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Abstract

This paper presents the first theoretical results showing that stable identification of over-
complete µ-coherent dictionaries Φ ∈ Rd×K is locally possible from training signals with
sparsity levels S up to the order O(µ−2) and signal to noise ratios up to O(

√
d). In particu-

lar the dictionary is recoverable as the local maximum of a new maximization criterion that
generalizes the K-means criterion. For this maximization criterion results for asymptotic
exact recovery for sparsity levels up to O(µ−1) and stable recovery for sparsity levels up
to O(µ−2) as well as signal to noise ratios up to O(

√
d) are provided. These asymptotic

results translate to finite sample size recovery results with high probability as long as the
sample size N scales as O(K3dSε̃−2), where the recovery precision ε̃ can go down to the
asymptotically achievable precision. Further, to actually find the local maxima of the new
criterion, a very simple Iterative Thresholding and K (signed) Means algorithm (ITKM),
which has complexity O(dKN) in each iteration, is presented and its local efficiency is
demonstrated in several experiments.

Keywords: dictionary learning, dictionary identification, sparse coding, sparse compo-
nent analysis, vector quantization, K-means, finite sample size, sample complexity, maxi-
mization criterion, sparse representation

1. Introduction

Be it the 300 million photos uploaded to Facebook per day, the 800GB the large Hadron
collider records per second or the 320.000GB per second it cannot record, it is clear that we
have reached the age of big data. Indeed, in 2012, the amount of data existing worldwide
is estimated to have reached 2.8 ZB = 2.800 billion GB and while 23 % of these data are
expected to be useful if analyzed, only 1% actually are. So how do we deal with this big
data challenge? The key concept, that has driven data processing and data analysis in the
past decade, is that even high-dimensional data has intrinsically low complexity, meaning
that every data point y can be represented as linear combination of a sparse (small) number
of elements or atoms φi ∈ Rd, ‖φ‖2 = 1 of an overcomplete dictionary Φ = (φ1, . . . φK), that
is,

y ≈ ΦIxI =
∑
i∈I

x(i)ϕi,

for a set I of size S, |I| = S, which is small compared to the ambient dimension, S � d ≤ K.
These sparse components do not only describe the data but the representations can also be
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used for a myriad of efficient sparsity based data processing schemes, ranging from denoising
(Donoho et al., 2006) to compressed sensing (Donoho, 2006; Candès et al., 2006). Therefore
a promising tool both for data analysis and data processing, that has emerged in the last
years, is dictionary learning, also known as sparse coding or sparse component analysis.
Dictionary learning addresses the fundamental question of how to automatically learn a
dictionary, providing sparse representations for a given data class. That is, given N signals
yn ∈ Rd, stored as columns in a matrix Y = (y1, . . . , yN ), find a decomposition

Y ≈ ΦX

into a d×K dictionary matrix Φ with unit norm columns and a K ×N coefficient matrix
with sparse columns.
Until recently the main research focus in dictionary learning has been on the development
of algorithms. Thus by now there is an ample choice of learning algorithms, that perform
well in experiments and are popular in applications (Field and Olshausen, 1996; Kreutz-
Delgado and Rao, 2000; Kreutz-Delgado et al., 2003; Aharon et al., 2006; Yaghoobi et al.,
2009; Mairal et al., 2010; Skretting and Engan, 2010; Rubinstein et al., 2010). However,
slowly the interest is shifting and researchers are starting to investigate also the theoret-
ical aspects of dictionary learning. Following the first theoretical insights, originating in
the blind source separation community (Zibulevsky and Pearlmutter, 2001; Georgiev et al.,
2005), there is now a set of generalization bounds predicting how well a learned dictionary
can be expected to sparsely approximate future data (Maurer and Pontil, 2010; Vainsencher
et al., 2011; Mehta and Gray, 2012; Gribonval et al., 2013). These results give a theoretical
foundation for dictionary learning as data processing tool, for example for compression,
but unfortunately do not give guarantees that an efficient algorithm will find/recover a
good dictionary provided that it exists. However, in order to justify the use of dictionary
learning as data analysis tool, for instance in blind source separation, it is important to
provide conditions under which an algorithm or scheme can identify the dictionary from a
finite number of training signals, that is, the sources from the mixtures. Following the first
dictionary identification results for the `1-minimization principle (Gribonval and Schnass,
2010; Geng et al., 2011; Jenatton et al., 2014), which was suggested by Zibulevsky and
Pearlmutter (2001)/Plumbley (2007), and for the ER-SPuD algorithm for learning a basis
(Spielman et al., 2012), 2013 has seen a number of interesting developments. First it was
shown that the K-SVD minimization principle suggested by Aharon et al. (2006) can locally
identify overcomplete tight dictionaries (Schnass, 2014). Later algorithms with global iden-
tification guarantees for coherent dictionaries were presented (Arora et al., 2014; Agarwal
et al., 2014b). Finally it was shown that an alternating minimization method is locally
convergent to the correct generating dictionary (Agarwal et al., 2014a). One aspect that all
these results have in common is that the sparsity level of the training signals required for
successful identification is of order O(µ−1) or O(

√
d) for incoherent dictionaries. Consid-

ering that on average sparse recovery in a given dictionary is successful for sparsity levels
O(µ−2) (Tropp, 2008; Schnass and Vandergheynst, 2007) and that for dictionary learning
we usually have a lot of training signals at our disposal, the same sparsity level should be
sufficient for dictionary learning and indeed in this paper we provide the first indication
that global dictionary identification could be possible for sparsity levels O(µ−2) by proving
that it is locally possible. Further we show that in experiments a very simple iterative
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algorithm, based on thresholding and K signed means, is locally successful.
The paper is organized as follows. After introducing all necessary notation in Section 2
we present a new optimization criterion, motivated by the analysis of the K-SVD principle
(Schnass, 2014) in Section 3. In Section 4 we give asymptotic identification results both for
exact and stable recovery, which in Section 5 are extended to results to finite sample sizes.
Section 6 provides an algorithm for actually finding a local optimum and some experiments
confirming the theoretical results. Finally in the last section we compare the results for the
new criterion to existing identification results, discuss the implications of these local results
for global dictionary identification algorithms and point out directions for future research.

2. Notations and Conventions

Before we jump into the fray, we collect some definitions and lose a few words on notations;
usually subscripted letters will denote vectors with the exception of c and ε where they are
numbers, e.g., (x1, . . . , xK) = X ∈ Rd×K vs. c = (c1, . . . , cK) ∈ RK , however, it should
always be clear from the context what we are dealing with.
We consider a dictionary Φ a collection of K unit norm vectors φi ∈ Rd, ‖φi‖2 = 1. By
abuse of notation we will also refer to the d×K matrix collecting the atoms as its columns
as the dictionary, that is Φ = (φi, . . . φK). The maximal absolute inner product between two
different atoms is called the coherence µ of the dictionary, µ = maxi 6=j |〈φi, φj〉|. By ΦI we
denote the restriction of the dictionary to the atoms indexed by I, that is ΦI = (φi1 . . . φiS ),
ij ∈ I. We indicate the conjugate transpose of a matrix with a ?, for example Φ? would be
the transpose of Φ.
The set of all dictionaries of a given size (d × K) is denoted by D. For two dictionaries
Φ,Ψ ∈ D we define the distance between each other as the maximal distance between two
corresponding atoms,

d(Φ,Ψ) := max
i
‖φi − ψi‖2.

We consider a frame F a collection of K ≥ d vectors fi ∈ Rd for which there exist two
positive frame constants A,B such that for all v ∈ Rd we have

A‖v‖22 ≤
K∑
i=1

|〈fi, v〉|2 ≤ B‖v‖22. (1)

From (1) it follows that F , interpreted as d ×K matrix, has rank d and that its non-zero
singular values are in the interval [

√
A,
√
B]. If B can be chosen equal to A, that is B = A,

the frame is called tight. If all frame elements fi have unit norm, we call F a unit norm
frame. For more details on frames see for instance the introduction by Christensen (2003).
Finally we introduce the Landau symbols O, o to characterise the growth of a function. We
write

f(t) = O(g(t)) if lim
t→0/∞

f(t)/g(t) = C <∞

and f(t) = o(g(t)) if lim
t→0/∞

f(ε)/g(ε) = 0.

.
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3. A Response Maximization Criterion

One of the origins of dictionary learning can be found in the field of vector quantization,
where the aim is to find a codebook (dictionary) such that the codewords (atoms) closely
represent the data, that is

min
Φ,X
‖Y − ΦX‖2F s.t. xn ∈ {ei}i.

Indeed the vector quantization problem can be seen as an extreme case of dictionary learn-
ing, where we do not only want all our signals to be approximately 1-sparse but also want the
single non-zero coefficient equal to one. On the other hand we allow the atoms (codewords)
to have any length. The problem above is usually solved by a K-means algorithm, which
alternatively separates the training data into K clusters, each assigned to one codeword,
and then updates the codeword to be the mean of the associated train signals. For more
detailed information about vector quantization or the K-means algorithm see for instance
the book by Gersho and Gray (1992) or the introduction by Aharon et al. (2006). If we
relax the condition that each coefficient has to be positive, but in turn ask for the atoms to
have unit norm, we are already getting closer to the concept of 1-sparse dictionary learning,

min
Φ∈D,X

‖Y − ΦX‖2F s.t. xn ∈ {±ei}i.

