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Abstract

We study the problem of predicting online the labeling of a graph. We consider a novel
setting for this problem in which, in addition to observing vertices and labels on the graph,
we also observe a sequence of just vertices on a second graph. A latent labeling of the
second graph selects one of K labelings to be active on the first graph. We propose a
polynomial time algorithm for online prediction in this setting and derive a mistake bound
for the algorithm. The bound is controlled by the geometric cut of the observed and latent
labelings, as well as the resistance diameters of the graphs. When specialized to multitask
prediction and online switching problems the bound gives new and sharper results under
certain conditions.

Keywords: online learning over graphs, kernel methods, matrix winnow, switching

1. Introduction

We consider the problem of learning online a set of K binary labelings of a graph. In a simple
scenario this set of labelings corresponds to a switching sequence of labelings. Initially we
focus on this setting before introducing our more general model. Consider the following
game for predicting the labeling of a graph: Nature presents a graph; nature queries a
vertex i1; the learner predicts ŷ1 ∈ {−1, 1} as the label of the vertex; nature presents a
label y1; nature queries a vertex i2; the learner predicts ŷ2; and so forth. The learner’s goal
is to minimize the total number of mistakes M = |{t : ŷt 6= yt}|. If nature is adversarial,
the learner will always mispredict, but if nature is regular or simple, there is hope that a
learner may make only a few mispredictions. Thus, a central goal of online learning is to
design algorithms whose total mispredictions can be bounded relative to the complexity of
nature’s labeling.

To predict a single labeling of a graph, one may employ a kernel perceptron algorithm
based on the graph Laplacian (Herbster and Pontil, 2006). This method achieves a bound
of M ≤ O(Rφ), where φ is the cut (the number of edges joining disagreeing labels) and R
is the (resistance) diameter of the graph. Thus φ measures the complexity of the labeling
and R is a structural parameter of the graph independent of the labeling. Such a bound
is particularly appealing when the parameters are mildly dependent or independent of the
number of vertices in the graph (see Herbster and Pontil, 2006, for a discussion).
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In the switching setting, we now consider a sequence colored by K graph labelings with
S ≥ K switches. We illustrate a switching sequence in Figure 1. In this color illustration

t=1 t=5 t=7 t=10 t=14 t=16

k=1k=3k=2 k=3k=2k=1

Figure 1: A switching sequence over 20 trials with K=3 graph labelings and S=5 switches.

there are S = 5 switches between K = 3 graph labelings. At each trial, a vertex of the
graph is labeled according to one of the K binary functions. There are at most S trials at
which the binary function currently in use is changed. In the specific example, the labeling
1 is used in trials 1–4 and 16–20, labeling 2 is used in trials 5–6 and 10–13, and labeling 3
is used in trials 7–9 and 14–15.

We will give an algorithm that achieves

M ≤ Õ
((

S +R
K∑
k=1

φk

)
K log(n)

)
, (1)

where φk is the cut of the k-th binary labeling, n is the number of vertices in the graph, and
the Õ(x) notation absorbs a polylogarithmic factor in x. Note that the term R

∑K
k=1 φk is

the cost of learning the K binary labelings, given the information of which labeling is active
on each trial. Since this information is not available to the learner, we pay a multiplicative
term K log(n) and an additive term for the number of switches S. The particularly salient
feature of this bound is that we pay the cost R

∑K
k=1 φk of learning all the binary labelings

only once. This, and the fact that S ≥ K, implies that the algorithm is maintaining an
implicit memory of past graph labelings learned.

In the more general setting, the learner is given two graphs: an observed n-vertex graph
G and a p-vertex latent graph H. Hidden from the learner is a set {ω1, . . . ,ωK} of K binary
labelings of G. On each trial one of these labelings is active, the learner receives a pair of
vertices, i ∈ G and j ∈ H, and the learner’s aim is to predict the currently active binary
label of vertex i. It is the unknown K-ary label of j that determines the active labeling of
G and hence the current label of i. After making its prediction the learner receives only the
current label of i. The learner never receives the label of j. Note that if the learner did in
fact receive the label of j, the learning problem would separate into K independent graph
labeling tasks. Thus the graph H is called latent because the vertex labels of this graph are
never observed, although it controls which of the K labelings of G is active at each given
trial.

We propose a polynomial time algorithm for predicting the labelings of the observed
graph and we derive a mistake bound for this algorithm. The bound involves two additive
terms, which measure the complexity of the K binary labelings, and the complexity of the
latent labeling, respectively; as well as a multiplicative term of the order of K log(K(n+p)).
Returning to the switching example, the latent graph can be thought of as a “line” graph,
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where the sequence of vertices corresponds to the sequence of trials (although as we shall
see in Section 6, for technical reasons we will need instead a binary support tree). The
latent K-labeling function will then have a cut equal to S, the number of switches; and the
bound (1) will be obtained as a special case of the general result described in this paper.

The paper is organized in the following manner. In Section 2, we comment about related
work. In Section 3, we introduce the learning problem. In Section 4, we discuss the proposed
learning algorithm. Section 5 presents our main result and details its proof. In Section 6,
we illustrate our result in two specific examples and make final remarks.

