}
. (35)

Proof Immediate consequence of Theorem 25, PAC-Bound 2, and the union bound.
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(a) Contour plot of kl(0.4, 0.1‖d, e).

0 0.2 0.4 0.6 0.8 1
e

0

0.2

0.4

0.6

0.8

1

d

0.00

0.16

0.32

0.48

0.64

0.80

0.96

(b) Contour plot of FC (d, e).

Figure 5: Example of application of PAC-Bound 2. We suppose that KL(Q‖P ) = 5, m =
1000 and δ = 0.05. If we observe an empirical joint error eSQ = 0.10 and an

empirical disagreement dSQ = 0.40 (thus, a Gibbs risk RS(GQ) = 0.1 + 1
2 · 0.4 =

0.30), then we need to maximize the function FC(d, e) over the domain Ã δ
Q,S given

by three constraints: kl(0.4, 0.1‖ d, e) ≤ 1
m

[
2·KL(Q‖P )+ln ξ(m)+m

δ

]
≈ 0.0199 (blue

oval), d ≤ 2(
√
e−e) (black curve) and 2e+d < 1 (black dashed line). Therefore, we

obtain a bound RD(BQ) ≤ 0.679 (corresponding to the green diamond marker).

5.5.4 Computation of PAC-Bounds 2 and 2’

Let us consider the C-bound as a function FC of two variables (d, e) ∈ [0, 1
2 ]× [0, 1], instead

of a function of the distribution Q.

FC(d, e)
def
= 1−

[
1− (2e+ d)

]2
1− 2d

. (36)

Proposition 54 (provided in Appendix A) shows that FC is a concave function. There-

fore, PAC-Bound 2 is obtained by maximizing FC(d, e) in the domain Ã δ
Q,S (Equation 34),

which is both bounded and convex. Several optimization methods can achieve this. In our
experiments, we decompose FC(d, e) in two nested functions of a single argument:

sup
(d,e)∈Ã δQ,S

[
FC(d, e)

]
= sup

d:(d,·)∈Ã δQ,S

[
F ∗C (d)

]
, where F ∗C (d)

def
= sup
e:(d,e)∈Ã δQ,S

[
FC(d, e)

]
.

Thus, we implement the maximization of FC using a one-dimensional optimization algorithm
twice. Figure 5 shows an application example of PAC-Bound 2.

The computation of PAC-Bound 2’ is done using the same method, but we optimize

over the domain Â δ/2
Q,S (Equation 35) instead of Ã δ

Q,S , which is also bounded and convex.

Of course, this requires computing sup Eδ/2Q,S beforehand, using the same technique as for
PAC-Bounds 0, 1 and 1’. Figure 6 shows an application example of PAC-Bound 2’.
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Figure 6: Example of application of PAC-Bound 2’. We use the same quantities as for
Figure 5. The red vertical line corresponds to the upper bound on the joint error,
resulting in an improved bound of RD(BQ) ≤ 0.660 (corresponding to the red star
marker). Note however that, even if the bound here is tighter, the egg-region is a
bit bigger than in the case of PAC-Bound 2 because all the δ has been replaced
by δ/2.

5.6 Empirical Comparison Between PAC-Bounds on the Bayes Risk RD(BQ)

We now propose an empirical comparison of all PAC-Bounds we presented so far. The
numerical results of Figure 7 are obtained by using AdaBoost (Schapire and Singer, 1999)
with decision stumps on the Mushroom UCI data set (which contains 8124 examples). This
data set is randomly split into two halves: one training set S and one testing set T . For
each round of boosting, we compute the usual PAC-Bayesian bound of twice the Gibbs risk
(PAC-Bound 0) of the corresponding majority vote classifier, as well as the other variants
of the PAC-Bayesian bounds presented in this paper.

We can see that PAC-Bound 1 is generally tighter than PAC-Bound 0, and we obtain
a substantial improvement with PAC-Bound 2. Almost no improvement is obtained with
PAC-Bound 2’ in that case. We can also see that using unlabeled data to estimate dDQ helps,

as PAC-Bound 1’ is the tightest.10

However, we see in Figure 7 that after 8 rounds of boosting, all the bounds are degrading
even if the value of CSQ continues to decrease. This drawback is due to the fact that the

denominator of CSQ tends to 0, that is the second moment of the margin µ2(MS
Q) is close

to 0 (see the first or the second forms of Theorem 11). Hence, in this context, the first
moment of the margin µ1(MS

Q) must be small as well. Thus, any slack in the bound of
µ1(MD

Q) has a multiplicative effect on each of the three proposed PAC-bounds of RD(BQ).
Unfortunately, Boosting algorithms tend to construct majority votes with µ1(MS

Q) just
slightly larger than 0.

10. To obtain PAC-Bound 1’, we simulate the case where we have access to a large number of unlabeled
data by simply using the empirical value of dTQ computed on the testing set.
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Figure 7: Comparison of bounds of RD(BQ) during 60 rounds of Boosting.

6. PAC-Bayesian Bounds without KL

Having PAC-Bayesian theorems that bound the difference between CSQ and CDQ opens the
way to structural C-bound minimization algorithms. As for most PAC-Bayesian results, the
bound on CDQ depends on an empirical estimate of it, and on the Kullback-Leibler divergence
KL(Q‖P ) between the output distribution Q and the a priori defined distribution P . In this
section, we present a theoretical extension of our PAC-Bayesian approach that is mandatory
to develop the CDQ -minimization algorithm of Section 8.

The next theorems introduce PAC-Bayesian bounds that have the surprising property of
having no KL term. This new approach is driven by the fact that our attempts to construct
algorithms that minimize any of the PAC-Bounds presented in the previous section ended
up being unsuccessful. Surprisingly, the KL-divergence is a poor regularizer in this case, as
its empirical value tends to be overweighted in comparison with the empirical value of the
C-bound (i.e., CSQ).

There have already been some attempts to develop PAC-Bayesian bounds that do not
rely on the KL-divergence (see the localized priors of Catoni, 2007, or the distribution-
dependent priors of Lever et al., 2013). The usual idea is to bound the KL-divergence via
some concentration inequality. In the following, the KL term simply vanishes from the
bound, provided that we restrict ourselves to aligned posteriors, a notion that is properly
defined later on in this section. The fact that these new PAC-Bayesian bounds do not
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contain any KL divergence terms indicates that the restriction to aligned posteriors has
some “built in” regularization action.

The following theory is similar to the one used by Germain et al. (2011), in which two
learning algorithms inspired by the PAC-Bayesian theory are compared: one regularized
with the KL divergence, using a hyperparameter to control its weight, and one regularized by
restricting the posterior distributions to be aligned on the prior distribution. Surprisingly,
the latter algorithm uses one less parameter, and has been shown to have an as good
accuracy.

6.1 Self-Complemented Sets of Voters and Aligned Distributions

In this section, we assume that the (possibly infinite) set of voters H is self-complemented11.

Definition 29 A set of voters H is said to be self-complemented if there exists a bijection
c : H → H such that for any f ∈ H,

c(f) = −f .

Moreover, we say that a distribution Q on any self-complemented H is aligned on a prior
distribution P if

Q(f) +Q(c(f)) = P (f) + P (c(f)) , ∀f ∈ H .

When P is the uniform prior distribution and Q is aligned on P , we say that Q is
quasi-uniform. Note that the uniform distribution is itself a quasi-uniform distribution.

In the finite case, we consider self-complemented sets H of 2n voters X → Y. In this
setting, for any x ∈ X and any i ∈ {1, . . . , n}, we have that fi+n(x) = −fi(x). Moreover,
finite quasi-uniform distributions Q is such that for any i ∈ {1, . . . , n},

Q(fi) +Q(fi+n) =
1

n
. (37)

Equation (37) shows that when a distribution Q is restricted to being quasi-uniform,
the sum of the weight given to a pair of complementary voters is equal to 1

n . As Q is a
distribution, this means that the weight of any voter is lower-bounded by 0 and upper-
bounded by 1

n , giving rise to an L∞-norm regularization. Note that, in this context, the
maximum value of KL(Q‖P ) is reached when all voters have a weight of either 0 or 1

n .
Indeed, a quasi-uniform distribution Q is such that KL(Q‖P ) ≤ n( 1

n) ln( 1
n/

1
2n) = ln 2.

Consequently, the value of the KL term is necessarily small and plays a little role in PAC-
Bayesian bounds computed with quasi-uniform distributions. The following theorems and
corollaries are specializations that allow to slightly improve these PAC-Bayesian bounds
by getting rid of the KL term completely. To achieve these results, the associated proofs
require restrictions on the choice of convex function D and loss function L.

11. In Laviolette et al. (2011), this notion was introduced as an auto-complemented set of voters. However,
self-complemented is a more suitable name. Also, note that a similar notion, called a symmetric hypothesis
class, is introduced in Daniely et al. (2013).
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6.2 PAC-Bayesian Theorems without KL for the Gibbs Risk

Let us first specialize Theorem 18 to aligned distributions and linear loss L`. We first need
a new change of measure inequality, as this is the part of Theorem 18 where the KL term
appears.

Lemma 30 (Change of measure inequality for aligned posteriors)
For any self-complemented set H, for any distribution P on H, any distribution Q aligned
on P , and for any measurable function φ : H → R such that φ(f) = φ(c(f)) for all f ∈ H,
we have

E
f∼Q

φ(f) ≤ ln

(
E
f∼P

eφ(f)

)
.

Proof First, note that one can change the expectation over Q to an expectation over P ,
using the fact that φ(f) = φ(c(f)) for any f ∈ H, and that Q is aligned on P .

2 · E
f∼Q

φ(f) =

∫
H
df Q(f)φ(f) +

∫
H
df Q(c(f))φ(c(f))

=

∫
H
df Q(f)φ(f) +

∫
H
df Q(c(f))φ(f)

=

∫
H
df
(
Q(f) +Q(c(f))

)
φ(f)

=

∫
H
df
(
P (f) + P (c(f))

)
φ(f)

=

∫
H
df P (f)φ(f) +

∫
H
df P (c(f))φ(f)

=

∫
H
df P (f)φ(f) +

∫
H
df P (c(f))φ(c(f))

= 2 · E
f∼P

φ(f) .

The result is obtained by changing the expectation over Q to an expectation over P , and
then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
f∼Q

φ(f) = E
f∼P

φ(f) = E
f∼P

ln eφ(f) ≤ ln

(
E
f∼P

eφ(f)

)
.

Theorem 31 (PAC-Bayesian theorem for aligned posteriors) For any distribution
D on X×{−1, 1}, any self-complemented set H of voters X → [−1, 1], any prior distribution
P on H, any convex function D : [0, 1]× [0, 1]→ R for which D(q, p) = D(1− q, 1− p), for
any m′ > 0 and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(
RS(GQ), RD(GQ)

)
≤ 1

m′

[
ln

(
1

δ
E

S∼Dm
E
f∼P

e
m′·D

(
EL`S (f),EL`D (f)

))] ≥ 1− δ .
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Similarly to Theorem 18, the statement of Theorem 31 above contains a value m′ which
is likely to be set to m in most cases. However, the distinction between m and m′ is
mandatory to develop the PAC-Bayesian theory for sample-compressed voters in Section 7.
Indeed, in proofs of forthcoming Theorems 39, 41 and 42, we have m′ = m − λ, where λ
is the size of the voters compression sequence (this concept is properly defined in Section 7).