This minimization problem can be rewritten as

min
Φ∈D

∑
n

min
i,σi=±1

‖yn − σiφi‖22 = min
Φ∈D

∑
n

min
i,σi=±1

‖yn‖22 − 2σi〈yn, φi〉+ ‖φi‖22

= ‖Y ‖2F +N − 2 max
Φ∈D

∑
n

max
i
|〈yn, φi〉|,

and is therefore equivalent to the maximization problem

max
Φ∈D

∑
n

max
i
|〈yn, φi〉|. (2)

A local maximum of (2) can be found with a signed K-means algorithm, which assigns
each training signal to the atom of the current dictionary giving the largest response in
absolute value and then updating the atom as normalized signed mean of the associated
training signals, see Section 6 for more details. The question now is how do we go from
these 1-sparse dictionary learning formulations to S-sparse formulations with S > 1. The
most common generalization, which provides the starting point for the MOD and the K-
SVD algorithm, is to give up all constraints on the coefficients except for S-sparsity and to
minimize,

(PP2) min
Φ∈D,X

‖Y − ΦX‖2F s.t. ‖xn‖0 ≤ S. (3)

However, rewriting the problem we see that this formulation does not reduce to the same
maximization problem in case S = 1. Then the best one term approximation in the given
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dictionary is simply the largest projection onto one atom and we have

min
Φ∈D

∑
n

min
i,xi
‖yn − xiφi‖22 = min

Φ∈D

∑
n

min
i
‖yn − 〈φi, yn〉φi‖22

= ‖Y ‖2F −max
Φ∈D

∑
n

max
i
|〈yn, φi〉|2,

leading instead to the maximization problem

max
Φ∈D

∑
n

max
i
|〈yn, φi〉|2 vs. max

Φ∈D

∑
n

max
i
|〈yn, φi〉|.

A local maximum can now be found using the same partitioning strategy as before but
updating the atoms as largest singular vector rather than signed mean of the associated
training signals, requiring K SVDs as opposed to K means. While the minimization problem
(3) is definitely the most effective generalization for dictionary learning when the goal is
compression, it brings with it some complications when used as analysis tool. Indeed it has
been shown (Schnass, 2014) that for S = 1 the K-SVD criterion (3) can only identify the
underlying dictionary from sparse random mixtures to arbitrary precision (given enough
training samples) if this dictionary is tight and it is conjectured that the same holds for
S ≥ 1. Roughly simplified the reason for this is that for random sparse signals ΦIxI and
an ε-perturbation Ψ the average of the largest squared response behaves like

1

2

(
1− ε2

2
+ c(Ψ)

)2

+
1

2

(
1− ε2

2
− c(Ψ)

)2

= 1− ε2 +
ε4

4
+ c(Ψ)2.

If Φ is tight the term c(Ψ) is constant over all dictionaries and therefore there is a local
maximum at Φ. From the above we also see that the average of the largest absolute response
should behave like

1

2

∣∣∣∣1− ε2

2
+ c(Ψ)

∣∣∣∣+
1

2

∣∣∣∣1− ε2

2
− c(Ψ)

∣∣∣∣ = 1− ε2

2
,

meaning that we should have a maximum at Φ also if it is non-tight. This suggests as
alternative way to generalize the K-means optimization principle for dictionary identification
to simply maximize the absolute norm of the S-largest responses,

(PR1) max
Ψ∈D

∑
n

max
|I|=S

‖Ψ?
Iyn‖1. (4)

Other than for the K-SVD criterion it is not obvious that there should be a local optimum
of (4) at Φ even if all signals yn are perfectly S-sparse in Φ. Therefore it is quite intriguing
that we will not only be able to prove local identifiability of any generating dictionary via
(4) from randomly sparse signals, but that these identifiability properties are stable under
coherence and noise. However, before we get to the main result in Theorem 5 on page 1221,
we first have to lay the foundation, by providing suitable random signal models and by
studying the asymptotic identifiability properties of the new principle.
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4. Asymptotic Results

We can get to the asymptotic version of the S-response maximization principle in (4) simply
by replacing the sum over the training signals with the expectation, leading to

max
Ψ∈D

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
. (5)

Next we need a random sparse coefficient model to generate our signals y. We make the
following definition, see also Schnass (2014).

Definition 1 A probability distribution (measure) ν on the unit sphere SK−1 ⊂ RK is
called symmetric if for all measurable sets X ⊆ SK−1, for all sign sequences σ ∈ {−1, 1}K
and all permutations p we have

ν(σX ) = ν(X ), where σX := {(σ1x1, . . . , σKxK) : x ∈ X}, and

ν(p(X )) = ν(X ), where p(X ) := {(xp(1), . . . , xp(K)) : x ∈ X}.

Setting y = Φx where x is drawn from a symmetric probability measure ν on the unit
sphere has the advantage that for dictionaries which are orthonormal bases the resulting
signals have unit norm and for general dictionaries the signals have unit square norm in
expectation, that is E(‖y‖22) = 1. This reflects the situation in practical application, where
we would normalize the signals in order to equally weight their importance.
One example of such a probability measure can be constructed from a non-negative, non-
increasing sequence c ∈ RK with ‖c‖2 = 1, which we permute uniformly at random and
provide with random± signs. To be precise for a permutation p : {1, ...,K} → {1, ...,K} and
a sign sequence σ, σi = ±1, we define the sequence cp,σ component-wise as cp,σ(i) := σicp(i),

and set ν(x) = (2KK!)−1 if there exist p, σ such that x = cp,σ and ν(x) = 0 otherwise.
While being very simple this measure exhibits all the necessary structure and indeed in our
proofs we will reduce the general case of a symmetric measure to this simple case.
So far we have not incorporated any sparse structure in our coefficient distribution. To
motivate the sparsity requirements on our coefficients we will recycle the simple negative
example of a sparse coefficient distribution for which the original generating dictionary is
not at a local maximum of (5) with S = 1 (Schnass, 2014).

Example 1 Let U be an orthonormal basis and let the signals be constructed as y = Φx.
If x is randomly 2-sparse with ’flat’ coefficients, that is, drawn from the simple symmetric
probability measure with base sequence c, where c1 = c2 = 1/

√
2, ci = 0 for i ≥ 3, then U is

not a local maximum of (5) with S = 1.
Indeed, since the signals are all 2-sparse, the maximal inner product with all atoms in U is
the same as the maximal inner product with only d − 1 atoms. This degree of freedom we
can use to construct an ascent direction. Choose Uε = (u1, . . . , ud−1, (ud + εu1)/

√
1 + ε2),
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then we have

Ey (‖U?ε y‖∞) = Ex
(∥∥∥∥(x1, . . . , xd−1,

xd + εx1√
1 + ε2

)∥∥∥∥
∞

)
= Ex max

{
1√
2
,

∣∣∣∣xd + εx1√
1 + ε2

∣∣∣∣}
=

1√
2

(
1− 1

d(d− 1)
+

1

d(d− 1)

1 + ε√
1 + ε2

)
≥ 1√

2

(
1 +

1

d(d− 1)

ε− ε2

1 + ε2

)
>

1√
2

= Ey (‖U?y‖∞) .

From the above example we see that, in order to have a local maximum of (5) with S = 1
at the original dictionary, we need our signals to be truly 1-sparse, that is, we need to have
a decay between the first and the second largest coefficient. In the following sections we
will study how large this decay should be to have a local maximum exactly at or near to
the generating dictionary for more general dictionaries and sparsity levels.

4.1 Exact Recovery

To warm up we first provide an asymptotic exact dictionary identification result for (5) for
incoherent dictionaries in the noiseless setting.

Theorem 2 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients x be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK and assume that the signals are generated as y = Φx. If there exists β > 0 such
that for c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0 the non-increasing rearrangement of the absolute
values of the components of x we have cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β almost surely, that is

ν (cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β) = 1, (6)

then there is a local maximum of (5) at Φ.
Moreover for Ψ 6= Φ we have Ey

(
max|I|=S ‖Ψ?

Iy‖1
)
< Ey

(
max|I|=S ‖Φ?

Iy‖1
)

as soon as

ε <
β

1 + 3

√
log
(

25K2S
√
B

β(c̄1+...+c̄S)

) , (7)

where c̄i := Ex(ci(x)).

Proof idea We briefly sketch the main ideas of the proof, which are the same as for the
corresponding theorem for the K-SVD principle (Schnass, 2014). For self-containedness of
the paper the full proof is included in Appendix A.1.
Assume that we have the case of a simple probability measure based on one sequence c,
that is x = cp,σ. For any fixed permutation p the condition in (6) ensures that for all sign
sequences σ, and consequently all signals, the maximal S responses of the original dictionary
Φ are attained at Ip = p−1 ({1 . . . S}) and that there is a gap of size β to the remaining
responses.
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For an ε-perturbation of the generating dictionary we have ψi ≈ (1−ε2
i /2)φi+εizi for some

unit vectors zi with 〈zi, φi〉 = 0 and εi ≤ ε. Now for most sign sequences the contribution
of εizi to the response 〈ψi,Φcp,σ〉 will be smaller than β/2 so the maximal S responses will
still be attained at Ip. Comparing the loss of the perturbed dictionary over the typical

sign sequences of all permutations, which scales as (c1+...+cS)
2K

∑
ε2
i , to the maximal gain

Sε
√
B over the approximately 2

∑
i exp

(
−β2/ε2

i

)
atypical sign sequences shows that there

is a maximum at the original dictionary. The general result follows from an integration
argument.

As already mentioned, while for the K-SVD criterion (3) there is always an optimum at
the generating dictionary if all training signals are S-sparse, this it is not obvious for the
response principle. Indeed, in the special case where all the training signals are exactly
S-sparse, cS+1(x) = 0 almost surely, we get an additional condition to ensure asymptotic
recoverability,

cS(x)− 2µ
S∑
s=1

cs(x) ≥ β > 0, almost surely.

To get a better feeling for this constraint we bound the sum over the S largest responses by
S times the largest response,

∑S
s=1 cs(x) ≤ Sc1(x) and arrive at the condition

cS(x)

c1(x)
& 2Sµ, (8)

which is the classical condition under which simple thresholding will find the support of an
exactly S-sparse signal (Schnass and Vandergheynst, 2008).

