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Abstract
The density matrices are positively semi-definite Hermitian matrices of unit trace that
describe the state of a quantum system. The goal of the paper is to develop minimax lower
bounds on error rates of estimation of low rank density matrices in trace regression models
used in quantum state tomography (in particular, in the case of Pauli measurements)
with explicit dependence of the bounds on the rank and other complexity parameters.
Such bounds are established for several statistically relevant distances, including quantum
versions of Kullback-Leibler divergence (relative entropy distance) and of Hellinger distance
(so called Bures distance), and Schatten p-norm distances. Sharp upper bounds and oracle
inequalities for least squares estimator with von Neumann entropy penalization are obtained
showing that minimax lower bounds are attained (up to logarithmic factors) for these
distances.
Keywords: quantum state tomography, low rank density matrix, minimax lower bounds

1. Introduction

This paper deals with optimality properties of estimators of density matrices, describing
states of quantum systems, that are based on penalized empirical risk minimization with
specially designed complexity penalties such as von Neumann entropy of the state. Alexey
Chervonenkis was a co-founder of the theory of empirical risk minimization that is of cru-
cial importance in machine learning, but he also had very broad interests that included,
in particular, quantum mechanics. By the choice of the topic, we would like to honor the
memory of this great man and great scientist.

Let Mm(C) be the set of all m×m matrices with complex entries and let Hm = Hm(C) ⊂
Mm(C) be the set of all Hermitian matrices: Hm = {A ∈ Mm(C) : A = A∗}, A∗ denoting
the adjoint matrix of A. For A ∈ Hm, tr(A) denotes the trace of A and A < 0 means
that A is positively semi-definite. Let Sm := {S ∈ Hm : S < 0, tr(S) = 1} be the set of
all positively semi-definite Hermitian matrices of unit trace called density matrices. In
quantum mechanics, the state of a quantum system is usually characterized by a density
matrix ρ ∈ Sm (or, more generally, by a self-adjoint positively semi-definite operator of unit
trace acting in an infinite-dimensional Hilbert space, called a density operator). Often, very
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large density matrices are needed to represent or to approximate the density operator of the
state. For instance, for a quantum system consisting of b qubits, the density matrices are
of the size m×m with m = 2b, so the dimension of the density matrix grows exponentially
with b. For instance, for a 10 qubit system, one has to deal with matrices that have 220

entries. Thus, it becomes natural in the problems of statistical estimation of density matrix
ρ to take an advantage of the fact that it might be low rank, or nearly low rank (that is,
it could be well approximated by low rank matrices) which reduces the complexity of the
estimation problem.

In quantum state tomography (QST), the goal is to estimate an unknown state ρ ∈ Sm
based on a number of specially designed measurements for the system prepared in state
ρ (see Gross et al. 2010, Gross 2011, Koltchinskii 2011a, Cai et al. 2015 and references
therein). Given an observable A ∈ Hm with spectral representation A =

∑m′
j=1 λjPj , where

m′ ≤ m, λj being the eigenvalues of A and Pj being the corresponding mutually orthogonal
eigenprojectors, the outcome of a measurement of A for the system prepared in state ρ is a
random variable Y taking values λj with probabilities tr(ρPj). The expectation of Y is then
EρY = tr(ρA), so, Y could be viewed as a noisy observation of the value of linear functional
tr(ρA) of the unknown density matrix ρ. A common approach is to choose an observable
A at random, assuming that it is the value of a random variable X with some design
distribution Π in the space Hm. More precisely, given a sample of n i.i.d. copies X1, . . . , Xn

of X, n measurements are being performed for the system identically prepared n times in
state ρ resulting in outcomes Y1, . . . , Yn. Based on the data (X1, Y1), . . . , (Xn, Yn), the goal
is to estimate the target density matrix ρ. Clearly, the observations satisfy the following
model

Yj = tr(ρXj) + ξj , j = 1, . . . , n, (1)

where {ξj} is a random noise consisting of n i.i.d. random variables satisfying the condi-
tion Eρ(ξj |Xj) = 0, j = 1, . . . , n. This is a special case of so called trace regression model
intensively studied in the recent literature (see, e.g., Koltchinskii et al. 2011, Koltchinskii
2011b and references therein).

1.1 Assumptions

A common choice of design distribution in this type of problems is so called uniform sampling
from an orthonormal basis described in the following assumptions.

Assumption 1 Let E = {E1, . . . , Em2} ⊂ Hm be an orthonormal basis of Hm with respect
to the Hilbert–Schmidt inner product: 〈A,B〉 = tr(AB). Moreover, suppose that, for some
U > 0,

‖Ej‖∞ ≤ U, j = 1, . . . , n,

where ‖ · ‖∞ denotes the operator norm (the spectral norm).

Since ‖Ej‖2 = 1, where ‖ · ‖2 denotes the Hilbert–Schmidt (or Frobenius) norm, we can
assume that U ≤ 1. Moreover, U ≥ m−1/2 since 1 = ‖Ej‖2 ≤ m1/2‖Ej‖∞ ≤ m1/2U.

Assumption 2 Let Π be the uniform distribution in the finite set E (see Assumption 1),
let X be a random variable sampled from Π and let X1, . . . , Xn be i.i.d. copies of X.
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It will be assumed in what follows that assumptions 1 and 2 hold (unless it is stated
otherwise). Under these assumptions, Y1, . . . , Yn could be viewed as noisy observations of
a random sample of Fourier coefficients 〈ρ,X1〉, . . . , 〈ρ,Xn〉 of the target density matrix
ρ in the basis E . The above model (in which X1, . . . , Xn are uniformly sampled from an
orthonormal basis and Y1, . . . , Yn are the outcomes of measurements of the observables
X1, . . . , Xn for the system being identically prepared n times in the same state ρ) will be
called in what follows the standard QST model. It is a special case of trace regression model
with bounded response:

Assumption 3 (Trace regression with bounded responce) Suppose that Assumption
1 holds and let (X,Y ) be a random couple such that X is sampled from the uniform
distribution Π in an orthonormal basis E ⊂ Hm. Suppose also that, for some ρ ∈ Sm,
E(Y |X) = 〈ρ,X〉 a.s. and, for some Ū > 0, |Y | ≤ Ū a.s.. The data (X1, Y1), . . . (Xn, Yn)
consists of n i.i.d. copies of (X,Y ).

We are also interested in the trace regression model with Gaussian noise:

Assumption 4 (Trace regression with Gaussian noise) Suppose Assumption 1 holds
and let (X,Y ) be a random couple such that X is sampled from the uniform distribution
Π in an orthonormal basis E ⊂ Hm and, for some ρ ∈ Sm, Y = 〈ρ,X〉 + ξ, where ξ is a
normal random variable with mean 0 and variance σ2

ξ , ξ and X being independent. The
data (X1, Y1), . . . (Xn, Yn) consists of n i.i.d. copies of (X,Y ).

Note that this model is not directly applicable to the “standard QST problem” described
above, where the response variable Y is discrete. However, if the measurements are repeated
multiple times for each observable Xj and the resulting outcomes are averaged to reduce the
variance, the noise of such averaged measurements becomes approximately Gaussian and it
is of interest to characterize the estimation error in terms of the variance of the noise.

An important example of an orthonormal basis used in quantum state tomography is
so called Pauli basis, see, e.g., Gross et al. (2010), Gross (2011). The Pauli basis in the
space H2 of 2× 2 Hermitian matrices (observables in a single qubit system) consists of four
matrices W1,W2,W3,W4 defined as Wi = 1√

2σi, i = 1, . . . , 4, where

σ1 :=
(

1 0
0 1

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
0 1
1 0

)
, σ4 :=

(
1 0
0 −1

)
.

It is easy to check that {W0,W1,W2,W3} indeed forms an orthonormal basis in H2. The
Pauli basis in the space Hm for m = 2b (the space of observables for a b qubits system) is de-
fined by tensorisation, namely, it consists of 4b tensor products Wi1⊗ . . .⊗Wib , (i1, . . . , ib) ∈
{1, 2, 3, 4}b. Let us write these matrices as E1, . . . , Em2 with E1 = W1⊗ . . .⊗W1. It is easy
to see that each of them has eigenvalues ± 1√

m
and ‖Ej‖∞ = m−1/2, so, for this basis,

U = m−1/2. The fact that, for the Pauli basis, the operator norms of basis matrices are as
small as possible plays an important role in quantum state tomography (Gross et al., 2010;
Gross, 2011; Liu, 2011). Let Ej = 1√

m
Q+
j − 1√

m
Q−j be the spectral representation of Ej .

Then, an outcome of a measurement of Ej in state ρ is a random variable τj taking values
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± 1√
m

with probabilities
〈
ρ,Q±t

〉
. Its expectation is Eρτj = 〈ρ,Ej〉. Of course, there exists a

unique representation of density matrix ρ in the Pauli basis that can be written as follows:
ρ =

∑m2
j=1

αj√
m
Ej with α1 = 1. Then, we clearly have Eρτj = αj√

m
and Pρ

{
τj = ± 1√

m

}
= 1±αj

2

(for j = 1, this gives Pρ
{
τ1 = 1√

m

}
= 1). As a consequence, Varρ(τj) = 1−α2

j

m . Note that∑m2
j=1

α2
j

m = ‖ρ‖22 ≤ tr2(ρ) = 1. This implies that there exists j such that α2
j ≤ 1

2 and
Varρ(τj) ≥ 1

2m . In fact, the number of such j must be large, say, at least m2

2 (provided that
m > 4). Thus, for “most” of the values of j, Varρ(τj) � 1

m . A way to reduce the variance is
to repeat the measurement of each observable Xj K times (for a system identically prepared
in state ρ) and to average the outcomes of such K measurements. The resulting response
variable is Yj = 〈ρ,Xj〉 + ξj , where Eρ(ξj |Xj) = 0 and Eρ(ξ2

j |Xj) = Varρ(Yj |Xj) =
1−α2

νj

Km ,
νj being defined by the relationship Xj = Eνj .

1.2 Preliminaries and Notations

Some notations will be used throughout the paper. The Euclidean norm in Cm will be
denoted by ‖ · ‖ and the notation 〈·, ·〉 will be used for both the Euclidean inner product in
Cm and for the Hilbert–Schmidt inner product in Hm. ‖·‖p, p ≥ 1 will be used to denote the
Schatten p-norm in Hm, namely ‖A‖pp =

m∑
j
|λj(A)|p, A ∈ Hm, λ1(A) ≥ . . . ≥ λm(A) being

the eigenvalues of A. In particular, ‖ · ‖2 denotes the Hilbert–Schmidt (or Frobenius) norm,
‖·‖1 denotes the nuclear (or trace) norm and ‖·‖∞ denotes the operator (or spectral) norm:
‖A‖∞ = max1≤j≤m |λj(A)| = |λ1(A)|. The following well known interpolation inequality for
Schatten p-norms will be used to extend the bounds proved for some values of p to the
whole range of its values. It easily follows from similar bounds for `p-spaces.

Lemma 1 (Interpolation inequality) For 1 ≤ p < q < r ≤ ∞, and let µ ∈ [0, 1] be such
that

µ

p
+ 1− µ

r
= 1
q
.

Then, for all A ∈ Hm,
‖A‖q ≤ ‖A‖µp‖A‖1−µr .

