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Abstract

Having shown its good performance in many applications, variational Bayesian (VB) learn-
ing is known to be one of the best tractable approximations to Bayesian learning. However,
its performance was not well understood theoretically. In this paper, we clarify the behav-
ior of VB learning in probabilistic PCA (or fully-observed matrix factorization). More
specifically, we establish a necessary and sufficient condition for perfect dimensionality (or
rank) recovery in the large-scale limit when the matrix size goes to infinity. Our result
theoretically guarantees the performance of VB-PCA. At the same time, it also reveals
the conservative nature of VB learning—it offers a low false positive rate at the expense
of low sensitivity. By contrasting with an alternative dimensionality selection method, we
characterize VB learning in PCA. In our analysis, we obtain bounds of the noise variance
estimator, and a new and simple analytic-form solution for the other parameters, which
themselves are useful for implementation of VB-PCA.

Keywords: variational Bayesian learning, matrix factorization, principal component
analysis, automatic relevance determination, perfect dimensionality recovery

1. Introduction

Variational Bayesian (VB) learning (Attias, 1999; Bishop, 2006) was proposed as a compu-
tationally efficient approximation to Bayesian learning. The key idea is to find the closest
distribution to the Bayes posterior in a restricted function space, where the expectation—
an often intractable operation in Bayesian learning—can be easily performed. VB learning
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Figure 1: Dissimilarities between VB and rigorous Bayesian learning. (Left and Center)
The Bayes posterior and the VB posterior of the 1 × 1 MF model V = BA + E
with almost flat prior, when V = 1 is observed (E is Gaussian noise). VB approx-
imates the Bayes posterior having two modes by an origin-centered Gaussian,
which induces sparsity. (Right) Behavior of estimators of U = BA, given the
observation V . The VB estimator (the magenta solid curve) is zero when V ≤ 1,
which indicates exact sparsity. On the other hand, FB (fully-Bayesian or rigorous
Bayesian learning; blue crosses) shows no sign of sparsity. All graphs are quoted
from Nakajima and Sugiyama (2011).

has been applied to many applications, and its good performance has been experimentally
shown (Bishop, 1999a; Bishop and Tipping, 2000; Ghahramani and Beal, 2001; Jaakkola
and Jordan, 2000; Blei et al., 2003; Sato et al., 2004; Lim and Teh, 2007; Seeger, 2009; Ilin
and Raiko, 2010). Typically, the restriction is imposed as a factorized form of posterior,
under which a tractable iterative algorithm is derived.

Although the VB algorithm is simple and efficient, it solves a non-convex optimization
problem, which makes theoretical analysis difficult. An exceptional case is the matrix factor-
ization (MF) model (Bishop, 1999a; Lim and Teh, 2007; Ilin and Raiko, 2010; Salakhutdinov
and Mnih, 2008) with fully-observed matrices, in which the global VB solution has been
analytically obtained (Nakajima et al., 2013b), and some properties have been theoreti-
cally revealed (Nakajima and Sugiyama, 2011). These works also posed thought-provoking
relations between VB and rigorous Bayesian learning: The VB posterior is actually quite
different from the true Bayes posterior (compare the left and the middle graphs in Fig-
ure 1), and VB induces sparsity in its solution but such sparsity is hardly observed in
rigorous Bayesian learning (see the right graph in Fig. 1). Actually, Mackay (2001) has dis-
cussed the sparsity of VB as an artifact by showing inappropriate model pruning in mixture
models. These facts might deprive the justification of VB based solely on the fact that it is
one of the best tractable approximations to Bayesian learning.

The goal of this paper is to provide direct justification for VB learning. Focusing on
the probabilistic PCA (Tipping and Bishop, 1999; Roweis and Ghahramani, 1999; Bishop,
1999a), an instance of fully-observed MF, we give a theoretical guarantee for the perfor-
mance of VB learning. Our starting point is the global analytic solution derived by Nakajima
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et al. (2013b). After describing our formulation in Section 2, we conduct the following three
steps:

1. We derive a new and simple analytic-form of the global VB solution in Section 3.

The analytic-form solution derived in Nakajima et al. (2013b) is expressed with a
solution of a quartic equation, which obstructs further analysis. In this paper, we
derive an alternative form, which consists of simple algebra.

2. We obtain a simple form of the objective function for noise variance estimation in
Section 4.

The previous analyses in Nakajima and Sugiyama (2011) and in Nakajima et al.
(2013b) assumed that the noise variance is a given constant. In this paper, we assume
that the noise variance is also estimated from observation, and derive an objective
function, of which the minimizer gives the noise variance estimator. We also derive
bounds of the rank estimator and the noise variance estimator.

3. We establish a necessary and sufficient condition for perfect dimensionality recovery
in Section 5.

Combining the results obtained in the former two steps with random matrix theory
(Marčenko and Pastur, 1967; Wachter, 1978; Johnstone, 2001; Hoyle and Rattray,
2004; Baik and Silverstein, 2006), we establish a necessary and sufficient condition
that VB-PCA perfectly recovers the true dimensionality in the large-scale limit when
the matrix size goes to infinity.

To the best of our knowledge, this is the first theoretical result that guarantees the
performance of VB learning. To give more insight into practical situations, we also derive
a sufficient condition for perfect recovery, which approximately holds for moderate-sized
matrices. It is worth noting that, although the objective function minimized for noise
variance estimation is non-convex and possibly multimodal in general, only a local search
algorithm is required for perfect recovery.

Section 6 is devoted to discussion on a few topics. First, we propose a simple implemen-
tation of VB-PCA, based on the new analytic-form solution and the bounds of the noise
variance estimator, which are obtained in our analysis. After that, we consider the behav-
ior of VB learning in more detail. Our result theoretically guarantees the performance of
VB-PCA. At the same time, it also reveals the conservative nature of VB learning—it offers
a low false positive rate at the expense of low sensitivity, due to which VB-PCA does not
behave optimally in the large-scale limit. By contrasting with an alternative dimensional-
ity selection method, called the overlap (OL) method (Hoyle, 2008), we characterize VB
learning in PCA.

Section 7 concludes, and Appendix provides all technical details.

2. Formulation

In this section, we formulate variational Bayesian learning in the matrix factorization model.
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2.1 Probabilistic Matrix Factorization

Assume that we observed a matrix V ∈ RL×M , which is the sum of a target matrix U ∈
RL×M and a noise matrix E ∈ RL×M :

V = U + E.

In the matrix factorization (MF) model, the target matrix is assumed to be low rank, and
therefore can be factorized as

U = BA>,

where A ∈ RM×H , B ∈ RL×H for H ≤ min(L,M), and > denotes the transpose of a matrix
or vector. Here, the rank of U is upper-bounded by H.

In this paper, we consider the probabilistic MF model (Salakhutdinov and Mnih, 2008),
where the observation noise E and the priors of A and B are assumed to be Gaussian:

p(V |A,B) ∝ exp

(
− 1

2σ2
‖V −BA>‖2Fro

)
, (1)

p(A) ∝ exp

(
−1

2
tr
(
AC−1

A A>
))

, (2)

p(B) ∝ exp

(
−1

2
tr
(
BC−1

B B>
))

. (3)

Here, we denote by ‖·‖Fro the Frobenius norm, and by tr(·) the trace of a matrix. Through-
out the paper, we assume that

L ≤M. (4)

If L > M , we may simply re-define the transpose V > as V so that L ≤M holds. Therefore,
the assumption (4) does not impose any restriction. We assume that the prior covariance
matrices CA and CB are diagonal and positive definite, i.e.,

CA = diag(c2
a1 , . . . , c

2
aH

),

CB = diag(c2
b1 , . . . , c

2
bH

),

for cah , cbh > 0, h = 1, . . . ,H. Without loss of generality, we assume that the diagonal
entries of the product CACB are arranged in non-increasing order, i.e., cahcbh ≥ cah′ cbh′ for
any pair h < h′. We denote a column vector of a matrix by a bold lowercase letter, i.e.,

A = (a1, . . . ,aH) ∈ RM×H ,
B = (b1, . . . , bH) ∈ RL×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is given by

p(A,B|V ) =
p(V |A,B)p(A)p(B)

p(V )
, (5)
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where p(V ) = 〈p(V |A,B)〉p(A)p(B). Here, 〈·〉p denotes the expectation over the distribu-
tion p. Since this expectation is intractable, we need to approximate the Bayes posterior.

Let r(A,B), or r for short, be a trial distribution. The following functional with respect
to r is called the free energy:

F (r) =

〈
log

r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)

(6)

=

〈
log

r(A,B)

p(A,B|V )

〉

r(A,B)

− log p(V ).

In the last equation, the first term is the Kullback-Leibler (KL) divergence from the trial
distribution to the Bayes posterior (5), and the second term is constant. Therefore, min-
imizing the free energy amounts to finding a distribution closest to the Bayes posterior in
the sense of the KL divergence. A general approach to Bayesian approximate inference is
to find the minimizer of the free energy (6) with respect to r in some restricted function
space.

In the VB approximation, the independence between the entangled parameter matrices
A and B is assumed:

r(A,B) = r(A)r(B). (7)

Under this constraint, an iterative algorithm for minimizing the free energy (6) was derived
(Bishop, 1999a; Lim and Teh, 2007). Let r̂ be the obtained minimizer. We define the MF
solution by the mean of the target matrix U :

Û =
〈
BA>

〉
r̂(A,B)

.

The MF model has hyperparameters (CA,CB) in the priors (2) and (3). By manu-
ally choosing them, we can control regularization and sparsity of the solution (e.g., the
PCA dimension in our setting). A popular way to set the hyperparameter in the Bayesian
framework is again based on the minimization of the free energy (6):

(ĈA, ĈB) = argmin
CA,CB

(
min
r
F (r;CA,CB|V )

)
.

We refer to this method as an empirical VB (EVB) method. When the noise variance σ2 is
unknown, it can also be estimated as

σ̂2 = argmin
σ2

(
min

r,CA,CB

F (r;CA,CB, σ
2|V )

)
.

3. Simple Analytic-Form Solution

Recently, an analytic-form of the global VB, as well as EVB, solution for MF has been
derived (Nakajima et al., 2013b), which enables us to reach the global solution easily.
However, the form involves a solution of a quartic equation, which obstructs further analysis.
In this section, we derive a simple alternative form of the global VB, as well as EVB, solution,
which facilitates subsequent analysis.
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3.1 VB Solution

Let

V =

H∑

h=1

γhωbhω
>
ah

be the singular value decomposition (SVD) of V , where γh (≥ 0) is the h-th largest singular
value, and ωah and ωbh are the associated right and left singular vectors. We denote by
Nd(·;µ,Σ) the d-dimensional Gaussian distribution with mean µ and covariance Σ, by Id
the d-dimensional identity matrix, and by R++ the set of the positive real numbers.

Under the independence assumption (7), it is easily shown that the VB posterior has
the Gaussian form:

r(A,B) ∝ exp


−

tr
(

(A− Â)Σ−1
A (A− Â)>

)

2


 exp


−

tr
(

(B − B̂)Σ−1
B (B − B̂)>

)

2




with the means Â, B̂ and the covariances ΣA,ΣB minimizing the free energy (6), which is
explicitly written as

2F = LM log(2πσ2) +

∥∥∥V − B̂Â>
∥∥∥

2

σ2
+M log

|CA|
|ΣA|

+ L log
|CB|
|ΣB|

− (L+M)H

+ tr
(
C−1
A

(
Â>Â+MΣA

))
+ tr

(
C−1
B

(
B̂>B̂ + LΣB

))

+
tr
(
−Â>ÂB̂>B̂ +

(
Â>Â+MΣA

)(
B̂>B̂ + LΣB

))

σ2
. (8)

Here | · | denotes the determinant of a matrix. The derivatives of the free energy (8) give
the following stationary condition, which is used for constructing an iterative local search
algorithm:

Â = V >B̂
ΣA

σ2
, ΣA = σ2

(
B̂>B̂ + LΣB + σ2C−1

A

)−1
, (9)

B̂ = V Â
ΣB

σ2
, ΣB = σ2

(
Â>Â+MΣA + σ2C−1

B

)−1
. (10)

In our previous work, we proved that finding the solution with diagonal covariances
is sufficient—any solution has an equivalent transform to the solution such that ΣA and
ΣB are diagonal (Theorem 1 in Nakajima et al. (2013b)). Under the focus on diagonal
covariances, the stationary condition (9) and (10) implies that Â>Â and B̂>B̂ are also
diagonal, meaning that the column vectors of Â, as well as B̂, are orthogonal to each other.
Then, we find that the column vectors of Â and B̂ only depend on the second term in
Eq.(8), which coincides with the objective for (truncated) SVD. Consequently, the mean
parameters are expressed as âh = âhωah and b̂h = b̂hωbh (Lemma 8 in Nakajima and
Sugiyama (2011)), and the following proposition thus holds:
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Proposition 1 (Nakajima et al., 2013b) The VB posterior can be written as

r(A,B) =

H∏

h=1

NM (ah; âhωah , σ
2
ah
IM )NL(bh; b̂hωbh , σ

2
bh
IL), (11)

where {âh, b̂h, σ2
ah
, σ2

bh
}Hh=1 are the solution of the following minimization problem:

Given σ2 ∈ R++, {c2
ah
, c2
bh
∈ R++}Hh=1,

min
{âh ,̂bh,σ2

ah
,σ2

bh
}Hh=1

2F, (12)

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
∈ R++}Hh=1.

Here, F is the free energy (6), which can be written as

2F = LM log(2πσ2) +

∑L
h=1 γ

2
h

σ2
+

H∑

h=1

2Fh, (13)

where 2Fh = M log
c2
ah

σ2
ah

+ L log
c2
bh

σ2
bh

+
â2
h +Mσ2

ah

c2
ah

+
b̂2h + Lσ2

bh

c2
bh

− (L+M) +
−2âhb̂hγh +

(
â2
h +Mσ2

ah

) (
b̂2h + Lσ2

bh

)

σ2
. (14)

The minimization problem (12) has been analytically solved (Nakajima et al., 2013b),
which provides an analytic-form of the global VB solution (see Proposition 18 in Ap-
pendix A). However, the form involves a solution of a quartic equation, with which further
analysis is difficult. In this paper, finding a shortcut to an alternative quadratic equation,
we obtain the following theorem, which provides a new and simple analytic-form of the
global VB solution (the proof is given in Appendix A):

Theorem 2 The VB solution can be written as truncated shrinkage SVD as follows:

ÛVB =
H∑

h=1

γ̂VB
h ωbhω

>
ah
, where γ̂VB

h =

{
γ̆VB
h if γh ≥ γVB

h
,

0 otherwise.
(15)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM, (16)

γ̆VB
h = γh

(
1− σ2

2γ2
h

(
M + L+

√
(M − L)2 +

4γ2
h

c2
ah
c2
bh

))
. (17)

Our new form with the truncation threshold (16) and the shrinkage estimator (17) consisting
of simple algebra facilitates further analysis.