2. Related Work

The problem of learning a labeling of a graph is a natural one in the online learning setting
(Herbster et al., 2005; Herbster and Pontil, 2006), as well as a foundational technique
for a variety of semi-supervised learning methods (Blum and Chawla, 2001; Kondor and
Lafferty, 2002; Zhu et al., 2003). In the online setting, fast algorithms have been developed
that operate on trees and path graphs (Herbster et al., 2008, 2009; Cesa-Bianchi et al.,
2009, 2010; Vitale et al., 2011).

Our main application is to learning a switching sequence of graph labelings. Switching
has been studied extensively in the online learning literature. The results divide largely
into two directions: switching in the “experts” model (Herbster and Warmuth, 1998; Vovk,
1999; Bousquet and Warmuth, 2003; Gyorfi et al., 2005; Koolen and Rooij, 2008; Hazan
and Seshadhri, 2009; Adamskiy et al., 2012; Cesa-Bianchi et al., 2012); and switching in
online linear prediction model, see e.g. (Herbster and Warmuth, 2001; Kivinen et al., 2004;
Cesa-Bianchi and Gentile, 2006). As we may view learning a graph labeling as learning a
linear classifier based on a Laplacian kernel, our algorithm is directly comparable to these
previous results. The implicit assumption of those switching techniques is that they learn a
sequence of linear classifiers w1, w2, . . . and that this sequence is slowly changing over time,
i.e, they are interested in predicting well when a drifting cost O(

∑
t ‖wt − wt+1‖) is small.

Our assumption is different: we consider that there exists a small set of K distinct classifiers,
and we switch repeatedly between classifiers within this set. This setting is analogous to
the setting proposed in an open problem by Freund (2000). Freund’s challenge was to give
an efficient algorithm in the expert advice model for the problem of switching repeatedly
between a small set of experts within a larger set of experts. The problem was solved
by Bousquet and Warmuth (2003) (see also Adamskiy et al., 2012). Those results, however,
do not directly transfer to the graph labeling setting as the number of needed experts is
2n for an n-vertex graph, and computing the marginal probabilities with a natural prior
(i.e., an Ising distribution) on a graph even without switching is a well-known #P-complete
problem (Goldberg and Jerrum, 2007).

An example of predicting in our more general setting applies to online multitask learning
and is inspired by Cavallanti et al. (2010, Corollary 3). We adapt their model to our graph
labeling set-up. Further related work includes (Dekel et al., 2007), which considered learning
multiple tasks related through a joint loss function; and (Avishek et al., 2011), which
generalized the usual setting to include negatively correlated tasks as well as positively
correlated tasks. Rather than learning a group of interelated linear classifiers it is also
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natural to consider multi-task learning with expert advice. Two prominent results include
those of Abernethy et al. (2007) and Adamskiy et al. (2012).

Our main technical debt is to the following four papers. Firstly, the mistake bound
analysis of matrix winnow (Warmuth, 2007), which strongly informs the proof of our main
result. Secondly, our analysis of using matrix winnow on graphs is inspired by the graph
Laplacian construction in (Gentile et al., 2013). Thirdly, our first two techniques require
a modification of the Laplacian to ensure strict positive definiteness, and here we used the
simple construction from (Herbster and Pontil, 2006). Finally we use the binary support
tree construction (Herbster et al., 2008) to model the trial sequence in the switching setting.

3. Problem

In this section, we present the problem under study. We begin by introducing some graph
terminology.

We are given two undirected graphs, an n-vertex graph G and a p-vertex graph H. We
let V(G) and V(H) be the set of vertices in G and H, respectively, and let LG and LH be the
corresponding graph Laplacians. For every positive integer d, we define Nd = {1, . . . , d},
the set of integers from 1 and up to including d. Unless confusion arises, for simplicity we
identify vertices by their indices. Indices i, i′, it ∈ Nn will always be associated with vertices
in G, and indices j, j′, jt ∈ Np will be associated with vertices in H.

A labeling of a graph is a function which maps vertices on the graph to a set of labels.
We define the cut induced by a labeling of a graph as the number of edges whose end vertices
have different labels. Note that this definition is independent of the number of labels used.
We will use the notation cutG(u) to denote the cut associated with the labeling u of graph
G. In particular if u is a binary labelling with label set {−1, 1} then cutG(u) = 1

4uTLGu.

In the paper we refer to G as the observed graph since during the learning process we will
observe both a vertex of G and a corresponding label, whereas we refer to H as the latent
graph because we will only observe a vertex of H but never observe the corresponding label.
As we will see, the latent graph provides side information which can guide the prediction
tasks on the observed graph. The goal is to predict well the binary labels associated to
vertices in G using sequential information of the form (it, jt, yt) ∈ V(G) × V(H) × {−1, 1}
for t = 1, 2, . . . , T ; the true label yt is determined by using one of the K binary classifiers,
and which of these is active at each trial is determined by a K-class classifier which acts on
the latent graph H. Specifically, we let ω1, . . .ωK be the binary classifiers (labelings) on
graph G. Each ωk is a function from V(G) to {−1, 1}. The latent labeling controls which
of the K labelings of G is currently active and it is given by a function µ : V(H)→ NK . In
the paper, when confusion does not arise, we simply regard the functions ωk as vectors in
{−1, 1}n and µ as a vector in {1, . . . ,K}p.