Proof The proof follows the exact same steps as the proof of Theorem 18, using the
linear loss L = L` and replacing the use of the change of measure inequality (Lemma 17)
by the change of measure inequality for aligned posteriors (Lemma 30), with

φ(f) = m′ · D
(
EL`S (f), EL`D (f)

)
. Note that this function has the required property, as

D
(
EL`S (f), EL`D (f)

)
= D

(
1− EL`S (c(f)), 1− EL`D (c(f))

)
= D

(
EL`S (c(f)), EL`D (c(f))

)
.

The other steps of the proof stay exactly the same as the proof of Theorem 18.

Appendix B presents more general versions of the last two results.

Let us specialize Theorem 31 to the case where D(q, p) = kl(q‖p). Doing so, we re-
cover the classical PAC-Bayesian theorem (Theorem 20), but for aligned posteriors, which
therefore has no KL term.

Corollary 32 For any distribution D on X×{−1, 1}, any prior distribution P on a self-
complemented set H of voters X → [−1, 1], and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

kl
(
RS(GQ)

∥∥RD(GQ)
)
≤ 1

m

[
ln
ξ(m)

δ

] ≥ 1− δ ,

where kl(q‖p) and ξ(m) and defined by Equations (21) and (22) respectively.

Proof This result follows from Theorem 31 by choosing D(q, p) = kl(q, p) and m′ = m.
The rest of the proof relies on Lemma 19 (as for the proof of Theorem 20).

The following corollary is very similar to the original PAC-Bayesian bound of McAllester
(2003a), but without the KL term.

Corollary 33 For any distribution D on X×{−1, 1}, any self-complemented set H of vot-
ers X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

RD(GQ) ≤ RS(GQ) +

√
1

2m

[
ln ξ(m)

δ

] ≥ 1− δ .

Proof The result is derived from Corollary 32, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s
inequality), and isolating RD(GQ) in the obtained inequality.
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Unlike Theorem 18, Theorem 31 cannot straightforwardly be used for pairs of voters, as
we did in the proof of Theorem 25. The reason is that a posterior distribution that is the
result of the product of two aligned posteriors is not necessarily aligned itself. So, we have
to ensure that we can get rid of the KL term even in that case.

6.3 PAC-Bayesian Theorems without KL for the Expected Disagreement dDQ

The following theorem is similar to Theorem 31 for aligned posteriors, but deals with paired-
voters. Instead of the linear loss L`, we use the loss Ld of Equation (27), which is a linear
loss defined on a pair of voters. Again, the next two results can be seen as a particular case
of the two theorems from Appendix B.

In this subsection, we use the following shorthand notation. Given fij = 〈fi, fj〉 as
defined in Definition 24, the voters ficj , fijc and ficjc are defined as

ficj(x)
def
= 〈c(fi)(x), fj(x)〉, fijc(x)

def
= 〈fi(x), c(fj)(x)〉, and ficjc(x)

def
= 〈c(fi)(x), c(fj)(x)〉.

Recall that from Equation (26), we have H2 def
= {fij : fi, fj ∈ H} and Q2(fij)

def
=

Q(fi) ·Q(fj). Similarly, we define P 2(fij)
def
= P (fi) ·P (fj). Using this notation, let us first

generalize the change of measure inequality of Lemma 30 to paired-voters.

Lemma 34 (Change of measure inequality for paired-voters and aligned poste-
riors) For any self-complemented set H, for any distribution P on H, any distribution Q
aligned on P , and for any measurable function φ : H2 → R such that φ(fij) = φ(ficj) =
φ(fijc) = φ(ficjc) for all fij ∈ H2, we have

E
fij∼Q2

φ(fij) ≤ ln

(
E

fij∼P 2
eφ(fij)

)
.

Proof First, note that one can change the expectation over Q2 to an expectation over P 2,
using the fact that φ(fij) = φ(ficj) = φ(fijc) = φ(ficjc) for any fij ∈ H2, and that Q is
aligned on P . More specifically, we have the following.

4· E
fij∼Q2

φ(fij)

=

∫
H2

dfijQ
2(fij)φ(fij) +

∫
H2

dfijQ
2(ficj)φ(ficj) +

∫
H2

dfijQ
2(fijc)φ(fijc) +

∫
H2

dfijQ
2(ficjc)φ(ficjc)

=

∫
H2

dfij Q
2(fij)φ(fij) +

∫
H2

dfij Q
2(ficj)φ(fij) +

∫
H2

dfij Q
2(fijc)φ(fij) +

∫
H2

dfij Q
2(ficjc)φ(fij)

=

∫
H2

dfij

(
Q2(fij) +Q2(ficj) +Q2(fijc) +Q2(ficjc)

)
φ(fij)

=

∫
H2

dfij

(
P 2(fij) + P 2(ficj) + P 2(fijc) + P 2(ficjc)

)
φ(fij)

...

= 4 · E
fij∼P 2

φ(fij) .
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The result is then obtained by changing the expectation over Q2 to an expectation over P 2,
and then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
fij∼Q2

φ(fij) = E
fij∼P 2

φ(fij) = E
fij∼P 2

ln eφ(fij) ≤ ln

(
E

fij∼P 2
eφ(fij)

)
.

Theorem 35 (PAC-Bayesian theorem for paired-voters and aligned posteriors)
For any distribution D on X×{−1, 1}, any self-complemented set H of voters X → [−1, 1],
any prior distribution P on H, any convex function D : [0, 1] × [0, 1] → R for which
D(q, p) = D(1− q, 1− p), for any m′ > 0 and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(
dSQ, d

D
Q

)
≤ 1

m′

[
ln

(
1

δ
E

S∼Dm
E

fij∼P 2
em
′·D(ELdS (fij),E

Ld
D (fij))

)] ≥ 1− δ ,

where fij is given in Definition 24, and where P 2(fij)
def
= P (fi) · P (fj).

Proof Theorem 35 is deduced from Theorem 31, by using the change of measure inequality
given by Lemma 34 instead of the one from Lemma 30, with φ(fij) = m′ · D(ELdS (fij), ELdD (fij)).
As the loss Ld is such that

ELdD′ (ficjc) = ELdD′ (fij) , and ELdD′ (ficj) = ELdD′ (fijc) = 1− ELdD′ (fij) ,

we then have that φ(fij) has the required property to apply Lemma 34.

Let us now specialize Theorem 35 to D(q, p) = kl(q‖p).
Corollary 36 For any distribution D on X×{−1, 1}, any self-complemented set H of vot-
ers X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

kl
(
dSQ ‖ dDQ

)
≤ 1

m

[
ln ξ(m)

δ

]  ≥ 1− δ .

Proof The result is directly obtained from Theorem 35, by choosing D(q, p) = kl(q, p).
The rest of the proof relies on Lemma 19.

Similarly as for Corollary 33, we can easily derive the following result.

Corollary 37 For any distribution D on X×{−1, 1}, for any self-complemented set H of
voters X → [−1, 1], any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

For all posteriors Q aligned on P :

dDQ ≥ dSQ −
√

1

2m

[
ln ξ(m)

δ

]  ≥ 1− δ .
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Proof The result is derived from Corollary 36, by using 2(q − p)2 ≤ kl(q‖p) (Pinsker’s
inequality), and isolating dDQ in the obtained inequality.

6.4 A Bound for the Risk of the Majority Vote without KL Term

Finally, we make use of these results to bound CDQ – and therefore RD(BQ) – for aligned
posteriors Q, giving rise to PAC-Bound 3. Aside from the fact that this bound has no KL
term, it is similar to PAC-Bound 1, as it separately bounds the Gibbs risk and the expected
disagreement. This new PAC-Bayesian bound provides us with a starting point to design
the MinCq leaning algorithm introduced in Section 8.

PAC-Bound 3 For any distribution D on X×{−1, 1}, for any self-complemented set H
of voters X → [−1, 1], for any prior distribution P on H, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q aligned on P :

RD(BQ) ≤ 1−
(

1− 2 · r
)2

1− 2 · d = 1−
(
µ1

)2
µ2

 ≥ 1− δ ,

where

r
def
= min

(
1
2 , RS(GQ) +

√
1

2m

[
ln ξ(m)

δ/2

])
, d

def
= max

(
0, dSQ −

√
1

2m

[
ln ξ(m)

δ/2

])
,

µ1
def
= max

(
0, µ1(MS

Q)−
√

2
m

[
ln ξ(m)

δ/2

])
, µ2

def
= min

(
1, µ2(MS

Q) +

√
2
m

[
ln ξ(m)

δ/2

])
.

Proof The inequality is a consequence of Theorem 11, as well as Corollaries 33 and 37.

The equality 1− (1−2·r)2
1−2·d = 1− (µ1 )2

µ2
is a direct application of Equations (7) and (9).

PAC-Bound 3’ that is presented at the end of Section 7 accepts voters that are kernel
functions defined using a part of the training set S. This is unusual in the PAC-Bayesian
theory, since the prior P on the set of voters has to be defined before seeing the training
set S. To overcome this difficulty, we use the sample compression theory.

7. PAC-Bayesian Theory for Sample-Compressed Voters

PAC-Bayesian theorems of Sections 5 and 6 are not valid when H consists of a set of
functions of the form ±k(xi, ·) for some kernel k : X × X → [−1, 1], as is the case with the
Support Vector Machine classifier (see Equation 1). This is because the definition of each
involved voter depends on an example (xi, yi) of the training data S. This is problematic
from the PAC-Bayesian point of view because the prior on the voters is supposed to be
defined before seeing the data S. There are two known methods to overcome this problem.

The first method, introduced by Langford and Shawe-Taylor (2002), considers a surro-
gate set of voters Hk of all the linear classifiers in the space induced12 by the kernel k. They

12. This space is also known as a Reproducible Kernel Hilbert Space (RKHS). For more details, see Cristianini
and Shawe-Taylor (2000) and Schölkopf et al. (2001)
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then make use of the representer theorem to show that the classification function turns out
to be a linear combination of the examples, similar to the Support Vector Machine classi-
fier (Equation 1). To avoid the curse of dimensionality, they propose restricting the choice
of the prior and posterior distributions on Hk to isotropic Gaussian centered on a vector
representing a particular linear classifier. Based on this approach, Germain et al. (2009)
suggests a learning algorithm for linear classifiers that exactly consists in a PAC-Bayesian
bound minimization.

The second method, that is presented in the present section, is based on the sample
compression setting of Floyd and Warmuth (1995). It has been adapted to the PAC-
Bayesian theory by Laviolette and Marchand (2005, 2007), allowing one to directly deal
with the case where voters are constructed using examples in the training set, without
involving any RKHS notion nor any representer theorem. Conversely to the first method
described above, the sample compression approach allows one not only to deal with kernel
functions, but with any kind of similarity measure between examples, hence to deal with
any kind of voters.