4.2 Stability under Coherence and Noise

While giving a first insight into the identification properties of the response principle, The-
orem 2 suffers from two main limitations.
First, the required condition on the coherence of the dictionary with respect to the de-
cay of the coefficients, cS(x) − cS+1(x) − 2µ‖c(x)‖1 > 0, is unfortunately quite strict.
In the most favourable case of exactly S sparse signals with equally sized coefficients,
c1(x) = cS(x) = 1/

√
S, we see from (8) that we can only identify dictionaries from very

sparse signals, where S =. µ−1. In case of very incoherent dictionaries with µ = O(1/
√
d)

this means that S .
√
d. However, for most sign sequences σ we have

|〈φi,Φcp,σ〉| =
∣∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≈ cp(i) ±

∑
j 6=i

c2
p(j)|〈φi, φj〉|

2

1/2

≈ cp(i) ± µ,

which indicates that a condition of the form µ . cS − cS+1 may be strong enough to guar-
antee (approximate) recoverability of the dictionary. Assuming again the most favourable
case of equally sized coefficients, we could therefore identify dictionaries from signals with
sparsity levels of the order S . µ−2, which, in case of incoherent dictionaries, means of the
order of the ambient dimension S . d.
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The second limitation of Theorem 2 is that, even if it allows for not exact S-sparseness of the
signals, it does not take into account noise. Our next goal is therefore to extend the exact
identification result in Theorem 2 to a stable identification result for less sparse (larger S)
and noisy signals. For this task we first need to amend our signal model to incorporate
noise. We would like to consider unbounded white noise, but also keep the property that in
expectation the signals have unit square norm. Further for the next section, where we want
to transform our asymptotic identification results to results for finite sample sizes, it will
be convenient if our signals are bounded. These considerations lead to the following model:

y =
Φx+ r√
1 + ‖r‖22

, (9)

where r = (r(1) . . . r(d)) is a centred random subgaussian vector with parameter ρ. That
is, the entries r(i) are independent and satisfy E(et·r(i)) ≤ et2ρ2/2.
Employing this noisy signal model and formalizing the ideas about the typical gap size
between responses of the generating dictionary inside and outside the true support, leads
to the following theorem.

Theorem 3 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients x be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK . Further let r = (r(1) . . . r(d)) be a centred random subgaussian noise-vector
with parameter ρ and assume that the signals are generated according to the noisy signal
model in (9). If there exists β > 0 such that for c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0
the non-increasing rearrangement of the absolute values of the components of x we have
cS(x)− cS+1(x) ≥ β almost surely and

max{µ, ρ} ≤ β√
72(log a+ log log a)

for a =
112K2S(

√
B + 1)

Crβ(c̄1 + . . .+ c̄S)
, (10)

where Cr = Er
(
(1 + ‖r‖22)−1/2

)
and c̄i := Ex(ci(x)), then there is a local maximum of (5)

at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ 12SK2
√
B

Cr(c̄1 + . . .+ c̄S)
exp

(
−β2

72 max{µ2, ρ2}

)
. (11)

Proof idea As outlined at the beginning of the section the main ingredient we have to
add to the proof idea of Theorem 2 is a probabilistic argument to substitute the condition
guaranteeing that the S largest responses of the generating dictionary are Ip. Due to
concentration of measure we get that for most sign sequences, and therefore most signals,
the maximum is still attained at Ip. Moreover the gap to the remaining responses is actually
large enough to accommodate relatively high levels of noise and/or perturbations.
The detailed proof can be found in Appendix A.2.

Let us make some observations about the last result.
First, we want to point out that for sub-Gaussian noise with parameter ρ, the quantity
Cr = Er

(
(1 + ‖r‖22)−1/2

)
in the statement above is well behaved. If for example the r(i)

are iid Bernoulli-variables, that is P (r(i) = ±ρ) = 1
2 , we have Cr = (1+dρ2)−1/2. In general
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we have the following estimate due for instance to Theorem 1 by Hsu et al. (2012). Since
we have

P
(
‖x‖22 ≥ ρ2(d+ 2

√
dt+ 2t

)
≤ e−t,

setting t = d, we get P
(
‖x‖22 ≥ 5dρ2

)
≤ e−d, which leads to

Er

(
1√

1 + ‖r‖22

)
≥ (1− e−d)√

1 + 5dρ2
.

Also to illustrate the result we again specialize it to the most favourable case of exactly S-
sparse signals with balanced coefficients, that is cS(x) = S−1/2. Assuming white Gaussian
noise with variance ρ2

G we see that identification is possible even for expected signal to noise
ratios of the order O(Sd ), that is

E(‖Φx‖22)

E(‖r‖22)
&
S

d
.

Similarly, by specializing Theorem 3 to the case of exactly S-sparse and noiseless signals
we get - to the best of our knowledge - the first result establishing that locally it is possible
to stably identify dictionaries from signals with sparsity levels beyond the spark of the gen-
erating dictionary. Indeed, even if some of the S-sparse signals could have representations
in Φ that require less than S atoms, there will still be a local maximum of the asymptotic
criterion close to the original dictionary as long as the smallest coefficient of each signal is
of the order O(µ), which in the most favourable case means that we can have S . µ−2 or
S . d. The quality of this result is on a par with the best results for finding sparse ap-
proximations in a given dictionary, which say that on average Basis Pursuit or thresholding
can find the correct sparse support even for signals with sparsity levels of the order of the
ambient dimension (Tropp, 2008; Schnass and Vandergheynst, 2007).
Next note that with the available tools it would be possible to consider also a signal model
where a small fraction of the coefficients violates the decay condition cS(x)− cS+1(x) ≥ β
and still have stability. However, we leave explorations in that direction to the interested
reader and instead turn to the study of the criterion for a finite number of training samples.

5. Finite Sample Size Results

In this section we will transform the two asymptotic results from the last section into results
for finite sample sizes, that is, we will study when Φ is close to a local maximum of

max
Ψ∈D

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1, (12)

assuming that the yn are following either the noise-free or the noisy signal model. For conve-
nience we will do the analysis for the normalized version (12) of the S-response criterion (4).

Theorem 4 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients xn be drawn from a symmetric probability distribution ν on the unit sphere
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SK−1 ⊂ RK and assume that the signals are generated as yn = Φxn. If there exists β > 0
such that for c1(xn) ≥ c2(xn) ≥ . . . ≥ cK(xn) ≥ 0 the non-increasing rearrangement of the
absolute values of the components of xn we have cS(xn)− cS+1(xn)− 2µ‖xn‖1 ≥ β almost
surely and the target precision ε̃ satisfies

ε̃ ≤ β

1 + 3

√
log
(

50K2S
√
B

β(c̄1+...+c̄S)

) ,
where c̄i := Exn(ci(xn)), then except with probability,

2 exp

(
−Nε̃

2(c̄1 + . . .+ c̄S)2

129S2K2B
+Kd log

(
25SK

√
B

ε̃(c̄1 + . . .+ c̄S)

))
,

there is a local maximum of (12) respectively (4) at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ ε̃+
ε̃2

4K
.

Theorem 5 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ. Let
the coefficients xn be drawn from a symmetric probability distribution ν on the unit sphere
SK−1 ⊂ RK . Further let rn = (rn(1) . . . rn(d)) be i.i.d. centred random subgaussian noise-
vectors with parameter ρ and assume that the signals are generated according to the noisy
signal model in (9). If there exists β > 0 such that for c1(xn) ≥ c2(xn) ≥ . . . ≥ cK(xn) ≥ 0
the non-increasing rearrangement of the absolute values of the components of x we have
cS(xn) − cS+1(xn) ≥ β almost surely and if the target precision ε̃, the noise parameter ρ
and the coherence µ satisfy

ε̃ ≤ β
9
4 + 9

√
log a

and (13)

max{µ, ρ} ≤ β√
72(log a+ log log a)

for a =
150K2S(

√
B + 1)

Crβ(c̄1 + . . .+ c̄S)
,

where Cr = Ern
(
(1 + ‖rn‖22)−1/2

)
and c̄i := Exn(ci(xn)), then except with probability

2 exp

(
−
Nε̃2

µ,ρ(c̄1 + . . .+ c̄S)2

513C2
rS

2K2
(√
B + 1

)2 +Kd log

(
49SK

(√
B + 1

)
εµ,ρ(c̄1 + . . .+ c̄S)

))
,

where ε̃µ,ρ = max

{
ε̃,

16SK2
(√
B + 1

)
Cr(c̄1 + . . .+ c̄S)

exp

(
− β2

72 max{µ2, ρ2}

)}
,

there is a local maximum of (12) respectively (4) at Ψ̃, satisfying

d(Ψ̃,Φ) ≤ ε̃µ,ρ +
ε̃2
µ,ρ

16K
.
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Proof idea The proofs, which can be found in Appendix A.3, are based on three ingredients,
a Lipschitz property for the mapping Ψ→ 1

N

∑N
n=1 max|I|=S ‖Ψ?

Iyn‖1 for the respective sig-
nal model, the concentration of the sum around its expectation for a δ-net covering the
space of all admissible dictionaries close to Φ and a triangle inequality argument to show
that the finite sample response differences are close to the expected response differences and
therefore larger than 0 for all ε & εµ,ρ.

To see better how the sample complexity behaves, we simplify the two theorems to the spe-
cial case of noiseless exactly S-sparse signals with balanced coefficients for various orders
of magnitude of S.
If we have S = O(1), Theorem 4 implies that in order to have a maximum within radius ε̃
to the original dictionary Φ with probability e−Kd we need N = O

(
K3dε̃−2

)
samples. Con-

versely given N training signals we can expect the distance between generating dictionary
and closest local maximum to be of the order O

(
K2N−1/2

)
.