We consider the following online learning game between nature and learner. The learner
knows the graphs G and H from the outset but does not initially know the labelings
ω1, . . . ,ωK , and as we already noted never observes the latent labeling µ. On trial t
nature presents the learner with vertices (it, jt) ∈ Nn × Np, the learner predicts a value
ŷt ∈ {−1, 1} and then the true label yt is revealed to the learner. This label is computed
by nature as yt = ωµjt ,it , that is the it-th component of the binary vector ωµjt . We define
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Algorithm 1

Input: An n-vertex graph G and p-vertex graph H.

Parameters: K, θ̂, η.

Initialization: W 0 ← I
K(n+p) , where I is the (n+ p)×(n+ p) identity matrix.

For t = 1, . . . , T

• Get pair of vertices it, jt ∈ V(G)× V(H).

• Define the matrix Xt := 1
2xtx

T
t , with xt given by Equation (4).

• Predict

ŷt =

{
1 if Tr (W t−1Xt) ≥ K+1

2Kθ̂
,

−1 otherwise.

• Receive label yt ∈ {−1, 1} and if ŷt 6= yt update

W t ← exp (log (W t−1) + η(yt − ŷt)Xt) . (2)

the set of mistakes as M := {t : ŷt 6= yt} and the number of mistakes M := |M|. The aim
of the learner is for M to be small.

Before presenting the learning algorithm we require some more notation. Given a matrix
A we define A+, AT and Tr (A) to be its pseudoinverse, transpose and trace respectively.
We let Sd be the set of d×d symmetric matrices and let Sd+ and Sd++ be the subset of positive
semidefinite and strictly positive definite matrices. Recall that the set of symmetric matrices
Sd+ has the following partial ordering: for every A,B ∈ Sd+ we say that A � B if and only
if B − A ∈ Sd+. Every real valued function f induces a spectral function f : Sd → Sd

which is obtained by applying f to the eigenvalues of A. Specifically, if {λi,ui}di=1 is an
eigensystem of A, that is, u1, . . . ,ud are orthonormal vectors and λi are real numbers
such that A =

∑d
i=1 λiuiu

T
i , then we define f(A) =

∑d
i=1 f(λi)uiu

T
i . Examples of spectral

functions which we will use are exp(t), log(t) and t log t. Note that the last two functions are
well defined only on Sd++ and the last function can be extended to Sd+ as a limiting process.
Finally, for vectors α ∈ Rn and β ∈ Rp we define [α,β] ∈ Rn+p to be the concatenation of
α and β, which we regard as a column vector. Hence [α,β]T

[
ᾱ, β̄

]
= αT ᾱ+ βT β̄.

4. The Algorithm

The learning algorithm we propose fits into the broad category of online matrix learning.
At the core of the algorithm is an implicit spectral regularization, and we use a modification
of matrix winnow (Warmuth, 2007) as our base algorithm.

As input the algorithm is given the graphs G and H. The algorithm then depends on
two input parameters, K > 1 and θ̂. The first parameter is the number labelings of the
observed graph, which then determines the learning rate η. The second parameter θ̂ is a
scaled threshold for the linear classifier. The parameter θ̂ is an upper bound on a measure
of the complexity of the underlying learning problem, which is denoted by θ (cf. (6)).
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We map a pair of vertices on the observed and latent graphs to a rank one positive
semidefinite matrix, and use a linear classifier in the embedded space. Specifically, we map
(it, jt) ∈ V(G)× V(H) to Xt ∈ Sn+p+ given by the equation

Xt :=
1

2
xtx

T
t (3)

where

xt :=

[
1√
ρ(G)

(G
1
2 )it ,

1√
ρ(H)

(H
1
2 )jt

]
, (4)

matrices G ∈ Sn++ and H ∈ Sp++ are prescribed and we defined ρ(G) := maxni=1 Gii and
ρ(H) := maxpj=1 Hjj . The algorithm works for any such embeddings but the mistake bound
presented in Theorem 1 below is obtained by choosing

G = L+
G +RG11T and H = L+

H +RH11T (5)

where 1 denotes the vector (1, . . . , 1)T and RG = maxni=1(L
+
G )ii and RH = maxpj=1(L

+
H)jj

are (essentially) the resistance diameters1 of G and H, respectively.
At each trial we predict by a linear threshold function in the embedded space, namely

we predict positive if Tr (W t−1Xt) >
K+1
2Kθ̂

and negative otherwise, where W t ∈ Sn+p+ is
a parameter matrix which is updated by the algorithm after each trial and initially set to
a positive multiple of the identity matrix. Specifically, W t is updated via Equation (2)
only when a mistake is made. The worst case cost of an update is in the order of (n+ p)3

since this requires computing an eigensystem of an (n + p) × (n + p) matrix. However if
the number of mistakes is much smaller than n + p then the computation per trial can
be substantially reduced because the weight matrix can be decomposed as the sum of a
multiple of the identity matrix plus a low rank matrix (specifically the rank at trial t is
equal to the current number of mistakes plus one). In this paper we are primarily concerned
with the mistake bound and postpone further discussions on large scale implementations of
the algorithm to a future occasion.