The VB posterior is also written in a simple form (the proof is given in Appendix A):

3763



Nakajima, Tomioka, Sugiyama, and Babacan

Corollary 3 The VB posterior is given by Eq.(11) with the following estimators: If γh >
γVB
h

,

âh = ±
√
γ̆VB
h δ̂VB

h , b̂h = ±
√
γ̆VB
h

δ̂VB
h

, σ2
ah

=
σ2δ̂VB

h

γh
, σ2

bh
=

σ2

γhδ̂
VB
h

, (18)

where δ̂VB
h

(
≡ âh

b̂h

)
=
c2
ah

σ2

(
γh − γ̆VB

h − Lσ2

γh

)
, (19)

and otherwise,

âh = 0, b̂h = 0, σ2
ah

= c2
ah

(
1− Lζ̂VB

h

σ2

)
, σ2

bh
= c2

bh

(
1− Mζ̂VB

h

σ2

)
, (20)

where ζ̂VB
h

(
≡ σ2

ah
σ2
bh

)
=

σ2

2LM


L+M +

σ2

c2
ah
c2
bh

−

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

(21)

3.2 EVB Solution

The empirical VB (EVB) learning, where the hyperparameters CA and CB are also esti-
mated from observation, solves the following problem:

Given σ2 ∈ R++,

min
{âh ,̂bh,σ2

ah
,σ2

bh
,c2ah

,c2bh
}Hh=1

2F,

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
, c2
ah
, c2
bh
∈ R++}Hh=1.

This problem has also been analytically solved (Nakajima et al., 2013b), which enables effi-
cient computation of the global EVB solution (see Proposition 23 in Appendix B). However,
the form requires to solve a quartic equation, and also to evaluate the free energy (14) to
judge whether EVB discards each component. This again obstructs further analysis.

By substituting the VB solution, given by Theorem 2 and Corollary 3, we can derive
an explicit form of the free energy (13) as a function of {c2

ah
, c2
bh
}Hh=1 and σ2. Minimizing it

with respect to {c2
ah
, c2
bh
}Hh=1, we obtain the following theorem, which provides a new and

simple analytic-form of the global EVB solution (the proof is given in Appendix B):

Theorem 4 Let

α =
L

M
(0 < α ≤ 1), (22)

and let τ = τ(α) be the unique zero-cross point of the following decreasing function:

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
, where Φ(z) =

log(z + 1)

z
− 1

2
. (23)
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Then, the EVB solution can be written as truncated shrinkage SVD as follows:

ÛEVB =
H∑

h=1

γ̂EVB
h ωbhω

>
ah
, where γ̂EVB

h =

{
γ̆EVB
h if γh ≥ γEVB,

0 otherwise.
(24)

Here, the truncation threshold and the shrinkage estimator are, respectively, given by

γEVB = σ

√
M (1 + τ)

(
1 +

α

τ

)
, (25)

γ̆EVB
h =

γh
2


1− (M + L)σ2

γ2
h

+

√(
1− (M + L)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 . (26)

The EVB threshold (25) involves τ , which needs to be numerically computed. However,
we can easily prepare a table of the values for 0 < α ≤ 1 beforehand, like the cumulative
Gaussian probability used in statistical tests. Alternatively, τ ≈ z√α is a good approxima-
tion, where z ≈ 2.5129 is the unique zero-cross point of Φ(z), as seen in Figure 2. We can
show that τ lies in the following range (see Appendix B for its proof):

√
α < τ ≤ z. (27)

We will see in Section 5 that τ is an important quantity in describing the behavior of the
EVB solution.

In the rest of this section, we summarize some intermediate results obtained in the proof
of Theorem 4, which are useful in the subsequent analysis (see Appendix B for their proof):

Corollary 5 The EVB shrinkage estimator (26) is a stationary point of the free energy
(14), which exists if and only if

γh ≥ γlocal−EVB ≡ (
√
L+
√
M)σ, (28)
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and satisfies the following equation:

(
γhγ̆

EVB
h + Lσ2

)(
1 +

Mσ2

γhγ̆
EVB
h

)
= γ2

h. (29)

It holds that

γhγ̆
EVB
h ≥

√
LMσ2. (30)

Corollary 6 The minimum free energy achieved under EVB is given by Eq.(13) with

2Fh =




M log

(
γhγ̆

EVB
h

Mσ2 + 1
)

+ L log
(
γhγ̆

EVB
h

Lσ2 + 1
)
− γhγ̆

EVB
h
σ2 if γh ≥ γEVB,

0 otherwise.
(31)

Corollary 5 together with Theorem 4 implies that, when

γlocal−EVB ≤ γh < γEVB,

a stationary point exists at Eq.(26), but it is not the global minimum. Actually, a local
minimum (called a null stationary point in Appendix B) with Fh = 0 always exists, and
the stationary point (26) (called a positive stationary point) is a non-global local minimum
when γlocal−EVB < γh < γEVB and the global minimum when γh ≥ γEVB (see Figure 8 and
its caption for details). This phase transition induces the free energy thresholding observed
in Corollary 6.

We define a local -EVB solution by

Û local−EVB =
H∑

h=1

γ̂local−EVB
h ωbhω

>
ah
, where γ̂local−EVB

h =

{
γ̆EVB
h if γh ≥ γlocal−EVB,

0 otherwise,

(32)

and call γlocal−EVB a local-EVB threshold. We will discuss an interesting relation between
the local -EVB solution and an alternative dimensionality selection method (Hoyle, 2008) in
Section 6.2.

Rescaling the quantities related to the squared singular value by Mσ2— to which the
contribution from noise (each eigenvalue of E>E) scales linearly—simplifies expressions.
Assume that the condition (28) holds, and define

xh =
γ2
h

Mσ2
, (33)

τh =
γhγ̆

EVB
h

Mσ2
, (34)

which are used as a rescaled observation and a rescaled EVB estimator, respectively.
Eqs.(29) and (26) specify the mutual relations between them:

xh ≡ x(τh;α) = (1 + τh)

(
1 +

α

τh

)
, (35)
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τh ≡ τ(xh;α) =
1

2

(
xh − (1 + α) +

√
(xh − (1 + α))2 − 4α

)
. (36)

With these rescaled variables, the condition (28), as well as (30), for the existence of the
positive local-EVB solution γ̆EVB

h is expressed as

xh ≥ xlocal =
(γlocal−EVB)2

Mσ2
= x(

√
α;α) = (1 +

√
α)2, (37)

τh ≥ τ local =
√
α. (38)

The EVB threshold (25) is expressed as

x =
(γEVB)2

Mσ2
= x(τ ;α) = (1 + τ)

(
1 +

α

τ

)
, (39)

and the free energy (31) is expressed as

Fh = Mτh ·min (0, Ξ (τh;α)) ,

where Ξ(τ ;α) is defined by Eq.(23).
The rescaled expressions above give an intuition of Theorem 4: The EVB solution γ̂EVB

h

is positive, if and only if the positive local-EVB solution γ̆EVB
h exists (i.e., xh ≥ xlocal), and

the free energy Ξ (τ(xh;α);α) at the local-EVB solution is non-positive (i.e., τ(xh;α) ≥ τ
or equivalently xh ≥ x ).

4. Objective Function for Noise Variance Estimation

In this section, we analyze EVB with noise variance estimation:

min
{âh ,̂bh,σ2

ah
,σ2

bh
,c2ah

,c2bh
}Hh=1,σ

2
2F,

s.t. {âh, b̂h ∈ R, σ2
ah
, σ2

bh
, c2
ah
, c2
bh
∈ R++}Hh=1, σ

2 ∈ R++.

Again, by substituting the EVB solution, given by Theorem 4, with the help of Corol-
lary 6, we can express the free energy (13) as a function of the noise variance σ2. With
the rescaled expressions (33)–(39), the free energy is written in a simple form (the proof is
given in Appendix C):

Theorem 7 The noise variance estimator σ̂2 EVB is the global minimizer of

Ω(σ−2)

(
≡ 2F (σ−2)

LM
+ const.

)
=

1

L

(
H∑

h=1

ψ

(
γ2
h

Mσ2

)
+

L∑

h=H+1

ψ0

(
γ2
h

Mσ2

))
, (40)

where ψ (x) = ψ0 (x) + θ (x > x)ψ1 (x) , (41)

ψ0 (x) = x− log x, (42)

ψ1 (x) = log (τ(x;α) + 1) + α log

(
τ(x;α)

α
+ 1

)
− τ(x;α), (43)

and θ(·) denotes an indicator function such that θ(condition) = 1 if the condition is true
and θ(condition) = 0 otherwise.
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The functions ψ0 (x) and ψ (x) are depicted in Figure 3. We can confirm the convexity of
ψ0 (x) and the quasi-convexity of ψ (x),1 which are useful properties in our analysis.

Let ĤEVB be the estimated rank by EVB, i.e., the rank of the EVB estimator ÛEVB,
such that γ̂EVB

h > 0 for h = 1, . . . , ĤEVB, and γ̂EVB
h = 0 for h = ĤEVB + 1, . . . ,H. By

bounding the minimizer of the objective (40), we obtain the following theorem (the proof
is given in Appendix D):

Theorem 8 ĤEVB is upper-bounded as

ĤEVB ≤ H = min

(⌈
L

1 + α

⌉
− 1, H

)
,

and the noise variance estimator σ̂2 EVB is bounded as follows:

max

(
σ2
H+1

,

∑L
h=H+1 γ

2
h

M
(
L−H

)
)
≤ σ̂2 EVB ≤ 1

LM

L∑

h=1

γ2
h, (44)

where σ2
h =





∞ for h = 0,
γ2h
Mx for h = 1, . . . , L,

0 for h = L+ 1.

(45)

Theorem 8 states that EVB discards the (L−dL/(1+α)e+1) smallest components, regardless
of the observed singular values {γh}Lh=1. For example, half of the components are always
discarded when the matrix is square (i.e., α = L/M = 1). The smallest singular value γL
is always discarded, and σ̂2 EVB ≥ γ2

L/M always holds.
Given the EVB estimators {γ̂EVB

h }Hh=1 for the singular values, the noise variance esti-
mator σ̂2 EVB is specified by the following corollary (the proof is also given in Appendix D):

Corollary 9 The EVB estimator for the noise variance satisfies the following equality:

σ̂2 EVB =
1

LM

(
L∑

l=1

γ2
l −

H∑

h=1

γhγ̂
EVB
h

)
. (46)

Theorem 8 and Corollary 9 are used for simple implementation of EVB-PCA in Section 6.1.

5. Performance Analysis

In this section, based on the results obtained in Section 3 and Section 4, we analyze the
behavior of EVB with noise variance estimation. We also rely on random matrix theory
(Marčenko and Pastur, 1967; Wachter, 1978; Johnstone, 2001; Hoyle and Rattray, 2004;
Baik and Silverstein, 2006), which describes the distribution of the singular values of random
matrices in the limit when the matrix size goes to infinity. We first introduce some results
obtained in random matrix theory, and then apply them to our analysis.

1 A function ψ : D → R is called quasi-convex if ψ(λx+(1−λ)y) ≤ max(ψ(x), ψ(y)), ∀x, y ∈ D, ∀λ ∈ [0, 1].
In other words, ψ(x) is quasi-convex if −ψ(x) is unimodal.
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5.1 Random Matrix Theory

Random matrix theory originates from nuclear physics (Wigner, 1957; Mehta, 2000), where
the eigenvalue distribution of (infinitely large) symmetric random matrices was investigated
to analyze the spectra of heavy atoms. In statistical applications, Wishart matrices play
an important role, of which the eigenvalue distribution (or equivalently, the singular value
distribution of random data matrices) was derived (Marčenko and Pastur, 1967; Wachter,
1978). Under appropriate scaling, those distributions typically have a finite support, which
enables us to clean noisy data and bound quantities related to randomness. Results from
random matrix theory have been used in many research fields, including financial risk anal-
ysis, where the observed covariance matrix is cleaned for stable prediction (Bouchaud and
Potters, 2003), information theory, where the capacity of noisy communication channel was
evaluated (Tulino and Verdu, 2004), and signal processing, where the restricted isometry
property of random projection was proved for guaranteeing the performance of compressed
sensing (Candès and Tao, 2006; Recht et al., 2010). Development of random matrix theory
is still actively on going, and new important results are being reported (Bai and Silverstein,
2010).

To analyze the performance of EVB-PCA, we assume that the observed matrix V is
generated from the spiked covariance model (Johnstone, 2001):

V = U∗ + E,

where U∗ ∈ RL×M is a true signal matrix with rank H∗ and singular values {γ∗h}H
∗

h=1, and
E ∈ RL×M is a random matrix such that each element is independently drawn from a
distribution with mean zero and variance σ∗2 (not necessarily Gaussian). As the observed
singular values {γh}Lh=1 of V , the true singular values {γ∗h}H

∗
h=1 are also assumed to be

arranged in the non-increasing order.

We define rescaled versions of the observed and the true singular values:

yh =
γ2
h

Mσ∗2
for h = 1, . . . , L,

ν∗h =
γ∗2h
Mσ∗2

for h = 1, . . . ,H∗.

In other words, {yh}Lh=1 are the eigenvalues of V V >/(Mσ∗2), and {ν∗h}H
∗

h=1 are the eigen-
values of U∗U∗>/(Mσ∗2). Note the difference between xh, defined by Eq.(33), and yh:
xh is the squared observed singular value rescaled with the model noise variance σ2 to be
estimated, while yh is the one rescaled with the true noise variance σ∗2.