Given A ∈ Hm, define a function fA : Hm 7→ R : fA(x) := 〈A, x〉, x ∈ Hm. For a given
random variable X in Hm with a distribution Π, we have ‖fA‖2L2(Π) = Ef2

A(X) = E〈A,X〉2.
Sometimes, with a minor abuse of notation, we might write ‖A‖2L2(Π) =

∫
Hm〈A, x〉

2Π(dx) =
‖fA‖2L2(Π). In what follows, Π will be typically the uniform distribution in an orthonormal
basis E = {E1, . . . , Em2} ⊂ Hm, implying that

‖fA‖2L2(Π) = ‖A‖2L2(Π) = m−2‖A‖22,

so, the L2(Π)-norm is just a rescaled Hilbert–Schmidt norm.
Consider A ∈ Hm with spectral representation A =

∑m′
j=1 λjPj , m

′ ≤ m with distinct
non-zero eigenvalues λj . Denote by sign(A) :=

∑m′
j=1 sign(λj)Pj and by supp(A) the linear
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span of the images of projectors Pj , j = 1, . . . ,m′ (the subspace supp(A) ⊂ Cm will be
called the support of A).

Given a subspace L ⊂ Cm, L⊥ denotes the orthogonal complement of L and PL denotes
the orthogonal projection onto L. Let PL,P⊥L be orthogonal projection operators in the
space Hm (equipped with the Hilbert–Schmidt inner product), defined as follows:

P⊥L (A) = PL⊥APL⊥ , PL(A) = A− PL⊥APL⊥ .

These two operators split any Hermitian matrix A into two orthogonal parts, PL(A) and
P⊥L (A), the first one being of rank at most 2dim(L).

For a convex function f : Hm 7→ R, ∂f(A) denotes the subdifferential of f at the point
A ∈ Hm. It is well known that

∂‖A‖1 =
{

sign(A) + P⊥L (M) : M ∈ Hm, ‖M‖∞ ≤ 1
}
, (2)

where L = supp(A) (see Koltchinskii 2011b, p. 240 and references therein).
C,C1, C

′, c, c′, etc will denote constants (that do not depend on parameters of interest
such as m,n, etc) whose values could change from line to line (or, even, within the same
line) without further notice. For nonnegative A and B, A . B (equivalently, B & A) means
that A ≤ CB for some absolute constant C > 0, and A � B means that A . B and
B . A. Sometimes, symbols .,& and � could be provided with subscripts (say, A .γ B)
to indicate that constant C may depend on a parameter (say, γ).

In what follows, P denotes the distribution of (X,Y ) and Pn denotes the corresponding
empirical distribution based on the sample (X1, Y1), . . . , (Xn, Yn) of n i.i.d. observations.
Similarly, Π is the distribution of X (typically, uniform in an orthonormal basis) and Πn

is the corresponding empirical distribution based on the sample (X1, . . . , Xn). We will use
standard notations Pf = Ef(X,Y ), Pnf = n−1∑n

j=1 f(Xj , Yj) and Πg = Eg(X), Png =
n−1∑n

j=1 g(Xj).

1.3 Estimation Methods

Recall that the central problem in quantum state tomography is to estimate a large density
matrix ρ based on the data (X1, Y1), . . . , (Xn, Yn) satisfying the trace regression model.
Often, the goal is to develop adaptive estimators with optimal dependence of the estimation
error (measured by various statistically relevant distances) on the unknown rank of the
target matrix ρ under the assumption that ρ is low rank, or on other complexity parameters
in the case when the target matrix ρ can be well approximated by low rank matrices.

The simplest estimation procedure for density matrix ρ is the least squares estimator
defined by the following convex optimization problem:

ρ̂ := arg min
S∈Sm

1
n

n∑
j=1

(Yj − 〈S,Xj〉)2 . (3)

Since, for all S ∈ Sm, ‖S‖1 = tr(S) = 1, we have that

ρ̂ = ρ̂ε := arg min
S∈Sm

[ 1
n

n∑
j=1

(Yj − 〈S,Xj〉)2 + ε‖S‖1
]
, ε ≥ 0. (4)
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Thus, in the case of density matrices, the least squares estimator ρ̂ coincides with the
matrix LASSO estimator ρ̂ε with nuclear norm penalty and arbitrary value of regularization
parameter ε. The nuclear norm penalty is used as a proxy of the rank that provides a convex
relaxation for rank penalized least squares method. Matrix LASSO is a standard method of
low rank estimation in trace regression models that has been intensively studied in the recent
years, see, for instance, Candés and Plan (2011), Rohde and Tsybakov (2011), Koltchinskii
(2011b), Koltchinskii et al. (2011), Negahban and Wainwright (2010) and references therein.
In the case of estimation of density matrices, due to their positive semidefiniteness and trace
constraint, the nuclear norm penalization is present implicitly even in the case of a non-
penalized least squares estimator ρ̂ (see also Koltchinskii 2013a, Kalev et al. 2015 where
similar ideas were used).

Note that the estimator ρ̂ can be also rewritten as

ρ̂ := arg min
S∈Sm

[
‖S‖2L2(Πn) −

2
n

n∑
j=1

Yj
〈
S,Xj

〉]
. (5)

Replacing the empirical ‖ · ‖L2(Πn)-norm with the “true” ‖ · ‖L2(Π)-norm (which could make
sense in the case when the design distribution Π is known) yields the following modified
least squares estimator studied in Koltchinskii et al. (2011), Koltchinskii (2013a):

ρ̌ := arg min
S∈Sm

[
‖S‖2L2(Π) −

2
n

n∑
j=1

Yj
〈
S,Xj

〉]
. (6)

Another estimator was proposed in Koltchinskii (2011a) and it is based on an idea of
using so called von Neumann entropy as a penalizer in least squares method. Von Neumann
entropy is a canonical extension of Shannon’s entropy to the quantum setting. For a density
matrix S ∈ Sm, it is defined as E(S) := −tr(S logS). The estimator proposed in Koltchinskii
(2011a) is defined as follows

ρ̃ε := arg min
S∈Sm

[ 1
n

n∑
j=1

(Yj −
〈
S,Xj

〉
)2 + εtr(S logS)

]
. (7)

Essentially, it is based on a trade-off between fitting the model via the least squares method
in the class of all density matrices and maximizing the entropy of the quantum state. Note
that (7) is also a convex optimization problem (due to concavity of von Neumann entropy,
see Nielsen and Chuang 2000) and its solution ρ̃ε is a full rank matrix (see Koltchinskii
2011a, the proof of Proposition 3). It should be also mentioned that the idea of estimation
of a density matrix of a quantum state by maximizing the von Neumann entropy subject
to constraints based on the data has been used in quantum state tomography earlier (see
Bužek 2004 and references therein).

1.4 Distances between Density Matrices

The main purpose of this paper is to study the optimality properties of estimator ρ̃ε with
respect to a variety of statistically meaningful distances, in the case when the underlying
density matrix ρ is low rank. These distances include Schatten p-norm distances for p ∈
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[1, 2],1 but also quantum versions of Hellinger distance and Kullback-Leibler divergence
that are of importance in quantum statistics and quantum information. A version of the
(squared) Hellinger distance that will be studied is defined as

H2(S1, S2) := 2− 2tr
√
S

1
2
1 S2S

1
2
1

for S1, S2 ∈ Sm (see also Nielsen and Chuang 2000). Clearly, 0 ≤ H2(S1, S2) ≤ 2. In
quantum information literature, it is usually called Bures distance and it does not coincide
with tr(

√
S1−

√
S2)2 (which is another possible non-commutative extension of the classical

Hellinger distance). In fact, H2(S1, S2) ≤ tr(
√
S1 −

√
S2)2, S1, S2 ∈ Sm, but the opposite

inequality does not necessarily hold. The quantity tr
√
S

1
2
1 S2S

1
2
1 in the right hand side of

the definition of H2 is a quantum version of Hellinger affinity.
The noncommutative Kullback-Leibler divergence (or relative entropy distance) K(·‖·)

is defined as (see also Nielsen and Chuang 2000):

K(S1‖S2) :=
〈
S1, logS1 − logS2

〉
.

If logS2 is not well-defined (for instance, some of the eigenvalues of S2 are equal to 0) we
set K(S1‖S2) = +∞. The symmetrized version of Kullback-Leibler divergence is defined as

K(S1;S2) := K(S1‖S2) +K(S2‖S1) = 〈S1 − S2, logS1 − logS2〉.

The following very useful inequality is a noncommutative extension of similar classical
inequalities for total variation, Hellinger and Kullback-Leibler distances. It follows from
representing the “noncommutative distances” involved in the inequality as suprema of the
corresponding classical distances between the distributions of outcomes of measurements
for two states S1, S2 over all possible measurements represented by positive operator valued
measures (see, Nielsen and Chuang 2000, Klauck et al. 2007, Koltchinskii 2011a, Section 3
and references therein).

Lemma 2 For all S1, S2 ∈ Sm, the following inequalities hold:
1
4‖S1 − S2‖21 ≤ H2(S1, S2) ≤

(
K(S1‖S2) ∧ ‖S1 − S2‖1

)
. (8)

1.5 Matrix Bernstein Inequalities

Non-commutative (matrix) versions of Bernstein inequality will be used in what follows.
The most common version is stated (in a convenient form for our applications) in the
following lemma.

Lemma 3 Let X,X1, . . . , Xn ∈ Hm be i.i.d. random matrices with EX = 0, σ2
X :=

‖EX2‖∞ and ‖X‖∞ ≤ U a.s. for some U > 0. Then, for all t ≥ 0 with probability at
least 1− e−t, ∥∥∥∥ 1

n

n∑
j=1

Xj

∥∥∥∥
∞
≤ 2

[
σX

√
t+ log(2m)

n

∨
U
t+ log(2m)

n

]
.

1. Similar problems for estimators ρ̂, ρ̌ and for Schatten p-norm distances with p ∈ (2,+∞] are studied in
a related paper by Koltchinskii and Xia (2015+)
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The proof of such bounds could be found, e.g., in Tropp (2012). Other versions on
matrix Bernstein type inequalities for not necessarily bounded random matrices will be also
used in what follows and they could be found in Koltchinskii (2011b), Koltchinskii (2013a).
A simple consequence of the inequality of Lemma 3 is the following expectation bound:

E
∥∥∥∥ 1
n

n∑
j=1

Xj

∥∥∥∥
∞

.
[
σX

√
log(2m)

n

∨
U

log(2m)
n

]
.

It follows from the exponential bound by integrating the tail probabilities.
The paper is organized as follows. In Section 2, minimax lower bounds on estimation

error of low rank density matrices are provided in Schatten p-norm, Hellinger (Bures) and
Kullback-Leibler distances. In Section 3.1, sharp low rank oracle inequalities for von Neu-
mann entropy penalized least squares estimator are derived in the case of trace regression
model with bounded response. In Section 3.2, low rank oracle inequalities are established in
the case of trace regression with Gaussian noise. In addition to this, in these two sections,
upper bounds on estimation error with respect to Kullback-Leibler distance are obtained.
In Section 3.3, they are further developed and extended to other distances (Hellinger dis-
tance, Schatten p-norm distances for p ∈ [1, 2]) showing the minimax optimality (up to
logarithmic factors) of the error rates of the least squares estimator with von Neumann
entropy penalization.

2. Minimax Lower Bounds

In this section, we provide main results on the minimax lower bounds on the risk of estima-
tion of density matrices with respect to Schatten p-norm (or, rather q-norm in the notations
used below) distances as well as Hellinger-Bures distance and Kullback-Leibler divergence.

Minimax lower bounds will be derived for the class Sr,m := {S ∈ Sm : rank(S) ≤ r}
consisting of all density matrices of rank at most r (the low rank case). We will start with the
case of trace regression with Gaussian noise. Given that the sample (X1, Y1), . . . , (Xn, Yn)
satisfies Assumption 4 with the target density matrix ρ ∈ Sm and noise variance σ2

ξ , let Pρ
denote the corresponding probability distribution.