7.1 The General Sample Compression Setting

In the sample compression setting, learning algorithms have access to a data-dependent set of
voters, that we refer to as sc-voters. Given a training sequence13 S = 〈 (x1, y1), . . . , (xm, ym) 〉,
each sc-voter is described by a sequence Si of elements of S called the compression sequence,
and a message σ which represents the additional information needed to obtain a voter from

Si. If i = 〈i1, i2, .., ik〉, then Si
def
= 〈(xi1 , yi1), (xi2 , yi2), . . . , (xik , yik)〉. In this paper, repeti-

tions are allowed in Si, and k, the number of indices present in i (counting the repetitions),
is denoted by |i|.

The fact that each sc-voter is described by a compression sequence and a message implies
that there exists a reconstruction function R(Si, σ) that outputs a classifier when given an
arbitrary compression sequence Si and a message σ. The message σ is chosen from the
set ΣSi

of all messages that can be supplied with the compression sequence Si. In the
PAC-Bayesian setting, ΣSi

must be defined a priori (before observing the training data)
for all possible sequences Si, and can be either a discrete or a continuous set. The sample
compression setting strictly generalizes the (classical) non-sample-compressed setting, since
the latter corresponds to the case where |i| = 0, the voters being then defined only via the
messages.

7.2 A Simplified Sample Compression Setting

For the needs of this paper, we consider a simplified framework where sc-voters have a
compression sequence of at most λ examples (possibly with repetitions) and a message
string of λ bits that we represent by a sequence of “−1” and “+1”. Instead of being defined
on sc-voters, the weighted distribution Q is defined on Iλ × Σλ, where

Iλ def
=
{
〈i1, i2, .., ik〉 : k ∈ {0, .., λ} and ij ∈ {1, ..,m}

}
and Σλ

def
=
{
− 1, 1

}λ
. (38)

13. The sample compression theory considers the training examples as a sequence instead of a set, because
it refers to the training examples by their indices.
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In other words, Q(i,σ) corresponds to the weight of the sc-voter output byR(Si,σ), i.e., the
sc-voter of compression sequence i = 〈i1, . . . , i|i|〉 ∈ Iλ and message σ = 〈σ1, . . . , σλ〉 ∈ Σλ.
In particular, a prior (resp., a posterior) on the set of all sc-voters is now simply a prior
on the set Iλ × Σλ. Thus, such a prior can really be defined a priori , before seeing the
data S.14 The set of sc-voters is therefore only defined when the training sequence S is
given, and corresponds to

HRS,λ
def
= {R(Si,σ) : i ∈ Iλ, σ ∈ Σλ} .

Finally, given a training sequence S and a reconstruction functionR, for a distribution Q
on Iλ × Σλ, we define the Bayes classifier as

BQ,S
def
= sgn

[
E

(i,σ)∼Q
R(Si,σ)

]
.

We then define the Bayes risk RD′(BQ,S) and the Gibbs risk RD′(GQ,S) of a distribution Q
on Iλ × Σλ relative to D′ as

RD′(BQ,S)
def
= EL01D′

(
BQ,S

)
,

RD′(GQ,S)
def
= E

(i,σ)∼Q
EL`D′

(
R(Si,σ)

)
.

7.3 A First Sample-Compressed PAC-Bayesian Theorem

To derive PAC-Bayesian bounds for majority votes of sc-voters, one must deal with the
following issue: even if the training sequence S is drawn i.i.d. from a data-generating distri-
bution D, the empirical risk of the Gibbs RS(GQ,S) is not an unbiased estimate of its true
risk RD(GQ,S). For instance, the reconstruction function R can be such that an sc-voter
output by R(Si,σ) never errs on an example belonging to its compression sequence Si; this
biases the empirical risk because examples of Si are all in S.

To deal with this bias, the 1
m factor in the usual PAC-Bayesian bounds is replaced by a

factor of the form 1
m−l in their sample compression versions. In Laviolette and Marchand

(2005, 2007), l corresponds to the Q-average size of the sample compression sequence. In
the present paper, we restrain ourselves to a simpler case, where l is the maximum possible
size of a compression sequence (i.e., l = λ). This simplification allows us to deal with
the biased character of the empirical Gibbs risk using a proof approach similar to the one
proposed in Germain et al. (2011). The key step of this approach is summarized in the
following lemma.

Lemma 38 Let R be a reconstruction function that outputs sc-voters of size at most λ
(where λ < m). For any distribution D on X×{−1, 1}, and for any prior distribution P
on Iλ × Σλ,

E
S∼Dm

E
(i,σ)∼P

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
≤ e4λ · ξ(m−λ) ,

where ξ(·) is defined by Equation (22), and therefore we have that ξ(m−λ) ≤ 2
√
m−λ .

14. Laviolette and Marchand (2007) describe a more general setting where, for each S ∈ (X × Y)m, a prior
is defined on Iλ × ΣSi . Hence, the messages may depend on the compression sequence Si.
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Proof As the the choice of (i,σ) according to the prior P is independent15 of S, we have

E
S∼Dm

E
(i,σ)∼P

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
= E

(i,σ)∼P
E

S∼Dm
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
(39)

= E
(i,σ)∼P

E
Si∼Dλ

E
Sic∼Dm−λ

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
. (40)

Let us now rewrite the empirical loss of an sc-voter as a combination of the loss on its
compression sequence Si and the loss on the other training examples Sic .

EL`S (R(Si,σ)) =
1

m

[
λ · EL`Si

(R(Si,σ)) + (m−λ) · EL`Sic
(R(Si,σ))

]
.

Since 0 ≤ EL`D′(R(Si,σ)) ≤ 1 and 2 · (q − p)2 ≤ kl(q‖p) (Pinsker’s inequality), we have

(m− λ) · 2 ·
(
EL`S (R(Si,σ))− EL`D (R(Si,σ))

)2
= (m− λ) · 2 ·

(
1
m

[
λ · EL`Si

(R(Si,σ)) + (m−λ) · EL`Sic
(R(Si,σ))

]
− EL`D (R(Si,σ))

)2
= (m− λ) · 2 ·

(
λ
m

[
EL`Si

(R(Si,σ))− EL`Sic
(R(Si,σ))

]
+
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
])2

= (m− λ) · 2 ·
((

λ
m

)2[EL`Si
(R(Si,σ))− EL`Sic

(R(Si,σ))
]2

+
[
EL`Sic

(R(Si,σ))−EL`D (R(Si,σ))
]2

+ 2λ
m

[
EL`Si

(R(Si,σ))− EL`Sic
(R(Si,σ))

][
EL`Sic

(R(Si,σ))−EL`D (R(Si,σ))
])

≤ (m− λ) · 2 ·
((

λ
m

)2
+
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

+ 2λ
m

)
= 2λ ·

(
2− λ

m −
(
λ
m

)2)
+ (m− λ) · 2 ·

[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

≤ 4λ+ (m− λ) · 2 ·
[
EL`Sic

(R(Si,σ))− EL`D (R(Si,σ))
]2

≤ 4λ+ (m− λ) · kl
(
EL`Sic

(R(Si,σ)) ‖EL`D (R(Si,σ))
)
. (41)

Note that R(Si,σ) does not depend on examples contained in Sic . Thus, from the point
of view of Sic , R(Si,σ) is a classical voter (not a sample-compressed one). Therefore, one
can apply Lemma 19, replacing S ∼Dm by Sic ∼Dm−λ, and f by R(Si,σ). Lemma 19,
together with Equations (40) and (41), gives

E
(i,σ)∼P

E
Si∼Dλ

E
Sic∼Dm−λ

e(m−λ)·2·
(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2
≤ e4λ · E

(i,σ)∼P
E

Si∼Dλ
E

Sic∼Dm−λ
e

(m−λ)·kl
(
EL`Sic (R(Si,σ)) ‖EL`D (R(Si,σ))

)
≤ e4λ · E

(i,σ)∼P
E

Si∼Dλ
ξ(m−λ) = e4λ · ξ(m−λ) ,

and we are done.

15. Note that because of this independence, the exchange in the order of the two expectations (Line 39) is
trivial. This independence is a direct consequence of our choice to only consider the simplified setting
described by Equation (38). In the more general setting of Laviolette and Marchand (2007), this part of
the proof is more complicated.
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The next PAC-Bayesian theorem presents the generalization of McAllester’s PAC-Bayesian
bound (Corollary 22) for the sample compression case.

Theorem 39 Let R be a reconstruction function that outputs sc-voters of size at most λ
(where λ < m). For any distribution D on X×{−1, 1}, for any prior distribution P on
Iλ × Σλ , and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q :

RD(GQ,S) ≤ RS(GQ,S) +

√
1

2(m−λ)

[
KL(Q‖P ) + 4λ+ ln ξ(m−λ)

δ

]  ≥ 1− δ .

Proof We apply the exact same steps as in the proof of Theorem 18, with m′ = m − λ,
f = R(Si,σ), and D(q, p) = 2(q − p)2, we obtain

Pr
S∼Dm


For all posteriorsQ :

2
(
RS(GQ,S)−RD(GQ,S)

)2
≤ 1

m−λ

[
KL(Q‖P ) + ln

(
1

δ
E

S∼Dm
E

(i,σ)∼P
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2)]
≥ 1− δ .

The result then follows from Lemma 38 and easy calculations.

All the PAC-Bayesian results presented in the preceding sections can be similarly gen-
eralized. We leave them to the reader with the exception of the PAC-Bayesian bounds that
have no KL, that are used in the next section, as we present the learning algorithm MinCq
that minimizes the C-bound.

7.4 Sample-Compressed PAC-Bayesian Bounds without KL

The bounds presented in this section generalize the results presented in Section 6 to the
sample compression case. We first need to generalize the notion of self-complement (Defi-
nition 29) to sc-voters.

Definition 40 A reconstruction function R is said to be self-complemented if for any train-
ing sequence S ∈ (X × Y)m and any (i,σ) ∈ Iλ × Σλ, we have

−R(Si,σ) = R(Si,−σ) ,

where, if σ = 〈σ1, .., σλ〉, then −σ = 〈−σ1, ..,−σλ〉.

7.4.1 A PAC-Bayesian Theorem for the Gibbs Risk of Sc-Voters

Theorem 41 Let R be a self-complemented reconstruction function that outputs sc-voters
of size at most λ (where λ < m). For any distribution D on X×{−1, 1}, for any prior
distribution P on Iλ × Σλ , and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q aligned on P :

RD(GQ,S) ≤ RS(GQ,S) +

√
1

2(m−λ)

[
4λ+ ln ξ(m−λ)

δ

]  ≥ 1− δ .
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Proof First note that 2· (q− p)2 = 2· ((1− q)− (1− p))2. Then apply the exact same steps
as in the proof of Theorem 31 with m′ = m− λ, f = R(Si,σ), and D(q, p) = 2(q − p)2 to
obtain

Pr
S∼Dm

For all posteriorsQ aligned on P :

2
(
RS(GQ,S)−RD(GQ,S)

)2
≤ 1

m−λ

[
ln

(
1

δ
E

S∼Dm
E

(i,σ)∼P
e(m−λ)·2·

(
EL`S (R(Si,σ))−EL`D (R(Si,σ))

)2)]
≥ 1− δ .