Define the empirical distribution of the observed eigenvalues {yh}Lh=1 by

p(y) =
1

L

L∑

h=1

δ(y − yh),

where δ(y) denotes the Dirac delta function. When H∗ = 0, the observed matrix V = E
consists only of noise, and its singular value distribution in the large-scale limit is specified
by the following proposition:
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Figure 5: Spiked covariance distribution
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∗∗
h=1 = {1.5, 1.0, 0.5}.

Proposition 10 (Marčenko and Pastur, 1967; Wachter, 1978) In the large-scale limit
when L and M go to infinity with its ratio α = L/M fixed, the empirical distribution
of the eigenvalue y of EE>/(Mσ∗2) converges almost surely to

p(y)→ pMP(y) ≡

√
(y − y)(y − y)

2παy
θ(y < y < y), (47)

where y = (1 +
√
α)2, y = (1−√α)2, (48)

and θ(·) is the indicator function, defined in Theorem 7.

Figure 4 shows Eq.(47), which we call the Marčenko-Pastur (MP) distribution, for α =
0.1, 1. The mean 〈y〉pMP(y) = 1 (which is constant for any 0 < α ≤ 1) and the upper-limits
y = y(α) of the support for α = 0.1, 1 are indicated by arrows. Proposition 10 states
that the probability mass is concentrated in the range between y ≤ y ≤ y. Note that
the MP distribution appears for a single sample matrix; different from standard “large-
sample” theories, Proposition 10 does not require to average over many sample matrices
(this property is called self-averaging). This single-sample property of the MP distribution
is highly useful in our analysis because we are working with a single observation matrix in
the PCA scenario.

When H∗ > 0, the true signal matrix U∗ affects the singular value distribution of V .
However, if H∗ � L, the distribution can be approximated by a mixture of spikes (delta
functions) and the MP distribution pMP(y). Let H∗∗ (≤ H∗) be the number of singular
values of U∗ greater than γ∗h > α1/4

√
Mσ∗, i.e.,

ν∗H∗∗ >
√
α and ν∗H∗∗+1 ≤

√
α.

Then, the following proposition holds:
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Proposition 11 (Baik and Silverstein, 2006) In the large-scale limit when L and M go to
infinity with finite α and H∗, it almost surely holds that

yh = ySig
h ≡ (1 + ν∗h)

(
1 +

α

ν∗h

)
for h = 1, . . . ,H∗∗, (49)

yH∗∗+1 = y, and yL = y.

Furthermore, Hoyle and Rattray (2004) argued that, when L and M are large (but finite)
and H∗ � L, the empirical distribution of the eigenvalue y of V V >/(Mσ∗2) is accurately
approximated by

p(y) ≈ pSC(y) ≡ 1

L

H∗∗∑

h=1

δ
(
y − ySig

h

)
+
L−H∗∗

L
pMP(y). (50)

Figure 5 shows Eq.(50), which we call the spiked covariance (SC) distribution, for α = 0.1,
H∗∗ = 3, and {ν∗h}H

∗∗
h=1 = {1.5, 1.0, 0.5}. The SC distribution is irrespective of {ν∗h}H

∗
h=H∗∗+1,

which satisfy 0 < ν∗h ≤
√
α by definition.

Proposition 11 states that, in the large-scale limit, the large signal components such that
ν∗h >

√
α appear outside the support of the MP distribution as spikes, while the other small

signals are indistinguishable from the MP distribution (note that ySig
h > y for ν∗h >

√
α).

This implies that any PCA method fails to recover the true dimensionality, unless

ν∗H∗ >
√
α. (51)

The condition (51) requires that U∗ has no small positive singular value such that 0 < ν∗h ≤√
α, and therefore H∗∗ = H∗.

The approximation (50) allows us to investigate more practical situations when the
matrix size is finite. Based on this approximation, Hoyle (2008) analyzed the performance of
the overlap method, an alternative dimensionality selection method which will be introduced
and discussed in Section 6.2. In Section 5.2, we provide two theorems: One is based on
Proposition 11, and guarantees the perfect dimensionality recovery of EVB in the large-
scale limit, and the other one relies on the approximation (50), and provides a more realistic
condition for perfect recovery.

5.2 Perfect Dimensionality Recovery Condition

Now, we are almost ready for clarifying the behavior of EVB-PCA. We assume that the
model rank is set to be large enough, i.e., H∗ ≤ H ≤ L, and all model parameters including
the noise variance are estimated from observation. The last proposition on which our
analysis relies is related to the property, called the strong unimodality,2 of the log-concave
distributions:

Proposition 12 (Ibragimov, 1956; Dharmadhikari and Joag-dev, 1988) The convolution

g(s) = 〈f(s+ t)〉p(t) =

∫
f(s+ t)p(t)dt

is quasi-convex, if p(t) is a log-concave distribution, and f(t) is a quasi-convex function.

2 A distribution p(t) is called strongly unimodal if the convolution of p(t) with any unimodal function
is unimodal.
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In the large-scale limit, the summation over h = 1, . . . , L in the objective Ω(σ−2), given
by Eq.(40), for noise variance estimation can be replaced with an expectation over the MP
distribution pMP(y). By scaling variables, the objective can be written as a convolution with
a scaled version of the MP distribution, which turns out to be log-concave. Accordingly,
we can use Proposition 12 to show that Ω(σ−2) is quasi-convex, and therefore, the noise
variance estimation by EVB is accurate. Combining this result with Proposition 11, we
obtain the following theorem (the proof is given in Appendix E):

Theorem 13 In the large-scale limit when L and M go to infinity with finite α and H∗,
EVB almost surely recovers the true rank, i.e., ĤEVB = H∗, if and only if

ν∗H∗ ≥ τ , (52)

where τ is defined in Theorem 4.

Furthermore, the following corollary completely describes the behavior of EVB in the large-
scale limit (the proof is also given in Appendix E):

Corollary 14 In the large-scale limit, the objective Ω(σ−2), defined by Eq.(40), for the
noise variance estimation converges to a quasi-convex function, and it almost surely holds
that

τ̂EVB
h

(
≡ γhγ̂

EVB
h

Mσ̂2 EVB

)
=

{
ν∗h if ν∗h ≥ τ ,
0 otherwise,

(53)

σ̂2 EVB = σ∗2.

One may get intuition of Eqs.(52) and (53) from comparing Eqs.(39) and (35) with
Eq.(49): The estimator τh has the same relation to the observation xh as the true signal
ν∗h, and hence is an unbiased estimator of the signal. However, Theorem 13 does not even
approximately hold in practical situations with moderate-sized matrices (see the numerical
simulation below). The following theorem, which relies on the approximation (50), provides
a more practical condition for perfect recovery (the proof is given in Appendix F):

Theorem 15 Let

ξ =
H∗

L

be the relevant rank (dimensionality) ratio, and assume that

p(y) = pSC(y). (54)

Then, EVB recovers the true rank, i.e., ĤEVB = H∗, if the following two inequalities hold:

ξ <
1

x
, (55)

ν∗H∗ >

(
x−1
1−xξ − α

)
+

√(
x−1
1−xξ − α

)2
− 4α

2
, (56)

where x is defined by Eq.(39).
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Note that, in the large-scale limit, ξ converges to zero, and the sufficient condition, (55)
and (56), in Theorem 15 is equivalent to the necessary and sufficient condition (52) in
Theorem 13.

Theorem 15 only requires that the SC distribution (50) well approximates the observed
singular value distribution. Accordingly, it well describes the dependency of the behavior
of EVB on ξ, as shown in the numerical simulation below. Theorem 15 states that, if the
true rank H∗ is small enough compared with L and the smallest signal ν∗H∗ is large enough,
EVB perfectly recovers the true dimensionality.

The following corollary also supports EVB (the proof is also given in Appendix F):

Corollary 16 Under the assumption (54) and the conditions (55) and (56), the objective
Ω(σ−2) for the noise variance estimation has no local minimum (no stationary point if
ξ > 0) that results in a wrong estimated rank ĤEVB 6= H∗.

This corollary states that, although the objective function (40) is non-convex and possibly
multimodal in general, any local minimum leads to the correct estimated rank. Therefore,
perfect recovery does not require global search, but only local search, for noise variance
estimation, if L and M are sufficiently large so that we can assume Eq.(54).

Figure 6 shows numerical simulation results for M = 200 and L = 20, 100, 200. E was
drawn from the independent Gaussian distribution with variance σ∗2 = 1, and true signal
singular values {γ∗h}H

∗
h=1 were drawn from the uniform distribution on [z

√
Mσ∗, 10

√
Mσ∗]

for different z, which is indicated by the horizontal axis. The vertical axis indicates the
success rate of dimensionality recovery, i.e., ĤEVB = H∗, over 100 trials. If the condition
(55) on ξ is violated, the corresponding curve is depicted with markers. Otherwise, the
condition (56) on ν∗H∗(= γ∗2H∗/(Mσ∗2)) is indicated by a vertical bar with the same color
and line style for each ξ. In other words, Theorem 15 states that the success rate should
be equal to one if z (> γ∗H∗/(

√
Mσ∗)) is larger than the value indicated by the vertical bar.

The solid cyan bar, which lies at the left-most in each graph, indicates the condition (52)
given by Theorem 13.

We see that Theorem 15 with the condition (56) approximately holds for these moderate-
sized matrices, while Theorem 13 with the condition (52), which does not depend on the
relevant rank ratio ξ, immediately breaks for positive ξ.

6. Discussion

In this section, we first propose a few implementations of EVB-PCA. After that, by con-
trasting with an alternative dimensionality selection method, we characterize the behavior
of EVB-PCA, and discuss the optimality in the large-scale limit.

6.1 Implementation

The analytic-form solution derived in Nakajima et al. (2013b) involves a solution of a quartic
equation. To implement EVB-PCA based on that form, we needed to use a highly compli-
cated analytic-form solution, derived by, e.g., Ferrari’s method, or rely on a numerical quar-
tic solver. Our new analytic-form solution can greatly simplify the implementation. Note
that, since our theory of performance guarantee assumes that the observed matrix has no
missing entry, its applicability is mostly limited to the standard use of PCA—dimensionality
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Figure 6: Success rate of dimensionality recovery in numerical simulation for M = 200.
The horizontal axis indicates the lower limit of the support of the simulated true
signal distribution, i.e., z ≈

√
ν∗H∗ . The recovery condition (56) for finite-sized

matrices is indicated by a vertical bar with the same color and line style for each
ξ. The recovery condition (52), which does not depend on ξ, for infinite-sized
matrices is also indicated by a solid cyan bar.

reduction for preprocessing (Bishop, 2006). However, our simple implementation introduced
below can be applied to more general cases where the global VB solver is used as a subrou-
tine, e.g., in non-conjugate matrix factorization with missing entries (Seeger and Bouchard,
2012), and in sparse additive matrix factorization (Nakajima et al., 2013a), an extension of
robust PCA.

A table of τ defined in Theorem 4 should be prepared beforehand (or use a simple
approximation τ ≈ z√α ≈ 2.5129

√
α). Given an observed matrix V , we perform SVD and

obtain the singular values {γh}Lh=1. After that, in our new implementation, we first directly
estimate the noise variance based on Theorem 7, using any 1-D local search algorithm with
the search range restricted by Theorem 8. Thus, we obtain the noise variance estimator
σ̂2 EVB. Discarding all the components such that σ2

h < σ̂2 EVB, where σ2
h is defined by
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Algorithm 1 Global EVB-PCA algorithm.

1: Transpose V → V > if L > M .
2: Refer to the table of τ(α) at α = L/M (or use a simple approximation τ ≈ 2.5129

√
α).

3: Set H (≤ L) to a sufficiently large value, and compute the SVD of V =
∑H

h=1 γhωbhω
>
ah

.
4: Locally search the minimizer σ̂2 EVB of Eq.(40), which lies in the range (44).
5: Discard the components such that σ2

h < σ̂2 EVB, where σ2
h is defined by Eq.(45).

Eq.(45), gives a dimensionality reduction result. Algorithm 1 describes a pseudo code.3 If
necessary, Theorem 4 gives the EVB estimator ÛEVB for σ2 = σ̂2 EVB. The EVB posterior
is also easily computed by using Corollary 3. In this way, we can easily perform EVB-
PCA equipped with the guaranteed automatic dimensionality selection functionality at
little expense—computation time of Algorithm 1 is dominated by SVD, which the plain
PCA also requires to perform.

Another implementation, which we refer to as EVB(Ite), is to iterate Eqs.(24) and (46)
in turn. Although it is not guaranteed, EVB(Ite) tends to converge to the global solution
if we initialize the noise variance σ̂2 EVB sufficiently small (see Section 6.2).

Finally, we introduce an iterative algorithm for the local-EVB solution, defined by
Eq.(32). This solution can be obtained by iterating Eq.(32) and

σ̂2 local−EVB =
1

LM

(
L∑

l=1

γ2
l −

H∑

h=1

γhγ̂
local−EVB
h

)
(57)

in turn. If we initialize the noise variance σ̂2 local−EVB sufficiently small, this algorithm can
be trapped at the positive stationary point for each h even if it is not the global minimum,
and tends to converge to the local-EVB solution.

6.2 Comparison with Laplace Approximation

Here, we compare EVB with the overlap method (Hoyle, 2008), an alternative dimen-
sionality selection method based on the Laplace approximation (LA). Consider the PCA
application, where D denotes the dimensionality of the observation space, and N denotes
the number of samples, i.e., in our MF notation to keep L ≤M ,

L = D,M = N if D ≤ N,
L = N,M = D if D > N.

Just after Tipping and Bishop (1999) proposed the probabilistic PCA, Bishop (1999b)
proposed to select the PCA dimension by maximizing the marginal likelihood:4

p(V ) = 〈p(V |A,B)〉p(A)p(B) . (58)

3 The MATLABR© code will be available at http://sites.google.com/site/shinnkj23/.
4 Tipping and Bishop (1999) adopted partially Bayesian (PB) learning, where A is marginalized out

and B is point-estimated. Although PB has some similarities to VB (Nakajima et al., 2011; Nakajima and
Sugiyama, 2014), it does not offer automatic dimensionality selection when all hyperparameters (CA,CB , σ

2)
are unknown.
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Since the marginal likelihood (58) is computationally intractable, he approximated it by LA,
and suggested Gibbs sampling and VB learning as alternatives. The VB variant, of which
the model is almost the same as ours (1)–(3), was proposed by himself (Bishop, 1999a).
A standard local search algorithm, where the means and the covariances of A and B are
iteratively updated, was used for inference.