If we assume a very incoherent dictionary where µ = O(d−1/2) and thus let the sparsity
level be of the order O(

√
d) the sample complexity rises to N = O

(
K3d3/2ε̃−2

)
. Taking

into account that by (13) the target precision ε̃ needs to be of order O
(
S−1/2

)
= O

(
d−1/4

)
this means that we need at least N = O

(
K3d2

)
training signals and once this initial level

is reached, the error goes to zero at rate N−1/2.
For an even lower sparsity level, S = O(d), again assuming a very incoherent dictionary,
the sample complexity for target precision ε̃ implied now by Theorem 5 rises to N =
O
(
K3d2ε̃−2

)
. In this regime, however, we cannot reach arbitrarily small errors by choosing

N large enough but only approach the asymptotic precision ε̃µ = 16K2
√
SB exp (−d/72S).

Following these promising theoretical results, in the next section we will finally see how
theory translates into practice.

6. Experiments

After showing that the optimization criterion in (4) is locally suitable for dictionary iden-
tification, in this section we present an iterative thresholding and K means type algorithm
(ITKM) to actually find the local maxima of (4) and conduct some experiments to illustrate
the theoretical results. We recall that given the input signals Y = (y1 . . . yN ) and a fixed
sparsity parameter S we want to solve,

max
Ψ∈D

∑
n

max
|I|=S

‖Ψ?
Iyn‖1.

Using Lagrange multipliers,

∂

∂ψk

(∑
n

max
|I|=S

‖Ψ?
Iyn‖1

)
=

∑
n:k∈I(Ψ,yn)

sign(〈ψk, yn〉)y?n,

∂

∂ψk

(
‖ψk‖22

)
= 2ψ?k,
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where I(Ψ, yn) := argmax|I|=S ‖Φ?
Iyn‖1, we arrive at the following update rule,

ψnewk = λk ·
∑

n:k∈I(Ψold,yn)

sign(〈ψoldk , yn〉)yn, (14)

where λk is a scaling parameter ensuring that ‖ψnewk ‖2 = 1.
In practice, when we do not have an oracle giving us the generating dictionary as initial-
ization, we also need to safeguard against bad initializations resulting in a zero-update
ψnewk = 0. For example we can choose the zero-updated atom uniformly at random from
the unit sphere or from the input signals.
Note that finding the sets I(Ψold, yn) corresponds to N thresholding operations while up-
dating according to (14) corresponds to K signed means. Altogether this means that each
iteration of ITKM has computational complexity determined by the matrix multiplication
Ψ?Y , meaning O(dKN). This is light in comparison to K-SVD, which even when using
thresholding instead of OMP as sparse approximation procedure still requires the calculation
of the maximal singular vector of K on average d × N

K matrices. It is also more compu-
tationally efficient than the algorithm for local dictionary refinement, proposed by Arora
et al. (2014), which is also based on averaging. Furthermore it is straightforward to derive
online or parallelized versions of ITKM. In an online version for each newly arriving signal
yn we calculate I(Ψold, yn) using thresholding and update ψnewk = ψnewk + sign(〈ψoldk , yn〉)yn
for k ∈ I(Ψold, yn). After N signals have been processed we renormalize the atoms ψnewk

to have unit norm and set Ψold = Ψnew. Similarly, to parallelize we divide the training
samples into m sets of size N

m . Then on each node m we learn a dictionary Ψnew
m according

to (14) with λk = 1. We then calculate the sum of these dictionaries Ψnew
0 =

∑
m Ψnew

m and
renormalize the atoms in Ψnew

0 to have unit norm.
Armed with this very simple algorithm we will now conduct four experiments to illustrate
our theoretical findings1.

6.1 ITKM vs. K-SVD

In our first experiment we compare the local recovery error of ITKM and K-SVD for 3-
dimensional bases with increasing condition numbers.
The bases are perturbations of the canonical basis Φ = (e1, e2, e3) with the vector v =
(1, 1, 1). That is, Φt = (et1, e

t
2, e

t
3), where eti = (ei + tv)/‖(ei + tv)‖2 and t varying from

0 to 0.5 in steps of 0.1, which corresponds to condition numbers κ(Φt) varying from 1 to
2.5. We generate N = 4096 approximately 1-sparse noiseless signals from the signal model
described in Table 1 with S = 1, T = 2, ρ = 0 and b = 0.1/0.2 and run both ITKM and
K-SVD with 1000 iterations, sparsity parameter S = 1 and the true dictionary (basis) as
initialization. Figure 1(a) shows the recovery error d(Φt, Ψ̃) between the original dictionary
and the output of the respective algorithm averaged over 10 runs.
As predicted by the theoretical results on the corresponding underlying minimization prin-
ciples, the recovery errors of ITKM and K-SVD are roughly the same for Φ0, which is an
orthogonal basis and therefore tight. However, while for ITKM the recovery error stays

1. A Matlab penknife (mini-toolbox) for playing around with ITKM and reproducing the experiments can
be found at http://homepage.uibk.ac.at/~c7021041/ITKM.zip.
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Signal Model
Given the generating dictionary Φ our signal model further depends on four coefficient
parameters,

S - the effective sparsity or number of comparatively large coefficients,
b - deciding the decay factor of these sparse coefficients,
T - the total number of non-zero coefficients (T ≥ S) and
ρ - the noise level.

Given these parameters we choose a decay factor cb uniformly at random in the interval
[1 − b, 1]. We set ci = cib/

√
S for 1 ≤ i ≤ S and ci = 0 for T < i ≤ K. If T = S

we renormalize the sequence to have unit norm, while if T > S we choose the vector
(cS+1, . . . , cT ) uniformly at random on the sphere of radius R, where R is chosen such that
the resulting sequence c has unit norm. We then choose a permutation p and a sign sequence
σ uniformly at random and set y = Φcp,σ, respectively y = (Φcp,σ + r)/

√
1 + ‖r‖2 where r

is a Gaussian noise-vector with variance ρ2 if ρ > 0.

Table 1: Signal Model

constantly low over all condition numbers, for K-SVD it increases with increasing condition
number or non-tightness.

6.2 Recovery Error and Sample Size

The next experiment is designed to show how fast the maximizer Ψ̃ near the original dic-
tionary Φ converges to Φ with increasing sample size N .
The generating dictionaries consist of the canonical basis in Rd for d = 4, 8, 16 and the first
d/2 elements of the Hadamard basis and as such are not tight. For every set of parameters
d, S(T ), b we generate N noiseless signals with N varying from 27 = 128 to 214 = 16384 and
run ITKM with 1000 iterations, sparsity parameter S equal to the coefficient parameter
S and the true dictionary as initialization. Figure 1(b) shows the recovery error d(Φ, Ψ̃)
between the original dictionary Φ and the output of ITKM Ψ̃ averaged over 10 runs.
As predicted by Theorem 4 the recovery error decays as N−1/2. However, the separation of
the curves for d = 4, 8, 16 and almost exactly sparse signals (b = 0.01) by a factor around√

2 instead of 4, as suggested by the estimate ε̃ ≈ K2N−1/2, indicates that the cubic de-
pendence of the sampling complexity on the number of atoms K may be too pessimistic
and could be lowered.

6.3 Stability of Recovery Error under Coherence and Noise

With the last two experiments we illustrate the stability of the maximization criterion under
coherence and noise. As generating dictionaries we use again the canonical basis plus half
Hadamard dictionaries described in the last experiment, which have coherence µ = d−1/2.To
test the stability under coherence we use a large enough number of noiseless training signals
N = 16384, such that the distance between the local maximum of the criterion near the
generating dictionary, that is the output of ITKM with oracle initialization, and the gener-
ating dictionary is mainly determined by the ratio between the gap size β and the coherence.
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Figure 1: (a) Local recovery error of K-SVD and ITKM for two different types of decaying
coefficients and bases with varying condition numbers in R3, (b) Decay of recovery
error of ITKM with increasing number of training signals

For each set of parameters d, S(T ) we create N training signals with decreasing gap sizes
β by increasing b from 0 to 0.1 in steps of 0.01 and run ITKM with oracle initialization,
parameter S and 1000 iterations. Figure 2(a) shows the recovery error d(Φ, Ψ̃) between the
original dictionary Φ and the output of ITKM Ψ̃ again averaged over 10 trials.
Again the experiments reflect our theoretical results. For d = 8, 16 with S = 1 or d = 16
with S = 2 the gap size is large enough that over the whole range of parameters the recovery
error stays constantly low at the level defined by the number of samples. Note that this is
quite good, since for b = 0.1 we are already far beyond the gap size coherence ratios where
the stable theoretical results hold. On the other hand for d = 8 with S = 2 or d = 16 with
S = 3 early on the gap decreases enough to become the error determining factor and so we
see an increase in recovery error as b grows.
Conversely to test the stability under noise we use a large enough number of exactly sparse
training signals, such that the recovery error will be mainly determined by the noise level.
For each set of parameters d, S(S), b we create N = 16384 training signals with Gaussian
noise of variance (noise level) ρ2 going from 0 to 0.1 in steps of 0.01 and run ITKM with
oracle initialization, parameter S and 1000 iterations. Figure 2(b) shows the recovery error
d(Φ, Ψ̃) between the original dictionary Φ and the output of ITKM Ψ̃, this time averaged
over 20 trials.