Note that Ma and Wu (2013) developed a method of deriving minimax lower bounds for
distances based on unitary invariant norms, including Schatten p-norms in matrix problems,
and obtained such lower bounds, in particular, in matrix completion problem. The approach
used in our paper is somewhat different and the aim is to develop such bounds under an
additional constraint that the target matrix is a density matrix. The resulting bounds
are also somewhat different, they involve an additional term that does not depend on the
rank, but does depend on q. Essentially, it means that the “complexity” of the problem is
controlled by a “truncated rank” r ∧ 1

τ , where τ = σξm
3/2

√
n

rather than by the actual rank
r. The upper bounds of Section 3.3 show that such a structure of the bound is, indeed,
necessary. It should be also mentioned that minimax lower bounds on the nuclear norm
error of estimation of density matrices have been obtained earlier in Flammia et al. (2012)
(see Remark 11 below).
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Theorem 4 For all q ∈ [1,+∞], there exist constants c, c′ > 0 such that, the following
bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

(
σξm

3
2 r1/q
√
n

∧(σξm3/2
√
n

)1− 1
q ∧

1
)}
≥ c′, (9)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
σξm

3
2 r√
n

∧
1
)}
≥ c′, (10)

and

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
σξm

3
2 r√
n

∧
1
)}
≥ c′, (11)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn)
satisfying the Gaussian trace regression model with noise variance σ2

ξ .

Proof A couple of preliminary facts will be needed in the proof. We start with bounds
on the packing numbers of Grassmann manifold Gk,l, which is the set of all k-dimensional
subspaces L of the l-dimensional space Rl. Given such a subspace L ⊂ Rl with dim(L) = k,
let PL be the orthogonal projection onto L and let Pk,l := {PL : L ∈ Gk,l}. The set
of all k-dimensional projectors Pk,l will be equipped with Schatten q-norm distances for
all q ∈ [1,+∞] (which also could be viewed as distances on the Grassmannian itself):
dq(Q1, Q2) := ‖Q1 − Q2‖q, Q1, Q2 ∈ Pk,l. Recall that the ε-packing number of a metric
space (T, d) is defined as

D(T, d, ε) = max
{
n : there are t1, . . . , tn ∈ T, such that min

i 6=j
d(ti, tj) > ε

}
.

The following lemma (see Pajor 1998, Proposition 8) will be used to control the packing
numbers of Pk,l with respect to Schatten distances dq.

Lemma 5 For all integer 1 ≤ k ≤ l such that k ≤ l − k, and all 1 ≤ q ≤ ∞, the following
bounds hold (

c

ε

)d
≤ D(Pk,l, dq, εk

1/q) ≤
(
C

ε

)d
, ε > 0 (12)

with d = k(l − k) and universal positive constants c, C.

In addition to this, we need the following well known information-theoretic bound fre-
quently used in derivation of minimax lower bounds (see Tsybakov 2008, Theorem 2.5).
Let Θ = {θ0, θ1, . . . , θM} be a finite parameter space equipped with a metric d and let
P := {Pθ : θ ∈ Θ} be a family of probability distributions in some sample space. Given
P,Q ∈ P, let K(P‖Q) := EP log dP

dQ be the Kullback-Leibler divergence between P and Q.

Proposition 6 Suppose that the following conditions hold:

(i) for some s > 0, d(θj , θk) ≥ 2s > 0, 0 ≤ j < k ≤M ;

(ii) for some 0 < α < 1/8, 1
M

M∑
j=1

K(Pθj‖Pθ0) ≤ α logM
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Then, for a positive constant cα,

inf
θ̂

sup
θ∈Θ

Pθ{d(θ̂, θ) ≥ s} ≥ cα,

where the infimum is taken over all estimators θ̂ ∈ Θ based on an observation sampled from
Pθ.

We now turn to the actual proof of Theorem 4. Under Assumption 4, the following
computation is well known: for ρ1, ρ2 ∈ Sr,m,

K(Pρ1‖Pρ2) = EPρ1 log Pρ1

Pρ2

(
X1, Y1, . . . , Xn, Yn

)
= EPρ1

n∑
j=1

[
− (Yj − 〈ρ1, Xj〉)2

2σ2
ξ

+ (Yj − 〈ρ2, Xj〉)2

2σ2
ξ

]

= E
n∑
j=1

〈ρ1 − ρ2, Xj〉2

2σ2
ξ

= n

2σ2
ξ

‖ρ1 − ρ2‖2L2(Π).

(13)

It is enough to prove the bounds for 2 ≤ r ≤ m/2. The proof in the case r = 1 is simpler
and the case r > m/2 easily reduces to the case r ≤ m/2. We will use Lemma 5 to construct
a well separated (with respect to dq) subset of density matrices in Sr,m. To this end, first
choose a subset Dq ⊂ Pr−1,m−1 such that card(Dq) ≥ 2(r−1)(m−r) and, for some constant
c′, ‖Q1 − Q2‖q ≥ c′(r − 1)1/q, Q1, Q2 ∈ Pr−1,m−1, Q1 6= Q2. Such a choice is possible due
to the lower bound on the packing numbers of Lemma 5. For Q ∈ Dq (note that Q can
be viewed as an (m − 1) × (m − 1) matrix with real entries) and κ ∈ (0, 1), consider the
following m×m matrix

S = SQ =
(

1− κ 0′
0 κ Q

r−1

)
. (14)

Note that S is symmetric positively-semidefinite real matrix of unit trace. It is straight-
forward to check that it defines a Hermitian positively-semidefinite operator in Cm of unit
trace, and it can be identified with a density matrix S ∈ Sm. Clearly, S is of rank r, so,
S ∈ Sr,m.

We will take κ := c1
σξm

3/2(r−1)√
n

with a small enough absolute constant c1 > 0 and first
assume that κ < 1 (as it is needed in definition Equation 14).

Let S ′q := {SQ : Q ∈ Dq} and consider a family of M + 1 = card(Dq) ≥ 2(r−1)(m−r)

distributions {PS : S ∈ S ′q}. It is immediate that for S1 = SQ1 , S2 = SQ2 , Q1, Q2 ∈ Dq, Q1 6=
Q2, we have

‖S1 − S2‖q = κ

r − 1‖Q1 −Q2‖q ≥ c′κ(r − 1)1/q−1

≥ c′c1
σξm

3/2(r − 1)1/q
√
n

≥ cσξm
3/2r1/q
√
n

(15)

with some constant c > 0, implying condition (i) of Proposition 6 with s = c
2
σξm

3/2r1/q
√
n

.
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We will now check its condition (ii) . In view of (13), we have, for all S1 = SQ1 , S2 =
SQ2 ∈ S ′q,

K(PS1‖PS2) = n

2σ2
ξ

‖S1 − S2‖2L2(Π) = n

2σ2
ξm

2 ‖S1 − S2‖22

= nκ2

2σ2
ξm

2(r − 1)2 ‖Q1 −Q2‖22 ≤
4n(r − 1)κ2

2σ2
ξm

2(r − 1)2 = 2c2
1m(r − 1)

≤ αm(r − 1)/ log(2)/4 ≤ α

2 (r − 1)(m− r) log(2) ≤ α logM,

(16)

provided that constant c1 is small enough, so, condition (ii) of Proposition 6 is also satisfied.
Proposition 6 implies that, under the assumption κ = c1

σξm
3/2(r−1)√
n

< 1, the following
minimax lower bound holds for some c, c′ > 0 :

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

σξm
3
2 r1/q
√
n

}
≥ c′. (17)

In the case when
c1
σξm

3/2
√
n

< 1 ≤ c1
σξm

3/2(r − 1)√
n

,

one can choose 2 ≤ r′ < r − 1 such that, for some constant c2 > 0,

c2 < c1
σξm

3/2(r′ − 1)√
n

< 1.

For such a choice of r′, it follows from (17) that

inf
ρ̂

sup
ρ∈Sr′,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

σξm
3
2 (r′)1/q
√
n

}
≥ c′. (18)

The definition of r′ implies that

r′ � r′ − 1 �
(
σξm

3/2
√
n

)−1
.

Therefore,
σξm

3
2 (r′)1/q
√
n

�
(
σξm

3/2
√
n

)1−1/q
,

and, since Sr′,m ⊂ Sr,m, bound (18) yields

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂−ρ‖q ≥ c

(
σξm

3/2
√
n

)1−1/q}
≥ inf

ρ̂
sup

ρ∈Sr′,m

Pρ
{
‖ρ̂−ρ‖q ≥ c

(
σξm

3/2
√
n

)1−1/q}
≥ c′

(19)
for some constants c, c′ > 0. This allows us to recover the second term in the minimum in
bound (9). Finally, in the case when c1

σξm
3/2

√
n

> 1, the minimax lower bound becomes a
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constant (and the proof is based on a simplified version of the above argument that could
be done for r = 1). This completes the proof of bound (9) for Schatten q-norms.

The proof of bound (10) for the Hellinger distance is similar. In the case r ≥ 2, we will
use a “well separated” set of density matrices S ′q ⊂ Sr,m for q = 1 constructed above. We
still use κ := c1

σξm
3/2(r−1)√
n

assuming first that κ ∈ (0, 1). For SQ1 , SQ2 ∈ S ′q with Q1 6= Q2,

it follows by a simple computation and using bound (8) that, for some c′′ > 0,

H2(SQ1 , SQ2) = κH2
( Q1
r − 1 ,

Q2
r − 1

)
≥ 1

4
κ

(r − 1)2 ‖Q1 −Q2‖21 ≥
(c′)2

4 κ ≥ c′′σξm
3/2(r − 1)√
n

.

Repeating the argument based on Proposition 6 yields bound (10) in the case when κ =
c1
σξm

3/2(r−1)√
n

< 1, and in the opposite case it is easy to see that the lower bound is a
constant.

Finally, bound (11) for the Kullback–Leibler divergence follows from (10) and the in-
equality K(ρ‖ρ̂) ≥ H2(ρ̂, ρ) (see inequality 8).

Next we state similar results in the case of trace regression model with bounded response
(see Assumption 3). Denote by Pr,m(Ū) the class of all distributions P of (X,Y ) such that
Assumption 3 holds for some Ū and E(Y |X) = 〈ρP , X〉 for some ρP ∈ Sr,m. Given P, PP
denotes the corresponding probability measure (such that (X1, Y1), . . . , (Xn, Yn) are i.i.d.
copies of (X,Y ) sampled from P ).

Theorem 7 Suppose Ū ≥ 2U. For all q ∈ [1,+∞], there exist absolute constants c, c′ > 0
such that the following bounds hold:

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
‖ρ̂− ρP ‖q ≥ c

(
Ūm

3
2 r1/q
√
n

∧( Ūm3/2
√
n

)1− 1
q ∧

1
)}
≥ c′, (20)

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
H2(ρ̂, ρP ) ≥ c

(
Ūm

3
2 r√
n

∧
1
)}
≥ c′, (21)

and

inf
ρ̂

sup
P∈Pr,m(Ū)

PP
{
K(ρP ‖ρ̂) ≥ c

(
Ūm

3
2 r√
n

∧
1
)}
≥ c′, (22)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).

Proof The proof relies on an idea already used in a context of matrix completion by
Koltchinskii et al. (2011) (see their Theorem 7). We need the same family S ′q ⊂ Sr,m of “well
separated” density matrices of rank r as in the proof of Theorem 4. For a density matrix ρ,
let (X,Y ) be a random couple such that X is sampled from the uniform distribution Π in
E and, conditionally on X, Y takes value +Ū with probability pρ(X) := 1

2 + 〈ρ,X〉2Ū and value
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−Ū with probability qρ(X) := 1
2 −

〈ρ,X〉
2Ū . Since Ū ≥ 2U and |〈ρ,X〉| ≤ ‖ρ‖1‖X‖∞ ≤ U, we

have pρ(X), qρ(X) ∈ [1/4, 3/4] (so, they are bounded away from 0 and from 1). Clearly,
Eρ(Y |X) = 〈ρ,X〉. Let Pρ denote the distribution of such a couple and Pρ denote the
corresponding distribution of the data (X1, Y1), . . . , (Xn, Yn). Then, for all ρ ∈ Sr,m, Pρ ∈
Pr,m(Ū). The only difference with the proof of Theorem 4 is in the bound on Kullback-
Leibler divergence K(Pρ1‖Pρ2) (see Equation 13). It is easy to see that

K(Pρ1‖Pρ2) = nE
(
pρ1(X) log pρ1(X)

pρ2(X) + qρ1(X) log qρ1(X)
qρ2(X)

)
. (23)

The following simple inequality will be used: for all a, b ∈ [1/4, 3/4],

a log a
b

+ (1− a) log 1− a
1− b ≤ 12(a− b)2.