The result then follows from Lemma 38 and easy calculations.

7.4.2 A PAC-Bayesian Theorem for the Disagreement of Sc-Voters

Given a training sequence S and a reconstruction function R, we define the expected dis-
agreement of a distribution Q on Iλ × Σλ relative to D′ as

dD
′

Q,S
def
= E

x∼D′X
E

(i,σ)∼Q
E

(i′,σ′)∼Q
L`
(
R(Si,σ)(x),R(Si′ ,σ

′)(x)
)

= E
(i,i′,σ,σ′)∼Q2

ELdD′
(
R(Si,i′ ,σ,σ

′)
)
,

where

Q2(i, i′,σ,σ′)
def
= Q(i,σ) ·Q(i′,σ′) ,

R(Si,i′ ,σ,σ
′)(x)

def
=

〈
R(Si,σ)(x),R(Si′ ,σ

′)(x)
〉
.

Thus, R is a new reconstruction function that outputs an sc-paired-voter which is the
sample-compressed version of the paired-voter of Definition 24. From there, we adapt
Corollary 37 to sc-voters, and we obtain the following PAC-Bayesian theorem. This result
bounds dDQ,S for posterior distributions Q aligned on a prior distribution P .

Theorem 42 Let R be a self-complemented reconstruction function that outputs sc-voters
of size at most λ (where λ < bm2 c). For any distribution D on X×{−1, 1}, for any prior
distribution P on Iλ × Σλ, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 For all posteriors Q aligned on P :

dDQ,S ≥ dSQ,S −
√

1

2(m−2λ)

[
8λ+ ln ξ(m−2λ)

δ

]  ≥ 1− δ .

Proof Let P 2(i, i′,σ,σ′)
def
= P (i,σ)·P (i′,σ′). Now note that 2·(q−p)2 = 2·((1−q)−(1−p))2.

Then apply the exact same steps as in the proof of Theorem 35 with m′ = m − 2λ,
fij = R(Si,i′ ,σ,σ

′) and D(q, p) = 2(q − p)2 to obtain

Pr
S∼Dm

For all posteriorsQ aligned on P :

2
(
dSQ,S−dDQ,S

)2
≤ 1

m

[
ln

(
1

δ
E

S∼Dm
E

(i,i′,σ,σ′)∼P 2
em·2·

(
ELdS (R(Si,i′ ,σ,σ

′))−ELdD (R(Si,i′ ,σ,σ
′))
)2)]

≥ 1− δ .
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Calculations similar to the ones of the proof of Lemma 38 (with λ replaced by 2λ) give

E
S∼Dm

E
(i,i′,σ,σ′)∼P 2

e(m−2λ)·2·
(
ELdS (R(Si,i′ ,σ,σ

′))−ELdD (R(Si,i′ ,σ,σ
′))
)2
≤ e8λ · ξ(m−2λ) .

Therefore, we have

Pr
S∼Dm

(
For all posteriorsQ aligned on P :

2
(
dSQ,S−dDQ,S

)2
≤ 1

m−2λ

[
8λ+ ln ξ(m−2λ)

δ

]) ≥ 1− δ .

and the result is obtained by isolating dDQ,S in the inequality.

7.4.3 A Sample Compression Bound for the Risk of the Majority Vote

Let us now exploit Theorems 41 and 42, together with the C-bound of Theorem 11, to
obtain a bound on the risk on a majority vote with kernel functions as voters. Given any
similarity function (possibly a kernel) k : X × X → [−1, 1] and a training sequence size
of m, we consider a majority vote of sc-voters of compression size at most 1 given by the
following reconstruction function,

Rk
(
Si, 〈σ〉

)
(x)

def
=

{
σ if i=〈 〉,
σ · k(xi, x) otherwise ( i=〈i〉 ),

where i ∈ I1 = {〈 〉, 〈1〉, 〈2〉, . . . , 〈m〉} and 〈σ〉 ∈ Σ1 (thus, σ ∈ {−1, 1}). Here, the elements
of sets I1 and Σ1 are obtained from Equation (38), with λ = 1. Note that Rk is self-
complemented (Definition 40) because −Rk

(
Si, 〈σ〉

)
= Rk

(
Si, 〈−σ〉

)
for any (i,σ).

Once the training sequence S ∼ Dm is observed, the (self-complemented) reconstruction
function Rk gives rise to the following set of 2m+2 sc-voters,

HRkS,1
def
=
{
b(·), k(x1, ·), k(x2, ·), . . . , k(xm, ·),−b(·),−k(x1, ·),−k(x2, ·), . . . ,−k(xm, ·)

}
,

where b : X → {1} is a “dummy voter” that always outputs 1 and allows introducing a
bias value into the majority vote classifier. Note that HRkS,1 is a self-complemented set of

sc-voters, and the margin of the majority vote given by the distribution Q on HRkS,1 is

MQ,S(x, y)
def
= y

(
Q
(
b(·)

)
−Q

(
−b(·)

)
+

m∑
i=1

[
Q
(
k(xi, ·)

)
−Q

(
−k(xi, ·)

)]
k(xi, x)

)
.

Consequently, the empirical first and second moments of this margin are

µ1(MS
Q,S) =

1

m

m∑
i=1

MQ,S(xi, yi), and µ2(MS
Q,S) =

1

m

m∑
i=1

[
MQ,S(xi, yi)

]2
.

Hence, the empirical Gibbs risk and the empirical expected disagreement can be expressed
by

RS(GQ,S) =
1

2

(
1− µ1(MS

Q,S)
)
, and dSQ,S =

1

2

(
1− µ2(MS

Q,S)
)
. (42)

Thus, we obtain the following bound on the risk of a majority vote of kernel voters
RD(BQ,S) for aligned posteriors Q.
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PAC-Bound 3’ Let k : X × X → [−1, 1]. For any distribution D on X×{−1, 1}, for any
prior distribution P on HRkS,1, and any δ ∈ (0, 1], we have

Pr
S∼Dm

 ∀Q aligned on P :

RD(BQ,S) ≤ 1−
(

1− 2 · r
)2

1− 2 · d = 1−
(
µ1

)2
µ2

 ≥ 1− δ ,

where

r
def
= min

(
1
2 , RS(GQ,S) +

√
1

2(m−1)

[
4 + ln ξ(m−1)

δ/2

])
,

d
def
= max

(
0, dSQ,S −

√
1

2(m−2)

[
8 + ln ξ(m−2)

δ/2

])
,

µ1
def
= max

(
0, µ1(MS

Q,S)−
√

2
m−1

[
4 + ln ξ(m−1)

δ/2

])
,

µ2
def
= min

(
1, µ2(MS

Q,S) +

√
2

m−2

[
8 + ln ξ(m−2)

δ/2

])
.

Proof The proof is almost identical to the one of PAC-Bound 3, except that it relies on
sample-compressed PAC-Bayesian bounds. Indeed, the inequality is a consequence of The-

orem 11, as well as Theorems 41 and 42. The equality 1 − (1−2·r)2
1−2·d = 1 − (µ1 )2

µ2
is a direct

application of Equation (42).

PAC-Bounds 3 and 3’ are expressed in two forms. The first form relies on bounds on
the Gibbs risk and the expected disagreement (denoted r and d). The second form relies
on bounds on the first and second moments of the margin (denoted µ1 and µ2). This latter
form is used to justify the learning algorithm presented in Section 8.

8. MinCq: Learning by Minimizing the C-bound

In this section, we propose a new algorithm, that we call MinCq, for constructing a weighted
majority vote of voters. One version of this algorithm is designed for the supervised induc-
tive framework and minimizes the C-bound. A second version of MinCq that minimizes the
C-bound in the transductive (or semi-supervised) setting can be found in Laviolette et al.
(2011). Both versions can be expressed as quadratic programs on positive semi-definite
matrices.

As is the case for Boosting algorithms (Schapire and Singer, 1999), MinCq is designed
to output a Q-weighted majority vote of voters that perform rather poorly individually and,
consequently, are often called weak learners. Hence, the decision of each vote is based on a
small majority (i.e., with a Gibbs risk just a bit lower than 1/2). Recall that in situations
where the Gibbs risk is high (i.e., the first moment of the margin is close to 0), the C-bound
can nevertheless remain small if the voters of the majority vote are maximally uncorrelated.

Unfortunately, minimizing the empirical value of the C-bound tends to overfit the data.
To overcome this problem, MinCq uses a distribution Q of voters which is constrained to
be quasi-uniform (see Equation 37) and for which the first moment of the margin is forced
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to be not too close to 0. More precisely, the value µ1(MS
Q) is constrained to be bigger than

some strictly positive constant µ. This µ then becomes a hyperparameter of the algorithm
that has to be fixed by cross-validation, as the parameter C is for SVM. This new learning
strategy is justified by PAC-Bound 3, dedicated to quasi-uniform posteriors16, and PAC-
Bound 3’, that is specialized to kernel voters. Hence, MinCq can be viewed as the algorithm
that simply looks for the majority vote of margin at least µ that minimizes PAC-Bound 3
(or PAC-Bound 3’ in the sample compression case).

MinCq is also justified by two important properties of quasi-uniform majority votes.
First, as we shall see in Theorem 43, there is no generality loss when restricting ourselves
to quasi-uniform distributions. Second, as we shall see in Theorem 44, for any margin
threshold µ > 0 and any quasi-uniform distribution Q such that µ1(MS

Q) ≥ µ, there is
another quasi-uniform distribution Q′ whose margin is exactly µ that achieves the same
majority vote and therefore has the same C-bound value.

Thus, to minimize the C-bound, the learner must substantially reduce the variance of
the margin distribution – i.e., µ2(MS

Q) – while maintaining its first moment – i.e., µ1(MS
Q)

– over the threshold µ. Many learning algorithms actually exploit this strategy in different
ways. Indeed, the variance of the margin distribution is controlled by Breiman (2001) for
producing random forests, by Dredze et al. (2010) in the transfer learning setting, and
by Shen and Li (2010) in the Boosting setting. Thus, the idea of minimizing the variance of
the margin is well-known and used. We propose a new theoretical justification for all these
types of algorithms and propose a novel learning algorithm, called MinCq, that directly
minimizes the C-bound.

8.1 From the C-bound to the MinCq Learning Algorithm

We only consider learning algorithms that construct majority votes based on a (finite) self-
complemented hypothesis space H = {f1, . . . , f2n} of real-valued voters. Recall that these
voters can be classifiers such as decision stumps or can be given by a kernel k evaluated on
the examples of S such as fi(·) = k(xi, ·).

We consider the second form of the C-bound, which relies on the first two moments of
the margin of the majority vote classifier (see Theorem 11):

CD′Q = 1−

(
µ1(MD′

Q )
)2

µ2(MD′

Q )
.

Our first attempts to minimize the C-bound confronted us with two problems.

Problem 1: an empirical C-bound minimization without any regularization tends to overfit
the data.