5. Main Result

In this section, we present our main result and give a detailed proof.

Theorem 1 Let

θ = 8RG

K∑
k=1

cutG(ωk) + 4RHcutH(µ) + 2

K∑
k=1

(
1

n

n∑
i=1

ωk,i

)2

+ 2

K∑
k=1

1

p

p∑
j=1

I(µj = k) ,

and let c̄ := (5 log(5/3)− 2)−1 ≤ 1.81. The number of mistakes made by Algorithm 1 with

θ ≤ θ̂ and learning rate η := 1
2 log

(
K+3
K+1

)
is upper bounded by

4Kc̄

(
2RG

K∑
k=1

cutG(ωk) +RHcutH(µ) +K

)(
log(K(n+ p)) +

θ̂

θ
− 1

)
.

1. Specifically, maxn
i=1(L+

G )ii is a lower bound on the resistance diameter of G, see (Herbster and Pontil,
2006, Eq. (9)).
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To prepare for the proof we introduce some notation. The K-class labeling µ induces
K boolean labelings on H, denoted by µk ∈ {0, 1}p, k ∈ NK , and is defined componentwise
as µk,j = 1 if µj = k and µk,j = 0 otherwise. We also define, for every k ∈ NK ,

Φk := µT
kH

−1µk, and Φ′k := ωT
kG
−1ωk.

For i ∈ Nn, we let ei be the i-th unit basis vector, that is, ei,i′ = 0 if i 6= i′ and ei,i = 1.
We let

zk :=
[√

ρ(G)G−
1
2ωk,

√
ρ(H)H−

1
2µk

]
and define the k-th embedded classifier associated with the k-th labelings as

Zk :=
zkz

T
k

θ̂
,

with θ̂ ≥ θ where

θ :=
K∑
k=1

‖zk‖2 = ρ(G)
K∑
k=1

ωT
kG
−1ωk + ρ(H)

K∑
k=1

µT
kH

−1µk . (6)

Note that the representation of the k-th embedded classifier depends on the k-th labeling
of the observed graph and the k-th “one versus all” labeling of the latent graph.

We have the following proposition.

Proposition 2 For all k ∈ NK and trials t it holds that

(i) Tr
(
ZT
kXt

)
=

(ωk,it + µk,jt)
2

2θ̂

(ii)

K∑
k=1

Tr
(
ZT
kXt

)
=

(K + 1 + 2yt)

2θ̂

(iii) Xt has eigenvalues in [0, 1]

(iv) ‖zk‖2 = ρ(H)Φk + ρ(G)Φ′k

(v) Tr (Zk log (Zk)) < 0.

Proof (i): Note that Tr
(
ZT
kXt

)
=

Tr(zkz
T
k (xtxT

t ))
2θ̂

=
(xT

t zk)
2

2θ̂
. The result then follows since

xTt zk = eT
it
ωk + eT

jt
µk = ωk,it + µk,jt .

(ii): If k 6= µjt then µk,jt = 0 and by part (i) we have

Tr
(
ZT
kXt

)
=

1

2θ̂
(ωk,it + µk,jt)

2 =
1

2θ̂
(ωk,it)

2 =
1

2θ̂
.

Suppose now that k = µjt . By the definition of yt we have yt = ωµjt ,it = ωk,it so since
µk,jt = 1 when k = µjt we have, by part (i) that

Tr
(
ZT
kXt

)
=

1

2θ̂
(ωk,it + µk,jt)

2 =
1

2θ̂
(1 + yt)

2 =
1

2θ̂
(1 + 2yt + y2t ) =

(1 + yt)

θ̂
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as y2t = 1. By summing the above over k we get the result.

(iii): Note that

Xt :=
1

2
xtx

T
t =

‖xt‖2

2

xt
‖xt‖

xTt
‖xt‖

.

Thus Xt is a rank one positive semidefinite matrix and its only nonzero eigenvalue is
‖xt‖2/2. A direct computation then gives that ‖xt‖2 ≤ 2. The result follows.

(iv): ‖zk‖2 = zTk zk = ρ(G)ωT
kG
−1ωk + ρ(H)µT

kH
−1µk = ρ(G)Φ′k + ρ(H)Φk.

(v): Note that Zk is a positive semidefinite rank one matrix. Hence denoting with λ
the non-trivial eigenvalue we have Tr (Zk log (Zk)) = λ log λ. The result then follows if we
show that λ ∈ (0, 1). To see this we write

Zk =
zkz

T
k

θ̂
=
‖zk‖2

θ̂

zk
‖zk‖

zTk
‖zk‖

.

By definition θ =
∑K

k=1 ‖zk‖2 so since θ ≤ θ̂ we have ‖zk‖2

θ̂
≤ 1 as required.

We now define the quantum relative entropy, which plays a central role in the amortized
analysis of the algorithm. We note that this technique was previously employed in online
learning by Tsuda et al. (2005).