It implies that

K(Pρ1‖Pρ2) ≤ 3nE〈ρ1 − ρ2, X〉2

Ū2 ≤ 3n
Ū2 ‖ρ1 − ρ2‖2L2(Π).

This bound is used instead of identity (13) from the proof of Theorem 4. The rest of the
proof is the same.

Note that the proof requires the possible range [−Ū , Ū ] of response variable Y to be
larger than the possible range [−U,U ] of Fourier coefficients 〈ρ,Ej〉, j = 1, . . . ,m2. This is
not the case for standard QST model described in the introduction (see also the example
of Pauli measurements) and it is of interest to prove a version of minimax lower bounds
without this constraint, including the case when Ū = U. The following theorem is a result
in this direction.

Theorem 8 Suppose Assumption 1 is satisfied and, moreover, for some constant γ ∈ (0, 1),∣∣∣tr(Ek)∣∣∣ ≤ (1− γ)Um, k = 1, . . . ,m2. (24)

Then, for all q ∈ [1,+∞], there exist constants cγ , c′γ > 0 such that the following bounds
hold:

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
‖ρ̂− ρP ‖q ≥ cγ

(
Um

3
2 r1/q
√
n

∧(Um3/2
√
n

)1− 1
q ∧

1
)}
≥ c′γ , (25)

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
H2(ρ̂, ρP ) ≥ cγ

(
Um

3
2 r√
n

∧
1
)}
≥ c′γ , (26)

and

inf
ρ̂

sup
P∈Pr,m(U)

PP
{
K(ρP ‖ρ̂) ≥ cγ

(
Um

3
2 r√
n

∧
1
)}
≥ c′γ , (27)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).
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Proof The proof is based on the following lemma:

Lemma 9 Suppose assumption (24) holds. Let K be a sufficiently large absolute constant
(to be chosen later) and let m satisfy the condition K logm√

m
≤ γ

2 (which means that m ≥ Aγ
for some constant Aγ). Then there exists v ∈ Cm with ‖v‖ = 1 such that∣∣∣〈Ekv, v〉∣∣∣ ≤ (1− γ/2)U, k = 1, . . . ,m2. (28)

Proof We will prove this fact by a probabilistic argument. Namely, set v := m−1/2(ε1, . . . , εm),
where εj = ±1. We will show that there is a random choice of “signs” εj such that (28)
holds. Assume that εj , j = 1, . . . ,m are i.i.d. and take values ±1 with probability 1/2
each. Let Ek := (a(k)

ij )i,j=1,...,m. For simplicity, assume that (a(k)
ij )i,j=1,...,m is a symmetric

real matrix (in the complex case, the proof can be easily modified). We have

〈Ekv, v〉 = 1
m

m∑
i=1

a
(k)
ii ε

2
i + 1

m

∑
i 6=j

a
(k)
ij εiεj = tr(Ek)

m
+ 1
m

∑
i 6=j

a
(k)
ij εiεj .

It is well known that

Var
(∑
i 6=j

a
(k)
ij εiεj

)
= E

(∑
i 6=j

a
(k)
ij εiεj

)2
= 2

∑
i 6=j

(
a

(k)
ij

)2
≤ 2

∑
i,j

(
a

(k)
ij

)2
= 2‖Ek‖22 = 2.

Moreover, it follows from exponential inequalities for Rademacher chaos (see, e.g., Corollary
3.2.6 in de la Peña and Giné 1999) that for some absolute constant K > 0 and for all t > 0,
with probability at least 1− e−t∣∣∣∣〈Ekv, v〉 − tr(Ek)

m

∣∣∣∣ =
∣∣∣∣ 1
m

∑
i 6=j

a
(k)
ij εiεj

∣∣∣∣ ≤ Kt

m
.

Taking t = 2 logm and using the union bound, we conclude that with probability at least
1−me−2 logm = 1− 1

m > 0,

max
1≤k≤m2

∣∣∣∣〈Ekv, v〉 − tr(Ek)
m

∣∣∣∣ ≤ K logm
m

≤ K logm√
m

U ≤ γ

2U,

where we also used the fact that U ≥ m−1/2. Thus, there exists a choice of signs εj such
that

max
1≤k≤m2

∣∣∣〈Ekv, v〉∣∣∣ ≤ max
1≤k≤m

∣∣∣∣tr(Ek)m

∣∣∣∣+ γ

2U,

which, under condition (24), implies (28).

We set e1 := v (where v is the unit vector introduced in Lemma 9) and construct an
orthonormal basis e1, . . . , em. Assume that matrices SQ defined by (14) represent linear
transformations in basis e1, . . . , em. Then we have

〈SQ, Ek〉 = (1− κ)〈Ekv, v〉+ κ

r − 1〈Q,Ek〉.
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Therefore,∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1−κ)
∣∣∣〈Ekv, v〉∣∣∣+ κ

r − 1‖Ek‖∞‖Q‖1 ≤ (1−κ)(1−γ/2)U+κU = (1−(1−κ)(γ/2))U.

Assuming that κ ≤ 1/2, we get∣∣∣〈SQ, Ek〉∣∣∣ ≤ (1− γ/4)U, k = 1, . . . ,m2. (29)

The rest of the proof becomes similar to the proof of Theorem 7 (with Ū = U). Namely,
bound (29) implies that, for ρ = SQ and X being sampled from the orthonormal ba-
sis {E1, . . . , Em2}, probabilities pρ(X) and qρ(X) are bounded away from 0 and from 1 :
pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8]. This allows us to complete the argument of the proof of
Theorem 7.

Theorem 8 does not apply directly to the Pauli basis since condition (24) fails in this case.
Indeed, by the definition of Pauli basis, U = m−1/2 and tr(E1) =

√
m = Um > (1− γ)Um.

Note also that tr(Ej) = 0, j = 2, . . . ,m2. Thus, for Pauli basis, E1 is the only matrix for
which condition (24) fails. However, for this matrix 〈ρ,E1〉 = m−1/2tr(ρ) = m−1/2 = U for
all density matrices ρ ∈ Sm. This immediately implies that pρ(E1) = 1 and qρ(E1) = 0 for
all ρ ∈ Sm and, as a result, the value X = E1 does not have an impact on the computation of
Kullback-Leibler divergence in (23). For the rest of the matrices in the Pauli basis, condition
(24) holds implying also bound (28). Therefore, if X 6= E1, we still have that, for ρ = SQ,
pρ(X), qρ(X) ∈ [γ/8, 1 − γ/8], and the proof of Theorem 7 can be completed in this case,
too. Note also that, given X sampled from the Pauli basis, the binary random variable Y
taking values ±U = ± 1√

m
with probabilities pρ(X) and qρ(X), respectively (this is exactly

the random variable used in the construction of the proof of Theorem 7) coincides with an
outcome of a Pauli measurement for the system prepared in state ρ. These considerations
yield the following minimax lower bounds for Pauli measurements.

Theorem 10 Let {E1, . . . , Em2} be the Pauli basis in the space Hm of m ×m Hermitian
matrices and let X1, . . . , Xn be i.i.d. random variables sampled from the uniform distribution
in {E1, . . . , Em2}. Let Y1, . . . , Yn be outcomes of measurements of observables X1, . . . , Xn

for the system being identically prepared n times in state ρ. The corresponding distribution
of the data (X1, Y1), . . . , (Xn, Yn) will be denoted by Pρ. Then, for all q ∈ [1,+∞], there
exist constants c, c′ > 0 such that the following bounds hold:

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
‖ρ̂− ρ‖q ≥ c

(
mr1/q
√
n

∧( m√
n

)1− 1
q ∧

1
)}
≥ c′, (30)

inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
H2(ρ̂, ρ) ≥ c

(
mr√
n

∧
1
)}
≥ c′, (31)

and
inf
ρ̂

sup
ρ∈Sr,m

Pρ
{
K(ρ‖ρ̂) ≥ c

(
mr√
n

∧
1
)}
≥ c′, (32)

where inf ρ̂ denotes the infimum over all estimators ρ̂ in Sm based on the data (X1, Y1), . . . , (Xn, Yn).
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Remark 11 Minimax lower bounds on nuclear norm error of density matrix estimation
close to bound (30) for q = 1 (but for a somewhat different “estimation protocol” and stated
in a different form) were obtained earlier in Flammia et al. (2012). This paper also contains
upper bounds on the errors of matrix LASSO and Dantzig selector estimators in the nuclear
norm matching the lower bounds up to log-factors.

Remark 12 It is easy to see that, if constant γ ∈ (0, 1) is small enough (namely, γ <
1− 1√

2), then, in an arbitrary orthonormal basis {E1, . . . , Em2}, there is at most one matrix
Ej such that |tr(Ej)| > (1− γ)Um. Indeed, note that tr(Ej) = 〈Ej , Im〉. Since

m2∑
j=1
〈Ej , Im〉2 = ‖Im‖22 = m

and U2m ≥ 1, we have

card
({
j : |〈Ej , Im〉| > (1− γ)Um

})
≤ 1

(1− γ)2U2m2

m2∑
j=1
〈Ej , Im〉2

≤ m

(1− γ)2U2m2 = 1
(1− γ)2U2m

≤ 1
(1− γ)2 < 2,

provided that γ < 1− 1√
2 .

Remark 13 It will be shown in Section 3.3 that the minimax rates of theorems 4, 7, 8
and 10 are attained up to logarithmic factors for the von Neumann entropy penalized least
squares estimator.

Remark 14 Similar minimax lower bounds could be proved in certain classes of “nearly
low rank” density matrices. Consider, for instance, the following class

Bp(d;m) :=
{
S ∈ Sm :

m∑
j=1
|λj(S)|p ≤ d

}
(33)

for some d > 0 and p ∈ [0, 1], where λ1(S) ≥ · · · ≥ λm(S) denote the eigenvalues of S. This
set consists of density matrices with the eigenvalues decaying at a certain rate (nearly low
rank case) and, for p = 0, d = r it coincides with Sr,m. It turns out that minimax lower
bounds of theorems 4 and 7 hold for the class Bp(d;m) (instead of Sr,m) with r replaced by

r̄ := r̄(τ, d,m, p) = dτ−p ∧m,

where τ := σξm
3/2

√
n

in the case of trace regression with Gaussian noise and τ := Ūm3/2
√
n

in
the case of trace regression with bounded response. These minimax bounds are attained up
to logarithmic factors for a slightly modified von Neumann entropy penalized least squares
estimator.

Note that, for ρ ∈ Bp(d,m) with eigenvalues λ1(ρ) ≥ · · · ≥ λm(ρ), we have λj(ρ) ≤
d1/p

j1/p
, j = 1, . . . ,m. Therefore, for j ≥ r̄, λj(ρ) ≤ τ. Note also that τ characterizes the
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minimax rate of estimation of ρ ∈ Sr,m in the operator norm for any value of the rank r
(see bound (9) for q = +∞; the corresponding upper bound also holds for the least squares
estimator up to a logarithmic factor, see Koltchinskii and Xia 2015+). Roughly speaking, τ
is a threshold below which the estimation of eigenvalues λj(ρ) becomes impossible and r̄ can
be viewed as an “effective rank” of nearly low rank density matrices in the class Bp(d,m).