The curves again correspond to the prediction of the theoretical results, that is the re-
covery error stays at roughly the same level defined by the number of samples until the
noise becomes large enough and then increases. What is maybe interesting to observe in
both experiments is the dithering effect for d = 16 with S = 3, which is due to the special
structure of the dictionary. Indeed using almost equally sized, almost exactly sparse coef-
ficients, it is possible to build signals using only the canonical basis that have almost the

1225



Schnass

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

decrease in gap!size (b)

er
ro

r

8, 1(4)
16, 1(4)
8, 2(4)
16, 2(4)
16, 3(6)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

noiselevel

er
ro

r

8, 2(2), 0.1
8, 2(2), 0.2
16, 2(2), 0.1
16, 2(2), 0.2
16, 3(3), 0.1
16, 3(3), 0.2

(a) (b)

Figure 2: Increase of recovery error with (a) decreasing ratio between coefficient gap and
coherence and (b) increasing noise level

same response in only half the Hadamard basis and the other way round. This indicates
that slight perturbations of one with the other lead to even better responses and therefore
a larger recovery error. After showing that the theoretical results translate into algorithmic
practice, we finally turn to a discussion of our results in the context of existing work and
point out directions of future research.

7. Discussion

We have introduced a new response maximization principle for dictionary learning and
shown that this is locally suitable to identify a generating µ-coherent dictionary from ap-
proximately S-sparse training signals to arbitrary precision as long as the sparsity level is of
the order O(µ−1). We have also presented - to the best of our knowledge - the first results
showing that stable dictionary identification is locally possible not only for signal to noise
ratios of the order O(

√
d) but also for sparsity levels of the order O(µ−2).

The derived sample complexity (omitting log factors) of O(K3dε̃−2), for signals with spar-
sity levels S = O(1) is roughly the same as for the K-SVD criterion (Schnass, 2014) or the
`1-minimization criterion (Jenatton et al., 2014) but somewhat large compared to recently
developed dictionary algorithms that have a sample complexity of O(K2) (Arora et al.,
2014; Agarwal et al., 2014a) or O(Kε−2) (Agarwal et al., 2014b). However, as the sparsity
approaches and goes beyond µ−1 ∼

√
d the derived sample complexity of O(K3d2ε̃−2) com-

pares quite favourably to the sample complexity of O(K1/(4η)) for a sparsity level d1/2−η

as projected by Arora et al. (2014). Given that also our experimental results suggest that
O(K3dε̃−2) is quite pessimistic, one future direction of research aims to lower the sample
complexity. In particular ongoing work suggests that for the ITKM algorithm a sample size
of order K logK is enough to guarantee local recovery with high probability.
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Another strong point of the results is that the corresponding maximization algorithm ITKM
(Iterative Thresholding andK signed Means) is locally successful, as demonstrated in several
experiments, and computationally very efficient. The most complex step in each iteration
is the matrix multiplication Φ?Y of order O(dKN), which is even lighter than the iterative
averaging algorithm described by Arora et al. (2014).
However, the serious drawback is that ITKM is only a local algorithm and that all our results
are only local. Also while for the K-SVD criterion and the `1-minimization criterion there
is reason to believe that all local minima might be equivalent, the response maximization
principle has a lot of smaller local maxima, which is confirmed by preliminary experiments
with random initializations. There ITKM fails but with grace, that is, it outputs local
maximizers that have not all, but only most atoms in common with what seems to be the
global maximizer near the generating dictionary. This behaviour is in strong contrast to
the algorithms presented by Arora et al. (2014); Agarwal et al. (2014b), that have global
success guarantees at a computational cost of the order O(dN2), and leads to several very
important research directions.
First we want to confirm that ITKM has a convergence radius of the order O(1/

√
S). This

is suggested by the derived radius of the area on which the generating dictionary is the
optimal maximizer as well as preliminary experiments. Alternatively, we could investigate
how the results for the local iterative algorithms (Arora et al., 2014; Agarwal et al., 2014a)
could be extended to larger sparsity levels and convergence radii using our techniques. The
associated important question is how to extend the results for the algorithms presented by
Arora et al. (2014); Agarwal et al. (2014b) to sparsity levels O(µ−2), if possible at lower
cost than O(dN2). Given the conjectured size of the convergence radius for ITKM it would
even be sufficient for the output of the algorithm to arrive at a dictionary within distance
O(1/

√
S) to the generating dictionary, since the output could then be used as initialization

for ITKM.
A parallel approach for getting global identification results for sparsity levels O(µ−2), that
we are currently pursuing, is to analyze a version of ITKM using residual instead of pure
signal means, which in preliminary experiments exhibits global convergence properties.
The last research directions we want to point out are concerned with the realism of the
signal model. The fact that for an input sparsity S a gap of order O(µ−2) between the S
and S + 1 largest coefficient is sufficient can be interpreted as a relaxed dependence of the
algorithm on the sparsity parameter, since a gap of order µ−2 can occur quite frequently. To
further decrease this sensitivity to the sparsity parameter in the criterion and the algorithm
we would therefore like to extend our results to the case where we can only guarantee a gap
of order O(µ−2) between the S largest and the S + T largest coefficient for some T > 1.
Last but not least we would like to exactly reflect the practical situation, where we would
normalize our training signals to equally weight their importance and analyze the unit norm
signal model where y = Φx+ r/‖Φx+ r‖2.
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Appendix A. Proofs

We now provide the full proofs for all our results.

A.1 Proof of Theorem 2

We first reformulate and prove the theorem for the simple case of a symmetric coefficient
distribution based on one sequence and then use an integration argument to extend it to
the general case.

Proposition 6 Let Φ be a unit norm frame with frame constants A ≤ B and coherence
µ. Let x ∈ RK be a random permutation of a sequence c, where c1 ≥ c2 ≥ c3 . . . ≥
cK ≥ 0 and ‖c‖2 = 1, provided with random ± signs, that is x = cp,σ with probability
P(p, σ) = (2KK!)−1. Assume that the signals are generated as y = Φx. If c satisfies
cS > cS+1 + 2µ‖c‖1 then there is a local maximum of (5) at Φ.
Moreover for Ψ 6= Φ we have Ey

(
max|I|=S ‖Ψ?

Iy‖1
)
< Ey

(
max|I|=S ‖Φ?

Iy‖1
)

as soon as

d(Φ,Ψ) ≤ cS − cS+1 − 2µ‖c‖1

1 + 3

√
log
(

25K2S
√
B

(cS−cS+1−2µ‖c‖1)(c1+...+cS)

) . (15)

Proof We start by evaluating the objective function at the original dictionary Φ.

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Φ?
IΦcp,σ‖1

)
= EpEσ

(
max
|I|=S

∑
i∈I
|〈φi,Φcp,σ〉|

)
.

To estimate the sum of the (in absolute value) largest S inner products, we first assume
that p is fixed. Setting Ip = p−1 ({1, . . . S}) we have,

|〈φi,Φcp,σ〉| =
∣∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≥ cS − µ‖c‖1 ∀i ∈ Ip
≤ cS+1 + µ‖c‖1 ∀i /∈ Ip

.

Together with the condition that cS > cS+1 + 2µ‖c‖1 these estimates ensure that the S
maximal inner products in absolute value are attained at Ip and so we get for the expecta-
tion,

EpEσ
(

max
|I|=S

‖Φ?
IΦcp,σ‖1

)
= EpEσ

(
‖Φ?

IpΦcp,σ‖1
)

= EpEσ

∑
i∈Ip

∣∣∣cp(i) + σi
∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣
 = c1 + . . .+ cS .

To compute the expectation for a perturbation of the original dictionary we use the following
parameterization of all ε-perturbations Ψ of the original dictionary Φ. If d(Ψ,Φ) = ε then

1228



Local Identification of Overcomplete Dictionaries

‖ψi−φi‖2 = εi with maxi εi = ε and we have zi with 〈φi, zi〉 = 0, ‖zi‖2 = 1 and αi := 1−ε2
i /2

and ωi := (ε2
i − ε4

i /4)
1
2 , such that

ψi = αiφi + ωizi.

Expanding the expectation as before we get,

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
= EpEσ

(
max
|I|=S

∑
i∈I
|〈ψi,Φcp,σ〉|

)
. (16)

The tried and tested strategy applied now is showing that for small perturbations and most
sign patterns σ the maximal inner products are still attained by i ∈ Ip. We have

∀i ∈ Ip : |〈ψi,Φcp,σ〉| ≥ αi(cS − µ‖c‖1)− ωi|〈zi,Φcp,σ〉|
∀i /∈ Ip : |〈ψi,Φcp,σ〉| ≤ αi(cS+1 + µ‖c‖1) + ωi|〈zi,Φcp,σ〉|.

Using Hoeffding’s inequality we can estimate the typical sizes of the terms |〈zi,Φcp,σ〉|,

P(|〈zi,Φcp,σ〉| ≥ t) = P(|
∑
j 6=i

σjcp(j)〈zi, φj〉| > t)

≤ 2 exp

(
− t2

2
∑

j 6=i c
2
p(j)〈zi, φj〉2

)
≤ 2 exp

(
− t

2

2

)
.

In case ωi 6= 0 or equivalently εi 6= 0, we set t = s/ωi to arrive at

P(ωi|〈zi,Φcp,σ〉| ≥ s) ≤ 2 exp

(
− s2

2ω2
i

)
≤ 2 exp

(
− s2

2ε2
i

)
,

where we have used that ω2
i = ε2

i − ε4
i /4 ≤ ε2

i , while in case εi = 0 we trivially have that
P(ωi|〈zi,Φcp,σ〉| ≥ s) = 0. Summarizing these findings we see that except with probability

η := 2
∑
i:εi 6=0

exp

(
− s2

2ε2
i

)
,

we have

∀i ∈ Ip : |〈ψi,Φcp,σ〉| ≥ αi(cS − µ‖c‖1)− s
∀i /∈ Ip : |〈ψi,Φcp,σ〉| ≤ αi(cS+1 + µ‖c‖1) + s.