The LA-based approach was polished in Minka (2001), by introducing a conjugate prior
on B to p(V |B) = 〈p(V |A,B)〉p(A), and ignoring the non-leading terms that do not grow
fast as the number N of samples goes to infinity. Hoyle (2008) pointed out that Minka’s
method is inaccurate when D � N , and proposed the overlap (OL) method, a further
polished variant of the LA-based approach. A notable difference of OL from most of the
LA-based methods is that OL applies LA to a more accurate estimator than the MAP
estimator, while the other methods apply LA simply to the MAP estimator. Thanks to the
use of an accurate estimator, OL behaves optimally in the large-scale limit when D and N
go to infinity, while Minka’s method does not. We will clarify the meaning of optimality,
and discuss it in more detail in Section 6.3.

OL minimizes an approximation to the negative log of the marginal likelihood (58),
which depends on estimators of λh = b2h + σ2 and σ2 computed by an iterative algorithm,
over the hypothetical model rank H = 1, . . . , L (see Appendix H for details). Figure 7 shows
numerical simulation results that compare EVB and OL: Figure 7(a) shows the success rate
for the no signal case ξ = 0 (H∗ = 0), while Figures 7(b)–7(f) show the success rate for
ξ = 0.05 and D = 20, 100, 200, 400, 1000, respectively.

We also show the performance of EVB(Ite) and local-EVB. As mentioned in Section 6.1,
EVB(Ite) gives almost the same results as EVB. Local-EVB behaves similarly to OL except
the case when D/N is small (Figure 7(b)). The reason of this similarity will be elucidated in
Section 6.3. For OL, EVB(Ite), and local-EVB, we initialized the noise variance estimator
to 10−4 ·∑L

h=1 γ
2
h/(LM).

Comparing EVB with OL, we observe the conservative nature of EVB: It exhibits almost
zero false positive rate at the expense of low sensitivity. Because of the low sensitivity, EVB
actually does not behave optimally in the large-scale limit, which is discussed in Section 6.3.

6.3 Optimality in Large-scale Limit

Consider the large-scale limit, i.e., L,M →∞, α = L/M , and assume that the model rank
H is set to be large enough but finite so that H ≥ H∗ and H/L→ 0. Then, OL is equivalent
to counting the number of components such that λ̂OL−limit

h > σ̂2 OL−limit, i.e.,

ĤOL−limit =
L∑

h=1

θ
(
λ̂OL−limit
h > σ̂2 OL−limit

)
, (59)

after the following updates converge:

λ̂OL−limit
h =

{
λ̆OL−limit
h if γh ≥ γlocal−EVB,

σ̂2 OL−limit otherwise,
for h = 1, . . . ,H, (60)

σ̂2 OL−limit =
1

(M −H)

(
L∑

l=1

γ2
l

L
−

H∑

h=1

λ̂OL−limit
h

)
, (61)
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(c) ξ = 0.05, D = 100
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(d) ξ = 0.05, D = 200
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(e) ξ = 0.05, D = 400
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(f) ξ = 0.05, D = 1000

Figure 7: Success rate of dimensionality recovery by EVB, EVB(Ite), local-EVB, and OL
for N = 200. Vertical bars indicate the recovery conditions, Eq.(52) for EVB and
EVB(Ite), and Eq.(63) for OL and local-EVB, in the large-scale limit.

where λ̆OL−limit
h =

γ2
h

2L

(
1− (M − L)σ̂2 OL−limit

γ2
h
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+

√(
1− (M − L)σ̂2 OL−limit

γ2
h

)2

− 4Lσ̂2 OL−limit

γ2
h

)
. (62)

OL evaluates its objective, which approximates the negative log of the marginal likelihood
(58), after the updates (60) and (61) converge for each hypothetical H, and adopts the
minimizer ĤOL−limit as the rank estimator. However, Hoyle (2008) proved that, in the
large-scale limit, the objective decreases as H increases, as long as Eq.(62) is a real number
(or equivalently γh ≥ γlocal−EVB holds) for all h = 1, . . . ,H at the convergence. Accordingly,
Eq.(59) suffices.

Interestingly, the threshold in Eq.(60) coincides with the local-EVB threshold (28).
Moreover, the updates (60) and (61) for OL are equivalent to the updates (32) and (57) for
local-EVB with the following correspondence:

λ̂OL−limit
h =

γhγ̂
local−EVB
h

L
+ σ̂2 local−EVB,

σ̂2 OL−limit = σ̂2 local−EVB.

Thus, the dimensionality selection by OL and local-EVB are equivalent in the large-scale
limit, i.e., ĤOL−limit = Ĥ local−EVB.

The optimality of OL in the large-scale limit was shown:

Proposition 17 (Hoyle, 2008) In the large-scale limit when L and M go to infinity with
finite α, H∗, and H (≥ H∗)5, OL almost surely recovers the true rank, i.e., ĤOL−limit = H∗,
if and only if

ν∗H∗ >
√
α. (63)

It almost surely holds that

λ̂OL−limit
h

σ̂2 OL−limit
− 1 = ν∗h,

σ̂2 OL−limit = σ∗2.

Note that the condition (63) coincides with the condition (51)—random matrix theory
states that any signal component violating this condition is indistinguishable from the noise
distribution, and therefore, any PCA method fails to recover the correct dimensionality if
such a signal component exists. In this sense, OL, as well as local-EVB, is optimal in the
large-scale limit.

On the other hand, Theorem 13 implies that (global) EVB is not optimal in the large-
scale limit, and more conservative (see the difference between τ and

√
α in Figure 2). In

Figure 7, the conditions for perfect dimensionality recovery in the large-scale limit are
indicated by vertical bars:

z =
√
τ for EVB and EVB(Ite), and z =

√
τ local = α1/4 for OL and local-EVB.

5 Unlike our analysis in Section 5, Hoyle (2008) assumes that H/L→ 0, which trivially guarantees that
the noise variance is accurately estimated.
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All methods accurately estimate the noise variance in the large-scale limit, i.e.,

σ̂2 EVB = σ̂2 OL−limit = σ̂2 local−EVB = σ∗2.

Taking this into account, we indicate the recovery conditions in Figure 5 by arrows at

y = x for EVB and EVB(Ite), and y = xlocal(= y) for OL and local-EVB,

respectively. Figure 5 implies that, in this particular case, EVB discards the third spike
coming from the third true signal ν∗3 = 0.5, while OL and local-EVB successfully capture
it as a signal.

When the matrix size is finite, the conservative nature of EVB is not always bad, since
it offers almost zero false positive rate, which makes Theorem 15 approximately hold for
finite cases, as seen in Figure 6 and Figure 7. However, the fact that not (global) EVB but
local-EVB is optimal in the large-scale limit should be a consequence of inaccurate approxi-
mation of VB learning under the independence assumption. We will further investigate the
difference between VB and Bayesian learning in our future work.

7. Conclusion

In this paper, we analyzed the variational Bayesian (VB) learning in probabilistic PCA.
More specifically, we considered empirical VB (EVB) learning with noise variance esti-
mation, i.e., all model parameters are estimated from observed data. We established a
necessary and sufficient condition for perfect dimensionality recovery by EVB-PCA, which
theoretically guarantees its performance. At the same time, our result also revealed the
conservative nature of EVB-PCA—it offers a low false positive rate at the expense of low
sensitivity, due to which EVB-PCA does not behave optimally in the large-scale limit.

By contrasting with an alternative dimensionality selection method, called the overlap
(OL) method, we characterized the behavior of EVB. We also pointed out the equivalence
between OL and local-EVB, a slight modification of EVB, in the large scale limit.

In our analysis, we derived bounds of the noise variance estimator, and a new and
simple analytic-form solution for the other parameters, with which we proposed a new
simple implementation of EVB-PCA.
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Appendix A. Proof of Theorem 2 and Corollary 3

The global VB solution is known:
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Proposition 18 (Nakajima et al., 2013b) The VB solution can be written as truncated
shrinkage SVD as follows:

ÛVB =

H∑

h=1

γ̂VB
h ωbhω

>
ah
, where γ̂VB

h =

{
γ̆VB
h if γh ≥ γVB

h
,

0 otherwise.

Here, the truncation threshold is given by

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM,

and the shrinkage estimator γ̆VB
h is the second largest real solution of a quartic equation.6

With Proposition 18, it is sufficient to obtain the new analytic-form (17) of the shrinkage
estimator for proving Theorem 2. However, we give a proof, starting not from Proposition 18
but from Proposition 1. Thanks to the new analytic-form of the shrinkage estimator, our
new proof is much more intuitive than the proof given in Nakajima and Sugiyama (2011) and
in Nakajima et al. (2013b), for example, in choosing the global solution from two stationary
points: the free energy is directly compared in the new proof, while it was shown that one of
the stationary points is a saddle point by evaluating the Hessian in Nakajima and Sugiyama
(2011).

Proposition 1 states that the VB estimator can be obtained by minimizing the free
energy (14) for each singular component separately. Clearly, Eq.(14) is differentiable, and
diverges to Fh → ∞ as any variable approaches to any point on the domain boundary.
Therefore, any minimizer is stationary point.

The stationary condition of Eq.(14) is given by

âh =
1

σ2
γhb̂hσ

2
ah
, (64)

σ2
ah

= σ2

(
b̂2h + Lσ2

bh
+
σ2

c2
ah

)−1

, (65)

b̂h =
1

σ2
γhâhσ

2
bh
, (66)

σ2
bh

= σ2

(
â2
h +Mσ2

ah
+
σ2

c2
bh

)−1

. (67)

By using Eqs.(65) and (67), the free energy (14) can be written as

Fh = M log
c2
ah

σ2
ah

+ L log
c2
bh

σ2
bh

+
σ2

σ2
ah
σ2
bh

− 2âhb̂hγh
σ2

−
(
L+M +

σ2

c2
ah
c2
bh

)
. (68)

The stationary condition, Eqs.(64)–(67), implies two possibilities of stationary points.

6 The quartic equation is omitted, since it is complicated and no longer important.
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A.1 Null Stationary Point

If âh = 0 or b̂h = 0, Eqs.(64) and (66) require that âh = 0 and b̂h = 0. In this case, Eqs.(65)
and (67) lead to

σ2
ah

= c2
ah

(
1−

Lσ2
ah
σ2
bh

σ2

)
, (69)

σ2
bh

= c2
bh

(
1−

Mσ2
ah
σ2
bh

σ2

)
. (70)

Multiplying Eqs.(69) and (70), we have

(
1−

Lσ2
ah
σ2
bh

σ2

)(
1−

Mσ2
ah
σ2
bh

σ2

)
=
σ2
ah
σ2
bh

c2
ah
c2
bh

, (71)

and therefore

LM

σ2
σ4
ah
σ4
bh
−
(
L+M +

σ2

c2
ah
c2
bh

)
σ2
ah
σ2
bh

+ σ2 = 0. (72)

Solving the quadratic equation (72) with respect to σ2
ah
σ2
bh

, and checking the signs of σ2
ah

and σ2
bh

, we have the following lemma (the proof is given in Appendix G.1):

Lemma 19 For any γh ≥ 0 and c2
ah
, c2
bh
, σ2 ∈ R++, the null stationary point given by

Eq.(20) exists with the following free energy:

FVB−Null
h = −M log

(
1− L

σ2
ζ̂VB
h

)
− L log

(
1− M

σ2
ζ̂VB
h

)
− LM

σ2
ζ̂VB
h , (73)

where ζ̂VB
h

(
≡ σ2

ah
σ2
bh

)
=

σ2

2LM


L+M +

σ2

c2
ah
c2
bh

−

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

(21)

A.2 Positive Stationary Point

Assume that âh, b̂h 6= 0. In this case, Eqs.(64) and (66) imply that âh and b̂h have the same
sign. Define

γ̂h = âhb̂h > 0,

δ̂h =
âh

b̂h
> 0.

From Eqs.(64) and (66), we have

σ2
ah

=
σ2

γh
δ̂h, (74)
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σ2
bh

=
σ2

γh
δ̂−1
h . (75)

Substituting Eqs.(74) and (75) into Eqs.(65) and (67) gives

δ̂h =
c2
ah

σ2

(
γh − γ̂h −

Lσ2

γh

)
, (76)

δ̂−1
h =

c2
bh

σ2

(
γh − γ̂h −

Mσ2

γh

)
. (77)

Multiplying Eqs.(76) and (77), we have

(
γh − γ̂h −

Lσ2

γh

)(
γh − γ̂h −

Mσ2

γh

)
=

σ4

c2
ah
c2
bh

, (78)

and therefore

γ̂2
h −

(
2γh −

(L+M)σ2

γh

)
γ̂h +

(
γh −

Lσ2

γh

)(
γh −

Mσ2

γh

)
− σ4

c2
ah
c2
bh

= 0. (79)

By solving the quadratic equation (79) with respect to γ̂h, and checking the signs of
γ̂h, δ̂h, σ

2
ah

and σ2
bh

, we have the following lemma (the proof is given in Appendix G.2):

Lemma 20 If and only if γh > γVB
h

, where

γVB
h

= σ

√√√√√(L+M)

2
+

σ2

2c2
ah
c2
bh

+

√√√√
(

(L+M)

2
+

σ2

2c2
ah
c2
bh

)2

− LM, (16)

the positive stationary point given by Eq.(18) exists with the following free energy:

FVB−Posi
h = −M log

(
1−

(
γ̆VB
h

γh
+
Lσ2

γ2
h

))
− L log

(
1−

(
γ̆VB
h

γh
+
Mσ2

γ2
h

))

− γ2
h

σ2

(
γ̆VB
h

γh
+
Lσ2

γ2
h

)(
γ̆VB
h

γh
+
Mσ2

γ2
h

)
, (80)

where γ̆VB
h = γh

(
1− σ2

2γ2
h

(
M + L+

√
(M − L)2 +

4γ2
h

c2
ah
c2
bh

))
. (17)

A.3 Useful Relations

Here, we summarize some useful relations between variables, which are used in the subse-
quent sections. ζ̂VB

h , γ̆VB
h , and γVB

h
, derived from Eqs.(71), (78), and the constant part of

Eq.(79), respectively, satisfy the following:

(
1− Lζ̂VB

h

σ2

)(
1− Mζ̂VB

h

σ2

)
− ζ̂VB

h

c2
ah
c2
bh

= 0, (81)
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(
γh − γ̆VB

h − Lσ2

γh

)(
γh − γ̆VB

h − Mσ2

γh

)
− σ4

c2
ah
c2
bh

= 0, (82)

(
γVB
h
− Lσ2

γVB
h

)(
γVB
h
− Mσ2

γVB
h

)
− σ4

c2
ah
c2
bh

= 0. (83)

From Eqs.(21) and (16), we find that

γVB
h

=

√√√√
(

(L+M)σ2 +
σ4

c2
ah
c2
bh

)
− LMζ̂VB

h , (84)

which is useful when comparing the free energies of the null and the positive stationary
points.