3. Von Neumann Entropy Penalization: Optimality and Oracle
Inequalities

The goal of this section is to study optimality properties of von Neumann entropy penalized
least squares estimator ρ̃ε defined by (7). In particular, we establish oracle inequalities for
such estimators in the cases of trace regression with bounded response (Subsection 3.1)
and trace regression with Gaussian noise (Subsection 3.2), and prove upper bounds on their
estimation errors measured by Schatten q-norm distances for q ∈ [1, 2] and also by Hellinger
and Kullback-Leibler distances (Subsection 3.3).

3.1 Oracle Inequalities for Trace Regression with Bounded Response

In this subsection, we prove a sharp low rank oracle inequality for estimator ρ̃ε defined by
(7). It is done in the case of trace regression model with bounded response (that is, under
Assumption 3). The results of this type show some form of optimality of the estimation
method, namely, that the estimator provides an optimal trade-off between the “approx-
imation error” of the target density matrix by a low rank “oracle” and the “estimation
error” of the “oracle” that is proportional to its rank. Sharp oracle inequalities (in which
the leading constant in front of the “approximation error” is equal to 1, so that the bound
mimics precisely the approximation by the oracle) are usually harder to prove. In the case
of low rank matrix completion, the first result of this type was proved by Koltchinskii et al.
(2011) for a modified least squares estimator with nuclear norm penalty. A version of such
inequality for empirical risk minimization with nuclear norm penalty (that includes matrix
LASSO) was first proved by Koltchinskii (2013b). Low rank oracle inequalities for von
Neumann entropy penalized least squares method with the leading constant larger than 1
were proved by Koltchinskii (2011a). The main result of this section refines these previous
bounds by proving a sharp oracle inequality, improving the logarithmic factors and remov-
ing superfluous assumptions, but also by establishing the inequality in the whole range of
values of regularization parameter ε ≥ 0 (including the value ε = 0, for which ρ̃ε coincides
with the least squares estimator ρ̂). In addition to this, for a special choice of regularization
parameter ε, the theorem below also provides an upper bound on the Kullback-Leibler error
K(ρ‖ρ̃ε) of ρ̃ε that matches the minimax lower bound (22) up to log-factors (and “second
order terms”). It turns out that, for this choice of ε, the estimator satisfies exactly the same
low rank oracle inequality as the best inequalities known for LASSO estimator and minimax
optimal error rates are attained for ρ̃ε also with respect to Hellinger distance and Schatten
q-norm distances for all q ∈ [1, 2] (see Section 3.3). For simplicity, it will be assumed that
constants U in Assumption 1 and Ū in Assumption 3 coincide (in the upper bounds, one
can always replace U and Ū by U ∨ Ū).
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Theorem 15 Suppose Assumption 3 holds with constant Ū = U and let ε ∈ [0, 1]. Then,
there exists a constant C > 0 such that for all t ≥ 1 with probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ infS∈Sm
[
‖fS − fρ‖2L2(Π) + C

(
rank(S)m2ε2 log2(mn)

+U2 rank(S)m log(2m)
n + U2 t+log log2(2n)

n

)]
. (34)

In particular, this implies that

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
rank(ρ)m2ε2 log2(mn)

+U2 rank(ρ)m log(2m)
n + U2 t+log log2(2n)

n

]
. (35)

Moreover, if

ε := 1
log(mn)

[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
,

then, with some constant C and with probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
U2 rank(ρ)m log(2m)

n

(
1
∨
U2m log(2m)

n

)
+U2 t+log log2(2n)

n

]
(36)

and

K(ρ‖ρ̃ε) ≤ CU
[

rank(ρ)m3/2
√

log(2m) log(mn)√
n

(
1
∨
U
√

m log(2m)
n

)
+
√

m
n

(t+log log2(2n)) log(mn)√
log(2m)

]
. (37)

Proof The following notations will be used in the proof. Let `(y, u) := (u − y)2, y, u ∈ R
be the quadratic loss function. For f : Hm 7→ R, denote

(` • f)(x, y) = (f(x)− y)2, (`′ • f)(x, y) = 2(f(x)− y)

and
P (` • f) = E(Y − f(X))2, Pn(` • f) = n−1

n∑
j=1

(Yj − f(Xj))2.

For A ∈ Hm, let fA(x) = 〈A, x〉, x ∈ Hm. Since for density matrices S ∈ Sm, ‖S‖1 = tr(S) =
1, the estimator ρ̃ = ρ̃ε can be equivalently defined by the following convex optimization
problem:

ρ̃ = argminS∈SmLn(S), Ln(S) :=
[
Pn(` • fS) + εtr(S logS) + ε̄‖S‖1

]
for an arbitrary ε̄ > 0.

The following lemma will be crucial in the proofs of Theorem 15 as well Theorem 19 in
the following subsection. Note that it does not rely on Assumption 3, only Assumptions 1
and 2 are needed.
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Lemma 16 Suppose Assumptions 1 and 2 hold. Let δ ∈ (0, 1) and S := (1 − δ)S′ + δ Imm ,
where S′ ∈ Sm, rank(S′) = r and Im is the m × m identity matrix. Then the following
bound holds:

‖fρ̃ − fρ‖2L2(Π) + 1
2‖fρ̃ − fS‖

2
L2(Π) + εK(ρ̃;S) + ε̄

∥∥∥P⊥L (ρ̃)
∥∥∥

1
≤ ‖fS − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (38)

+4ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Lemma 16 will be often used together with the following simple bound:

‖fS − fρ‖2L2(Π) = 1
m2 ‖S − ρ‖22 ≤

1
m2 ‖S′ − ρ‖22 + 2

m2 ‖S′ − ρ‖2‖S′ − S‖2 + 1
m2 ‖S′ − S‖22 (39)

≤ ‖fS′ − fρ‖2L2(Π) + 8δ
m2 + 4δ2

m2 ≤ ‖fS′ − fρ‖2L2(Π) + 12δ
m2 .

Together, they imply that

‖fρ̃ − fρ‖2L2(Π) + 1
2‖fρ̃ − fS‖

2
L2(Π) + εK(ρ̃;S) + ε̄

∥∥∥P⊥L (ρ̃)
∥∥∥

1
≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + rm2ε̄2 (40)

+4ε̄δ + 12δ
m2 + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

We will now give the proof of Lemma 16.
Proof By standard necessary conditions of extremum in convex problems, we get that, for
all S ∈ Sm and for some Ṽ ∈ ∂‖ρ̃‖1,

Pn(`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ 0

(see, e.g., Aubin and Ekeland 2006, Chapter 2, Corollary 6; see also Koltchinskii 2011b,
pp. 198–199; for the computation of derivative of the function tr(S logS), see Lemma 1 in
Koltchinskii 2011a). Replacing in the left hand side P by Pn, we get

P (`′ • fρ̃)(fρ̃ − fS) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉 ≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

It is easy to check that for the quadratic loss

P (`′ • fρ̃)(fρ̃ − fS) = P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2L2(Π),

implying that

P (` • fρ̃)− P (` • fS) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

≤ (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Also, for the quadratic loss,

P (` • f)− P (` • fρ) = ‖f − fρ‖2L2(Π).
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Therefore,

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S〉

≤ ‖fS − fρ‖2L2(Π) + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall that we have set S = (1 − δ)S′ + δ Imm , where S′ ∈ Sm, rank(S′) = r, δ ∈ (0, 1).
Clearly, ∣∣∣〈Ṽ , S − S′〉∣∣∣ ≤ ‖Ṽ ‖∞‖S − S′‖1 ≤ ‖S − S′‖1 = δ

∥∥∥∥S′ − Im
m

∥∥∥∥
1
≤ 2δ,

where we used the fact that ‖Ṽ ‖∞ ≤ 1 for Ṽ ∈ ∂‖ρ̃‖1. This implies

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + ε〈log ρ̃, ρ̃− S〉+ ε̄〈Ṽ , ρ̃− S′〉 (41)
≤ ‖fS − fρ‖2L2(Π) + 2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

Recall formula (2) for the subdifferential of nuclear norm. Let L = supp(S′). By the
duality between the operator and nuclear norms, there exists M ∈ Hm with ‖M‖∞ ≤ 1
such that

〈P⊥L (M), ρ̃− S′〉 = 〈M,P⊥L (ρ̃− S′)〉 =
∥∥∥P⊥L (ρ̃− S′)

∥∥∥
1

=
∥∥∥P⊥L (ρ̃)

∥∥∥
1
.

With V = sign(S′) + P⊥L (M) ∈ ∂‖S′‖1, by monotonicity of subdifferential, we get that

〈sign(S′), ρ̃− S′〉+
∥∥∥P⊥L (ρ̃)

∥∥∥
1

= 〈V, ρ̃− S′〉 ≤ 〈Ṽ , ρ̃− S′〉. (42)

In addition to this, we have

〈log ρ̃, ρ̃− S〉 = 〈log ρ̃− logS, ρ̃− S〉+ 〈logS, ρ̃− S〉 = K(ρ̃;S) + 〈logS, ρ̃− S〉. (43)

Substituting (42) and (43) into (41), we get

‖fρ̃ − fρ‖2L2(Π) + ‖fρ̃ − fS‖2L2(Π) + εK(ρ̃;S) + ε̄
∥∥∥P⊥L (ρ̃)

∥∥∥
1

≤ ‖fS − fρ‖2L2(Π) + ε〈logS, S − ρ̃〉+ ε̄〈sign(S′), S′ − ρ̃〉 (44)
+2ε̄δ + (P − Pn)(`′ • fρ̃)(fρ̃ − fS).

The following bound on ε̄〈sign(S′), S′ − ρ̃〉 is straightforward:

ε̄〈sign(S′), S′ − ρ̃〉 ≤ ε̄〈sign(S′), S − ρ̃〉+ ε̄‖sign(S′)‖∞‖S − S′‖1
≤ ε̄‖sign(S′)‖2‖S − ρ̃‖2 + 2ε̄δ ≤ ε̄

√
rm‖fS − fρ̃‖L2(Π) + 2ε̄δ (45)

≤ rm2ε̄2 + 1
4‖fS − fρ̃‖

2
L2(Π) + 2ε̄δ.

A similar bound on ε〈logS, S− ρ̃〉 is only slightly more complicated. Suppose S′ has the
following spectral representation: S′ =

∑r
k=1 λkPk with eigenvalues λk ∈ (0, 1] (repeated

with their multiplicities) and one-dimensional orthogonal eigenprojectors Pk. We will extend
Pj , j = 1, . . . , r to the complete orthogonal resolution of the identity Pj , j = 1, . . . ,m. Then

logS = log
(

(1− δ)S′ + δ
Im
m

)
=

r∑
j=1

log
(
(1− δ)λj + δ/m

)
Pj +

m∑
j=r+1

log(δ/m)Pj
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=
r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj + log(δ/m)Im

and

〈logS, S − ρ̃〉 =
〈 r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj , S − ρ̃

〉
+ log(δ/m)〈Im, S − ρ̃〉

=
〈 r∑
j=1

log
(
1 + (1− δ)mλj/δ

)
Pj , S − ρ̃

〉
where we used the fact that 〈Im, S − ρ̃〉 = tr(S)− tr(ρ̃) = 0. Therefore,

ε〈logS, S − ρ̃〉 ≤ ε
∥∥∥∥∑r

j=1 log
(
1 + (1− δ)mλj/δ

)
Pj

∥∥∥∥
2
‖S − ρ̃‖2 (46)

= εm

(∑r
j=1 log2

(
1 + (1− δ)mλj/δ

))1/2
‖fS − fρ̃‖L2(Π)

≤ ε
√
rm log(m/δ)‖fS − fρ̃‖L2(Π) ≤ rm2ε2 log2(m/δ) + 1

4‖fS − fρ̃‖
2
L2(Π),

where it was used that for λj ∈ [0, 1]

log
(
1 + (1− δ)mλj/δ

)
≤ log

(δ + (1− δ)m
δ

)
≤ log(m/δ).