Problem 2: most of the time, the distributions Q minimizing the C-bound CSQ are such

that both µ1(MS
Q) and µ2(MS

Q) are very close to 0. Since CSQ = 1 − (µ1(MS
Q))2/µ2(MS

Q) ,

this gives a 0/0 numerical instability. Since (µ1(MD
Q))2/µ2(MD

Q) can only be empirically

estimated by (µ1(MS
Q))2/µ2(MS

Q), Problem 2 amplifies Problem 1.

16. PAC-Bound 3 is dedicated to posteriors Q that are aligned on a prior distribution P , but in this section
we always consider that the prior distribution P is uniform, thus leading to a quasi-uniform posterior Q.
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A natural way to resolve Problem 1 is to restrict ourselves to quasi-uniform distributions,
i.e., distributions that are aligned on the uniform prior (see Section 6.1 for the definition).
In Section 6, we show that with such distributions, one can upper-bound the Bayes risk
without needing a KL-regularization term. Hence, according to this PAC-Bayesian theory,
these distributions have some “built-in” regularization effect that should prevent overfitting.
Section 7 generalizes these results to the sample compression setting, which is necessary in
the case where voters such as kernels are defined using the training set.

The next theorem shows that this restriction on Q does not reduce the set of possible
majority votes.

Theorem 43 Let H be a self-complemented set. For all distributions Q on H, there exists
a quasi-uniform distribution Q′ on H that gives the same majority vote as Q, and that has
the same empirical and true C-bound values, i.e.,

BQ′ = BQ , CSQ′ = CSQ and CDQ′ = CDQ .

Proof LetQ be a distribution onH={f1, . . . , f2n}, letM
def
= maxi∈{1,..,n}|Q(fi+n)−Q(fi)|,

and let Q′ be defined as

Q′(fi)
def
=

1

2n
+
Q(fi) − Q(fi+n)

2nM
,

where the indices of f are defined modulo 2n (i.e., f(i+n)+n = fi). Then it is easy to show
that Q′ is a quasi-uniform distribution. Moreover, for any example x ∈ X , we have

E
f∼Q′

f(x)
def
=

2n∑
i=1

Q′(fi) fi(x) =
n∑
i=1

(Q′(fi)−Q′(fi+n)) fi(x)

=
n∑
i=1

2Q(fi)− 2Q(fi+n)

2nM
fi(x) =

1

nM

2n∑
i=1

Q(fi) fi(x)

=
1

nM
E
f∼Q

f(x) .

Since nM > 0, this implies that BQ′(x) = BQ(x) for all x ∈ X . It also shows that

MQ′(x, y)= 1
nMMQ(x, y), which implies that

(
µ1(MD′

Q′ )
)2

=
(

1
nM µ1(MD′

Q )
)2

and µ2(MD′

Q′ )=(
1
nM

)2
µ2(MD′

Q ) for both D′ = D and D′ = S.

The theorem then follows from the definition of the C-bound.

Theorem 43 points out a nice property of the C-bound: different distributions Q that
give rise to a same majority vote have the same (real and empirical) C-bound values. Since
the C-bound is a bound on majority votes, this is a suitable property. Moreover, PAC-
Bounds 3 and 3’, together with Theorem 43, indicate that restricting ourselves to quasi-
uniform distributions is a natural solution to the problem of overfitting (see Problem 1).
Unfortunately, Problem 2 remains since a consequence of the next theorem is that, among
all the posteriors Q that minimize the C-bound, there is always one whose empirical margin
µ1(MS

Q) is as close to 0 as we want.
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Theorem 44 Let H be a self-complemented set. For all µ ∈ (0, 1] and for all quasi-uniform
distributions Q on H having an empirical margin µ1(MS

Q) ≥ µ, there exists a quasi-uniform
distribution Q′ on H, having an empirical margin equal to µ, such that Q and Q′ induce
the same majority vote and have the same empirical and true C-bound values, i.e.,

µ1(MS
Q′) = µ , BQ′ = BQ , CSQ′ = CSQ and CDQ′ = CDQ .

Proof Let Q be a quasi-uniform distribution on H={f1, . . . , f2n} such that µ1(MS
Q) ≥ µ.

We define Q′ as

Q′(fi)
def
=

µ

µ1(MS
Q)
·Q(fi) +

(
1− µ

µ1(MS
Q)

)
· 1/2n , i ∈ {1, .., 2n} .

Clearly Q′ is a quasi-uniform distribution since it is a convex combination of a quasi-uniform
distribution and the uniform one. Then, similarly as in the proof of Theorem 43, one can
easily show that E

f∼Q′
f(x) = µ

µ1(MS
Q)

E
f∼Q

f(x), which implies the result.

Training set bounds (such as VC-bounds for example) are known to degrade when the
capacity of classification increases. As shown by Theorem 44 for the majority vote setting,
this capacity increases as µ decreases to 0. Thus, we expect that any training set bound
degrades for small µ. This is not the case for the C-bound itself, but the C-bound is not a
training set bound. To obtain a training set bound, we have to relate the empirical value CSQ
to the true one CDQ , which is done via PAC-Bounds 3 and 3’. In these bounds, there is indeed

a degradation as µ decreases because the true C-bound is of the form 1−(µ1(MD
Q))2/µ2(MD

Q).
Since µ = µ1(MS

Q), and because a small µ1(MS
Q) tends to produce small µ2(MS

Q), the

bounds on CDQ given CSQ that outcomes from PAC-Bounds 3 and 3’ are therefore much
looser for small µ because of the 0/0 instability. As explained in the introduction of the
present section, one way to overcome the instability identified in Problem 2 is to restrict
ourselves to quasi-uniform distributions whose empirical margin is greater or equal than
some threshold µ. Interestingly, thanks to Theorem 44, this is equivalent to restricting
ourselves to distributions having empirical margin exactly equal to µ. From Theorems 11
and 44, it then follows that minimizing the C-bound, under the constraint µ1(MS

Q)≥µ, is
equivalent to minimizing µ2(MS

Q), under the constraint µ1(MS
Q)=µ , from this observation,

and the fact that minimizing PAC-Bounds 3 and 3’ is equivalent to minimizing the empirical
C-bound CSQ, we can now define the algorithm MinCq.

In this section, µ always represents a restriction on the margin. Moreover, we say
that a value µ is D′-realizable if there exists some quasi-uniform distribution Q such that
µ1(MD′

Q ) = µ. The proposed algorithm, called MinCq, is then defined as follows.

Definition 45 (MinCq Algorithm) Given a self-complemented set H of voters, a train-
ing set S, and a S-realizable µ > 0, among all quasi-uniform distributions Q of empirical
margin µ1(MS

Q) exactly equal to µ, the algorithm MinCq consists in finding one that mini-
mizes µ2(MS

Q).

This algorithm can be translated as a simple quadratic program (QP) that has only
n variables (instead of 2n), and thus can be easily solved by any QP solver. In the next
subsection, we explain how the algorithm of Definition 45 can be turned into a QP.
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8.2 MinCq as a Quadratic Program

Given a training set S, and a self-complemented set H of voters {f1, f2, . . . , f2n}, let

Mi
def
= E

(x,y)∼S
y fi(x) and Mi,j

def
= E

(x,y)∼S
fi(x) fj(x) .

Let M be a symmetric n × n matrix, a be a column vector of n elements, and m be a
column vector of n elements defined by

M
def
=


M1,1 M1,2 . . . M1,n

M2,1 M2,2 . . . M2,n
...

...
. . .

...
Mn,1 Mn,2 . . . Mn,n

 , a
def
=


1
n

∑n
i=1Mi,1

1
n

∑n
i=1Mi,2

...
1
n

∑n
i=1Mi,n

 , and m
def
=


M1

M2
...
Mn

 . (43)

Finally, let q be the column vector of n QP-variables, where each element qi represents
the weight Q(fi).

Using the above definitions and the fact that H is self-complemented, one can show that

Mi+n = −Mi , Mi+n,j =Mi,j+n = −Mi,j , and qi+n =
1

n
− qi .

Moreover, it follows from the definitions of the first two moments of the margin µ1(MS
Q)

and µ2(MS
Q) (see Equations 6 and 8) that

µ1(MS
Q) =

2n∑
i=1

qiMi , and µ2(MS
Q) =

2n∑
i=1

2n∑
j=1

qiqjMi,j .

As MinCq consists in finding the quasi-uniform distribution Q that minimizes µ2(MS
Q),

with a margin µ1(MS
Q) exactly equal to the hyperparameter µ, let us now rewrite µ2(MS

Q)
and µ1(MS

Q) using the vectors and matrices defined in Equation (43). It follows that

µ2(MS
Q) =

2n∑
i=1

2n∑
j=1

qiqjMi,j =

n∑
i=1

n∑
j=1

[
qiqj − qi+nqj − qiqj+n + qi+nqj+n

]
Mi,j

=

n∑
i=1

n∑
j=1

[
4qiqj −

4

n
qi +

1

n2

]
Mi,j

= 4

n∑
i=1

n∑
j=1

qiqj Mi,j −
4

n

n∑
i=1

n∑
j=1

qi Mi,j +
1

n2

n∑
i=1

n∑
j=1

Mi,j

= 4
(
q>M q − a> q

)
+

1

n2

n∑
i=1

n∑
j=1

Mi,j , (44)
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and

µ1(MS
Q) =

2n∑
i=1

qiMi =

n∑
i=1

(
qi − qi+n

)
Mi =

n∑
i=1

(
2qi −

1

n

)
Mi = 2

n∑
i=1

qi Mi −
1

n

n∑
i=1

Mi

= 2m>q− 1

n

n∑
i=1

Mi .

As the objective function µ2(MS
Q) and the constraint µ1(MS

Q) = µ of the QP can
be defined using only n variables, there is no need to consider in the QP the weights
of the last n voter. These weights can always be recovered from the n first, because
qi+n = 1

n − qi, for any i . Note however that to be sure that the solution of the QP has the
quasi-uniformity property, we have to add the following constraints to the program:

qi ∈ [0, 1
n ] for any i .

Note that the multiplicative constant 4 and the additive constant 1
n2

∑n
i=1

∑n
j=1Mi,j

from Equation (44) can be omitted, as the optimal solution will stay the same. From all that
precedes and given any S-realizable µ, MinCq solves the optimization problem described
by Program 1.

Program 1 : MinCq - a quadratic program for classification

Solve argminq q> M q − a> q

under constraints : m> q = µ
2 + 1

2n

∑n
i=1Mi

and : 0 ≤ qi ≤ 1
n ∀i ∈ {1, . . . , n}

To prove that Program 1 is a quadratic program, it suffices to show that M is a positive
semi-definite matrix. This is a direct consequence of the fact that eachMi,j can be viewed
as a scalar product, since

Mi,j =
(√

1
|S| fi(x)

)
x∈SX
·
(√

1
|S| fj(x)

)
x∈SX

, where SX
def
= {x : (x, y) ∈ S}.