This means that as long as mini∈Ip αi(cS−µ‖c‖1)−s ≥ maxi/∈Ip αi(cS+1 +µ‖c‖1)+s, which

is for instance implied by setting s := 1
2(cS − cS+1 − 2µ‖c‖1 − ε2

2 ), we have

max
|I|=S

‖Ψ?
IΦcp,σ‖1 = ‖Ψ?

IpΦcp,σ‖1.

We now use this result for the calculation of the expectation over σ in (16). For any
permutation p we define the set

Σp :=
⋃
i

{σ s.t. ωi|〈zi,Φcp,σ〉| ≥ s}.
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We then have

Eσ
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
=
∑
σ∈Σp

P(σ) · max
|I|=S

‖Ψ?
IΦcp,σ‖1 +

∑
σ/∈Σp

P(σ) · ‖Ψ?
IpΦcp,σ‖1

=
∑
σ∈Σp

P(σ) ·
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1 − ‖Ψ?

IpΦcp,σ‖1
)

+ Eσ
(
‖Ψ?

IpΦcp,σ‖1
)
. (17)

To estimate the sum over Σp, note that we have the following bounds:

|〈ψi,Φcp,σ〉| = |αi〈φi,Φcp,σ〉+ ωi〈zi,Φcp,σ〉|

{
≤ (1− ε2

2 )|〈φi,Φcp,σ〉|+ ε
√
B

≥ (1− ε2

2 )|〈φi,Φcp,σ〉| − ε
√
B

,

leading to

max
|I|=S

‖Ψ?
IΦcp,σ‖1 ≤ (1− ε2

2
) max
|I|=S

‖Φ?
IΦcp,σ‖1 + S · ε

√
B = (1− ε2

2
)‖Φ?

IpΦcp,σ‖1 + S · ε
√
B

‖Ψ?
IpΦcp,σ‖1 ≥ (1− ε2

2
)‖Φ?

IpΦcp,σ‖1 − S · ε
√
B.

Substituting these estimates into (17) we get

Eσ
(

max
|I|=S

‖Ψ?
IΦcp,σ‖1

)
≤
∑
σ∈Σp

P(σ) · 2εS
√
B + Eσ

(
‖Ψ?

IpΦcp,σ‖1
)

≤ η · 2εS
√
B + Eσ

(
‖Ψ?

IpΦcp,σ‖1
)
.

Next we calculate Eσ
(
‖Ψ?

Ip
Φcp,σ‖1

)
:

Eσ
(
‖Ψ?

IpΦcp,σ‖1
)

= Eσ

∑
i∈Ip

|〈ψi,Φcp,σ〉|


= Eσ

∑
i∈Ip

∣∣∣αicp(i) + σi〈αiφi + ωizi,
∑
j 6=i

σjcp(j)φj〉
∣∣∣
 =

∑
i∈Ip

αicp(i), (18)

where have used that ε ≤ ((1− ε2

2 )cS−µ‖c‖1)/
√
B guarantees the expression within absolute

values in (18) to always be positive. Collecting all these results we arrive at the following
estimate for the value of the objective function at Ψ:

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
= EpEσ

(
max
|I|=S

‖Ψ?
IΦcp,σ‖1

)

≤ Ep

4εS
√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)
+
∑
i∈Ip

αicp(i)


≤ 4εS

√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)
+
c1 + . . .+ cS

K

∑
i

αi.
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Finally we are able to compare the expectation at the original dictionary to that at an

ε-perturbation. Remembering that αi = 1− ε2i
2 , we get

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
≥ c1 + . . .+ cS

K

∑
i

ε2
i

2
− 4εS

√
B
∑
i:εi 6=0

exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2
i

)

≥ ε2 c1 + . . .+ cS
2K

− 4εSK
√
B exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2

)
.

Thus to have a local maximum at the original dictionary we need that

ε >
8SK2

√
B

c1 + . . .+ cS
exp

(
−

(cS − cS+1 − 2µ‖c‖1 − ε2

2 )2

8ε2

)
,

and all that remains to be shown is that this is implied by (15). Since K ≥ 2, (15) implies

that ε2

2 <
cS−cS+1−2µ‖c‖1
2(1+3

√
log 96)2

≤ cS−cS+1−2µ‖c‖1
100 and it suffices to show that (15) further implies

ε >
8SK2

√
B

c1 + . . .+ cS
exp

(
−(cS − cS+1 − 2µ‖c‖1)2 · 992

8ε2 · 1002

)
. (19)

Applying Lemma A.3 by Schnass (2014), which says that for a, b, ε > 0,

ε ≤ 4b

1 +
√

1 + 16 log(ab )
implies that a exp

(
−b2

ε2

)
< ε,

to the situation at hand, where a = 8SK2
√
B

c1+...+cS
and b =

(cS−cS+1−2µ‖c‖1)·99√
8·100

, we get that (19)

is ensured by

ε <
cS − cS+1 − 2µ‖c‖1

√
8 · 25

99

(
1 +

√
16 log

(
8
√

8· 100
99
e1/16SK2

√
B

(cS−cS+1−2µ‖c‖1)(c1+...+cS)

)) ,

which simplifies to (15).

Proof [of Theorem 2]
Using the symmetry of ν, our strategy is to reduce the general to the simple coefficient
model. Let c denote the mapping that assigns to each x ∈ SK−1 the non increasing rear-
rangement of the absolute values of its components, that is ci(x) = |xp(i)| for a permutation
p such that c1(x) ≥ c2(x) ≥ . . . ≥ cK(x) ≥ 0. Then the mapping c together with the
probability measure ν on SK−1 induces a pull-back probability measure νc on c(SK−1), by
νc(Ω) := ν(c−1(Ω)) for any measurable set Ω ⊆ c(SK−1). With the help of this new measure
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we can rewrite the expectations we need to calculate as

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
= Ex

(
max
|I|=S

‖Φ?
IΦx‖1

)
=

∫
x

max
|I|=S

‖Φ?
IΦx‖1dν =

∫
c(x)

EpEσ
(

max
|I|=S

‖Φ?Φcp,σ(x)‖1
)
dνc.

The expectation inside the integral should seem familiar. Indeed we have calculated it
already in the proof of Proposition 6 for c(x) a fixed decaying sequence satisfying cS(x) >
cS+1(x) + 2µ‖x‖1. Since this property is satisfied almost surely we have

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
=

∫
c(x)

EpEσ
(

max
|I|=S

‖Φ?Φcp,σ(x)‖1
)
dνc

=

∫
c(x)

c1(x) + . . .+ cS(x)dνc := c̄1 + . . .+ c̄S .

For the expectation of a perturbed dictionary Ψ we get in analogy

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
=

∫
c(x)

EpEσ
(

max
|I|=S

‖Ψ?Φcp,σ(x)‖1
)
dνc

≤
∫
c(x)

η(x) + (c1(x) + . . .+ cS(x))
1

K

∑
i

αi dνc,

where

η(x) := 4εS
√
B
∑
i:εi 6=0

exp

(
−

(cS(x)− cS+1(x)− 2µ‖x‖1 − ε2

2 )2

8ε2
i

)
.

Since cS(x)− cS+1(x)− 2µ‖x‖1 ≥ β almost surely we have

η(x) ≤ 4εS
√
B
∑
i:εi 6=0

exp

(
−

(β − ε2

2 )2

8ε2
i

)
:= ηβ,

almost surely and therefore

Ey
(

max
|I|=S

‖Ψ?
Iy‖1

)
≤ ηβ + (c̄1 + . . .+ c̄S)

1

K

∑
i

αi.

Following the same argument as in the proof of Proposition 6 we see that Ey
(
max|I|=S ‖Φ?

Iy‖1
)
>

Ey
(
max|I|=S ‖Ψ?

Iy‖1
)

as soon as

ε <
β

1 + 3

√
log
(

25K2S
√
B

β(c̄1+...+c̄S)

) .
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A.2 Proof of Theorem 3

Again we first reformulate and prove the theorem for the case of a symmetric coefficient
distribution based on one sequence and then extend it with an integration argument.

Proposition 7 Let Φ be a unit norm frame with frame constants A ≤ B and coherence µ.
Let x ∈ RK be a random permutation of a sequence c, where c1 ≥ c2 ≥ c3 . . . ≥ cK ≥ 0
and ‖c‖2 = 1, provided with random ± signs, that is x = cp,σ with probability P(p, σ) =
(2KK!)−1. Further let r = (r(1) . . . r(d)) be a centred random subgaussian noise-vector with
parameter ρ and assume that the signals are generated according to the noisy signal model
in (9). If we have

max{µ, ρ} ≤ cS − cS+1√
72(log a+ log log a)

for a =
112K2S(

√
B + 1)

Cr(cS − cS+1)(c1 + . . .+ cS)
, (20)

where Cr = Er
(
(1 + ‖r‖22)−1/2

)
, then there is a local maximum of (5) at Ψ̃ satisfying

d(Ψ̃,Φ) ≤ 12SK2
√
B

Cr(c1 + . . .+ cS)
exp

(
−(cS − cS+1)2

72 max{µ2, ρ2}

)
.

Proof To prove the proposition we digress from the conventional scheme of first calculating
the expectation of our objective function for both the original and a perturbed dictionary
and then comparing and instead bound the difference of the expectations directly.

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
= Ep,σ,r

(
max
|I|=S

∥∥∥∥∥Φ?
I(Φcp,σ + r)√

1 + ‖r‖22

∥∥∥∥∥
1

− max
|I|=S

∥∥∥∥∥Ψ?
I(Φcp,σ + r)√

1 + ‖r‖22

∥∥∥∥∥
1

)

= Ep,σ,r

(
max|I|=S ‖Φ?