Substituting bounds (45) and (46) in (44) we easily get bound (38), as claimed in the lemma.

We will also need the following simple lemma that provides a bound on K(S′‖ρ̃) in
terms of K(S‖ρ̃).

Let
h(δ) := δ log 1

δ
+ (1− δ) log 1

1− δ .

Observe that

h(δ) = δ log 1
δ

+ (1− δ) log
(

1 + δ

1− δ

)
≤ δ log 1

δ
+ (1− δ) δ

1− δ ≤ δ log e
δ

(this bound will be used in what follows).

Lemma 17 Let δ ∈ (0, 1), S′ ∈ Sm with rank(S′) = r and S = (1− δ)S′ + δ Imm . Then, for
any U ∈ Sm,

K(S′‖U) ≤ K(S‖U) + h(δ)
1− δ .

Proof The following identities are straightforward:

K(S‖U) = tr(S(logS − logU))
= (1− δ)tr(S′(logS − logU)) + δtr((Im/m)(logS − logU))
= (1− δ)tr(S′(logS′ − logU)) + (1− δ)tr(S′(logS − logS′))

+δtr((Im/m)(logS − log(Im/m))) + δtr((Im/m)(log(Im/m)− logU))
= (1− δ)K(S′‖U)− (1− δ)K(S′‖S) + δK(Im/m‖U)− δK(Im/m‖S).
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Since K(Im/m‖U) ≥ 0, it follows that

K(S′‖U) ≤ K(S‖U)
1− δ +K(S′‖S) + δ

1− δK(Im/m‖S). (47)

Assuming that S′ has spectral representation S′ =
∑r
j=1 λjPj with eigenvalues λj > 0 and

one-dimensional projectors Pj , we get

−K(S′‖S) =
r∑
j=1

λj log (1− δ)λj + δ/m

λj

=
r∑
j=1

λj log
(

1− δ + δ

mλj

)
≥ log(1− δ)

r∑
j=1

λj = log(1− δ),

implying that K(S′‖S) ≤ log 1
1−δ . On the other hand,

K(Im/m‖S) = 1
m

m∑
j=1

log 1/m
(1− δ)λj + δ/m

≤ 1
m

m∑
j=1

log 1
δ

= log 1
δ
.

Substituting these bounds in (47) yields the result.

To complete the proof of Theorem 15, we need to control the empirical process (P −
Pn)(`′ • fρ̃)(fρ̃ − fS) in the right hand side of bound (38). Our approach is based on the
following empirical processes bound that is a slight modification of Lemma 1 in Koltchinskii
(2013b). As before, we assume that S = (1 − δ)S′ + δ Imm with S′ ∈ Sm, rank(S′) = r. We
will set δ := 1

m2n2 .
Let Ξε := n−1∑n

j=1 εjXj , where εj are i.i.d. Rademacher random variables (that is, εj
takes values +1 and −1 with probability 1/2 each) and {εj}, {Xj} are independent.

Lemma 18 Given δ1, δ2 > 0, denote

αn(δ1, δ2) := sup
{∣∣∣(Pn−P )(`′•fA)(fA−fS)

∣∣∣ : A ∈ Sm, ‖fA−fS‖L2(Π) ≤ δ1, ‖P⊥LA‖1 ≤ δ2

}
.

Let 0 < δ−1 < δ+
1 , 0 < δ−2 < δ+

2 . For t ≥ 1, denote

t̄ := t+ log
(
[log2(δ+

1 /δ
−
1 )] + 2

)
+ log

(
[log2(δ+

2 /δ
−
2 )] + 2

)
+ log 3.

Then, with probability at least 1− e−t, for all δ1 ∈ [δ−1 , δ
+
1 ], δ2 ∈ [δ−2 , δ

+
2 ],

αn(δ1, δ2) ≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n
,

where C1, C2, C3 > 0 are constants.
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We will use this lemma to control the term (P −Pn)(`′ •fρ̃)(fρ̃−fS) in bound (38). Let
δ1 := ‖fρ̃ − fS‖L2(Π) and δ2 := ‖P⊥L ρ̃‖1. Define also

δ+
1 := 2

m
, δ+

2 := 1, δ−1 = δ−2 := 1
mn

,

so that t̄ ≤ t+ 2 log(log2(mn) + 3) + log 3. It is easy to see that δ1 ≤ δ+
1 and δ2 ≤ δ+

2 . If, in
addition, δ1 ≥ δ−1 , δ2 ≥ δ−2 , the bound of Lemma 18 implies that with probability at least
1− e−t

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤ αn(δ1, δ2)

≤ C1UE‖Ξε‖∞
(√

rmδ1 + δ2 + δ
)

+ C2Uδ1

√
t̄

n
+ C3U

2 t̄

n

If ε̄ ≥ C1UE‖Ξε‖∞, the last bound implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS)
≤ 1

4‖fρ̃ − fS‖
2
L2(Π) + rm2ε̄2 + ε̄‖P⊥L ρ̃‖1 + ε̄δ (48)

+1
4‖fρ̃ − fS‖

2
L2(Π) + (C2

2 + C3)U2 t̄
n .

Substituting this bound in the right hand side of (40), we get

‖fρ̃ − fρ‖2L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (49)

+5ε̄δ + CU2 t̄
n + 12δ

m2 ,

where C := C2
2 + C3.

In the case when δ1 = ‖fρ̃ − fS‖L2(Π) ≤ δ−1 = 1
mn or δ2 = ‖P⊥L ρ̃‖1 ≤ δ−2 = 1

mn , we can
replace the terms 1

4‖fρ̃−fS‖
2
L2(Π) or ‖P⊥L ρ̃‖1 in bound (48) by their respective upper bounds

(1
4(δ−1 )2 = 1

4m2n2 , or δ−2 = 1
mn), which would be smaller than CU2 t̄

n for large enough C > 0,
so bound (49) still holds (recall that U ≥ m−1/2). Note also that 12δ

m2 = 12 1
m4n2 ≤ 12U2 t̄

n .
Thus, increasing the value of constant C, one can rewrite (49) in a simpler form as

‖fρ̃ − fρ‖2L2(Π) + εK(ρ̃;S)

≤ ‖fS′ − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 2rm2ε̄2 (50)

+5ε̄δ + CU2 t̄
n .

The following expectation bound is a consequence of a matrix version of Bernstein inequality
for ‖Ξε‖∞ (it follows by integrating out its exponential tails):

E‖Ξε‖∞ ≤ 4
[√ log(2m)

nm

∨
U

log(2m)
n

]
(it is also used in this computation that, in the case of uniform sampling from an orthonormal
basis, σ2

εX = ‖EX2‖∞ = 1
m , a simple fact often used in the literature; see, e.g., Koltchinskii

2011a, Section 5). Let

ε̄ := D′U

√
log(2m)
nm
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for some constant D′. If D′ is sufficiently large and

U
log(2m)

n
≤

√
log(2m)
nm

, (51)

then the condition ε̄ ≥ C1UE‖Ξε‖∞ is satisfied and bound (50) holds with probability at
least 1 − e−t. Moreover, ε̄δ .D′ δ .D′ U2 t̄

n , implying that the term 5ε̄δ in (50) can be
dropped at a price of further increasing the value of constant C.

If (51) does not hold, we still have that

‖fρ̃ − fρ‖2L2(Π) = ‖ρ̃− ρ‖
2
2

m2 ≤ 2
m2 ≤ CU

2 t̄

n
.

Recalling that t̄ ≤ t + 2 log(log2(mn) + 3) and log(m/δ) . log(mn), we deduce from (50)
that with some constant C and with probability at least 1− e−t

‖fρ̃ − fρ‖2L2(Π) ≤ ‖fS′ − fρ‖2L2(Π) + C

[
rm2ε2 log2(mn)

+U2 rm log(2m)
n + U2 t+log(log2(mn)+3)

n

]
. (52)

Note that, for n ≥ 2,

log(log2(mn) + 3) = log
(
log2(4m) + log2(2n)

)
≤ log log2(4m) + log log2(2n), (53)

since log2(4m) + log2(2n) ≤ log2(4m) log2(2n). Since also, for r ≥ 1,

U2 t+ log log2(4m)
n

. U2 rm log(2m)
n

, (54)

we can replace in bound (52) the term U2 t+log(log2(mn)+3)
n with the term U2 t+log log2(2n)

n
(increasing the value of the constant C accordingly). This yields bound (34) of the theorem.
For S′ = ρ, it yields bound (35), and, moreover, for S′ = ρ and S = (1 − δ)ρ + δ Imm with
δ = 1

m2n2 , bound (50) also implies that

εK(ρ̃;S) ≤ rank(ρ)m2ε2 log2(m/δ) + 2rank(ρ)m2ε̄2 (55)
+5ε̄δ + CU2 t̄

n .

We will now take

ε̄ := D′
[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
for a large enough constant D′ so that ε̄ ≥ C1UE‖Ξε‖∞. Assume that

ε := 1
log(mn)

[
U

√
log(2m)
nm

∨
U2 log(2m)

n

]
.
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As before, the term ε̄δ in bound (55) will be absorbed by the term CU2 t̄
n with a larger

value of C and also

rank(ρ)m2ε2 log2(m/δ) �D′ rank(ρ)m2ε̄2 �D′ U2 rank(ρ)m log(2m)
n

(
1
∨
U2m log(2m)

n

)
.

As a result, taking into account (53), (54), bound (55) can be rewritten as follows:

εK(ρ̃;S) ≤ CU2
[

rank(ρ)m log(2m)
n

(
1
∨
U2m log(2m)

n

)
(56)

+ t+log log2(2n)
n

]
.

Using the bound of Lemma 17 along with the bound

h(δ) ≤ δ log(e/δ) = 1
m2n2 log(em2n2) . U

√
m

n

(t+ log log2(2n)) log(mn)√
log(2m)

,

we easily get that (37) holds.

3.2 Oracle Inequalities for Trace Regression with Gaussian Noise

In this subsection, we establish oracle inequalities for the von Neumann entropy penalized
least squares estimator ρ̃ε in the case of trace regression model with Gaussian noise (As-
sumption 4). Unlike in the case of Theorem 15 of the previous section, our aim is not
to obtain sharp oracle inequality, but rather to get a clean main term of the random error
bound part of the inequality, namely, the term σ2

ξ
rank(S)m(t+log(2m))

n in inequality (58) below.
Note that this term depends only on the variance of the noise σ2

ξ , but not on the constant U
from Assumption 1 (the constant U is involved only in the higher order O(n−2) terms of the
bound). Note also that there are no constraints on the variance σ2

ξ that could be arbitrarily
small, or even equal to 0 (in which case only higher order terms are present in the bound).
This improvement comes at a price of having the leading constant 2 in the oracle inequality
and also of imposing assumption (57) that requires the regularization parameter ε to be
bounded away from 0 (again, unlike Theorem 15, where it could be arbitrarily small). As
in the previous section, we also obtain a bound on Kullback–Leibler divergence K(ρ‖ρ̃ε).

Theorem 19 Let t ≥ 1. Suppose

ε ∈
[
DU2 t+ log3m log2 n

n
,
D1σξ

log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

]
(57)

with large enough constants D,D1 > 0. There exists a constant C > 0 such that with
probability at least 1− e−t

‖fρ̃ε − fρ‖2L2(Π) ≤ inf
S∈Sm

[
2‖fS − fρ‖2L2(Π) + C

(
σ2
ξ

rank(S)m(t+ log(2m))
n

+ σ2
ξU

2 rank(S)m2(t+ log(2m))2 log(2m)
n2 + U4 rank(S)m2(t+ log3m log2 n)2 log2(mn)

n2

)]
.