Finally, the Q-weighted majority vote output by MinCq is

BQ(x) = sgn

[
E
f∼Q

f(x)

]
= sgn

[
2n∑
i=1

qifi(x)

]
= sgn

[
n∑
i=1

qifi(x) +
2n∑

i=n+1

qifi(x)

]

= sgn

[
n∑
i=1

qifi(x) +

n∑
i=1

( 1
n − qi) · −fi(x)

]

= sgn

[
n∑
i=1

(2qi − 1
n)fi(x)

]
.
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8.3 Experiments

We now compare MinCq to state-of-the-art learning algorithms in three different contexts:
handwritten digits recognition, classical binary classification tasks, and Amazon reviews
sentiment analysis. A context (Lacoste et al., 2012) represents a distribution on the different
tasks a learning algorithm can encounter, and a sample from a context is a collection of
data sets.

For each context, each data set is randomly split into a training set S and a testing set T .
When hyperparameters have to be chosen for an algorithm, 5-fold cross-validation is run on
the training set S, and the hyperparameter values that minimize the mean cross-validation
risk are chosen. Using these values, the algorithm is trained on the whole training set S,
and then evaluated on the testing set T .

For the first two contexts, we compare MinCq using decision stumps as voters (referred
to as StumpsMinCq), MinCq using RBF kernel functions k(x, x′) = exp(−γ||x − x′||2) as
voters (referred to as RbfMinCq), AdaBoost (Schapire and Singer, 1999) using decision
stumps (referred to as StumpsAdaBoost), and the soft-margin Support Vector Machine
(SVM) (Cortes and Vapnik, 1995) using the RBF kernel, referred to as RbfSVM. For the
last context, we compare MinCq using linear kernel functions k(x, x′) = x · x′ as voters
(referred to as LinearMinCq), and the SVM using the same linear kernel, referred to as
LinearSVM.

For the three variants of MinCq, the quadratic program is solved using CVXOPT (Dahl
and Vandenberghe, 2007), an off-the-shelf convex optimization solver.

StumpsAdaBoost: For StumpsAdaBoost, we use decision stumps as weak learners. For
each attribute, 10 decision stumps (and their complement) are generated, for a total
of 20 decision stumps per attribute. The number of boosting rounds is chosen among
the following 15 values: 10, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 275, 500, 750
and 1000.

StumpsMinCq: For StumpsMinCq, we use the same 10 decision stumps per attribute as
for StumpsAdaBoost. Note that we do not need to consider the complement stumps in
this case, as MinCq automatically considers self-complemented sets of voters. MinCq’s
hyperparameter µ is chosen among 15 values between 10−4 and 100 on a logarithmic
scale.

RbfSVM: The γ hyperparameter of the RBF kernel and the C hyperparameter of the
SVM are chosen among 15 values between 10−4 and 101 for γ, and among 15 values
between 100 and 108 for C, both on a logarithmic scale.

RbfMinCq: For RbfMinCq, we consider 15 values of µ between 10−4 and 10−2 on a loga-
rithmic scale, and the same 15 values of γ as in SVM for the RBF kernel voters.

LinearSVM: When using the linear kernel, the C parameter of the SVM is chosen among
15 values between 10−4 and 102, on a logarithmic scale. All SVM experiments are
done using the implementation of Pedregosa et al. (2011).

LinearMinCq: For LinearMinCq, we consider 15 values of µ between 10−4 and 10−2 on a
logarithmic scale.
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Figure 8: Comparison of the risks on the testing set for each algorithm and each MNIST bi-
nary data set. The figure on the left shows a comparison of the risks of RbfMinCq
(x-axis) and RbfSVM (y-axis). The figure on the right compares StumpsMinCq
(x-axis) and StumpsAdaBoost (y-axis). On each scatter plot, a point represents a
pair of risks for a particular MNIST binary data set. A point above the diagonal
line indicates better performance for MinCq.

Statistical Comparison Tests

RbfMinCq vs RbfSVM StumpsMinCq vs StumpsAdaBoost

Poisson binomial test 88% 99%
Sign test (p-value) 0.01 0.00

Table 2: Statistical tests comparing MinCq to either RbfSVM or StumpsAdaBoost. The
Poisson binomial test gives the probability that MinCq has a better performance
than another algorithm on this context. The sign test gives a p-value representing
the probability that the null hypothesis is true (i.e., MinCq and the other algorithm
both have the same performance on this context).

When using the RBF kernel for the SVM or MinCq, each data set is normalized using a
hyperbolic tangent. For each example x, each attribute x1, x2, . . . , xn is renormalized with

x
′
i = tanh

[
xi−xi
σi

]
, where xi and σi are the mean and standard deviation of the ith attribute

respectively, calculated on the training set S. Normalizing the features when using the RBF
kernel is a common practice and gives better results for both MinCq and SVM. Empirically,
we observe that the performance gain of RbfMinCq with normalized data is even more
significant than for RbfSVM.
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8.3.1 Handwritten Digits Recognition Context

The first context of interest to compare MinCq with other learning algorithms is the hand-
written digits recognition. For this task, we use the MNIST database of handwritten digits
of Lecun and Cortes. We split the original data set into 45 binary classification tasks, where
the union of all binary data sets recovers the original data set, and the intersection of any
pair of binary data sets gives the empty set. Therefore, any example from the original data
set appears on one and only one binary data set, thus avoiding any correlation between the
binary data sets. For each resulting binary data set, we randomly choose 500 examples to
be in the training set S, and the testing set T consists of the remaining examples. Figure 8
shows the resulting test risk for each binary data set and each algorithm.

Table 2 shows two statistical tests to compare the algorithms on the handwritten
digits recognition context: the Poisson binomial test (Lacoste et al., 2012) and the sign
test (Mendenhall, 1983). Both methods suggest that RbfMinCq outperforms RbfSVM on
this context, and that StumpsMinCq outperforms StumpsAdaBoost.

8.3.2 Classical Binary Classification Tasks Context

This second context of interest is a more general one: it consists of multiple binary clas-
sification data sets coming from the UCI Machine Learning Repository (Blake and Merz,
1998). These data sets are commonly used as a benchmark for learning algorithms, and
may help to answer the question “How well may a learning algorithm perform on many
unrelated classification tasks”. For each data set, half of the examples (up to a maximum
of 500) are randomly chosen to be in the training set S, and the remaining examples are in
the testing set T . Table 3 shows the resulting test risks on this context, for each algorithm.

Table 3 also shows a statistical comparison of all algorithms on the classical binary
classification tasks context, using the Poisson binomial test and the sign test. On this
context, both statistical tests show no significant performance difference between RbfMinCq
and RbfSVM, and between StumpsMinCq and StumpsAdaBoost, implying that these pairs
of algorithms perform similarly well on this general context.

8.3.3 Amazon Reviews Sentiment Analysis

This context contains 4 sentiment analysis data sets, representing product types (books,
DVDs, electronics and kitchen appliances). The task is to learn from an Amazon.com
product user review in natural language, and predict the polarity of the review, that is
either negative (3 stars or less) or positive (4 or 5 stars). The data sets come from Blitzer
et al. (2007), where the natural language reviews have already been converted into a set
of unigrams and bigrams of terms, with a count. For each data set, a training set of 1000
positive reviews and 1000 negative reviews are provided, and the remaining reviews are
available in a testing set. The original feature space of these data sets is between 90, 000
and 200, 000 dimensions. However, as most of the unigrams and bigrams are not significant
and to reduce the dimensionality, we only consider unigrams and bigrams that appear
at least 10 times on the training set (as in Chen et al., 2011), reducing the numbers of
dimensions to between 3500 and 6000. Again as in Chen et al. (2011), we apply standard
tf-idf feature re-weighting (Salton and Buckley, 1988). Table 4 shows the resulting test
risks for each algorithm.
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Data Set Information Risk RT (BQ) for Each Algorithm

Name |S| |T | RbfMinCq RbfSVM StumpsMinCq StumpsAdaBoost

Australian 345 345 0.142 0.133 0.165 0.168
Balance 313 312 0.054 0.042 0.042 0.032
BreastCancer 350 349 0.037 0.046 0.037 0.060
Car 500 1228 0.074 0.032 0.320 0.291
Cmc 500 973 0.303 0.306 0.140 0.134
Credit-A 345 345 0.122 0.133 0.304 0.308
Cylinder 270 270 0.204 0.233 0.125 0.148
Ecoli 168 168 0.077 0.071 0.289 0.289
Flags 97 97 0.289 0.320 0.071 0.071
Glass 107 107 0.206 0.206 0.268 0.309
Heart 135 135 0.163 0.156 0.262 0.271
Hepatitis 78 77 0.169 0.143 0.185 0.185
Horse 184 184 0.185 0.196 0.169 0.221
Ionosphere 176 175 0.114 0.069 0.245 0.174
Letter:AB 500 1055 0.007 0.003 0.109 0.120
Letter:DO 500 1058 0.021 0.018 0.005 0.010
Letter:OQ 500 1036 0.023 0.036 0.020 0.048
Liver 173 172 0.267 0.285 0.042 0.052
Monks 216 216 0.245 0.208 0.306 0.236
Nursery 500 12459 0.025 0.026 0.025 0.026
Optdigits 500 3323 0.034 0.027 0.089 0.089
Pageblock 500 4973 0.045 0.048 0.059 0.055
Pendigits 500 6994 0.007 0.008 0.069 0.084
Pima 384 384 0.253 0.255 0.273 0.250
Segment 500 1810 0.017 0.018 0.040 0.022
Spambase 500 4101 0.067 0.077 0.133 0.070
Tic-tac-toe 479 479 0.033 0.025 0.330 0.353
USvote 218 217 0.051 0.051 0.051 0.051
Wine 89 89 0.034 0.045 0.169 0.034
Yeast 500 984 0.286 0.279 0.324 0.306
Zoo 51 50 0.040 0.060 0.060 0.040

Statistical Comparison Tests

RbfMinCq vs RbfSVM StumpsMinCq vs StumpsAdaBoost

Poisson binomial test 54% 48%
Sign test (p-value) 0.36 0.35

Table 3: Risk on the testing set for all algorithms, on the classical binary classification task
context. See Table 2 for an explanation of the statistical tests.

Table 4 also shows a statistical comparison of the algorithms on this context, again using
the Poisson binomial test and the sign test. LinearMinCq has an edge over LinearSVM,
as it wins or draws on each data set. However, both statistical tests show no significant
performance difference between LinearMinCq and LinearSVM.

These experiments show that minimizing the C-bound, and thus favoring majority votes
for which the voters are maximally uncorrelated, is a sound approach. MinCq is very
competitive with both AdaBoost and the SVM on the classical binary tasks context and
the Amazon reviews sentiment analysis context. MinCq even shows a highly significant
performance gain on the handwritten digits recognition context, implying that on certain
types of tasks or data sets, minimizing the C-bound offers a state-of-the-art performance.
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Data Set Information Risk RT (BQ) for Each Algorithm

Name |S| |T | LinearMinCq LinearSVM

Books 2000 4465 0.158 0.158
DVD 2000 3586 0.162 0.163
Kitchen 2000 5945 0.130 0.131
Electronics 2000 5681 0.116 0.118

Statistical Comparison Tests

LinearMinCq vs LinearSVM

Poisson binomial test 68%
Sign test (p-value) 0.31

Table 4: Risk on the testing set for all algorithms, on the Amazon reviews sentiment analysis
context. See Table 2 for an explanation of the statistical tests.