I(Φcp,σ + r)‖1 −max|I|=S ‖Ψ?
I(Φcp,σ + r)‖1√

1 + ‖r‖22

)
:= Ep,σ,r(∆p,σ,r)

Again our strategy is to show that for a fixed p for most σ and r the maximal response
of both the original dictionary and the perturbation is attained at Ip. The expressions we
therefore need to lower (upper) bound for i ∈ Ip (i /∈ Ip) are

|〈φi,Φcp,σ + r〉| =
∣∣σicp(i) +

∑
j 6=i

σjcp(j)〈φi, φj〉+ 〈φi, r〉
∣∣,

|〈ψi,Φcp,σ + r〉| =
∣∣αiσicp(i) + αi

∑
j 6=i

σjcp(j)〈φi, φj〉+ ωi〈zi,Φcp,σ〉+ 〈ψi, r〉
∣∣.

However, instead of using a worst case estimate for the gap between the responses of the
original dictionary inside and outside Ip, we now make use of the fact that for most sign se-
quences we have a gap size of order cS−cS+1. This means that as soon as |

∑
j 6=i σjcp(j)〈φi, φj〉|,

ωi|〈zi,Φcp,σ〉| and the noise related terms |〈φi, r〉| and |〈ψi, r〉| are of order (cS − cS+1) the
maximal response of both the original dictionary and the perturbation is attained at Ip. In
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particular, defining the sets

Σp :=
⋃
i

σ s.t.
∣∣∣∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ ≥ cS − cS+1

6
or ωi|〈zi,Φcp,σ〉| ≥

cS − cS+1 − 3ε2

2

6

 ,

for a fixed permutation p and

R :=
⋃
i

{
r s.t. |〈φi, r〉| ≥

cS − cS+1

3
or |〈ψi, r〉| ≥

cS − cS+1

6

}
,

we see that both maxima are attained at Ip as long as σ /∈ Σp and r /∈ R. Using Hoeffding’s
inequality we get that

P

∣∣∣∑
j 6=i

σjcp(j)〈φi, φj〉
∣∣∣ > t

 ≤ 2 exp

(
−t2

2
∑

j 6=i c
2
p(j)|〈φi, φj〉|2

)
≤ 2 exp

(
−t2

2µ2

)
,

while from the proof of Proposition 6 we know that for εi 6= 0 we have P(ωi|〈zi,Φcp,σ〉| ≥
s) ≤ 2 exp

(
− s2

2ε2i

)
. Setting t = (cS − cS+1)/6, s = (cS − cS+1 − 3ε2

2 )/6 and using a union

bound then leads to

P(Σp) ≤ 2K exp

(
−
(
cS − cS+1 − 3ε2

2

)2
72ε2

)
+ 2K exp

(
−(cS − cS+1)2

72µ2

)
. (21)

Since the r(i) are subgaussian with parameter ρ we have for any v = (v1 . . . vd) and t ≥ 0,

P(|〈v, r〉| ≥ t) ≤ exp
(
− t2

2ρ2‖v‖22

)
(Vershynin, 2012). Taking a union bound over all φi, ψi

with the corresponding choice for t then leads to the estimate

P(R) ≤ 2K exp

(
−
(
cS − cS+1

)2
72ρ2

)
+ 2K exp

(
−
(
cS − cS+1

)2
18ρ2

)
. (22)

We now split the expectations over the sign and noise patterns for a fixed p to get

EσEr(∆p,σ,r) = Eσ
(∫

r/∈R
∆p,σ,rdνr

)
+ Eσ

(∫
r∈R

∆p,σ,rdνr

)
=
∑
σ/∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr +
∑
σ∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr

+ Eσ
(∫

r∈R
∆p,σ,rdνr

)
. (23)

Next note that Σp is symmetric in the sense that we either have (σ1, . . . ,±σi, . . . , σK) ∈ Σp

or (σ1, . . . ,±σi, . . . , σK) /∈ Σp. Thus we get for the first term in (23),

∑
σ/∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr =

∫
r/∈R

∑
σ/∈Σp

P(σ)


∥∥∥Φ?

Ip
(Φcp,σ + r)

∥∥∥
1
−
∥∥∥Ψ?

Ip
(Φcp,σ + r)

∥∥∥
1√

1 + ‖r‖22

 dνr

=

∫
r/∈R

∑
σ/∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

 dνr.
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To bound the last two terms in (23) we first find an upper bound formax|I|=S ‖Ψ?
I(Φcp,σ +

r)‖1:

max
|I|=S

‖Ψ?
I(Φcp,σ + r)‖1 = max

|I|=S

∑
i∈I
|〈αiφi + ωizi,Φcp,σ + r)〉|

≤ max
|I|=S

∑
i∈I

(
1− ε2

i

2

)
|〈φi,Φcp,σ + r)〉|+ εi‖Φcp,σ + r‖2

≤ max
|I|=S

∑
i∈I

(
1− ε2

2

)
|〈φi,Φcp,σ + r)〉|+ ε

(√
B + ‖r‖2

)
=
(
1− ε2

2

)
max
|I|=S

‖Φ?
I(Φcp,σ + r)‖1 + εS

(√
B + ‖r‖2

)
.

This then leads to the following lower bound for ∆p,σ,r:

∆p,σ,r ≥ (1 + ‖r‖22)−1/2

(
max
|I|=S

‖Φ?
I(Φcp,σ + r)‖1

ε2

2
− εS

(√
B + ‖r‖2

))
≥ (1 + ‖r‖22)−1/2

(
‖Φ?

Ip(Φcp,σ + r)‖1
ε2

2
− εS

(√
B + ‖r‖2

))
.

Using again the symmetry of Σp we have

∑
σ∈Σp

P(σ)

∫
r/∈R

∆p,σ,rdνr ≥
∫
r/∈R

∑
σ∈Σp

P(σ)
‖Φ?

Ip
(Φcp,σ + r)‖1 ε

2

2 − εS
(√
B + ‖r‖2

)√
1 + ‖r‖22

dνr

≥
∫
r/∈R

∑
σ∈Σp

P(σ)

(∑
i∈Ip cp(i)

ε2

2√
1 + ‖r‖22

− εS
(√
B + 1

))
dνr

≥
∫
r/∈R

∑
σ∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

) dνr,

and similarly

Eσ
(∫

r∈R
∆p,σ,rdνr

)
≥
∫
r∈R

Eσ

(
‖Φ?

Ip
(Φcp,σ + r)‖1 ε

2

2 − εS
(√
B + ‖r‖2

)√
1 + ‖r‖22

)
dνr

≥
∫
r∈R

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

)
dνr.
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Resubstituting into (23) we get

EσEr(∆p,σ,r) ≥
∫
r∈R

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

)
dνr

+

∫
r/∈R

∑
σ∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22
− εS

(√
B + 1

) dνr

+

∫
r/∈R

∑
σ/∈Σp

P(σ)

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

 dνr

≥
∫
r

∑
i∈Ip cp(i)

ε2i
2√

1 + ‖r‖22
dνr − εS

(√
B + 1

)
·
(
P (R) + P (Σp)

)
. (24)

Taking the expectation over the permutations then yields

Ep,σ,r(∆p,σ,r) ≥ ErEp

∑i∈Ip cp(i)
ε2i
2√

1 + ‖r‖22

− εS(√B + 1
)
·
(
P(R) + EpP(Σp)

)
≥ Er

(
1√

1 + ‖r‖22

)
c1 + . . .+ cS

2K

∑
i

ε2
i − εS

(√
B + 1

)
·
(
P(R) + EpP(Σp)

)
.

Using the probability estimates from (21)/(22) we see that Ep,σ,r(∆p,σ,r) > 0 is implied by

ε ≥
4SK2

(√
B + 1

)
Crγ

(
exp

(
−
(
β − 3ε2

2

)2
72ε2

)
+ exp

(
−β2

72µ2

)
+ exp

(
−β2

72ρ2

)
+ exp

(
−β2

18ρ2

))
,

where we have used the abbreviations γ = c1 + . . . + cS , β = cS − cS+1 and Cr =
Er
(
(1 + ‖r‖22)−1/2

)
. We now proceed by splitting the above condition. We define εmin

by asking that

ε

3
≥

4SK2
(√
B + 1

)
Crγ

exp

(
− β2

72 max{µ2, ρ2}

)
:=

εmin

3

and εmax implicitly by asking that

ε

3
− ε4

81
≥

4SK2
(√
B + 1

)
Crγ

exp

(
−
(
β − 3ε2

2

)2
72ε2

)
.

Following the line of argument in the proof of Proposition 6 we see that the above condition
is guaranteed as soon as

ε ≤ β

5
2 + 9

√
log
(

112K2S(
√
B+1)

Crβγ

) := εmax.
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The statement follows from making sure that εmin < εmax.

Proof [of Theorem 3] Using the pull-back probability measure νc we can write

Ey
(

max
|I|=S

‖Φ?
Iy‖1

)
− Ey

(
max
|I|=S

‖Ψ?
Iy‖1

)
=

∫
c(x)

Ep,σ,r
(
∆p,σ,r,c(x)

)
dνc,

where ∆p,σ,r,c(x) is defined analogue to ∆p,σ,r in the last proof, that is replacing c by c(x).
The statement follows from employing the lower estimate for Ep,σ,r

(
∆p,σ,r,c(x)

)
from (24)

and replacing c1 + . . .+ cS by c̄1 + . . .+ c̄S resp. cS− cS+1 by its lower bound β in the proof
of Proposition 7.

A.3 Proof of Theorems 4 and 5

Since the proofs of Theorems 4 and 5 are conceptually equivalent we will combine them
into one and just split the argument for the inevitable juggling of constants.
Proof As outlined in the proof idea we need a Lipschitz property for the mapping Ψ →
1
N

∑N
n=1 max|I|=S ‖Ψ?