(58)
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In particular,

‖fρ̃ε − fρ‖2L2(Π) ≤ C
[
σ2
ξ

rank(ρ)m(t+log(2m))
n (59)

+σ2
ξU

2 rank(ρ)m2(t+log(2m))2 log(2m)
n2 + U4 rank(ρ)m2(t+log3 m log2 n)2 log2(mn)

n2

]
.

Moreover, if

ε := D1σξ
log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n

for large enough constants D,D1, then with some constant C and with the same probability
both (59) and the following bound hold:

K(ρ‖ρ̃ε) ≤ C
[
σξ

rank(ρ)m3/2(t+log(2m))1/2 log(mn)√
n

(60)

+σ2
ξ

rank(ρ)m2(t+log(2m)) log(2m)
n + U2 rank(ρ)m2(t+log3 m log2 n) log2(mn)

n

]
.

Proof As in in the proof of Theorem 15, we rely on Lemma 16, but we use a different
approach to bounding the empirical process (P−Pn)(`′•fρ̃)(fρ̃−fS). The following identity
follows from the definition of quadratic loss `

(`′ • f)(x, y)(f(x)− fS(x)) = 2(f(x)− fS(x))2 + 2(fS(x)− y)(f(x)− fS(x))

and it implies that

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) = −2(Pn − P )(fρ̃ − fS)2 − 2〈Ξ, ρ̃− S〉 (61)

where
Ξ := n−1

n∑
j=1

(fS(Xj)− Yj)Xj − E(fS(X)− Y )X.

We will bound (Pn − P )(fρ̃ − fS)2 in representation (61) as follows:

∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ ‖ρ̃− S‖21βn(‖fρ̃ − fS‖L2(Π)

‖ρ̃− S‖1

)
, (62)

where
βn(∆) := sup

{∣∣∣(Pn − P )(f2
A)
∣∣∣ : A ∈ Hm, ‖A‖1 ≤ 1, ‖fA‖L2(Π) ≤ ∆

}
.

The next lemma provides a bound on βn(∆). Its proof is somewhat involved and it will
not be given here. It is based on Rudelson’s L∞(Pn) generic chaining bound for empirical
processes indexed by squares of functions and on the ideas of the paper by Guédon et al.
(2008) combined with Talagrand’s concentration inequality (see also Aubrun 2009, Liu
2011 and Theorem 3.16, Lemma 9.8 and Proposition 9.2 in Koltchinskii 2011b for similar
arguments).
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Lemma 20 Given 0 < δ− < δ+ and t ≥ 1, let

t̄ := t+ log
(
log2(δ+/δ−) + 3

)
.

Then, with some constant C and with probability at least 1− e−t, the following bound holds
for all ∆ ∈ [δ−, δ+] :

βn(∆) ≤ C
[
∆U log3/2m logn√

n
+ U2 log3m log2 n

n
+ ∆U

√
t̄

n
+ U2 t̄

n

]
. (63)

We will use Lemma 20 to control βn(∆) for ∆ := ‖fρ̃−fS‖L2(Π)
‖ρ̃−S‖1 . Let δ+ := 1

m and
δ− := 1

mn . With this choice, t̄ ≤ t+ log(log2 n+ 3). Note that for A = ρ̃−S
‖ρ̃−S‖1 , ‖fA‖L2(Π) =

‖A‖2
m ≤ ‖A‖1

m = m−1 = δ+. If also ‖fA‖L2(Π) ≥ δ−, then we can substitute bound (63) on
βn(∆) into (62) that yields:

∣∣∣(Pn − P )(fρ̃ − fS)2
∣∣∣ ≤ C[‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U log3/2 m logn√

n

+‖ρ̃− S‖21U2 log3m log2 n
n + ‖fρ̃ − fS‖L2(Π)‖ρ̃− S‖1U

√
t̄
n

+‖ρ̃− S‖21U2 t̄
n

]
≤ 1

32‖fρ̃ − fS‖
2
L2(Π) + 8(C2 + C/8)U2 log3 m log2 n

n ‖ρ̃− S‖21 (64)

+ 1
32‖fρ̃ − fS‖

2
L2(Π) + 8(C2 + C/8)U2 t̄

n‖ρ̃− S‖
2
1

≤ 1
16‖fρ̃ − fS‖

2
L2(Π) + C ′U2 log3 m log2 n+t̄

n ‖ρ̃− S‖21,

where C ′ := 8(C2 +C/8). If, on the other hand, ‖fA‖L2(Π) ≤ δ− = 1
mn , then ‖fρ̃− fS‖L2(Π)

in the above bound can be replaced by 1
mn‖ρ̃−S‖1 and the proof that follows only simplifies

since

1
16‖fρ̃ − fS‖

2
L2(Π) ≤

1
16

1
m2n2 ‖ρ̃− S‖

2
1 ≤

1
16U

2 log3m log2 n+ t̄

n
‖ρ̃− S‖21.

Another term in the right hand side of representation (61) to be controlled is 〈Ξ, ρ̃−S〉.
Note that Ξ = Ξ1 + Ξ2, where

Ξ1 := −n−1
n∑
j=1

ξjXj

and
Ξ2 := n−1

n∑
j=1

(fS(Xj)− fρ(Xj))Xj − E(fS(X)− fρ(X))X.

Recall that S = (1−δ)S′+δ Imm with S′ ∈ Sm, rank(S′) = r, supp(S′) = L and δ = 1
m2n2 .
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The term with Ξ1 is controlled as follows:∣∣∣〈Ξ1, ρ̃− S〉
∣∣∣

≤
∣∣∣〈PL(Ξ1), ρ̃− S′〉

∣∣∣+ ∣∣∣〈Ξ1,P⊥L (ρ̃− S′)〉
∣∣∣+ ∣∣∣〈P⊥L (Ξ1), S′ − S〉

∣∣∣
≤ ‖PL(Ξ1)‖2‖ρ̃− S′‖2 + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 +

∥∥∥P⊥L (Ξ1)
∥∥∥
∞
‖S′ − S‖1

≤ 2
√

2rm‖Ξ1‖∞‖fρ̃ − fS‖L2(Π) + ‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ (65)
≤ 32rm2‖Ξ1‖2∞ + 1

16‖fρ̃ − fS‖
2
L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞.

We also have∣∣∣〈Ξ2, ρ̃− S〉
∣∣∣ ≤ ‖Ξ2‖∞‖ρ̃− S‖1 ≤ ‖Ξ2‖∞‖ρ̃− S′‖1 + ‖Ξ2‖∞‖S′ − S‖1

≤ ‖Ξ2‖∞‖ρ̃− S′‖1 + 2δ‖Ξ2‖∞. (66)

Thus, ∣∣∣〈Ξ, ρ̃− S〉∣∣∣ ≤ 32rm2‖Ξ1‖2∞ + 1
16‖fρ̃ − fS‖

2
L2(Π)

+‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 4δ‖Ξ1‖∞ + ‖Ξ2‖∞‖ρ̃− S′‖1 + 2δ‖Ξ2‖∞. (67)

It follows from (61), (64) and (67) that with some constant C ′

(P − Pn)(`′ • fρ̃)(fρ̃ − fS) ≤
1
4‖fρ̃ − fS‖

2
L2(Π) + C ′U2 log3m log2 n+t̄

n ‖ρ̃− S‖21 (68)

+64rm2‖Ξ1‖2∞ + 2‖Ξ1‖∞‖P⊥L (ρ̃)‖1 + 8δ‖Ξ1‖∞
+2‖Ξ2‖∞‖ρ̃− S′‖1 + 4δ‖Ξ2‖∞.

This bound will be substituted in (38). Note that, if assumption (57) on ε holds with a
sufficiently large constant D, then we have

ε ≥ 8C ′U2 log3m log2 n+ t̄

n

(this follows from the fact that t̄ ≤ t+ log(log2 n+ 3) ≤ t+ c log3m log2 n for some constant
c > 0). Assume also that ε̄ ≥ 4‖Ξ1‖∞ and recall that K(ρ̃;S) ≥ 1

4‖ρ̃− S‖
2
1 (see inequality

8). Taking all this into account, (38) implies that

‖fρ̃ − fρ‖2L2(Π) + 1
4‖fρ̃ − fS‖

2
L2(Π) + ε

2K(ρ̃;S) + ε̄
2‖P

⊥
L ρ̃‖1

≤ ‖fS − fρ‖2L2(Π) + rm2ε2 log2(m/δ) + 5rm2ε̄2 + 6ε̄δ (69)
+2‖Ξ2‖∞‖ρ̃− S′‖1 + 4‖Ξ2‖∞δ.

It remains to control ‖Ξ1‖∞ and ‖Ξ2‖∞. To this end, we use matrix versions of Bernstein
inequality. To bound ‖Ξ2‖∞, we use its standard version which yields that with probability
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at least 1− e−t

‖Ξ2‖∞ ≤ 2
[∥∥∥E(fS(X)− fρ(X))2X2

∥∥∥1/2

∞

√
t+log(2m)

n

∨∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞

t+log(2m)
n

]
,

where ‖ · ‖L∞ denotes the essential supremum norm in the space of random variables. Since∥∥∥E(fS(X)− fρ(X))2X2
∥∥∥
∞
≤ U2‖fS − fρ‖2L2(Π)

and ∥∥∥(fS(X)− fρ(X))‖X‖∞
∥∥∥
L∞
≤ 2U2,

we get

‖Ξ2‖∞ ≤ 4
[
‖fS − fρ‖L2(Π)U

√
t+log(2m)

n + U2 t+log(2m)
n

]
. (70)

This implies that

2‖Ξ2‖∞‖ρ̃− S′‖1 ≤ ‖fS − fρ‖2L2(Π) + 16U2 t+log(2m)
n ‖ρ̃− S′‖21 (71)

+8U2 t+log(2m)
n ‖ρ̃− S′‖1.

Note that

16U2 t+log(2m)
n ‖ρ̃− S′‖21

≤ 16U2 t+log(2m)
n ‖ρ̃− S‖21 + 16U2 t+log(2m)

n (4δ + δ2) (72)

and

8U2 t+log(2m)
n ‖ρ̃− S′‖1

≤ 8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n ‖PL(ρ̃− S′)‖1 (73)

≤ 8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 8U2 t+log(2m)

n ‖PL(ρ̃− S)‖1 + 16U2 t+log(2m)
n δ.