However, for all above experiments, we observe that the empirical values of the PAC-
Bounds are trivial (close to 1). Remember that, inspired by PAC-Bounds 3 and 3’, the
MinCq algorithm learns the weights of a majority vote by minimizing the second moment
of the margin while fixing its first moment µ to some value. In these experiments, the value
of µ chosen by cross-validation is always very close to 0 (basically, µ = 10−4). This implies

that CSQ = 1 − µ2

µ2(MS
Q)

is very close to the 1 − 0
0 form, leading to a severe degradation of

PAC-Bayesian bounds for CDQ . Note that the voters were all weak in the former experiments.
This explains why very small values of µ were selected by cross-validation.

8.3.4 Experiments with Stronger Voters

In the following experiment, we show that one can obtain much better bound values by using
stronger voters, that is, voters with a better individual performance. To do so, instead of
considering decision stumps, we consider decision trees.17 We use 100 decision tree classifiers
generated with the implementation of Pedregosa et al. (2011) (we set the maximum depth
to 10 and the number of features per node to 1). By using these strong voters, it is possible
to achieve higher values of µ.18

Figure 9 shows the empirical C-bound value and its corresponding PAC-Bayesian bound
values for multiple values of µ on the Mushroom UCI data set. From the 8124 examples, 500
have been used to construct the set of voters, 4062 for the training set, and the remaining
examples for the testing set. The figure shows the PAC-Bayesian bounds get tighter when
µ is increasing. Note however that the empirical C-bound slightly increases from 0.001 to
0.016. The risk on the testing set of the majority vote (not shown in the figure) is 0 for
most values of µ, but also increases a bit for the highest values (remaining below 0.001).

17. A decision stump can be seen as a (weak) decision tree of depth 1.
18. Note that the set of decision trees was learned on a fresh set of examples, disjoint from the training data.

We do so to ensure that all computed PAC-Bounds are valid, even if they are not designed to handle
sample-compressed voters.
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Figure 9: Values of empirical C-bound and corresponding PAC-Bounds 0, 1, 2, 2’ and 3 on
the majority votes output by MinCq, for multiple values of µ.

Hence, we obtain tight bounds for high values of µ (PAC-Bounds 2 and 2’ are under
0.2). Nevertheless, these PAC-Bayesian bounds are not tight enough to precisely guide the
selection of µ. This is why we rely on cross-validation to select a good value of µ.

Finally, we also see that PAC-Bound 3 is looser than other bounds over CDQ , but this was
expected as it was not designed to be as tight as possible. That being said, PAC-Bound 3
has the same behavior than PAC-Bounds 1 and 2. This suggests that we can rely on it to
justify the MinCq learning algorithm once the hyperparameter µ is fixed.

9. Conclusion

In this paper, we have revisited the work presented in Lacasse et al. (2006) and Laviolette
et al. (2011). We clarified the presentation of previous results and extended them, as well as
actualizing the discussion regarding the ever growing development of PAC-Bayesian theory.

We have derived a risk bound (called the C-bound) for the weighted majority vote
that depends on the first and the second moment of the associated margin distribution
(Theorem 11). The proposed bound is based on the one-sided Chebyshev inequality, which,
under the mild condition of Proposition 14, is the tightest inequality for any real-valued
random variable given only its first two moments. Also, as shown empirically by Figure 3,
this bound has a strong predictive power on the risk of the majority vote.

We have also shown that the original PAC-Bayesian theorem, together with new ones,
can be used to obtain high-confidence estimates of this new risk bound that holds uniformly
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for all posterior distributions. We have generalized these PAC-Bayesian results to the (more
general) sample compression setting, allowing one to make use of voters that are constructed
with elements of the training data, such as kernel functions yik(xi, ·). Moreover, we have
presented PAC-Bayesian bounds that have the uncommon property of having no Kullback-
Leibler divergence term (PAC-Bounds 3 and 3’). These bounds, together with the C-bound,
gave the theoretical foundation to the learning algorithm introduced at the end of the
paper, that we have called MinCq. The latter turns out to be expressible in the nice form
of a quadratic program. MinCq is not only based on solid theoretical guarantees, it also
performs very well on natural data, namely when compared with the state-of-the-art SVM.

This work tackled the simplest problem in machine learning (the supervised binary clas-
sification in presence of i.i.d. data), and we now consider that the PAC-Bayesian theory is
mature enough to embrace a variety of more sophisticated frameworks. Indeed, in the recent
years several authors applied this theory to many more complex paradigms: Transductive
Learning (Derbeko et al., 2004; Catoni, 2007; Bégin et al., 2014), Domain Adaptation (Ger-
main et al., 2013), Density Estimation (Seldin and Tishby, 2009; Higgs and Shawe-Taylor,
2010), Structured output Prediction (McAllester, 2007; Giguère et al., 2013; London et al.,
2014), Co-clustering (Seldin and Tishby, 2009, 2010), Martingales (Seldin et al., 2012), U-
Statistics of higher order (Lever et al., 2013) or other non-i.i.d. settings (Ralaivola et al.,
2010), Multi-armed Bandit (Seldin et al., 2011) and Reinforcement Learning (Fard and
Pineau, 2010; Fard et al., 2011).
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Appendix A. Auxiliary mathematical results

Lemma 46 (Markov’s inequality) For any random variable X such that E(X) = µ,
and for any a > 0, we have

Pr (|X| ≥ a) ≤ µ

a
.

Lemma 47 (Jensen’s inequality) For any random variable X and any convex func-
tion f , we have

f(E [X]) ≤ E [f(X)] .
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Lemma 48 (One-sided Chebyshev inequality) For any random variable X such that
E(X) = µ and Var(X) = σ2, and for any a > 0, we have

Pr
(
X − µ ≥ a

)
≤ σ2

σ2 + a2
.

Proof First observe that Pr
(
X −µ ≥ a

)
≤ Pr

( [
X − µ+ σ2

a

]2
≥
[
a+ σ2

a

]2 )
. Let us now

apply Markov’s inequality (Lemma 46) to bound this probability. We obtain

Pr

([
X − µ+

σ2

a

]2

≥
[
a+

σ2

a

]2
)
≤

E
[
X − µ+ σ2

a

]2

[
a+ σ2

a

]2 (Markov’s inequality)

=
E (X − µ)2 + 2

(
σ2

a

)
E (X − µ) +

(
σ2

a

)2

[
a+ σ2

a

]2

=
σ2 +

(
σ2

a

)2

[
a+ σ2

a

]2 =
σ2
(

1 + σ2

a2

)
(σ2 + a2)

(
1 + σ2

a2

) =
σ2

σ2 + a2
,

because E (X − µ)2 = Var(X) = σ2 and E (X − µ) = E(X)−E(X) = 0.

Note that the proof Theorem 49 (below) by Cover and Thomas (1991) considers that
probability distributions Q and P are discrete, but their argument is straightforwardly
generalizable to continuous distributions.

Theorem 49 (Cover and Thomas, 1991, Theorem 2.7.2) The Kullback-Leibler divergence
KL(Q‖P ) is convex in the pair (Q,P ), i.e., if (Q1, P1) and (Q2, P2) are two pairs of proba-
bility distributions, then

KL
(
λQ1 + (1−λ)Q2

∥∥λP1 + (1−λ)P2

)
≤ λKL

(
Q1

∥∥P1

)
+ (1−λ) KL

(
Q2

∥∥P2

)
,

for all λ ∈ [0, 1] .

Corollary 50 Both following functions are convex:

1. The function kl(q‖p) of Equation (21), i.e., the Kullback-Leibler divergence between
two Bernoulli distributions;

2. The function kl(q1, q2‖p1, p2) of Equation (31), i.e., the Kullback-Leibler divergence
between two distributions of trivalent random variables.

Proof Straightforward consequence of Theorem 49.
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Lemma 51 (Maurer, 2004) Let X be any random variable with values in [0, 1] and expec-
tation µ = E(X). Denote X the vector containing the results of n independent realizations
of X. Then, consider a Bernoulli random variable X ′ ({0, 1}-valued) of probability of suc-
cess µ, i.e., Pr(X ′ = 1) = µ. Denote X′ ∈ {0, 1}n the vector containing the results of n
independent realizations of X ′.

If function f : [0, 1]n → R is convex, then

E
[
f(X)

]
≤ E

[
f(X′)

]
.

The proof of Lemma 52 (below) follows the key steps of the proof of Lemma 51 by Maurer
(2004), but we include a few more mathematical details for completeness. Interestingly, the
proof highlights that one can generalize Maurer’s lemma even more, to embrace random
variables of any (countable) number of possible outputs. Note that another generalization
of Maurer’s lemma is given in Seldin et al. (2012) to embrace the case where the random
variables X1, . . . , Xn are a martingale sequence instead of being independent.

Lemma 52 (Generalization of Lemma 51) Let the tuple (X,Y ) be a random variable
with values in [0, 1]2, such that X +Y ≤ 1, and with expectation (µX , µY ) = (E(X),E(Y )).
Given n independent realizations of (X,Y ), denote X = (X1, . . . , Xn) the vector of cor-
responding X-values and Y = (Y1, . . . , Yn) the vector of corresponding Y -values. Then,
consider a random variable (X ′, Y ′) with three possible outcomes, (1, 0), (0, 1) and (0, 0), of
expectations µX , µY and 1−µX−µY , respectively. Denote X′,Y′ ∈ {0, 1}n the vectors of n
independent realizations of (X ′, Y ′).

If a function f : [0, 1]n×[0, 1]n → R is convex, then

E
[
f(X,Y)

]
≤ E

[
f(X′,Y′)

]
.

Proof Given two vectors x = (x1, . . . , xn),y = (y1, . . . , yn) ∈ [0, 1]n, let us define

(x,y)
def
=
(

(x1, y1), (x2, y2), . . . , (xn, yn)
)
∈ ([0, 1]×[0, 1])n .

Consider H = {(1, 0), (0, 1), (0, 0)}. Lemma 53 (below) shows that any point (x,y) can be
written as a convex combination of the extreme points η = (η1, η2, . . . , ηn) ∈ Hn:

(x,y) =
∑

η ∈Hn

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

· η . (45)

Convexity of function f implies

f(x,y) ≤
∑

η ∈Hn

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

· f(η) , (46)

with equality if (x,y) ∈ Hn = {(1, 0), (0, 1), (0, 0)}n, because the elements of the sum are
0·f(η) for all η ∈ Hn \ {(x,y)} and 1·f(η) only for η = (x,y).
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Given that realizations of random variable (X,Y ) are independent and that for a given
ηi ∈ H, only one of the three products is computed19, we get

E [f(X,Y)] ≤ E

 ∑
η ∈Hn

 ∏
i:ηi=(1,0)

Xi

 ∏
i:ηi=(0,1)

Yi

 ∏
i:ηi=(0,0)

1−Xi−Yi

· f(η)


=

∑
η ∈Hn

E

 ∏
i:ηi=(1,0)

Xi

 ∏
i:ηi=(0,1)

Yi

 ∏
i:ηi=(0,0)

1−Xi−Yi

· f(η)

=
∑

η ∈Hn

 ∏
i:ηi=(1,0)

E(Xi)

 ∏
i:ηi=(0,1)

E(Yi)

 ∏
i:ηi=(0,0)

1−E(Xi)−E(Yi)

· f(η)

=
∑

η ∈Hn

 ∏
i:ηi=(1,0)

µX

 ∏
i:ηi=(0,1)

µY

 ∏
i:ηi=(0,0)

1−µX−µY

· f(η) .