Iyn‖1 for both signal models, the concentration of the sum around its
expectation for a δ net covering the space of all admissible dictionaries close to Φ and a
triangle inequality argument to get to the final statement.
To show the Lipschitz property we use a reverse triangle inequality:∣∣∣∣max

|I|=S
‖Ψ?

Iyn‖1 − max
|I|=S

‖Ψ̄?
Iyn‖1

∣∣∣∣ =

∣∣∣∣max
|I|=S

‖Ψ̄?
Iyn − (Ψ̄?

I −Ψ?
I)yn‖1 − max

|I|=S
‖Ψ̄?

Iyn‖1
∣∣∣∣

≤ max
|I|=S

‖(Ψ̄?
I −Ψ?

I)yn‖1

≤ Smax
k
‖ψk − ψ̄k‖2‖yn‖2

≤ d(Ψ, Ψ̄)S
(√
B + 1

)
.

Note that for the noise-free signal model we can replace
(√
B + 1

)
by
√
B in the last

expression. By averaging over n we get that the mapping in question is Lipschitz with
constant S

(√
B + 1

)
in the noisy and S

√
B in the noise-free case, that is∣∣∣∣∣ 1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ̄?
Iyn‖1

∣∣∣∣∣ ≤ d(Ψ, Ψ̄)S
(√
B + 1

)
.

To show that the averaged sums concentrate around their expectations we use our favourite
tool Hoeffding’s inequality. Set Xn = max|I|=S ‖Φ?

Iyn‖1 −max|I|=S ‖Ψ?
Iyn‖1, then we have

|Xn| ≤ εS
(√
B + 1

)
, resp. |Xn| ≤ εS

√
B in the noise-free case, and get the estimate

P

(∣∣∣∣∣ 1

N

N∑
n=1

(
max
|I|=S

‖Φ?
Iyn‖1 − max

|I|=S
‖Ψ?

Iyn‖1
)
− E

(
max
|I|=S

‖Φ?
Iy1‖1 − max

|I|=S
‖Ψ?

Iy1‖1
)∣∣∣∣∣ ≥ 2t

)

≤ 2 exp

(
−2Nt2

ε2S2
(√
B + 1

)2
)
.
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Next we need to choose a δ-net for all perturbations Ψ with d(Φ,Ψ) ≤ εmax, that is a finite
set of perturbations N such that for every Ψ we can find Ψ̄ ∈ N with d(Ψ, Ψ̄) ≤ δ. Recalling
the parameterization of all ε-perturbations from the proof of Proposition 6, we see that the
space we need to cover is included in the product of K balls with radius εmax in dimension
d. For instance from Lemma 2 by Vershynin (2012) we know that for the d dimensional ball

of radius εmax we can find a δ-net Nd satisfying ]Nd ≤
(
εmax + 2εmax

δ

)d
, so for our space of

ε-perturbations we can find a δ-net N satisfying

]N ≤
(
εmax +

2εmax

δ

)Kd
≤
(

3εmax

δ

)Kd
.

Taking a union bound we can now estimate the probability that we have concentration for
all perturbations in the net as

P

(
∃Ψ ∈ N :

∣∣∣∣∣ 1

N

N∑
n=1

(
max
|I|=S

‖Φ?
Iyn‖1 − max

|I|=S
‖Ψ?

Iyn‖1
)

− E
(

max
|I|=S

‖Φ?
Iy1‖1 − max

|I|=S
‖Ψ?

Iy1‖1
)∣∣∣∣∣ ≥ 2t

)

≤
(

3εmax

δ

)Kd
2 exp

(
−2Nt2

ε2
maxS

2
(√
B + 1

)2
)
.

Finally we are ready for the triangle inequality argument. For any Ψ with d(Ψ,Φ) = ε ≤
εmax we can find Ψ̄ ∈ N with d(Ψ̄,Ψ) ≤ δ and d(Φ, Ψ̄) = ε̄ and therefore get

1

N

N∑
n=1

max
|I|=S

‖Φ?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1

=
1

N

N∑
n=1

max
|I|=S

‖Φ?
Iyn‖1 − E

(
max
|I|=S

‖Φ?
Iy1‖1

)
+ E

(
max
|I|=S

‖Φ?
Iy1‖1

)
− E

(
max
|I|=S

‖Ψ̄?
Iy1‖1

)

+ E
(

max
|I|=S

‖Ψ̄?
Iy1‖1

)
− 1

N

N∑
n=1

max
|I|=S

‖Ψ̄?
Iyn‖1 +

1

N

N∑
n=1

max
|I|=S

‖Ψ̄?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1

≥ E
(

max
|I|=S

‖Φ?
Iy1‖1

)
− E

(
max
|I|=S

‖Ψ̄?
Iy1‖1

)
− 2t− δS

(√
B + 1

)
.

Depending on the signal model we now have to substitute the values for the asymptotic
differences E

(
max|I|=S ‖Φ?

Iy1‖1
)
− E

(
max|I|=S ‖Ψ̄?

Iy1‖1
)

calculated in the previous proofs.
Under the conditions given in Theorem 4 we have,

1

N

N∑
n=1

max
|I|=S

‖Φ?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1

≥ ε̄2 c̄1 + . . .+ c̄S
2K

− 4ε̄SK
√
B exp

(
−

(β − ε̄2

2 )2

8ε̄2

)
− 2t− δS

√
B. (25)
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To make sure that the above expression is larger than zero, we split it into two conditions.
The first condition

ε̄2 c̄1 + . . .+ c̄S
4K

> 4ε̄SK
√
B exp

(
−

(β − ε̄2

2 )2

8ε̄2

)

is satisfied as soon as

ε̄ ≤ β

25
√

8
99

(
1 + 4

√
log
(

50K2S
√
B

β(c̄1+...+c̄S)

)) .
To concretise the second condition

ε̄2 c̄1 + . . .+ c̄S
4K

≥ 2t+ δS
√
B,

we choose t = ε̃2 c̄1+...+c̄S
16K and δ = ε̃2 c̄1+...+c̄S

8KS
√
B

to arrive at ε̄ ≥ 2ε̃. Given that ε̄ differs at

most by δ from ε we see that (25) is larger than zero except with probability

2 exp

(
−Nε̃

4(c̄1 + . . .+ c̄S)2

128ε2
maxS

2K2B
+Kd log

(
24εmaxKS

√
B

ε̃2(c̄1 + . . .+ c̄S)

))
,

as long as

εmin := ε̃+
ε̃2

8K
≤ ε ≤ εmax ≤

β

25
√

8
99

(
1 + 4

√
log
(

50K2S
√
B

β(c̄1+...+c̄S)

)) − ε̃2

8K
. (26)

While for the asymptotic results we tried to make εmax as large as possible to indicate
how large the basin of attraction could be, for the finite sample size results we want it
as small as possible in order to keep the sampling complexity small and therefore choose
εmax = εmin. The statement then follows from making sure that the right most inequality
in (26) is satisfied and simplifications.
In case of the noisy signal model, that is under the conditions given in Theorem 5, we have

1

N

N∑
n=1

max
|I|=S

‖Φ?
Iyn‖1 −

1

N

N∑
n=1

max
|I|=S

‖Ψ?
Iyn‖1

≥ ε̄2 c̄1 + . . .+ c̄S
2CrK

− 2t− δS
(√
B + 1

)
− 2ε̄SK

(√
B + 1

)
·

·

(
exp

(
−
(
β − 3ε̄2

2

)2
72ε̄2

)
+ exp

(
−β2

72µ2

)
+ exp

(
−β2

72ρ2

)
+ exp

(
− β2

18ρ2

))
. (27)
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Splitting equally gives us four conditions:

ε̄ ≥
16CrSK

2
(√
B + 1

)
c̄1 + . . .+ c̄S

exp

(
− β2

72µ2

)
:= εµ,

ε̄ ≥
16CrSK

2
(√
B + 1

)
c̄1 + . . .+ c̄S

exp

(
− β2

72ρ2

)
:= ερ,

ε̄2 ≥ 8CrK

c̄1 + . . .+ c̄S

(
2t+ δS

(√
B + 1

))
,

ε̄(1− ε̄3

64
) >

16CrSK
2
(√
B + 1

)
c̄1 + . . .+ c̄S

exp

(
−
(
β − 3ε̄2

2

)2
72ε̄2

)
. (28)

Choosing t = ε̃2
µ,ρ

c̄1+...+c̄S
32CrK

and δ = ε̃2
µ,ρ

c̄1+...+c̄S
16KS(

√
B+1)

we can merge the first three conditions

to ε̄ ≥ ε̃2
µ,ρ, while following the usual argument, Condition (28) is satisfied once

ε̄ ≤ β

9
4 + 9

√
log

(
150K2S

(√
B+1

)
βCr(c̄1+...+c̄S)

) .
Given that ε̄ differs at most by δ from ε we see that (27) is larger than zero except with
probability

2 exp

(
−

Nε̃4
µ,ρ(c̄1 + . . .+ c̄S)2

512ε2
maxC

2
rS

2K2
(√
B + 1

)2 +Kd log

(
48εmaxKS

(√
B + 1

)
ε̃2
µ,ρ(c̄1 + . . .+ c̄S)

))
,

as long as

εmin := ε̃µ,ρ +
ε̃2
µ,ρ

16K
≤ ε ≤ εmax ≤

β

9
4 + 9

√
log

(
150K2S

(√
B+1

)
βCr(c̄1+...+c̄S)

) − N−2q

K
. (29)

Again the statement follows from choosing εmax = εmin, making sure that the right most
inequality in (29) is satisfied and simplifications.
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