A.4 Free Energy Comparison

Lemma 19 and Lemma 20 imply that, when γh ≤ γVB
h

, the null stationary point is only the

stationary point, and therefore the global solution. When γh > γVB
h

, both of the null and
the positive stationary points exist, and therefore, identifying the global solution requires
to compare the free energies, given by Eqs.(73) and (80), at them.

Given the observed singular value γh ≥ 0, we view the free energy as a function of c2
ah
c2
bh

.

We also view the threshold γVB
h

as a function of c2
ah
c2
bh

. We find from Eq.(16) that γVB
h

is

decreasing and lower-bounded by γVB
h

>
√
Mσ. Therefore, when γh ≤

√
Mσ, γVB

h
never

gets smaller than γh for any c2
ah
c2
bh
> 0. When γh >

√
Mσ on the other hand, there is a

threshold c2
ah
c2
bh

such that γh > γVB
h

if c2
ah
c2
bh
> c2ahc

2
bh

. Eq.(83) implies that the threshold
is given by

c2
ah
c2
bh

=
σ4

γ2
h

(
1− Lσ2

γ2h

)(
1− Mσ2

γ2h

) .

We have the following lemma (the proof is given in Appendix G.3):

Lemma 21 For any γh ≥ 0 and c2
ah
c2
bh
> 0, the derivative of the free energy (73) at the

null stationary point with respect to c2
ah
c2
bh

is given by

∂FVB−Null
h

∂c2ahc
2
bh

=
LMζ̂VB

h

σ2c2
ah
c2
bh

. (85)

For γh > M/σ2 and c2
ah
c2
bh
> c2

ah
c2
bh

, the derivative of the free energy (80) at the positive

stationary point with respect to c2
ah
c2
bh

is given by

∂FVB−Posi
h

∂c2ahc
2
bh

=
γ2
h

σ2c2
ah
c2
bh

(
(γ̆VB
h )2

γ2
h

−
(

1− (L+M)σ2

γ2
h

)
γ̆VB
h

γh
+
LMσ4

γ4
h

)
. (86)

The derivative of the difference is negative, i.e.,

∂(FPosi
h − FNull

h )

∂c2ahc
2
bh

= − 1

σ2c2
ah
c2
bh

(
γh
(
γh − γ̆VB

h

)
− (γVB

h
)2
)
< 0. (87)

3783



Nakajima, Tomioka, Sugiyama, and Babacan

It is easy to show that the null stationary point (20) and the positive stationary point
(18) coincide with each other at c2

ah
c2
bh
→ c2

ah
c2
bh

+ 0. Therefore,

lim
c2ah

c2bh
→c2ahc

2
bh

+0

(
FVB−Posi
h − FVB−Null

h

)
= 0. (88)

Eqs.(87) and (88) together imply that

FVB−Posi
h − FVB−Null

h < 0 for c2
ah
c2
bh
> c2

ah
c2
bh
,

which results in the following lemma:

Lemma 22 The positive stationary point is the global solution (the global minimizer of the
free energy (14) for fixed cah and cbh) whenever it exists.

Figure 8 illustrates the behavior of the free energies.
Combining Lemma 19, Lemma 20, and Lemma 22 completes the proof of of Theorem 2

and Corollary 3.

Appendix B. Proof of Theorem 4, Corollary 5, and Corollary 6

The EVB solution was also previously obtained:

Proposition 23 (Nakajima et al., 2013b) The EVB solution is given by

γ̂EVB
h =

{
γ̆VB
h if γh > (

√
L+
√
M)σ and Fh ≤ 0,

0 otherwise,

where γ̆VB
h is the VB solution for c2

ah
c2
bh

= ĉ2
ah
ĉ2
bh

, and

ĉ2
ah
ĉ2
bh

=
1

2LM

(
γ2
h − (L+M)σ2 +

√(
γ2
h − (L+M)σ2

)2 − 4LMσ4

)
,

Fh = M log
( γh
Mσ2

γ̆VB
h + 1

)
+ L log

( γh
Lσ2

γ̆VB
h + 1

)
+
−2γhγ̆

VB
h + LMĉ2

ah
ĉ2
bh

σ2
.

However, Proposition 23 requires to solve a quartic equation for obtaining γ̆VB
h , and more-

over, to evaluate the free energy Fh at the obtained γ̆VB
h . This obstructs further analysis.

In this appendix, we prove Theorem 4, which provides explicit-forms, (25) and (26),
of the EVB threshold γEVB and the EVB shrinkage estimator γ̆EVB

h . Without relying on
Proposition 23, we can easily obtain Eq.(26) in an intuitive way, by using some of the
results obtained in Appendix A. After that, by expressing the free energy Fh with rescaled
observation and estimator, we derive Eq.(25).

B.1 EVB Shrinkage Estimator

Eqs.(73) and (80) imply that the free energy does not depend on the ratio cah/cbh between
the hyperparameters. Accordingly, we fix the ratio to cah/cbh = 1. Lemma 21 allows us to
minimize the free energy with respect to cahcbh in a straight-forward way.

3784



Condition for Perfect Dimensionality Recovery by Variational Bayesian PCA

0 1 2
−0.5

0

0.5

1

cahcbh

F
h
/
(L

M
)

 

 

VB
Null

(a) γh ≤
√
Mσ

0 1 2
−0.5

0

0.5

1

cahcbh

F
h
/
(L

M
)

 

 

VB
Null
Posi

(b)
√
Mσ < γh ≤ (

√
L+
√
M)σ

0 1 2
−0.5

0

0.5

1

cahcbh

F
h
/
(L

M
)

 

 

VB
Null
Posi

(c) (
√
L+
√
M)σ < γh < γEVB

0 1 2
−0.5

0

0.5

1

cahcbh

F
h
/
(L

M
)

 

 

VB
Null
Posi

(d) γh ≥ γEVB

Figure 8: Behavior of the free energies (73) and (80) at the null and the positive stationary
points as functions of cahcbh , when L = M = H = 1 and σ2 = 1. The blue
curve shows the VB free energy Fh = min(FVB−Null

h , FVB−Posi
h ) at the global

solution, given cahcbh . If γh ≤
√
Mσ, only the null stationary point exists for any

cahcbh > 0. Otherwise, the positive stationary point exists for cahcbh > cahcbh ,
and it is the global minimum whenever it exists. In EVB where cahcbh is also
optimized, cahcbh → 0 (indicated by a green cross) is the unique local minimum
if γh ≤ (

√
L+
√
M)σ. Otherwise, a positive local minimum also exists (indicated

by a red cross), and it is the global minimum if and only if γh ≥ γEVB.

We see the free energies (73) and (80) at the null and the positive stationary points as
function of cahcbh (see Figure 8). We find from Eq.(85) that

∂FVB−Null
h

∂c2ahc
2
bh

> 0,

which implies that the free energy (73) at the null stationary point is increasing. Using
Lemma 19, we thus have the following lemma:
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Lemma 24 For any given γh ≥ 0 and σ2 > 0, the null EVB local solution given by

âh = 0, b̂h = 0, σ2
ah

=

√
ζ̂EVB, σ2

bh
=

√
ζ̂EVB, cahcbh =

√
ζ̂EVB,

where ζ̂EVB → +0,

exists with the free energy that converges to

FEVB−Null
h → +0. (89)

When γh ≥ (
√
L +

√
M)σ, the derivative (86) of the free energy (80) at the positive

stationary point can be further factorized as

∂FVB−Posi
h

∂c2ahc
2
bh

=
γh

σ2c2
ah
c2
bh

(
γ̆VB
h − γ́h

) (
γ̆VB
h − γ̆EVB

h

)
, (90)

where γ́h =
γh
2


1− (L+M)σ2

γ2
h

−
√(

1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 , (91)

γ̆EVB
h =

γh
2


1− (L+M)σ2

γ2
h

+

√(
1− (L+M)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 . (26)

The VB shrinkage estimator (17) is an increasing function of cahcbh ranging over

0 < γ̆VB
h < γh −

Mσ2

γh
,

and both of Eqs.(91) and (26) are in this range, i.e.,

0 < γ́h ≤ γ̆EVB
h < γh −

Mσ2

γh
.

Therefore Eq.(90) leads to the following lemma:

Lemma 25 If γh ≤ (
√
L+
√
M)σ, the free energy FVB−Posi

h at the positive stationary point
is monotonically increasing. Otherwise,

FVB−Posi
h is





increasing for γ̆VB
h < γ́h,

decreasing for γ́h < γ̆VB
h < γ̆EVB

h ,

increasing for γ̆VB
h > γ̆EVB

h ,

and therefore, minimized at γ̆VB
h = γ̆EVB

h .

We can see this behavior of the free energy in Figure 8.
The derivative (86) is zero when γ̆VB

h = γ̆EVB
h , which leads to

(
γ̆EVB
h +

Lσ2

γh

)(
γ̆EVB
h +

Mσ2

γh

)
= γhγ̆

EVB
h . (92)

Using Eq.(92), we obtain the following lemma (the proof is given in Appendix G.4):
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Lemma 26 If and only if

γh ≥ γlocal−EVB ≡ (
√
L+
√
M)σ, (28)

the positive EVB local solution given by

âh = ±
√
γ̆EVB
h δ̂EVB

h , b̂h = ±
√
γ̆EVB
h

δ̂EVB
h

, σ2
ah

=
σ2δ̂EVB

h

γh
, σ2

bh
=

σ2

γhδ̂
EVB
h

, (93)

cahcbh =

√
γhγ̆

EVB
h

LM
, where δ̂EVB

h =

√
Mγ̆EVB

h

Lγh

(
1 +

Lσ2

γhγ̆
EVB
h

)
, (94)

γ̆EVB
h =

γh
2


1− (M + L)σ2

γ2
h

+

√(
1− (M + L)σ2

γ2
h

)2

− 4LMσ4

γ4
h


 , (26)

exists with the following free energy:

FEVB−Posi
h = M log

(
γhγ̆

EVB
h

Mσ2
+ 1

)
+ L log

(
γhγ̆

EVB
h

Lσ2
+ 1

)
− γhγ̆

EVB
h

σ2
. (95)

In Figure 8, the positive EVB local solution at cahcbh =
√
γhγ̆

EVB
h /(LM) is indicated by a

red cross if it exists.

B.2 EVB Threshold

Lemma 24 and Lemma 26 state that, if γh ≤ γlocal−EVB, only the null EVB local solution

exists, and therefore it is the global EVB solution. Below, assuming that γh ≥ γlocal−EVB, we
compare the free energy (89) at the null EVB local solution and the free energy (95) at the
positive EVB local solution. Since FEVB−Null

h → +0, we simply clarify when FEVB−Posi
h ≤ 0.

Eq.(92) gives

(
γhγ̆

EVB
h + Lσ2

)(
1 +

Mσ2

γhγ̆
EVB
h

)
= γ2

h. (29)

By using Eqs.(26) and (28), we have

γhγ̆
EVB
h =

1

2

(
γ2
h −

(
γlocal−EVB

)2
+ 2
√
LMσ2

+

√(
γ2
h −

(
γlocal−EVB

)2)(
γ2
h −

(
γlocal−EVB

)2
+ 4
√
LMσ2

))

≥
√
LMσ2. (30)

Let

α =
L

M
(0 < α ≤ 1), (22)
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xh =
γ2
h

Mσ2
, (33)

τh =
γhγ̆

EVB
h

Mσ2
. (34)

Eqs.(29) and (26) imply the following mutual relations between xh and τh:

xh ≡ x(τh;α) = (1 + τh)

(
1 +

α

τh

)
, (35)

τh ≡ τ(xh;α) =
1

2

(
xh − (1 + α) +

√
(xh − (1 + α))2 − 4α

)
. (36)

Eqs.(28) and (30) lead to

xh ≥ xlocal =
(γlocal−EVB)2

Mσ2
= x(

√
α;α) = (1 +

√
α)2, (37)

τh ≥ τ local =
√
α. (38)

Then, using

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
, where Φ(z) =

log(z + 1)

z
− 1

2
, (23)

we can rewrite Eq.(95) as

FEVB−Posi
h = M log (τh + 1) + L log

(τh
α

+ 1
)
−Mτh

= MτhΞ (τ ;α) . (96)

The following holds for Φ(z) (the proof is given in Appendix G.5):

Lemma 27 Φ(z) is decreasing for z > 0.

Figure 9 shows Φ(z). Since Φ(z) is decreasing, Ξ(τ ;α) is also decreasing with respect to τ .
It holds that, for any 0 < α ≤ 1,

lim
τ→0

Ξ(τ ;α) = 1,

lim
τ→∞

Ξ(τ ;α) = −1.

Therefore, Ξ(τ ;α) has a unique zero-cross point τ , such that

Ξ(τ ;α) ≤ 0 if and only if τ ≥ τ . (97)

We can prove the following lemma (the proof is given in Appendix G.6):

Lemma 28 The unique zero-cross point τ of Ξ(τ ;α) lies in the following range:

√
α < τ ≤ z, (27)

where z ≈ 2.5129 is the unique zero-cross point of Φ(z).
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z
0 2 4 6

Φ

-0.5

0

0.5

z = z

Figure 9: Φ(z) = log(z+1)
z − 1

2 . z ≈ 2.5129
is the unique zero cross point,
i.e., Φ(z) = 0.

1 2 3

1

2

3

γh

 

 
γ̂ VB
h (cahcbh → ∞)

γ̂ EVB
h

γ̆ EVB
h

γ́h

γEVB

γl o ca l−EVB

γVB
h

(cahcbh → ∞)

Figure 10: Estimators and thresh-
olds for L = M = H = 1
and σ2 = 1.