Definition 3 The quantum relative entropy of symmetric positive semidefinite square ma-
trices A and B is

∆(A,B) := Tr (A log (A)−A log (B) +B −A) .

We will utilize the following lemmas.

Lemma 4 For t ∈M we have that

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t)) ≥
c

Kθ̂
.

where c := 5 log(5/3)− 2.

Proof When t ∈M we have, for all k ∈ NK , that

∆(Zk,W t−1)−∆(Zk,W t)

= Tr (Zk log (W t)−Zk log (W t−1)) + Tr (W t−1)− Tr (W t)

=η(yt − ŷt) Tr (ZkXt) + Tr (W t−1)− Tr (exp (log (W t−1) + η(yt − ŷt)Xt)) (7)

≥η(yt − ŷt) Tr (ZkXt) + Tr (W t−1)− Tr (exp (log (W t−1)) exp (η(yt − ŷt)Xt)) (8)

=η(yt − ŷt) Tr (ZkXt) + Tr (W t−1(I − exp (η(yt − ŷt)Xt)))

≥η(yt − ŷt) Tr (ZkXt) + (1− eη(yt−ŷt)) Tr (W t−1Xt) (9)
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where Equation (7) comes from the algorithm’s update of W t−1 (see Equation (2)), Equa-
tion (8) comes from Lemma A.8 with A := log (W t−1) and B := η(yt − ŷt)Xt, and Equa-
tion (9) comes by first applying Lemma A.9 with a := η(yt − ŷt) and A := Xt (using
Proposition 2-(iii)), and then applying Lemma A.10 with A := W t−1.
We hence have

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

≥η(yt − ŷt)
K∑
k=1

Tr (ZkXt) +K(1− eη(yt−ŷt)) Tr (W t−1Xt)

=η(yt − ŷt)
(K + 1 + 2yt)

2θ̂
+K(1− eη(yt−ŷt)) Tr (W t−1Xt) (10)

where Equation (10) comes from Proposition 2-(ii).

Let ρ be the right hand side of Equation (10). Noting that η := 1
2 log

(
K+3
K+1

)
we have the

following. When yt = 1 and ŷt = −1 then (1−eη(yt−ŷt)) is negative and Tr (W t−1Xt) <
K+1
2Kθ̂

and thus

ρ ≥ η(K + 3)(θ̂)−1 +
K + 1

2
(1− e2η)(θ̂)−1

=
1

2
log

(
K + 3

K + 1

)
(K + 3)(θ̂)−1 +

K + 1

2

(
1− K + 3

K + 1

)
(θ̂)−1

=

(
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

)
(θ̂)−1

≥ c

Kθ̂
. (11)

Alternately, when yt = −1 and ŷt = 1 then (1 − eη(yt−ŷt)) is positive and Tr (W t−1Xt) ≥
K+1
2Kθ̂

and thus

ρ ≥ −η(K − 1)(θ̂)−1 +
K + 1

2
(1− e−2η)(θ̂)−1

= −1

2
log

(
K + 3

K + 1

)
(K − 1)(θ̂)−1 +

K + 1

2

(
1− K + 1

K + 3

)
(θ̂)−1

=

(
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

)
(θ̂)−1

≥ c

Kθ̂
. (12)

The constant c in Equations (11) and (12) is derived from the following argument. For
K ≥ 2 the functions

K

(
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

)
(13)

and

K

(
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

)
(14)
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are monotonic increasing (see Lemmas A.12 and A.13) so

K

[
1

2
log

(
K + 3

K + 1

)
(K + 3)− 1

]
≥ 2

[
1

2
log

(
2 + 3

2 + 1

)
(2 + 3)− 1

]
= 5 log

(
5

3

)
− 2 = c

and

K

[
K + 1

K + 3
− 1

2
log

(
K + 3

K + 1

)
(K − 1)

]
≥ 2

[
2 + 1

2 + 3
− 1

2
log

(
2 + 3

2 + 1

)
(2− 1)

]
=

6

5
− log

(
5

3

)
> c.

Hence 1
2 log

(
K+3
K+1

)
(K + 3)− 1 ≥ c

K and K+1
K+3 −

1
2 log

(
K+3
K+1

)
(K − 1) ≥ c

K .

Lemma 5 It holds that
K∑
k=1

∆(Zk,W 0) ≥ |M| cKθ̂ .

Proof We have

K∑
k=1

∆(Zk,W 0) ≥
K∑
k=1

(∆(Zk,W 0)−∆(Zk,W T ))

=

K∑
k=1

T∑
t=1

(∆(Zk,W t−1)−∆(Zk,W t))

=
T∑
t=1

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

=
∑
t∈M

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t)) +
∑
t/∈M

K∑
k=1

(∆(Zk,W t−1)−∆(Zk,W t))

≥ |M| c
Kθ̂

(15)

where Equation (15) comes from Lemma 4 and the fact that on a trial t /∈ M we have
W t = W t−1 and hence ∆(Zk,W t−1) = ∆(Zk,W t) for all k ∈ NK .