Since, for some constant C ′′ > 0,

8U2 t+log(2m)
n ‖PL(ρ̃− S)‖1 ≤ 8

√
2U2 t+log(2m)

n

√
r‖PL(ρ̃− S)‖2

≤ 8
√

2U2 t+log(2m)
n

√
rm‖fρ̃ − fS‖L2(Π) ≤ 1

4‖fρ̃ − fS‖
2
L2(Π) + C ′′U4 rm2(t+log(2m))2

n2 ,

it follows from (71), (72) and (73) that

2‖Ξ2‖∞‖ρ̃− S′‖1 ≤ ‖fS − fρ‖2L2(Π) +

+16U2 t+log(2m)
n ‖ρ̃− S‖21 + 16U2 t+log(2m)

n (4δ + δ2) (74)

+8U2 t+log(2m)
n ‖P⊥L ρ̃‖1 + 16U2 t+log(2m)

n δ

+1
4‖fρ̃ − fS‖

2
L2(Π) + C ′′U4 rm2(t+log(2m))2

n2 .
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Note that (70) also implies that

‖Ξ2‖∞ ≤ 4
[

2U
m

√
t+log(2m)

n + U2 t+log(2m)
n

]
(75)

(since ‖fS − fρ‖L2(Π) ≤ m−1‖S − ρ‖2 ≤ 2m−1). Let us substitute (74) and (75) in the last
line of (69). Assume that

ε̄ ≥ 16U2 t+ log(2m)
n

and that constant D in assumption (57) is large enough so that

16U2 t+ log(2m)
n

‖ρ̃− S‖21 ≤
ε

4K(ρ̃, S)

(recall inequality 8). It easily follows that with some constants C1, C2,

‖fρ̃ − fρ‖2L2(Π) + ε
4K(ρ̃;S)

≤ 2‖fS − fρ‖2L2(Π) + C1rm
2ε2 log2(m/δ) + 5rm2ε̄2 (76)

+C2ε̄δ + 32Um
√

t+log(2m)
n δ

(note that the term C ′′U4 rm2(t+log(2m))2

n2 of bound (74) is “absorbed” by the term C1rm
2ε2 log2(m/δ)

of bound (76) provided that constant C1 is large enough). Since

δ = 1
m2n2 ≤ U

2 t+ log(2m)
n

≤ ε̄

(recall that U2 ≥ m−1), we have ε̄δ ≤ ε̄2. Also, since U ≥ m−1/2,

U

m

√
t+ log(2m)

n
δ = U

√
t+ log(2m)

n

1
m3n2 ≤ U

4
(
t+ log(2m)

n

)2
≤ ε̄2.

Therefore, (76) implies that with some constant C

‖fρ̃ − fρ‖2L2(Π) + ε
4K(ρ̃;S)

≤ 2‖fS − fρ‖2L2(Π) + C
(
rm2ε2 log2(m/δ) + rm2ε̄2

)
. (77)

To bound ‖Ξ1‖∞, we use a version of matrix Bernstein type inequality due to Koltchin-
skii (2011b) (see bound (2.7) of Theorem 2.7). Its version for α = 2 (with U (α) � Uσξ)
implies that for some constant K > 0 with probability at least 1− e−t

‖Ξ1‖∞ ≤ K
[
σξ

√
t+ log(2m)

nm

∨
σξU

(t+ log(2m)) log1/2(2Um1/2)
n

]
. (78)

We choose

ε̄ := D2

[
σξ

√
t+ log(2m)

nm

∨
(σξ ∨ U)U (t+ log(2m)) log1/2(2m)

n

]
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with a sufficiently large constant D2 to satisfy the condition ‖Ξ1‖∞ ≤ 4ε̄ with probability
at least 1−e−t (the rest of the assumptions we made on ε̄ are also satisfied with this choice).

Bound (77) then implies that with some constant C and with probability at least 1−3e−t
the following inequality holds:

‖fρ̃ε − fρ‖2L2(Π) ≤ 2‖fS − fρ‖2L2(Π)

+ C

[
σ2
ξ

rm(t+ log(2m))
n

+ σ2
ξU

2 rm
2(t+ log(2m))2 log(2m)

n2

+ U4 rm
2(t+ log3m log2 n)2 log2(mn)

n2

]
.

(79)

Using bound (39) to replace S in ‖fS−fρ‖2L2(Π) with S′ and adjusting the value of constant
C to rewrite the probability bound as 1 − e−t, it is easy to complete the proof of (58).
If S′ = ρ, this also yields bound (59). Moreover, with a larger value of regularization
parameter

ε := D1σξ
log(mn)

√
t+ log(2m)

nm

∨
DU2 t+ log3m log2 n

n
,

bound (77) and Lemma 17 easily imply bound (60).

3.3 Optimality Properties of von Neumann Entropy Penalized Estimator ρ̃ε

We start with upper bounds on the error of estimator ρ̃ε (von Neumann entropy penalized
least squares estimator defined by (7)) in Hellinger, Kullback-Leibler and Schatten q-norm
distances for q ∈ [1, 2] for the trace regression model with Gaussian noise (Assumption
4). To avoid the impact of “second order terms” on the upper bounds, we will make the
following simplifying assumptions:

U

√
m

n
logm . 1 and U2

√
m

n
log5/2m log2 n log(mn) . σξ. (80)

Recall that, for the Pauli basis, U = m−1/2, so, the above assumptions hold if n & log2m
and σξ is larger than 1√

mn
(times a logarithmic factor). We will choose regularization

parameter ε as follows:

ε := D1σξ
log(mn)

√
log(2m)
nm

(81)

with a sufficiently large constant D1 > 0. The next result shows that minimax rates of
Theorem 4 are attained up to logarithmic factors for the estimator ρ̃ε.

Theorem 21 There exists a constant C > 0 such that the following bounds hold for all
r = 1, . . . ,m, for all ρ ∈ Sr,m and for all q ∈ [1, 2] with probability at least 1−m−2 :

‖ρ̃ε − ρ‖q ≤ C
(
σξm

3
2 r1/q
√
n

√
logm log(2−q)/q(mn)

∧(σξm3/2
√
n

)1− 1
q

(logm)
1
2−

1
2q

)∧
2, (82)
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H2(ρ̃ε, ρ) ≤ Cσξm
3
2 r√
n

√
logm log(mn)

∧
2 (83)

and

K(ρ‖ρ̃ε) ≤ Cσξm
3
2 r√
n

√
logm log(mn). (84)

Proof We will need the following simple lemma.

Lemma 22 For all ρ ∈ Sm and all l = 1, . . . ,m, there exists ρ′ ∈ Sl,m such that

‖ρ− ρ′‖22 ≤
1
l
.

Proof Suppose that ρ =
∑m
j=1 λjPj , where λj are the eigenvalues of ρ repeated with

their multiplicities and Pj are orthogonal one-dimensional projectors. Note that {λj : j =
1, . . . ,m} is a probability distribution on the set {1, . . . ,m}. Let ν be a random variable
sampled from this distribution and ν1, . . . , νl be its i.i.d. copies. Then EPν = ρ and

E
∥∥∥∥l−1

l∑
j=1

Pνj − ρ
∥∥∥∥2

2
= E‖Pν − ρ‖22

l
= E‖Pν‖22 − ‖ρ‖22

l
= 1− ‖ρ‖22

l
≤ 1
l
.

Therefore, there exists a realization ν1 = k1, . . . , νl = kl of r.v. ν1, . . . , νl such that∥∥∥∥l−1
l∑

j=1
Pkj − ρ

∥∥∥∥2

2
≤ 1
l
.

Denote ρ′ := l−1∑l
j=1 Pkj . Then, ρ′ ∈ Sl,m and ‖ρ− ρ′‖22 ≤ 1

l .

First, we will prove bound (82) for q = 2. To this end, we use oracle inequality (58) with
t = 2 logm+ log 2 and with oracle S = ρ′ ∈ Sl,m such that ‖ρ−ρ′‖22 ≤ 1

l . Under simplifying
assumptions (80) it yields that with probability at least 1− 1

2m
−2

‖ρ̃ε − ρ‖22 = m2‖fρ̃ε − fρ‖2L2(Π) .
[1
l

+ τ2l logm
]
,

where τ := σξm
3/2

√
n

. On the other hand, using the same inequality with S = ρ ∈ Sr,m yields
the bound

‖ρ̃ε − ρ‖22 . τ2r logm

that also holds with probability at least 1 − 1
2m
−2. Therefore, with probability at least

1−m−2

‖ρ̃ε − ρ‖22 .
(1
l

+ τ2l logm
)∧

τ2r logm. (85)

Let l̄ = 1
τ
√

logm . If l̄ ∈ [1,m], set l := [l̄]. Otherwise, if l̄ > m, set l := m and, if l̄ < 1, set
l := 1. An easy computation shows that with such a choice of l bound (85) implies (82) for
q = 2.
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Next we use bound (60) that, for t = 2 logm, implies under assumptions (80) that with
some constant C and with probability at least 1−m−2

K(ρ‖ρ̃ε) ≤ Cσξ rm
3/2√logm log(mn)√

n
, (86)

which is bound (84). Bound (83) also holds in view of inequality (8).
Now, we prove bound (82) for q = 1 (the bound for q ∈ [1, 2] will then follow by inter-

polation). To this end, we will use the following lemma (see Proposition 1 in Koltchinskii
2011a) that shows that if two density matrices are close in Hellinger distance and one of
them is “concentrated around a subspace” L, then another one is also “concentrated around”
L.

Lemma 23 For any L ⊂ Cm and all S1, S2 ∈ Sm,

‖P⊥L S1‖1 ≤ 2‖P⊥L S2‖1 + 2H2(S1, S2).

We apply this lemma to S1 = ρ̃ε, S2 = ρ and L = supp(ρ) so that P⊥L ρ = 0. It yields that

‖P⊥L ρ̃ε‖1 ≤ 2H2(ρ̃ε, ρ).

Therefore,

‖ρ̃ε−ρ‖1 ≤ ‖PL(ρ̃ε−ρ)‖1+‖P⊥L (ρ̃ε−ρ)‖1 ≤
√

2r‖ρ̃ε−ρ‖2+‖P⊥L ρ̃ε‖1 ≤
√

2r‖ρ̃ε−ρ‖2+2H2(ρ̃ε, ρ).
(87)

Using bounds (82) for q = 2 and (83), we get from (87) that

‖ρ̃ε − ρ‖1 ≤ C
σξm

3
2 r√
n

√
logm log(mn)

∧
2, (88)

which is equivalent to (82) for q = 1. Note that by choosing t = 2 logm+ log 2 + 2 (which
might have an impact only on the constant), we could make probability bounds in (82) for
q = 2 and (83) to be at least 1 − 1

2m
−2 implying that (88) holds with probability at least

1−m−2, as it is claimed in the theorem.
To complete the proof, it is enough to use the interpolation inequality of Lemma 1. It

follows that, for q ∈ (1, 2),

‖ρ̃ε − ρ‖q ≤ ‖ρ̃ε − ρ‖
2
q
−1

1 ‖ρ̃ε − ρ‖
2− 2

q

2 .

Substituting bound (82) for q = 1 and q = 2 into the last inequality yields the result for an
arbitrary q ∈ (1, 2).

Similarly, in the case of trace regression with bounded response (see Assumption 3),
minimax rates of Theorem 7 are also attained for the estimator ρ̃ε (up to log factors). In
this case, assume that Assumption 3 holds with Ū = U and, in addition, let us make the
following simplifying assumptions:

U

√
m logm

n
. 1 and log log2 n . m logm. (89)
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For the Pauli basis (U = m−1/2), the first assumption holds if n & logm. The second as-
sumption does hold unless n is extremely large (n ∼ 2exp{m logm}). Under these assumptions,
we will use the following value of regularization parameter ε :

ε := U

log(mn)

√
log(2m)
nm

.

The following version of Theorem 21 holds in the bounded regression case (with a similar
proof).

Theorem 24 There exists a constant C > 0 such that the following bounds hold for all
r = 1, . . . ,m, for all ρ ∈ Sr,m and for all q ∈ [1, 2] with probability at least 1−m−2 :

‖ρ̃ε − ρ‖q ≤ C
(
Um

3
2 r1/q
√
n

√
logm log(2−q)/q(mn)

∧(Um3/2
√
n

)1− 1
q

(logm)
1
2−

1
2q

)∧
2, (90)

H2(ρ̃ε, ρ) ≤ CUm
3
2 r√
n

√
logm log(mn)

∧
2 (91)

and

K(ρ‖ρ̃ε) ≤ CUm
3
2 r√
n

√
logm log(mn). (92)

Remark 25 In the case of Pauli basis, the minimax optimal rates (up to constants and
logarithmic factors) are: mr1/q

√
n
∧( m√

n
)1− 1

q ∧2 for Schatten q-norm distances for q ∈ [1, 2]; mr√
n

for nuclear norm, squared Hellinger and Kullback-Leibler distances (provided the mr .
√
n).
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