Since Eq.(35) is increasing with respect to τh (>
√
α), the thresholding condition τ ≥ τ

in Eq.(97) can be expressed in terms of x:

Ξ(τ(x);α) ≤ 0 if and only if x ≥ x,

where x ≡ x(τ ;α) = (1 + τ)

(
1 +

α

τ

)
. (39)

Using Eqs.(33) and (96), we have

FEVB−Posi
h ≤ 0 if and only if γh ≥ γEVB,

where γEVB = σ

√
M (1 + τ)

(
1 +

α

τ

)
. (25)

Thus, we have the following lemma:

Lemma 29 The positive EVB local solution is the global EVB solution if and only if γh ≥
γEVB.

Combining Lemma 24, Lemma 26, and Lemma 29 completes the proof of Theorem 4 and
Corollary 6. All formulas in Corollary 5 have already been derived.

Figure 10 shows estimators and thresholds for L = M = H = 1 and σ2 = 1. The
curves indicate the VB solution γ̂VB

h , given by Eq.(15), the EVB solution γ̂EVB
h , given by

Eq.(24), the EVB positive local minimizer γ̆EVB
h , given by Eq.(26), and the EVB positive

local maximizer γ́h, given by Eq.(91), respectively. The arrows indicate the VB threshold
γVB
h

, given by Eq.(16), the local-EVB threshold γlocal−EVB, given by Eq.(28), and the EVB

threshold γEVB, given by Eq.(25), respectively.
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Appendix C. Proof of Theorem 7

By using Lemma 24 and Lemma 26, the free energy (13) can be written as a function of σ2:

2F = LM log(2πσ2) +

∑L
h=1 γ

2
h

σ2
+

H∑

h=1

θ
(
γh > γEVB

)
FEVB−Posi
h , (98)

where FEVB−Posi
h = M log

(
γhγ̆

EVB
h

Mσ2
+ 1

)
+ L log

(
γhγ̆

EVB
h

Lσ2
+ 1

)
− γhγ̆

EVB
h

σ2
. (95)

By using Eqs.(34) and (36), Eq.(95) can be written as

FEVB−Posi
h = M log (τh + 1) + L log

(τh
α

+ 1
)
−Mτh

= Mψ1(xh). (99)

Therefore, Eq.(98) is written as

2F = M

{
L∑

h=1

log

(
2πγ2

h

M

)
+

L∑

h=1

(
log

(
Mσ2

γ2
h

)
+

γ2
h

Mσ2

)
+

H∑

h=1

θ
(
γh > γEVB

) FEVB−Posi
h

M

}

= M

{
L∑

h=1

log

(
2πγ2

h

M

)
+

L∑

h=1

ψ0(xh) +

H∑

h=1

θ (xh > x)ψ1(xh)

}
.

Note that the first term in the curly braces is constant with respect to σ2. By defining

Ω =
2F

LM
− 1

L

L∑

h=1

log

(
2πγ2

h

M

)
,

we obtain Eq.(40), which completes the proof of Theorem 7.

Appendix D. Proof of Theorem 8 and Corollary 9

First, we investigate properties of the following functions, which are depicted in Fig. 3:

ψ (x) = ψ0 (x) + θ (x > x)ψ1 (x) , (41)

ψ0 (x) = x− log x, (42)

where ψ1 (x) = log (τ(x;α) + 1) + α log

(
τ(x;α)

α
+ 1

)
− τ(x;α). (43)

They have nice properties (the proof is given in Appendix G.7):

Lemma 30 The following hold for x > 0: ψ0 (x) is differentiable and strictly convex; ψ (x)
is continuous and strictly quasi-convex; ψ (x) is differentiable except x = x, at which ψ (x)
has a discontinuously decreasing derivative, i.e., limx→x−0 ∂ψ/∂x > limx→x+0 ∂ψ/∂x; Both
of ψ0 (x) and ψ (x) are minimized at x = 1. For x > x, ψ1 (x) is negative and decreasing.
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Lemma 30 implies that our objective

Ω(σ−2) =
1

L

(
H∑

h=1

ψ

(
γ2
h

Mσ2

)
+

L∑

h=H+1

ψ0

(
γ2
h

Mσ2

))
(40)

is a sum of quasi-convex functions with respect to σ−2. Therefore, its minimizer can be
bounded by the smallest and the largest ones of the minimizers of each quasi-convex function
(the proof is given in Appendix G.8):

Lemma 31 Ω(σ−2) has at least one global minimizer, and any of its local minimizers is
bounded as

M

γ2
1

≤ σ̂−2 ≤ M

γ2
L

.

Ω(σ−2) has at most H non-differentiable points, which come from the non-differentiable
point x = x of ψ(x). The values

σ−2
h =





0 for h = 0,
Mx
γ2h

for h = 1, . . . , L,

∞ for h = L+ 1,

(100)

defined in Eq.(45), for h = 1, . . . ,H actually correspond to those points.
Lemma 30 states that, at x = x, ψ(x) has a discontinuously decreasing derivative and

neither ψ0(x) nor ψ(x) has discontinuously increasing derivative at any point. Therefore,
none of those non-differentiable points can be local minimum. Consequently, we have the
following lemma:

Lemma 32 Ω(σ−2) has no local minimizer at σ−2 = σ−2
h for h = 1, . . . ,H, and therefore,

any of its local minimizer is stationary point.

Then, Theorem 4 leads to the following lemma:

Lemma 33 The estimated rank is Ĥ = h, if and only if the inverse noise variance estimator
lies in the range

σ̂−2 ∈ Bh ≡
{
σ−2;σ−2

h < σ−2 < σ−2
h+1

}
.

Figure 11 shows quasi-convex functions {ψ(γ2
hσ
−2/M)}Hh=1 and their sum Ω(σ−2) in two

example cases for H = L. In the left case, the inverse noise variance estimator σ̂−2 is
smaller than the inverse threshold σ−2

1 for the largest singular value, and therefore, no EVB

estimator γ̂h is positive, i.e., Ĥ = 0. In the right case, it holds that σ−2
1 < σ̂−2 < σ−2

2 , and

therefore, γ̂1 is positive and the others are zero, i.e., Ĥ = 1.
We have the following lemma (the proof is given in Appendix G.9):

Lemma 34 The derivative of Ω(σ−2) is given by

Θ ≡ ∂Ω

∂σ−2
= −σ2 +

∑Ĥ
h=1 γh

(
γh − γ̆EVB

h

)
+
∑L

h=Ĥ+1
γ2
h

LM
, (101)
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Ω
ψ

σ− 2
1 σ− 2
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σ̂− 2
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Ω
ψ

σ− 2
1

σ̂− 2

σ− 2
2

Figure 11: {ψ(γ2
hσ
−2/M)}Hh=1 and Ω(σ−2) in two example cases for H = L. (Left) The

case when γ2
h/M = 4, 3, 2 for h = 1, 2, 3. (Right) The case when γ2

1/M = 30,
γ2
h/M = 6.0, 5.75, 5.5, . . . , 2.0 for h = 2, . . . , 18.

where Ĥ is a function of σ−2 defined by

Ĥ = Ĥ(σ−2) = h if σ−2 ∈ Bh. (102)

Note that Eq.(101) involves the shrinkage estimator γ̆EVB
h , which is a function of σ−2

(see Eq.(26)). For each hypothetical Ĥ, the solutions of the equation

Θ = 0 (103)

lying in σ−2 ∈ B
Ĥ

are stationary points, and hence candidates for the global minimum. If

we can solve Eq.(103) for all Ĥ = 1, . . . ,H, we can obtain the global solution by evaluating
the objective (40) at each obtained stationary points. However, solving Eq.(103) is difficult
unless Ĥ is small (it is easy to derive a closed-form solution for Ĥ = 0, 1). Based on
Lemma 34, we will obtain tighter bounds than Lemma 31.

Since
γh − γ̆EVB

h > 0,

Eq.(101) is upper-bounded by

Θ ≤ −σ2 +

L∑

h=1

γ2
h

LM
,

which leads to the upper-bound given in Eq.(44). Actually, if

(
L∑

h=1

γ2
h

LM

)−1

∈ B0,

then

Ĥ = 0,
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σ̂2 =
L∑

h=1

γ2
h

LM
,

is a local minimum.
The following lemma is easily obtained from Eq.(26) by using z1 <

√
z2

1 − z2
2 < z1 − z2

for z1 > z2 > 0:

Lemma 35 For γh ≥ γEVB, the EVB shrinkage estimator (26) can be bounded as follows:

γh −
(
√
M +

√
L)2σ2

γh
< γ̆EVB

h < γh −
(M + L)σ2

γh
.

This lemma is important for our analysis, because it allows us to bound the most compli-
cated part of Eq.(101) by terms independent of γh, i.e.,

(M + L)σ2 < γh
(
γh − γ̆EVB

h

)
< (
√
M +

√
L)2σ2. (104)

Using Eq.(104), we obtain the following lemma (the proof is given in Appendix G.10):

Lemma 36 Any local minimizer exists in σ−2 ∈ B
Ĥ

such that

Ĥ <
L

1 + α
,

and the following holds for any local minimizer lying in σ−2 ∈ B
Ĥ

:

σ̂2 ≥
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
.

It holds that
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
≥
∑L

h=Ĥ+1
γ2
h

M(L− Ĥ)
, (105)

of which the right-hand side is decreasing with respect to Ĥ. Combining Lemma 31,
Lemma 32, Lemma 33, Lemma 36, and Eq.(105) completes the proof of Theorem 8. Corol-
lary 9 is easily obtained from Lemma 32 and Lemma 34.

Appendix E. Proof of Theorem 13 and Corollary 14

In the large-scale limit, we can substitute the expectation 〈f(y)〉p(y) for the summation

L−1
∑L

h=1 f (yh). We can also substitute the MP distribution pMP(y) for p(y) in the expec-
tation, since the contribution from theH∗ signal components converges to zero. Accordingly,
our objective (40) converges to

Ω(σ−2)→ ΩLSL(σ−2) ≡
∫ y

κ
ψ
(
σ∗2σ−2y

)
pMP(y)dy +

∫ κ

y
ψ0

(
σ∗2σ−2y

)
pMP(y)dy
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= ΩLSL−Full(σ−2)−
∫ κ

max(xσ2/σ∗2,y)
ψ1

(
σ∗2σ−2y

)
pMP(y)dy, (106)

where ΩLSL−Full(σ−2) ≡
∫ y

y
ψ
(
σ∗2σ−2y

)
pMP(y)dy, (107)

and κ is a constant satisfying

H

L
=

∫ y

κ
pMP(y)dy (y ≤ κ ≤ y).

Note that x, y, and y are defined by Eqs.(39) and (48), and it holds that

x > y. (108)

We first investigate Eq.(107), which corresponds to the objective for the full-rank H = L
model. Let

s = log(σ−2),

t = log y
(
dt = 1

ydy
)
.

Then, Eq.(107) is written as a convolution:

Ω̃LSL−Full(s) ≡ ΩLSL−Full(es) =

∫
ψ
(
σ∗2es+t

)
etpMP(et)dt

=

∫
ψ̃(s+ t)pLSMP(t)dt,

where

ψ̃(s) = ψ(σ∗2es),

pLSMP(t) = etpMP(et)

=

√
(et − y)(y − et)

2πα
θ(y < et < y). (109)

Since Lemma 30 states that ψ(x) is quasi-convex, its composition ψ̃(s) with the non-
decreasing function σ∗2es is also quasi-convex.

The following holds for pLSMP(t), which we call a log-scaled MP (LSMP) distribution
(the proof is given in Appendix G.11):

Lemma 37 The LSMP distribution (109) is log-concave.

Lemma 37 and Proposition 12 imply that Ω̃LSL−Full(s) is quasi-convex, and therefore, its
composition ΩLSL−Full(σ−2) with the non-decreasing function log(σ−2) is quasi-convex. The
minimizer of ΩLSL−Full(σ−2) can be found by evaluating the derivative Θ, given by Eq.(101),
in the large-scale limit:

ΘFull → ΘLSL−Full = −σ2 + σ∗2
∫ y

y
y · pMP(y)dy −

∫ y

xσ2/σ∗2
τ(σ∗2σ−2y;α)pMP(y)dy. (110)
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Here, we used Eqs.(34) and (36). In the range

0 < σ−2 <
xσ∗−2

y

(
i.e.,

xσ2

σ∗2
> y

)
, (111)

the third term in Eq.(110) is zero. Therefore, Eq.(110) is increasing with respect to σ−2,
and zero when

σ2 = σ∗2
∫ y

y
y · pMP(y)dy = σ∗2.

Accordingly, ΩLSL−Full(σ−2) is strictly convex in the range (111). Eq.(108) implies that the
point σ−2 = σ∗−2 is contained in the region (111), and therefore, it is a local minimum
of ΩLSL−Full(σ−2). Combined with the quasi-convexity of ΩLSL−Full(σ−2), we have the
following lemma:

Lemma 38 The objective ΩLSL−Full(σ−2) for the full rank model H = L in the large-scale
limit is quasi-convex with its minimizer at σ−2 = σ∗−2. It is strictly convex in the range
(111).

For any κ (y < κ < y), the second term in Eq.(106) is zero in the range (111), which
includes its minimizer at σ−2 = σ∗−2. Since Lemma 30 states that ψ1(x) is decreasing for
x > x, the second term in Eq.(106) is non-decreasing in the region where

(
σ∗−2 <

) xσ∗−2

y
≤ σ−2 <∞.

Therefore, the quasi-convexity of ΩLSL−Full is inherited to ΩLSL:

Lemma 39 The objective ΩLSL(σ−2) for noise variance estimation in the large-scale limit
is quasi-convex with its minimizer at σ−2 = σ∗−2. ΩLSL(σ−2) is strictly convex in the range
(111).

Thus, we have proved that EVB accurately estimates the noise variance in the large-scale
limit:

σ̂2 EVB = σ∗2.

Assume that

ν∗H∗ >
√
α. (51)

Then, Proposition 11 guarantees that, in the large-scale limit, it holds that

γ2
H∗

Mσ∗2
≡ yH∗ = (1 + ν∗H∗)

(
1 +

α

ν∗H∗

)
, (112)

γ2
H∗+1

Mσ∗2
≡ yH∗+1 = y = (1 +

√
α)2. (113)
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The EVB threshold is given by

(γEVB)2

Mσ̂2 EVB
≡ x = (1 + τ)

(
1 +

α

τ

)
. (39)

Since Lemma 39 states that σ̂2 EVB = σ∗2, comparing Eqs.(112) and (113) with Eq.(39)
results in the following lemma:

Lemma 40 It almost surely holds that

γH∗ ≥ γEVB if and only if ν∗H∗ ≥ τ ,
γH∗+1 < γEVB for any {ν∗h}.