Lemma 6 It holds that
K∑
k=1

∆(Zk,W 0) ≤ θ
θ̂

log (K(n+ p)) +
(

1− θ
θ̂

)
.
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Proof of Lemma 6 Recall that W 0 = I
K(n+p) , where I is the (n + p)× (n + p) identity

matrix. We observe that

K∑
k=1

∆(Zk,W 0) =

K∑
k=1

(Tr (Zk log (Zk))− Tr (Zk log (W 0)) + Tr (W 0)− Tr (Zk))

≤ −
K∑
k=1

Tr (Zk log (W 0)) +
K∑
k=1

Tr (W 0)−
K∑
k=1

Tr (Zk) (16)

= −
K∑
k=1

Tr

(
Zk log

(
I

K(n+ p)

))
+

K∑
k=1

Tr

(
I

K(n+ p)

)
−

K∑
k=1

Tr (Zk)

= log (K(n+ p))
K∑
k=1

Tr (Zk) +
1

K(n+ p)

K∑
k=1

Tr (I)−
K∑
k=1

Tr (Zk)

= log (K(n+ p))

K∑
k=1

Tr (Zk) + 1−
K∑
k=1

Tr (Zk)

= 1 + (log (K(n+ p)− 1))
K∑
k=1

Tr (Zk)

= 1 + (log (K(n+ p)− 1))
K∑
k=1

Tr

(
zkz

T
k

θ̂

)

= 1 + (log (K(n+ p)− 1))
1

θ̂

K∑
k=1

zTk zk

= 1 +

(
log (K(n+ p)− 1)

θ

θ̂

)
(17)

=
θ

θ̂
log (K(n+ p)) +

(
1− θ

θ̂

)

where Equation (16) comes from Proposition 2-(v) and Equation (17) comes from the defi-
nition of θ.

We are now ready to prove our main result.

Proof of Theorem 1 Combining Lemmas 6 and 5 we have

|M| c
Kθ̂
≤

K∑
k=1

∆(Zk,W 0) ≤
θ

θ̂
log (K(n+ p)) +

(
1− θ

θ̂

)
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which gives

|M| ≤ Kθ̂

c

θ

θ̂
log (K(n+ p)) +

Kθ̂

c

(
1− θ

θ̂

)
=
Kθ

c
log (K(n+ p)) +

Kθ

c

θ̂

θ

(
1− θ

θ̂

)
=
Kθ

c

(
log (K(n+ p)) +

(
θ̂

θ
− 1

))
.

Finally we compute θ by choosing the matrices H and G as per Equation (5). A direct
computation gives, for any vector ω ∈ Rn, that

ωTG−1ω = ωT (L+
G +RG11T )−1ω = ωTLGω +

1

RG

(
1

n

n∑
i=1

ωi

)2

and, likewise, for any vector µ ∈ Rp

µTH−1µ = µT (L+
H +RH11T )−1µ = µTLHµ +

1

RH

(
1

p

p∑
j=1

µj

)2

.

For the observed labelings we have ωT
kLGωk = 4cut(ωk). Using this and ρ(G) = 2RG , a

direct computation gives

ρ(G)
K∑
k=1

ωT
kG
−1ωk = 2RG

(
4

K∑
k=1

cut(ωk) +
1

RG

K∑
k=1

( 1

n

n∑
i=1

ωk,i

)2)

≤ 8RG

K∑
k=1

cut(ωk) + 2K.

For the latent labeling we have
∑K

k=1µ
T
kLHµk = 2cut(µ). Using this and ρ(H) = 2RH, we

obtain

ρ(H)

K∑
k=1

µT
kH

−1µk = 2RH

(
2cut(µ) +

1

RH

K∑
k=1

( 1

n

n∑
i=1

µk,i

)2)
≤ 4RHcut(µ) + 2K.

We conclude that

θ =
K∑
k=1

‖zk‖2 = ρ(G)
K∑
k=1

ωT
kG
−1ωk + ρ(H)

K∑
k=1

µT
kH

−1µk

≤ 4

(
2RG

K∑
k=1

cut(ωk) +RHcut(µ) +K

)
.

The result now follows by substituting the last inequality in the mistake bound.
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6. Discussion

In this section, we consider two special cases of the problem studied in this paper and make
final remarks. We tailor Theorem 1 to these cases and then compare to similar mistake
bounds available in the literature.

6.1 Uniform Multitask Prediction

In the uniform multitask problem we suppose that we have p tasks corresponding to pre-
dicting the binary labeling of a graph. We assume that the tasks are interrelated so that
only K � p graph labelings are needed. To solve this problem we assume each task is given
a number in {1, . . . , p}. Each task number denotes a unique vertex in the latent graph
which is a p-vertex clique. Applying the bound of Theorem 1 gives

M ≤ O

(( K∑
k=1

cutG(ωk)RG + p

)
K log(K(n+ p))

)
.

This follows immediately from the fact that the clique has resistance diameter O(1p) and

the cut of a K-“coloring” is O(p2).
In (Cavallanti et al., 2010), a broad range of results are given for online multi-task

learning in generic reproducing kernel Hilbert spaces. We apply their Corollary 3 to our
problem with the kernel G−1 := L+

G +RG11T . In their setting there is no parameter K and
instead they learn p distinct graph labelings, and thus obtain

M ≤ O

1

p

( p∑
k=1

cutG(ωk) +

p∑
i<j

(ωi − ωj)TG(ωi − ωj)
)
RG

 .