This becomes an equality when (X,Y) takes values in Hn (as we explain after equation 46).
We therefore conclude that E

[
f(X,Y)

]
≤ E

[
f(X′,Y′)

]
.

Lemma 53 (Proof of Equation 45) Consider H = {(1, 0), (0, 1), (0, 0)} and an integer
n > 0. Any point (x,y) ∈

(
[0, 1]× [0, 1]

)n
can be written as a convex combination of the

extreme points η = (η1, η2, . . . , ηn) ∈ Hn:

(x,y) =
∑

η∈Hn

ρη(x,y) · η ,

where

ρη(x,y)
def
=

 ∏
i:ηi=(1,0)

xi

 ∏
i:ηi=(0,1)

yi

 ∏
i:ηi=(0,0)

1−xi−yi

 .

Proof We prove the result by induction over vector size n.
Proof for n = 1:∑

η∈H
ρη((x1, y1)) · η = x1 · ((1, 0)) + y1 · ((0, 1)) + (1−x1−y1) · ((0, 0))

= ((x1, y1)) .

Proof for n > 1: We suppose that the result is true for any vector (x,y) of a particular size
n (this is our induction hypothesis) and we prove that it implies∑

(η,ηn+1)∈Hn+1

[
ρ(η,ηn+1)

(
(x,y), (xn+1, yn+1)

)]
· (η, ηn+1) =

(
(x,y), (xn+1, yn+1)

)
,

where (a, b) denotes a vector a, augmented by one element b.

19. The equality between the second and third lines follows from the fact that each expectation inside the
sum of Line 2 can be rewritten as the following product of independent random variables:

E
[∏
ηi

gηi(Xi, Yi)
]

with gηi(Xi, Yi)
def
=


Xi if ηi = (1, 0)

Yi if ηi = (0, 1)

1−Xi−Yi otherwise.
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We have∑
(η,ηn+1)∈Hn+1

[
ρ(η,ηn+1)

(
(x,y), (xn+1, yn+1)

)]
· (η, ηn+1)

=
∑

η∈Hn

ρη(x,y) · xn+1 ·
(
η, (1, 0)

)
+
∑

η∈Hn

ρη(x,y) · yn+1 ·
(
η, (0, 1)

)
+
∑

η∈Hn

ρη(x,y) · (1−xn+1−yn+1) ·
(
η, (0, 0)

)
=

( ∑
η∈Hn

ρη(x,y) · (xn+1+yn+1+1−xn+1−yn+1) · η,
∑

η∈Hn

ρη(x,y) ·
(
xn+1, yn+1

))

=

( ∑
η∈Hn

ρη(x,y) · η,
∑

η∈Hn

ρη(x,y) ·
(
xn+1, yn+1

))

=
(

(x,y),
(
xn+1, yn+1

))
.

For the last equality, the (x,y) term of the vector above is obtained from the induction
hypothesis and the last couple is a direct consequence of the following equality:

∑
η∈Hn

ρη(x,y) =
n∏
i=1

(
xi+yi+1−xi−yi

)
= 1 .

Proposition 54 (Concavity of Equation 36) The function FC(d, e) is concave.

Proof We show that the Hessian matrix of FC(d, e) is a negative semi-definite matrix. In
other words, we need to prove that

∂2FC(d, e)

∂d2
≤ 0 ;

∂2FC(d, e)

∂e2
≤ 0 ;

∂2FC(d, e)

∂d2

∂2FC(d, e)

∂e2
−
(
∂2FC(d, e)

∂d∂e

)2

≥ 0 .

Indeed, we have

∂2FC (d, e)

∂d2
=

2(1− 4e)2

(2d− 1)3
≤ 0 ∀e ∈ [0, 1], d ∈

[
0,

1

2

]
,

∂2FC (d, e)

∂e2
=

8

2d− 1
≤ 0 ∀e ∈ [0, 1], d ∈

[
0,

1

2

]
,

∂2FC (d, e)

∂d2
∂2FC (d, e)

∂e2
−
(
∂2FC (d, e)

∂d∂e

)2

=
2(1− 4e)2

(2d− 1)3
· 8

2d− 1
−
(

4− 16e

(1− 2d)2

)2

= 0 .
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Appendix B. A General PAC-Bayesian Theorem for Tuples of Voters and
Aligned Posteriors

This section presents a change of measure inequality that generalizes both Lemmas 30
and 34, and a PAC-Bayesian theorem that generalizes both Theorems 31 and 35. As these
generalizations require more complex notation and ideas, it is provided as an appendix and
the simpler versions of the main paper have separate proofs.

LetH be a countable self-complemented set real-valued functions. In the general setting,
we recall that H is self-complemented if there exists a bijection c : H → H such that
c(f) = −f for any f ∈ H. Moreover, for a distribution Q aligned on a prior distribution P
and for any f ∈ H, we have

Q(f) +Q(c(f)) = P (f) + P (c(f)) .

First, we need to define the following notation. Let k be a sequence of length k, containing

numbers representing indices of voters. Let fk : X → Yk be a function that outputs a tuple

of votes, such that fk(x)
def
= 〈fk1(x), . . . , fkk(x)〉 .

Let us recall that P k and Qk are Cartesian products of probability distributions P
and Q. Thus, the probability of drawing fk ∼ Qk is given by

Qk(fk)
def
= Q(fk1) ·Q(fk2) · . . . ·Q(fkk) =

k∏
i=1

Q(fki) .

Finally, for each fk and each j ∈ {0, . . . , 2k−1}, let

f
[j]
k (x)

def
= 〈f (sj1)

k1
(x), . . . , f

(sjk)

kk
(x)〉 ,

where sj1s
j
2...s

j
k is the binary representation of the number j, and where f (0) = f and

f (1) = c(f). Note that f
[0]
k = fk.

To prove the next PAC-Bayesian theorem, we make use of the following change of
measure inequality.

Theorem 55 (Change of measure inequality for tuples of voters and aligned pos-
teriors) For any self-complemented set H, for any distribution P on H, for any distribution

Q aligned on P , and for any measurable function φ : Hk → R for which φ(f
[j]
k ) = φ(f

[j′]
k )

for any j, j′ ∈ {0, . . . , 2k−1}, we have

E
fk∼Qk

φ(fk) ≤ ln

(
E

fk∼Pk
eφ(fk)

)
.
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Proof First, note that one can change the expectation over Qk to an expectation over P k,

using the fact that φ(f
[j]
k ) = φ(f

[j′]
k ) for any j, j′ ∈ {0, . . . , 2k−1} and that Q is aligned

on P .

2k · E
fk∼Qk

φ(fk)

=

∫
Hk
dfk Q

k(f
[0]
k )φ(f

[0]
k ) +

∫
Hk
dfk Q

k(f
[1]
k )φ(f

[1]
k ) + . . .+

∫
Hk
dfk Q

k(f
[2k−1]
k )φ(f

[2k−1]
k )

=

∫
Hk
dfk Q

k(f
[0]
k )φ(fk) +

∫
Hk
dfk Q

k(f
[1]
k )φ(fk) + . . . +

∫
Hk
dfk Q

k(f
[2k−1]
k )φ(fk)

=

∫
Hk
dfk

2k−1∑
j=0

(
Qk(f

[j]
k )
)
φ(fk)

=

∫
Hk
dfk

2k−1∑
j=0

(
k∏
i=1

[
Q(f

(sji )
ki

)

])
φ(fk) (47)

=

∫
Hk
dfk

k∏
i=1

[
Q(f

(0)
ki

) +Q(f
(1)
ki

)
]
φ(fk) (48)

=

∫
Hk
dfk

k∏
i=1

[Q(fki) +Q(c(fki))] φ(fk)

=

∫
Hk
dfk

k∏
i=1

[P (fki) + P (c(fki))] φ(fk)

...

= 2k · E
fk∼Pk

φ(fk) ,

where we obtain Line (48) from Line (47) by developing the terms of the product of Line (48).

The result is obtained by changing the expectation over Qk to an expectation over P k,
and then by applying Jensen’s inequality (Lemma 47, in Appendix A).

E
fk∼Qk

φ(fk) = E
fk∼Pk

φ(fk) = E
fk∼Pk

ln eφ(fk) ≤ ln

(
E

fk∼Pk
eφ(fk)

)
.
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Theorem 56 (General PAC-Bayesian theorem for tuples of voters and aligned
posteriors) For any distribution D on X ×Y, any self-complemented set H of voters
X → Y, any prior distribution P on H, any integer k ≥ 1, any convex function D :

[0, 1]× [0, 1]→ R and loss function L : Yk×Yk → [0, 1] for which D
(
ELS(f

[j]
k ), ELD(f

[j]
k )
)

=

D
(
ELS(f

[j′]
k ), ELD(f

[j′]
k )
)
, for any j, j′ ∈ {0, . . . , 2k−1}, for any m′ > 0 and any δ ∈ (0, 1],

we have

Pr
S∼Dm

For all posteriors Q aligned on P :

D
(

E
fk∼Qk

ELS (fk), E
fk∼Qk

ELD(fk)

)
≤

1

m′

[
ln

(
1

δ
E

S∼Dm
E

fk∼Pk
e
m′·D(ELS (fk), ELD(fk))

)]
≥ 1− δ .

Proof This proof follows most of the steps of Theorem 18.

We have that E
fk∼Pk

em
′·D(ELS (fk),ELD(fk)) is a non-negative random variable. By Markov’s

inequality, we have

Pr
S∼Dm

(
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk)) ≤ 1

δ
E

S∼Dm
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

)
≥ 1− δ .

Hence, by taking the logarithm on each side of the innermost inequality, we obtain

Pr
S∼Dm

(
ln

[
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

]
≤ ln

[
1

δ
E

S∼Dm
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

])
≥ 1− δ .

Now, instead of using the change of measure inequality of Lemma 17, we use the change
of measure inequality of Theorem 55 on the left side of innermost inequality, with φ(fk) =
m′ · D

(
ELS(fk), ELD(fk)

)
. We then use Jensen’s inequality (Lemma 47, in Appendix A),

exploiting the convexity of D.

∀Q aligned on P : ln

[
E

fk∼Pk
em
′·D(ELS (fk),ELD(fk))

]
≥ m′ · E

fk∼Qk
D(ELS(fk),ELD(fk))

≥ m′ · D( E
fk∼Qk

ELS(fk), E
fk∼Qk

ELD(fk)) .

We therefore have

Pr
S∼Dm

 For all posteriors Q aligned on P :

m′ · D( E
fk∼Qk

ELS(fk), E
fk∼Qk

ELD(fk)) ≤ ln

[
1
δ E
S∼Dm

E
fk∼Pk

em
′·D(ELS (fk),E

L
D(fk))

] ≥1− δ .

The result then follows from easy calculations.
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