This completes the proof of Theorem 13. Comparing Eqs.(35) and (49) under Lemma 39
and Lemma 40 proves Corollary 14.

Appendix F. Proof of Theorem 15 and Corollary 16

We regroup the terms in Eq.(40) as follows:

Ω(σ−2) = Ω1(σ−2) +Ω0(σ−2), (114)

where

Ω1(σ−2) =
1

H∗

H∗∑

h=1

ψ

(
γ2
h

M
σ−2

)
, (115)

Ω0(σ−2) =
1

L−H∗

(
H∑

h=H∗+1

ψ

(
γ2
h

M
σ−2

)
+

L∑

h=H+1

ψ0

(
γ2
h

M
σ−2

))
. (116)

Below, assuming that

p(y) = pSC(y), (54)

and

yH∗ > y, (117)

we derive a sufficient condition for any local minimizer to lie only in σ−2 ∈ BH∗ , with which
Lemma 33 proves the theorem.

Under the assumption (54) and the condition (117), Ω0(σ−2), defined by Eq.(116), is
equivalent to the objective ΩLSL(σ−2) in the large-scale limit. Using Lemma 39, and noting
that

σ−2
H∗+1 =

Mx

γH∗+1

2

=
xσ∗−2

y
> σ∗−2, (118)

we have the following lemma:
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Lemma 41 Ω0(σ−2) is quasi-convex with its minimizer at

σ−2 = σ∗−2.

Ω0(σ−2) is strictly convex in the range

0 < σ−2 < σ−2
H∗+1.

Using Lemma 41 and the strict quasi-convexity of ψ(x), we can deduce the following
lemma (the proof is given in Appendix G.12):

Lemma 42 Ω(σ−2) is non-decreasing (increasing if ξ > 0) in the range σ2
H∗+1 < σ−2 <∞.

Using the bounds given by Eq.(104) and Lemma 41, we also obtain the following lemma
(the proof is given in Appendix G.13):

Lemma 43 Ω(σ−2) is increasing at σ−2 = σ2
H∗+1 − 0. It is decreasing at σ−2 = σ2

H∗ + 0
if the following hold:

ξ <
1

(1 +
√
α)2

, (119)

yH∗ >
x(1− ξ)

1− ξ(1 +
√
α)2

. (120)

Finally, we obtain the following lemma (the proof is given in Appendix G.14):

Lemma 44 Ω(σ−2) is decreasing in the range 0 < σ−2 < σ2
H∗ if the following hold:

ξ <
1

x
, (121)

yH∗ >
x(1− ξ)
1− xξ . (122)

Lemma 42, Lemma 43, and Lemma 44 together state that, if all the conditions (117),
(119)–(122) hold, at least one local minimum exists in the correct range σ−2 ∈ BH∗ , and no
local minimum (no stationary point if ξ > 0) exists outside the correct range. Therefore,
we can estimate the correct rank ĤEVB = H∗ by using a local search algorithm for noise
variance estimation. Choosing the tightest conditions, we have the following lemma:

Lemma 45 Ω(σ−2) has a global minimum in σ−2 ∈ BH∗, and no local minimum (no
stationary point if ξ > 0) outside BH∗, if the following hold:

ξ <
1

x
,

yH∗ =
γ2
H∗

Mσ∗2
>
x(1− ξ)
1− xξ . (123)
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Using Eq.(49), Eq.(123) can be written with the true signal amplitude as follows:

(1 + ν∗H∗)

(
1 +

α

ν∗H∗

)
− x(1− ξ)

1− xξ > 0.

The left-hand side can be factorized as follows:

1

ν∗H∗


ν
∗
H∗ −

(
x(1−ξ)
1−xξ − (1 + α)

)
+

√(
x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2




·


ν
∗
H∗ −

(
x(1−ξ)
1−xξ − (1 + α)

)
−
√(

x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2


 > 0. (124)

When Eq.(51) holds, the last factor in the left-hand side in Eq.(124) is positive. Therefore,
we have the following condition:

ν∗H∗ >

(
x(1−ξ)
1−xξ − (1 + α)

)
+

√(
x(1−ξ)
1−xξ − (1 + α)

)2
− 4α

2

=

(
x−1
1−xξ − α

)
+

√(
x−1
1−xξ − α

)2
− 4α

2
. (125)

Lemma 45 with the condition (123) replaced with the condition (125) leads to Theorem 15
and Corollary 16.

Appendix G. Proof of Lemmas

Here, we give proofs of the lemmas used in Appendices.

G.1 Proof of Lemma 19

Eq.(72) has two positive real solutions:

σ2
ah
σ2
bh

=
σ2

2LM


L+M +

σ2

c2
ah
c2
bh

±

√√√√
(
L+M +

σ2

c2
ah
c2
bh

)2

− 4LM


 .

The larger solution (with the plus sign) is decreasing with respect to c2
ah
c2
bh

, and lower-

bounded as σ2
ah
σ2
bh
> σ2/L. The smaller solution (with the minus sign) is increasing with

respect to c2
ah
c2
bh

, and upper-bounded as σ2
ah
σ2
bh
< σ2/M .

For σ2
ah

and σ2
bh

to be positive, Eqs.(69) and (70) require that

σ2
ah
σ2
bh
<
σ2

M
,
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which is violated by the larger solution, while satisfied by the smaller solution. With the
smaller solution (21), Eqs.(69) and (70) give the stationary point given by (20).

Using Eq.(72), we can easily derive Eq.(73) from Eq.(68), which completes the proof of
Lemma 19.

G.2 Proof of Lemma 20

Since δ̂ > 0, Eqs.(76) and (77) require that

γ̂h < γh −
Mσ2

γh
, (126)

and therefore, the positive stationary point exists only when

γh >
√
Mσ. (127)

Below, we assume that Eq.(127) holds.
Eq.(79) has two solutions:

γ̂h =
1

2

(
2γh −

(L+M)σ2

γh
±
√(

(M − L)σ2

γh

)2

+
4σ4

c2
ah
c2
bh

)
.

The larger solution with the plus sign is positive, decreasing with respect to c2
ah
c2
bh

, and

lower-bounded as γ̂h > γh − Lσ2/γh, which violates the condition (126).
The smaller solution, Eq.(17), with the minus sign is positive if the intercept of the

left-hand side in Eq.(79) is positive, i.e.,

(
γh −

Lσ2

γh

)(
γh −

Mσ2

γh

)
− σ4

c2
ah
c2
bh

> 0. (128)

From the condition (128), we obtain the threshold (16) for the existence of the positive
stationary point. Note that γVB

h
>
√
Mσ, and therefore, Eq.(127) holds whenever γh > γVB

h
.

Assume that γh > γVB
h

. Then, with the solution (17), δ̂h, given by Eq.(76), and σ2
ah

and

σ2
bh

, given by Eqs.(74) and (75), are all positive. Thus, we obtain the positive stationary
point (18).

Substituting Eqs.(74) and (75), and then Eqs.(76) and (77), into the free energy (68),
we have

FVB−Posi
h = −M log

(
1− γ̆VB

h

γh
− Lσ2

γ2
h

)
− L log

(
1− γ̆VB

h

γh
− Mσ2

γ2
h

)

+
−2γhγ̆

VB
h

σ2
+
γ2
h

σ2
−
(
L+M +

σ2

c2
ah
c2
bh

)
. (129)

Using Eq.(78), we can eliminate the direct dependency on c2
ah
c2
bh

, and express the free energy

(129) as a function of γ̆VB
h . This results in Eq.(80), and completes the proof of Lemma 20.
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G.3 Proof of Lemma 21

By differentiating Eqs.(73), (21), (80), and (17), we have

∂FVB−Null
h

∂ζ̂VB
h

=
LM

σ2
(

1− L
σ2 ζ̂

VB
h

) +
LM

σ2
(

1− M
σ2 ζ̂

VB
h

) − LM

σ2

=
LMc2

ah
c2
bh

(
1 +

√
LM
σ2 ζ̂VB

h

)(
1−

√
LM
σ2 ζ̂VB

h

)

σ2ζ̂VB
h

, (130)

∂ζ̂VB
h

∂c2ahc
2
bh

=
σ2

2LM



− σ2

c4
ah
c4
bh

+

2σ2

(
L+M + σ2

c2ah
c2bh

)

2c4
ah
c4
bh

√(
L+M + σ2

c2ah
c2bh

)2

− 4LM




=
1

c4
ah
c4
bh




(ζ̂VB
h )2

(
1−

√
LMζ̂VB

h
σ2

)(
1 +

√
LMζ̂VB

h
σ2

)


 , (131)

∂FVB−Posi
h

∂γ̆VB
h

=
M

γh

(
1−

(
γ̆VB
h
γh

+ Lσ2

γ2h

)) +
L

γh

(
1−

(
γ̆VB
h
γh

+ Mσ2

γ2h

)) − γh
σ2

(
2γ̆VB

h

γh
+

(L+M)σ2

γ2
h

)

=
2c2
ah
c2
bh
γ3
h

(
1−

(
γ̆VB
h
γh

+ (L+M)σ2

2γ2h

))(
(γ̆VB

h )2

γ2h
−
(

1− (L+M)σ2

γ2h

)
γ̆VB
h
γh

+ LMσ4

γ4h

)

σ6
,

(132)

∂γ̂h
∂c2ahc

2
bh

=
4γ2

hσ
2

4γhc4
ah
c4
bh

√
(M − L)2 +

4γ2h
c2ah

c2bh

=
σ4

2γhc4
ah
c4
bh

(
1−

(
γ̆VB
h
γh

+ (M+L)σ2

2γ2h

)) . (133)

Here, we used Eqs.(21) and (81) to obtain Eqs.(130) and (131), and Eqs.(17) and (82) to
obtain Eqs.(132) and (133), respectively. Eq.(85) is obtained by multiplying Eqs.(130) and
(131), while Eq.(86) is obtained by multiplying Eqs.(132) and (133).

Taking the difference between the derivatives (85) and (86), and then using Eqs.(82)
and (84), we have

∂(FPosi
h − FNull

h )

∂c2ahc
2
bh

=
∂FPosi

h

∂c2ahc
2
bh

− ∂FNull
h

∂c2ahc
2
bh

= − 1

σ2c2
ah
c2
bh

(
γh (γh − γ̂h)− (γVB

h
)2
)
. (134)

The following can be obtained from Eqs.(82) and (83), respectively:
(
γh(γh − γ̆VB

h )− (L+M)σ2

2

)2

=
(L+M)2σ4

4
− LMσ4 +

σ4

c2
ah
c2
bh

γ2
h, (135)
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(
(γVB
h

)2 − (L+M)σ2

2

)2

=
(L+M)2σ4

4
− LMσ4 +

σ4

c2
ah
c2
bh

(γVB
h

)2. (136)

Eqs.(135) and (136) imply that

γh(γh − γ̆VB
h ) > (γVB

h
)2 when γh > γVB

h
.

Therefore, Eq.(134) is negative, which completes the proof of Lemma 21.

G.4 Proof of Lemma 26

Lemma 25 immediately leads to the EVB shrinkage estimator (26). We can find the value
of cahcbh at the positive EVB local solution by combining the condition (82) for the VB
estimator and the condition (92) for the EVB estimator:

(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Mσ2

γh

)(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Lσ2

γh

)
=

σ4

c2
ah
c2
bh

LMσ4

γhγ̆
EVB
h

=
σ4

c2
ah
c2
bh

,

which gives the former equation in Eq.(94). Similarly, using Eqs.(19) and (92), we have

δ̂h =
c2
ah

σ2

(
γh −

γhγ̆
EVB
h

γ̆EVB
h + Mσ2

γh

)

=
c2
ah
M

γh

(
1 +

Lσ2

γhγ̆
EVB
h

)
.

Using the assumption that cah = cbh and therefore c2
ah

= cahcbh , we obtain the latter
equation in Eq.(94). The equations in Eq.(93) are simply obtained from Lemma 20.

Finally, applying Eq.(92) to the free energy (80), we have

FEVB−Posi
h = −M log

(
1− γhγ̆

EVB
h

γhγ̆
EVB
h +Mσ2

)
− L log

(
1− γhγ̆

EVB
h

γhγ̆
EVB
h + Lσ2

)
− γhγ̆

EVB
h

σ2
,

which leads to Eq.(95). This completes the proof of Lemma 26.

G.5 Proof of Lemma 27

The derivative is

∂Φ

∂z
=

1− 1
z+1 − log(z + 1)

z2
,

which is negative for z > 0 because

1

z + 1
+ log(z + 1) > 1.

This completes the proof of Lemma 27.
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G.6 Poof of Lemma 28

Since Φ(z) is decreasing, Ξ (τ ;α) is upper-bounded by

Ξ (τ ;α) = Φ (τ) + Φ
( τ
α

)
≤ 2Φ (τ) = Ξ (τ ; 1) .

Therefore, the unique zero-cross point τ of Ξ (τ ;α) is no greater than the unique zero-cross
point z of Φ(z):

τ ≤ z.

For obtaining the lower-bound τ >
√
α, it suffices to show that Ξ(

√
α;α) > 0. Below,

we prove that the following function is decreasing and positive for 0 < α ≤ 1:

g(α) ≡ Ξ (
√
α;α)√
α

.

From the definition (23) of Ξ (τ ;α), we have

g(α) =

(
1 +

1

α

)
log(
√
α+ 1)− log

√
α− 1√

α
.

The derivative is given by

∂g

∂
√
α

=

(
1 + 1

α

)
√
α+ 1

− 2

α3/2
log(
√
α+ 1)− 1√

α
+

1

α

= − 2

α3/2

(
log(
√
α+ 1) +

1√
α+ 1

− 1

)

< 0,

which implies that g(α) is decreasing. Since

g(1) = 2 log 2− 1 ≈ 0.3863 > 0,

g(α) is positive for 0 < α ≤ 1, which completes the proof of Lemma 28.