This is small when each of the p binary labelings are near one another in the norm induced
by the Laplacian. This is distinct from our bound where we pay a fixed price for each of
the p tasks of K log(K(n+ p)). Thus our bound is stronger when K � p and the averaged
squared norm between labelings of the p tasks is larger than K log(K(n+ p)).

6.2 Switching

We now consider the case where we have a switching sequence of graph labelings with S
switches betweenK labelings. We sketch a proof of the bound announced in the introduction
(cf. Equation (1)), namely

M ≤ Õ

((
S +RG

K∑
k=1

cutG(ωk)

)
K log(n)

)
,

where the Õ(x) notation absorbs a polylogarithmic factor in x. Notice that the apparently
natural structure for the proof would be to choose a latent graph which is a “line” with T
vertices, where the linear ordering of the vertices reflects the linear trial sequence. Unfor-
tunately, the resistance diameter of this line graph would then be equal to T which would
make the bound vacuous. We overcome this difficulty by borrowing a trick from (Herbster

2015



Herbster, Pasteris and Pontil

et al., 2008) and we instead use a binary tree with T leaves and thus a resistance diameter
of 2 log2 T . We assume that for each trial we receive a label of a leaf along the natural linear
ordering of the leaves. If φ is the cut along the leaves such a labeling may be extended to
a labeling of the complete binary tree in a way that the cut increases by no more than a
factor of log2 T . This extension works by choosing the label of the parent of each vertex to
be consistent with the label of either of its children. The result follows since the labeling
on each successive “level” of the tree down to the root is now a subsequence of the previous
labeling, and the cut of a subsequence can only decrease. Hence with log2 T levels the cut
increases by no more than a logarithmic factor. A second insight is that we do not actu-
ally need a tree with T leaves, we in fact only need M leaves corresponding to when the
algorithm incurs a mistake, hence,

M ≤ O

((
S(log(M))2 +RG

K∑
k=1

cutG(ωk)

)
K log(K(n+ p))

)

which we upper bound by

M ≤ O

(
log(M)3

(
S +RG

K∑
k=1

cutG(ωk)

)
K log(Kn)

)
.

Then the following technical lemma gives the result (proof in the Appendix).

Lemma 7 Given a function M : R→ R, a constant e > 0 such that M(x) ≤ ex log(M(x))3,
then there exist constants a, b > 0 such that M(x) ≤ ax log(x)3 for all x > b.

We may also apply the technique of Herbster and Warmuth (1998) to the switching
problem. Here, the underlying learning algorithm would be the perceptron with the kernel
G−1 := L+

G + RG11T . As in (Cavallanti et al., 2010) the implicit assumption is that the
underlying switching process is smooth and thus there is no parameter K, just a sequence
of S + 1 graph labelings. The other ingredient needed for a tracking kernel perceptron is
an upper bound φ̂ := maxk∈{1,...,S+1}ω

T
kGωk. The upper bound is then used to define

an additional update to the perceptron, which maintains the hypothesis vector in a ball
of squared norm equal to φ̂. This perceptron update and projection step then lead to the
bound (Herbster and Warmuth, 1998, Theorem 10),

M ≤ O

(( S∑
k=1

√
φ̂(ωk − ωk+1)TG(ωk − ωk+1) + cutG(ωS+1)

)
RG

)
.

Thus we observe with the projection kernel perceptron we pay a cost of√
φ̂(ωk − ωk+1)TG(ωk − ωk+1)RG

for each switch k ∈ {1, . . . , S}. Whereas when K � S the dominant non poly-logarithmic
term we pay per switch is O(K log n).
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6.3 Final Remarks

In this paper we presented a novel setting for online prediction over a graph. Our model is
governed by K binary labelings and a latent K-labeling (defined on a second graph) which
determines which one of the binary labelings is active at each trial.

We proposed an efficient algorithm for online prediction in this setting and derived a
bound on the number of mistakes made by the algorithm. An interesting feature of this
bound is that it mimics the bound one would obtain having a-priori information about
which binary labeling is active at each trial. A shortcoming of the bound is that it requires
knowledge of the number of binary labelings K and the threshold θ. In practice these
parameters are not known in advance and techniques based on the “doubling trick” could
be employed to tune the parameters.

Finally, we note that the problem considered in this paper could also be applied to the
batch learning setting and our bound may be converted to a batch bound using techniques
from (Cesa-Bianchi et al., 2004). In the batch setting a natural algorithm is given by empir-
ical error minimization (Vapnik, 1998) over a hypothesis space of binary classifiers defined
on the graph. This space is obtained by a certain function composition involving the binary
labelings and the latent labeling. We conjecture that the problem of performing empirical
error minimization over such a hypothesis space is NP-hard. Therefore in future work our
algorithm could be employed to obtain an efficient sub-optimal solution to empirical error
minimization in this challenging setting.
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Appendix A. Appendix

In this appendix, we state some auxiliary results which are used in the main body of the
paper.