G.7 Proof of Lemma 30

Since

∂ψ0

∂x
= 1− 1

x
, (137)

∂2ψ0

∂x2
=

1

x2
> 0,

ψ0(x) is differentiable and strictly convex for x > 0 with its minimizer at x = 1. ψ1(x)
is continuous for x ≥ x, and Eq.(99) implies that ψ1(xh) ∝ FEVB−Posi

h . Accordingly,
ψ1(x) ≤ 0 for x ≥ x, where the equality holds when x = x. This equality implies that
ψ(x) is continuous. Since x > 1, ψ(x) shares the same minimizer with ψ0(x) at x = 1 (see
Figure 3).
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Hereafter, we investigate ψ1(x) and ψ(x) for x ≥ x. By differentiating Eqs.(43) and
(36), respectively, we have

∂ψ1

∂τ
= −

(
τ2

α − 1

(τ + 1)
(
τ
α + 1

)
)
< 0, (138)

∂τ

∂x
=

1

2


1 +

x− (1 + α)√
(x− (1 + α))2 − 4α


 > 0. (139)

Substituting

x = x(τ ;α) = (1 + τ)
(

1 +
α

τ

)
= 1 + α+ τ + ατ−1 (35)

into Eq.(139), we have

∂τ

∂x
=

τ2

α
(
τ2

α − 1
) . (140)

Multiplying Eqs.(138) and (140) gives

∂ψ1

∂x
=
∂ψ1

∂τ

∂τ

∂x
= −

(
τ2

α (τ + 1)
(
τ
α + 1

)
)

= −τ
x
< 0, (141)

which implies that ψ1(x) is decreasing for x > x.
Let us focus on the thresholding point of ψ(x) at x = x. Eq.(141) does not converge to

zero for x → x + 0 but stay negative. On the other hand, ψ0(x) is differentiable at x = x.
Consequently, ψ (x) has a discontinuously decreasing derivative, i.e., limx→x−0 ∂ψ/∂x >
limx→x+0 ∂ψ/∂x, at x = x.

Finally, we prove the strict quasi-convexity of ψ(x). Taking the sum of Eqs.(137) and
(141) gives

∂ψ

∂x
=
∂ψ0

∂x
+
∂ψ1

∂x
= 1− 1 + τ

x
= 1− 1 + τ

1 + τ + α+ ατ−1
> 0.

This means that ψ(x) is increasing for x > x. Since ψ0(x) is strictly convex and increasing
at x = x, and ψ(x) is continuous, ψ(x) is strictly quasi-convex. This completes the proof
of Lemma 30.

G.8 Proof of Lemma 31

The strict convexity of ψ0(x) and the strict quasi-convexity of ψ(x) also hold for
ψ0(γ2

hσ
−2/M) and ψ(γ2

hσ
−2/M) as functions of σ−2 (for γh > 0). Because of the differ-

ent scale factor γ2
h/M for each h = 1, . . . , L, each of ψ0(γ2

hσ
−2/M) and ψ(γ2

hσ
−2/M) has a

minimizer at a different position:

σ−2 =
M

γ2
h

.
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The strict quasi-convexity of ψ0 and ψ guarantees that Ω(σ−2) is decreasing for

0 < σ−2 <
M

γ2
1

,

and increasing for

M

γ2
L

< σ−2 <∞.

This proves Lemma 31.

G.9 Proof of Lemma 34

The derivative of Eq.(40) with respect to σ−2 is given by

∂Ω

∂σ−2
=

1

L

(
H∑

h=1

γ2
h

M

∂ψ

∂x
+

L∑

h=H+1

γ2
h

M

∂ψ0

∂x

)
. (142)

By using Eqs.(137) and (141), Eq.(142) can be written as

∂Ω

∂σ−2
=

1

L

(
L∑

h=1

γ2
h

M

∂ψ0

∂x
+

H∑

h=1

θ (xh ≥ x)
γ2
h

M

∂ψ1

∂x

)

=
1

L

(
L∑

h=1

γ2
h

M

(
1− 1

xh

)
−

H∑

h=1

θ (xh ≥ x)
γ2
hτh
Mxh

)

=

∑L
h=1 γ

2
h

LM
− σ2 − 1

L

H∑

h=1

θ (τh ≥ τ)σ2τh. (143)

Here, we also used the definition (33) of xh. Using Eq.(34), Eq.(143) can be written as

∂Ω

∂σ−2
=

∑L
h=1 γ

2
h

LM
− σ2 −

H∑

h=1

θ
(
γh ≥ γEVB

) γhγ̆EVB
h

LM

= −σ2 +

∑H
h=1 γh

(
γh − γ̂EVB

h

)
+
∑L

h=H+1 γ
2
h

LM
.

Here, we also used the definition (24) of γ̂EVB
h . Using the definition (102) and Lemma 33,

we can replace γ̂EVB
h and H with γ̆EVB

h and Ĥ, respectively, which completes the proof of
Lemma 34.

G.10 Proof of Lemma 36

By substituting the lower-bound in Eq.(104) into Eq.(101), we obtain

Θ ≥ −σ2 +
Ĥ(M + L)σ2 +

∑L
h=Ĥ+1

γ2
h

LM
.
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This implies that Θ > 0 unless the following hold:

Ĥ <
LM

M + L
=

L

1 + α
,

σ2 ≥
∑L

h=Ĥ+1
γ2
h

LM − Ĥ(M + L)
.

Therefore, no local minimum exists if either of these conditions is violated. This completes
the proof of Lemma 36.

G.11 Proof of Lemma 37

Focusing on the support

log y < t < log y

of the LSMP distribution (109), we define

f(t) ≡ 2 log pLSMP(t) = 2 log

√
(et − y)(y − et)

2πα
= log(−e2t + (y + y)et − yy) + const..

Let

u(t) ≡ (et − y)(y − et) = −e2t + (y + y)et − yy > 0,

and let

v(t) ≡ ∂u

∂t
= −2e2t + (y + y)et = u− e2t + yy,

w(t) ≡ ∂2u

∂t2
= −4e2t + (y + y)et = v − 2e2t,

be the first and the second derivatives of u.
Therefore, the first and the second derivatives of f(t) are given by

∂f

∂t
=
v

u
,

∂2f

∂t2
=
uw − v2

u2

= −
et
(
(y + y)e2t − 4yyet + (y + y)yy

)

u2

= −
et(y + y)

u2

((
et −

2yy

(y + y)

)2

+
yy
(
y − y

)2

(y + y)2

)

≤ 0.

This proves the log-concavity of the LSMP distribution pLSMP(t), and completes the proof
of Lemma 37.
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G.12 Proof of Lemma 42

Lemma 41 states that Ω0(σ−2), defined by Eq.(116), is quasi-convex with its minimizer at

σ−2 =

(∑L
h=H∗+1 γ

2
h

(L−H∗)M

)−1

= σ∗−2.

Since Ω1(σ−2), defined by Eq.(115), is a sum of strictly quasi-convex functions with their
minimizers at σ−2 = M/γ2

h < σ∗−2 for h = 1, . . . ,H∗, our objective Ω(σ−2), given by
Eq.(114), is non-decreasing (increasing if H∗ > 0) for

σ−2 ≥ σ∗−2.

Since Eq.(118) implies that σ−2
H∗+1 > σ∗−2, Ω(σ−2) is non-decreasing (increasing if ξ > 0)

for σ−2 > σ−2
H∗+1, which completes the proof of Lemma 42.

G.13 Proof of Lemma 43

Lemma 41 states that Ω0(σ−2) is strictly convex in the range 0 < σ−2 < σ2
H∗+1, and

minimized at σ−2 = σ∗−2. Since Eq.(118) implies that σ∗−2 < σ2
H∗+1, Ω0(σ−2) is increasing

at σ−2 = σ2
H∗+1 − 0. Since Ω1(σ−2) is a sum of strictly quasi-convex functions with their

minimizers at σ−2 = M/γ2
h < σ∗−2 for h = 1, . . . ,H∗, Ω(σ−2) is also increasing at σ−2 =

σ2
H∗+1 − 0.

Let us investigate the sign of the derivative Θ of Ω(σ−2) at σ−2 = σ2
H∗ + 0 ∈ BH∗ .

Substituting the upper-bound in Eq.(104) into Eq.(101), we have

Θ < −σ2 +
H∗(
√
M +

√
L)2σ2 +

∑L
h=H∗+1 γ

2
h

LM

= −σ2 +
H∗(
√
M +

√
L)2σ2 + (L−H∗)Mσ∗2

LM
. (144)

The right-hand side of Eq.(144) is negative if the following hold:

ξ =
H∗

L
<

M

(
√
M +

√
L)2

=
1

(1 +
√
α)2

, (145)

σ2 >
(L−H∗)Mσ∗2

LM −H∗(
√
M +

√
L)2

=
(1− ξ)σ∗2

1− ξ(1 +
√
α)2

. (146)

Assume that the first condition (145) holds. Then, the second condition (146) holds at
σ−2 = σ2

H∗ + 0, if

σ−2
H∗ <

1− ξ(1 +
√
α)2

(1− ξ) σ∗−2,

or equivalently,

yH∗ =
γ2
H∗

Mσ∗2
= x · σ

2
H∗

σ∗2
>

x(1− ξ)
1− ξ(1 +

√
α)2

,

which completes the proof of Lemma 43.
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G.14 Proof of Lemma 44

In the range 0 < σ−2 < σ2
H∗ , the estimated rank (102) is bounded as

0 ≤ Ĥ ≤ H∗ − 1.

Substituting the upper-bound in Eq.(104) into Eq.(101), we have

Θ < −σ2 +
Ĥ(
√
M +

√
L)2σ2 +

∑H∗

h=Ĥ+1
γ2
h +

∑L
h=H∗+1 γ

2
h

LM

= −σ2 +
Ĥ(
√
M +

√
L)2σ2 +

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

LM
. (147)

The right-hand side of Eq.(147) is negative, if the following hold:

Ĥ

L
<

M

(
√
M +

√
L)2

=
1

(1 +
√
α)2

, (148)

σ2 >

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

LM − Ĥ(
√
M +

√
L)2

. (149)

Assume that

ξ =
H∗

L
<

1

(1 +
√
α)2

.

Then, both of the conditions (148) and (149) hold anywhere in 0 < σ−2 < σ2
H∗ , if the

following holds

σ−2

Ĥ+1
<

LM − Ĥ(
√
M +

√
L)2

∑H∗

h=Ĥ+1
γ2
h + (L−H∗)Mσ∗2

for Ĥ = 0, . . . ,H∗ − 1. (150)

Since the sum
∑H∗

h=Ĥ+1
γ2
h in the right-hand side of Eq.(150) is upper-bounded as

H∗∑

h=Ĥ+1

γ2
h ≤ (H∗ − Ĥ)γ2

Ĥ+1
,

Eq.(150) holds if

σ−2

Ĥ+1
<

LM − Ĥ(
√
M +

√
L)2

(H∗ − Ĥ)γ2
Ĥ+1

+ (L−H∗)Mσ∗2

=
1− Ĥ

L (1 +
√
α)2

(ξ − Ĥ
L )

γ2
Ĥ+1

M + (1− ξ)σ∗2
for Ĥ = 0, . . . ,H∗ − 1. (151)

Using Eq.(100), the condition (151) is rewritten as

γ2
Ĥ+1

Mx
>

(ξ − Ĥ
L )

γ2
Ĥ+1

M + (1− ξ)σ∗2

1− Ĥ
L (1 +

√
α)2
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(
1− Ĥ

L
(1 +

√
α)2

)
γ2
Ĥ+1

Mσ∗2
> (ξx− Ĥ

L
x)
γ2
Ĥ+1

Mσ∗2
+ (1− ξ)x,

or equivalently

y
Ĥ+1

=
γ2
Ĥ+1

Mσ∗2
>

(1− ξ)x(
1− ξx+ Ĥ

L (x− (1 +
√
α)2)

) for Ĥ = 0, . . . ,H∗ − 1. (152)

Note that x > y = (1 +
√
α)2. Further bounding both sides, we have the following sufficient

condition for Eq.(152) to hold:

yH∗ >
(1− ξ)x

max (0, 1− ξx)
.

Thus, we obtain the conditions (121) and (122) for Θ to be negative anywhere in 0 < σ−2 <
σ2
H∗ , which completes the proof of Lemma 44.

Appendix H. Detailed Description of Overlap Method

The overlap (OL) method (Hoyle, 2008) minimizes the following approximation to the
negative log of the marginal likelihood (58) over the hypothetical model rank H = 1, . . . , L:7

2FOL ≈ −2 log p(V )

= (LM −H(L−H − 2)) log(2π) + L log π − 2
H∑

h=1

log

(
Γ ((M − h+ 1)/2)

Γ ((M − L− h+ 1)/2)

)

+H(M − L) (1− log (M − L)) +

H∑

h=1

L∑

l=H+1

log
(
γ2
h − γ2

l

)
+ (M − L)

H∑

h=1

log γ2
h

+ (M −H)

H∑

h=1

log

(
1

σ̂2 OL
− 1

λ̂OL
h

)
−

H∑

h=1

(
1

σ̂2 OL
− 1

λ̂OL
h

)
γ2
h

+ (L+ 2)

(
H∑

h=1

log λ̂OL
h + (M −H) log σ̂2 OL

)
+

L∑

l=1

γ2
l

σ̂2 OL
,

where Γ (·) denotes the Gamma function, and {λ̂OL
h } and σ̂2 OL are estimators for λh =

b2h + σ2 and σ2, computed by iterating the following equations until convergence:

λ̂OL
h =

γ2
h

2(L+ 2)

(
1− (M −H − (L+ 2))σ̂2 OL

γ2
h

+

√(
1− (M −H − (L+ 2))σ̂2 OL

γ2
h

)2

− 4(L+ 2)σ̂2 OL

γ2
h

)
, (153)

7 Our description is slightly different from Hoyle (2008), because our model (1) does not have the mean
parameter shared over the samples.
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σ̂2 OL =
1

(M −H)

(
L∑

l=1

γ2
l

L
−

H∑

h=1

λ̂OL
h

)
. (154)

When iterating Eqs.(153) and (154), λ̂OL
h can be a complex number. In such a case, the

hypothetical H is rejected. Otherwise, FOL is evaluated after convergence, and ĤOL that
minimizes FOL is chosen.

For the null hypothesis, the negative log likelihood is given by

2FOL = −2 logP (V ) = LM

(
log

(
2π

LM

L∑

l=1

γ2
l

)
+ 1

)
for H = 0.
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