The first result is the famous Golden-Thompson Inequality, whose proof can be found,
for example, in (Bhatia, 1997).

Lemma A.8 For any symmetric matrices A and B we have that

Tr (exp (A+B)) ≤ Tr (exp (A) exp (B)) .

The next two results are taken from (Tsuda et al., 2005).

Lemma A.9 If A ∈ Sd+ with eigenvalues in [0, 1] and a ∈ R, then

(1− ea)A � I − exp (aA) .

Lemma A.10 If A ∈ Sd+ and B,C are symmetric matrices such that B � C, then

Tr (AB) ≤ Tr (AC) .
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Next we show that the functions (13) and (14) are monotonic increasing. We will use the
following lemma.

Lemma A.11 For every x > 0 it holds that 2x
2+x < log(1 + x) < x√

x+1
.

Proof To prove the right inequality, we let

f(x) =
x√
x+ 1

− log(x+ 1).

Since f(x) = 0 as x → 0, the result follows if we show that f ′(x) > 0 for x > 0. We have
that

f ′(x) =
x− 2

√
x+ 1 + 2

2(x+ 1)3/2
.

With a change of variable x→ z2 − 1, we have

x− 2
√
x+ 1 + 2

2(x+ 1)3/2
=

(1− z)2

2z3
,

which is positive for z ∈ (1,∞] and hence x ∈ (0,∞).
The proof of the left inequality follows a similar pattern.

Lemma A.12 The following function

f(k) = k

(
1

2
(k + 3) log

(
k + 3

k + 1

)
− 1

)
is increasing for k ≥ 2.

Proof Differentiating, we have

f ′(k) =

(
2k2 + 5k + 3

)
log
(
k+3
k+1

)
− 4k − 2

2(k + 1)
.

We will check to see if the numerator of the above expression is positive. Using the left
inequality in Lemma A.11 we have that

(2k2 + 5k + 3) log

(
k + 3

k + 1

)
− 4k − 2 ≥ 2(2k2 + 5k + 3)

2 + k
− 4k − 2 =

2

2 + k
> 0.

Lemma A.13 The following function

g(k) = k

(
k + 1

k + 3
− 1

2
(k − 1) log

(
k + 3

k + 1

))
is increasing for k ≥ 2.
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Proof Differentiating, we have

g′(k) =
2
(
2k3 + 9k2 + 6k + 3

)
− (k + 3)2

(
2k2 + k − 1

)
log
(
k+3
k+1

)
2(k + 1)(k + 3)2

. (18)

We will show that the numerator of the above expression is positive. The right inequality
in Lemma A.11 gives that

log

(
k + 3

k + 1

)
<

2
√

k+3
k+1

k + 3
.

Using this, we lower bound the numerator in the r.h.s. of equation (18) by

2

(
−(k + 3)

√
k + 3

k + 1

(
2k2 + k − 1

)
+ k(k(2k + 9) + 6) + 3

)
.

With a change of variable k → 3−y2
y2−1 , we have

8
(
y6 − 7y3 + 12y2 + 3y4 (y − 2)− 3

)
(y2 − 1)3

.

Note k ∈ [2,∞) implies y ∈ (1,
√

5
3 ]. Since we are checking for positivity we strike the term

8
(y2−1)3 which gives

y6 + 3(y − 2)y4 − 7y3 + 12y2 − 3 .

Factoring the above gives

(−1 + y)3(3 + y(3 + y)2) ,

which is positive for y ∈ (1,
√

5
3 ] .

Proof of Lemma 7. Without loss of generality let e = 1 (else consider the function M ′,
defined by M ′(x) := M(x/e), instead of M (noting that log(ex)3 ∈ O(log(x)3))).

Note first that we have some d such that for all y > d we have that the function y → y
log(y)3

is increasing.

Since exp(x) ∈ ω(x6) we have exp
(
x

1
3

)
∈ ω(x2) so 1

x exp
(
x

1
3

)
∈ ω(x). There hence

exists a c such that for all x > c we have 1
x exp

(
x

1
3

)
> x.

Let b := max{c, log(d)3}. Now suppose we have some x > b. We then prove the in-
equality log(M(x))3 ≤ x. To show this consider the converse, that log(M(x))3 > x.

Then M(x) > exp
(
x

1
3

)
. Since the function y → y/ log(y)3 is increasing for y > d and

exp
(
x

1
3

)
> d, we then have that M(x)/ log(M(x))3 > 1

x exp
(
x

1
3

)
, which is greater than

x since x > c. But this contradicts the fact that M(x) ≤ x log(M(x))3. So we have shown
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that log(M(x))3 ≤ x.

If we have M(x) > 8x log(x)3 then we have 8x log(x)3 < M(x) ≤ x log(M(x))3 so we
must have 2 log(x) < log(M(x)) so we have x2 < M(x). But, by above, log(M(x))3 ≤ x,
and hence M(x) ≤ x log(M(x))3 ≤ x2 which is a contradiction. Hence we have that
M(x) ≤ 8x log(x)3 as required.
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